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Abstract

What does it mean to unveil a network of interactions? In this dissertation, we will enrich the
field of network theory by studying innovative approaches and ideas to reconstruct missing
elements and connections in networks. Starting from theoretical approaches and methods to
infer uncaptured links and nodes, we will contribute with our probabilistic techniques. We
will implement state-of-the-art analysis on big data extracted from social networks to discover
unexpected connections in the opinion dynamics of a population in relation to epidemiological
events. Finally, open-source software will be developed to perform intuitive and affordable
experiments about face-to-face interactions, a field of research almost untapped. Guiding us
in this journey, there will be the common thread of network reconstruction to unveil human
interactions at different levels of the scientific process.
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Chapter 1

Introduction

1.1 Origins of network theory

The field of network theory may have gained a lot of attention in recent years, but its origin dates
back to the beginning of the industrial revolution. We are in Eastern Prussia, precisely in its
capital Königsberg around 1735. This city was a thriving merchant city, supported by the trades
of its busy fleet sailing on the river Pregel. The city was rich enough that its officials could
build several bridges, seven exactly, to connect the small island of Kneiphof to the mainland
and the two sides of the city together. An artistic representation of such an arrangement can
be seen in figure 1.1. Thanks to this unique arrangement, a contemporary riddle was born in
the city: could someone cross all the seven bridges of Königsberg exactly once? A rigorous
proof that such a path did not exist came in the form of a rigorous demonstration from the
Swiss mathematician L. Euler [1]. He schematically represented the situation as four points,
representing the four stretches of disconnected land, and seven arcs to picture the bridges.
This was indeed a graph representation, and thanks to it Euler noted that, in order to cross
each arc once and only once, nodes with an odd number of arcs must be either starting points
or end points. If more than two nodes have an odd number of links, no unique path can be
identified. In Königsberg, each landmass had an odd number of bridges connected to it, so a
path satisfying the riddle was impossible to find.

The field of graph theory has been thriving in mathematics, but the field of network theory,
which shares a lot with the former but relies on data and models to explain reality, has only
recently emerged. Why this is the case can be seen in some of the technological and cultural
advantages that struck our society at the beginning of the century. A cornerstone connection
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Fig. 1.1 Artistic representation of the Seven bridges of Königsberg, Creative Commons, Wikimedia
Foundation
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that opened the use of network theory to other fields of research was the paper by Granovetter
[2] in 1973. In this study a strong argument is made on the importance of weak ties, all those
social connections and encounters that, for the reason of being at the boundary of a person’s
group core, make them the driving motion of so many processes and dynamics. This finding
originated from empirical work on how people were able to find new jobs, rooted in data and
understood thanks to the idea of networks. From there on, the idea of collecting data and
mapping it using the techniques of network theory took ample support in many social sciences,
opening a new era of research and discovery.

A parallel and quite astonishing revolution happened in the field of biology around the same
time, with the paper from White [3] in 1986. For the first time, and after tireless work, the
complete diagram of an animal’s brain was available for researchers to study. Albeit the animal
was a modest C. Elegans, with a nervous system comprised of only 302 neurons, the details on
the structure of the network of functioning cells could finally be studied. This research focused
less on the network approach but was the telltale of an opening era, more and more data on
interactions were becoming available in many research fields. A kind of data that couldn’t be
fully understood just with statistics or heuristic models, but needed a new approach focused on
the relationship among the system’s constituents.

When academia was adopting the network theory, the big dotcom revolution was starting
to embrace it. At the core of one of the biggest companies of our times there is an interesting
work, the PageRank algorithm [4]. This algorithm was invented by Brin and Page, at the
time two Stanford associates who came on to found Google LLC. The PageRank algorithm
leveraged stochastic ideas and network properties to identify, or rather predict, the best web
page to show to a user based on very simple inputs. Cleverly the calculations leveraged the
connections among webpages suggested by the creators of the pages themselves, as those
could be incorporated into the bigger picture of the world wide web. Nowadays, we take for
granted the simplicity of browsing online, but that is the result of applied network science
at its finest. Google LLC is not the only company leveraging the power of networks; think
of all the different social media available to you at the touch of a finger. Those are mapping
and exploring the intricate connections and exchanges happening among people all around the
world, enhancing and inhibiting messages and information.

Around the same years in which Brin and Page were revolutionizing Information Technol-
ogy, two of the most important studies on network theory were coming into being. The work of
Watts and Strogatz and that of Barabasi and Albert remain to this day two of the most cited in
the field of network science and outside of it. Small World [5] is the name given by Watts and
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Strogatz to a generative model that is at the same time simple in its basic concept yet able to
describe an intriguing emerging property of societies. It seems striking at times that, no matter
how far we are from home, our newly met friends know someone that, more or less directly, we
also know. In their model, Watts and Strogatz obtained this emergent property by adopting a
rewiring technique to regular-lattice networks. From the other side of the research field, that of
the data and its analysis, Barabasi and Albert uncovered the scale-free properties of networks
[6]. Starting from the well-cataloged data on scientific collaborations, it was evident that not all
nodes and connections were created equally. Influential professors in a field were more likely
to have more collaborations, and they were more likely to collaborate with other estimated
scholars, inside and outside their area of expertise. The authors explained this with a generative
model of networks that grow in steps, following simple probabilistic rules. Emerging from
this model is that common properties arise no matter the size of the network, hence the name:
scale-free. Actors rich in connections grow even richer, and those without connections struggle
to gain more. It can be shown that the distribution of connections in many different fields and
applications, from the power grid to airports, from friends at a school to web pages, follows a
power-law, as the model proposed by Barabasi and Albert explains. These works unveiled the
power of network theory. With some simple rules, the complex phenomena we experience in
everyday life finally appear naturally from the system’s dynamics, and can get a comprehensive
mathematical explanation.

Nowadays, network theory has branched from graph theory and seeded numerous fields of
research that have emerged to tackle specific questions and explain some peculiar phenomena.
Defining and identifying a community in a network has been the focus of those interested
in community-detection [7, 8], which still is a difficult task. Evaluating the robustness of a
network to random failures [9] or targeted attacks [10] emerged as a field of interest due to the
practical needs in modern infrastructures. Developing models that could explain contagion
phenomena both of pathogens [11, 12] or information [13, 14] is seen nowadays as essential for
the safeguarding of our communities. Alongside those practical applications, more theoretical
analyses have been explored, such as the study on how to model and represent networks
that evolve in time [15, 16], or the description of networks of higher-order [17, 18]. Among
those, the field of network reconstruction [19–21] has steadily risen in interest in the academic
community, as more and more data availability poses questions on the observability of networks
in the real world. The latter subject of research will be of particular interest to this dissertation.

In the last couple of years, network theory has become, unwillingly, even more of public
domain. The power of this research field has been put to the service of the community at
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large and for the benefit of many. Its application to the study of epidemics has allowed for an
unprecedented understanding and prediction on the diffusion of viruses and pathogens. For
example, the H1N1 influenza pandemic around 2009 was one of the most accurately predicted
phenomena of such kind [22]. Applying network theory to epidemic predictions allows for a
new paradigm in how we think about diffusive phenomena and medicine, the role of mass and
long-range transportation, and the interconnected nature of our world. A network approach
may be one of the few that offer a solution for rampant and deadly diseases such as Ebola [23],
where having a behavioral model interlaced with a network description is not just useful but
essential. Sadly we all remember the recent COVID-19 pandemic. The effects it had on our
society are still to be fully understood and will unravel for years to come. But the tools that this
field of research, our field of research, gave us in fighting this disease helped in understanding
its diffusion in the early stages [24], in defining the policies to control and curb it [25], guided
us in designing the most effective vaccination campaigns [26], and allowed us to understand the
citizens’ reaction to the aforementioned policies [27]. All of this work allowed us to approach
what could have been an insurmountable obstacle as a tough, yet defeatable, enemy.

Network theory is not just a toolbox or a lens for our society; it is a new paradigm to
describe, understand and shape the world around us.

1.2 The problem of reconstructing a network

The problem of reconstructing a network has many different real-world applications and,
therefore, different meanings associated with it. First of all, we have to define which part of
the network we aim to reconstruct. That could be the links between nodes, which could help
infer the diffusion pattern of a disease [28–30] or information [31], the activation pattern of a
biological system [32–34] or the formation of social groups [21]. We could also be interested
in nodes, or more generally the size of the network, to understand the population involved in a
specific phenomenon [35, 36]. Moreover, we could be focusing on the problem of identifying
communities, tightly linked groups within a network, which tend to have common behaviors or
properties [37]. More generally, we could frame the problem of reconstructing a network as a
practical one, developing new tools and techniques in fields where no previous data-collection
has been done [38, 39].

Often the problem of reconstructing a network arises from observing a dynamical process
taking place on it. Taking as an example disease spreading, the most evident trace left on a
network is the number of agents infected by the disease traveling through the population. Yet
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this process leaves little to no trace of the exact path of diffusion of the pathogen through society,
and this inhibits our ability to stop it [40–42]. Another example could entail the structure of
a criminal organization [43, 44], of which we see the devastating effects on society, but little
we can do to stop it until we have reconstructed the size of its members and the network of its
management. Therefore, new techniques are needed to link the effects of the processes we see
unraveling on the network to its core structure in order to reconstruct the parts we are interested
in studying. Finally, the reconstruction of a network is essential to assess whether the models,
techniques, and ideas we develop are useful and realistic explanations of empirical behaviors
or observed social structures.

Network reconstruction in biology

One of the fields that has devoted much energy to network reconstruction is medicine, par-
ticularly the fields of genomics, connectomics, and more generally systems biology. At the
intersection of biology and network science, these research fields are exploring new approaches
with a practical application: understanding the relational chains among different biological
elements to cure pathologies and discover the secrets of life.

The first area of research to mention is that of connectomics. Connectomics can be broadly
defined as the effort of reconstructing the functional diagram of the human brain. Knowing
the biological functioning of cells and neurons is not enough to explain the complex behavior
of the brain [45], as for this organ the complex capability of processing data resides not in its
basic constituents but in their highly complex interactions. Neurons are assembled in a network
of hundreds of billions of nodes [46], whose pattern of connection determines the different
and astonishing capability of reasoning that characterize humans. The first tool that enabled
connectomics [47–49] were those of magnetic resonance (MRI), functional magnetic resonance
(fMRI) [50], diffusion magnetic resonance [51], and tomography (PET). Yet those technical
imaging tools are not enough alone [45], analytic and modeling counterparts are needed to
fruitfully obtain a viable description of the human brain [52].

The two main computational methods for studying brain connectivity are functional con-
nectivity, and effective connectivity [53, 54]. The first provides information about temporal
correlations between events in different areas of the brain that can be spatially far, the latter
explores direct influences that different areas of the brain have on each other. Most of the mea-
sures applied to the reconstructed networks of the brain are obtained with the aforementioned
techniques and aimed at one of four objectives: revealing functional segregation or integration
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of information flows, highlighting small-world properties of different areas of the brain, and
exploring the brain’s resilience against failure[55, 56].

The second big area of research in which network theory had an important role is that of
genomics. In humans, only about 20% of DNA contains genes that directly encode proteins, the
building blocks of our bodies. The remaining genes play a complex role in the organism, often
being responsible for regulating other genes’ expression or suppression [57]. This complex
interaction of genes is called the gene regulatory network and can vary in complexity from
one organism to another [58], and understanding how these interactions work can be pivotal in
fighting a vast number of diseases [59].

As a general approach, the reconstruction of a gene regulatory network can take two
possible paths [60]: either researcher rely on a physics-based model, which describes how
known processes play together in the network, or they allow an influence model, which simply
describes the network in terms of statistical properties, without providing an exact physical
explanation. We intuitively understand that physics-based models are specific to the biochemical
elements involved [61–63], whereas influence models can provide generalized tools that may
be used in other fields, as we will explore in the following sections of this chapter. To represent
such networks, it is common to represent genes, proteins, or other metabolites as nodes in
a graph, whereas interactions, reactions or influences are represented as edges [64]. Model
architectures [65] of gene regulatory networks can be separated by studying the activity levels
of each component, the type of relationship between each constituent, such as directed or
undirected, and the type of model, such as dynamic or static.

Reconstruction in social networks

Thanks to the diffusion of the world wide web, social networks have had a disruptive effect
on our society. Their diffusion in the population is undoubted, and their effects are avidly
being studied [66–71]. However, privacy is still a concern when analyzing such collections of
information, and for that reason many companies do not fully disclose the data on their users.
In this domain, network reconstruction can therefore be seen as a successful attack on these
data. Furthermore, many social networks are inherently mutable, therefore the accessed data
may not reflect a previous stage of the network or fully capture the ongoing interactions among
users.

One unexpected application of network reconstruction in social networks is that of con-
nection recommendation. As users join a new platform, they may have some friends already
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enrolled that they would like to know about. In this case, predicting a missing link can improve
the user experience, and a variety of techniques have been put forward to reach that goal. Some
approaches include leveraging homophilia among users [72], learning methods with feedback
[73], or applying machine learning techniques [74, 75].

Furthermore, link prediction is of interest for social networks as it can be used by researchers
to infer the complete network of which the data only portrays a portion [76]. The partiality of
a social network can be due to its intrinsic dynamical nature, as new users join the platform
and others leave it, new connections are formed and some severed. To the end of analyzing
these processes, numerous approaches have been proposed, some with strict mathematical
formulation taking into account the main properties of the network [77], others relying more
on local topological features [78]. Understanding the evolutionary dynamics of a graph can
also be achieved by mining the features of a graph and propagating them over time with a
mathematical approach [79], or with semi-supervised machine-learning techniques [68].

Reconstruction with models and attributes

One of the most intuitive approaches to network reconstruction is to look at the properties and
measures on links and nodes. For example, by analyzing centrality measures [80, 81] or other
direct measures [82], one could identify deviations from common measurements and infer the
hidden presence of nodes or links in a network. Simple approaches like this may be intuitive
and informative but may lack the ability to be generalized onto different sets of problems or to
properly work in presence of noise and complex dynamics. A practical approach in real-case
scenarios is that of relying on metadata [83] connected to the nodes to extract information
about the missing links. Although not always implemented in models, metadata are all the
ancillary information that can be extracted when analyzing data from real cases such as social
networks or face-to-face interactions.

Face-to-face interactions are very difficult to study, because of the need for innovative
hardware to properly record the events taking place in the real world [38]. If the problem of
collecting data is overcome, one could reconstruct the network by the characteristics of the
participants [84], by comparing and integrating with other sources of information [85], or by
defining characteristic times of interaction [38]. In either case, ground truth can be extracted by
prior knowledge of the participants [86] or by asking the participants to fill out questionnaires
[87]. All these methods are very case-specific, but they have an immediate match with the
underlying network of interaction.
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Reconstruction in deterministic dynamics and time-series

An element that appears in many areas of the literature [20, 88–92] is that in order to unveil
the hidden structure of a network, there has to be a dynamical process evolving over time on
it. This assumption may seem trivial, but as the idea of recovering hidden variables needs
to be supported by the addition of an equation for an algebraic system, so it is in network
reconstruction.

We need to reconstruct networks not only to understand static structures, but often we need
to match the underlying structure with a dynamical process happening on it. With this aim,
techniques have been developed to leverage the temporal data and the information carried
by the dynamic elements of the system to infer the structure of the network. Leveraging the
dynamics often means having a large set of assumptions on the structure and process under
study [93], and some intrinsic limitations [94]. These assumptions can be on the dynamical
process itself, or on the network properties and their mathematical representation [89]. Once
the boundaries and rules of the reconstruction process are set, techniques can be developed to
properly reconstruct the fine connectivity details of the system.

One way of using the dynamical properties of a system to infer its structure is that of
perturbing a well-known dynamical process [88, 90, 95], deviations from the stable state
propagate through the system in a way that can help discover the connections we are looking
for. Although the assumption of a stable state is widely used for network reconstruction, it is
not strictly needed and instead transient states can be explored [96, 97], as in certain conditions
their behavior can shed a light on the structure of networks.

Among the most common dynamical process studied on networks there is that of epidemics,
which have been at the center of the field of research of network theory for a long time [98]. The
knowledge on epidemic dynamics can be used to reversely infer the properties of the network,
even in presence of scarce data [30, 99]. Furthermore, one could go beyond the dynamical
properties of the epidemic to leverage directly the statistical properties of diffusion dynamic, as
we did contributing to the development of a technique that allows for network reconstruction
only with the pairing of probabilistic distribution within an epidemic scenario [27].

In a similar way, time-series of nodes’ states can be informative of the connectivity structure
under investigation. A great number of techniques have been developed to study and understand
time-series correlations in different scenarios [100–102]. Those same techniques can be applied
to dynamical processes happening on networks, and correlations interpreted as the presence of
links in a network [103]. Time-series expressing Boolean states [92, 104] can be interpreted
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and used intuitively to address simple epidemic scenarios. When analyzing time-series, one
could even explore causality between events [105], and as such apply it to dynamical systems.

Model-free reconstruction

The last approaches to network reconstruction that we are going to explore are those that make
no assumptions about the structure of the system or data, and are therefore called model-free
approaches. Such approaches are useful if only a few details are known about the system
under study, and they allow for a blind analysis of networks that may express unexpected and
counter-intuitive structures.

One such approach is built upon the stochastic block model [106] and Bayesian probability
[107]. By using non-parametric Bayesian inference for network reconstruction [108, 109] it is
possible to evaluate a posterior probability of network reconstruction even without any kind of
primary error estimate. These methods are therefore extremely flexible and useful and can be
used also for jointly estimating communities and other modular properties of a network [8].

In the previous section we briefly touched on the idea of inferring causality among time-
series, but the core techniques described previously can be furthermore extended to explore and
reconstruct whole networks [110]. By leveraging Granger Causality [111, 112], conditional
mutual information [113] and transfer entropy [114, 115], inferences can be made among the
elements of a network such that the reconstruction is the pure result of detected entropy changes
in the system [116]. Analyzing and measuring entropy means to approach the problem of
network reconstruction from an information-theoretic perspective [117], an idea that has been
successful in different areas of research [118, 119]. The information-theoretic approach does
not need any assumption on the model and has been shown to be capable of not only estimating
correlations, but also causality among the elements under study [120, 121]. In this aim, we
applied with novelty the tools of transfer entropy to an analysis of sentiment dynamics and
contributed in exploring the geographical diffusion of opinions as perceived in social media
[122].

Finally, some works are focusing on reconstructing networks using compressed sensing
[123–125]. With compressed sensing, signals can be reconstructed with fewer samples than
required by Nyquist-Shannon sampling theorem [126, 127], withstanding two assumptions:
sparsity and incoherence of the signal. This technique relies on the sparsity of networks under
study and does not need the system to be in a steady state, all properties that differentiate
this approach from the others previously seen, with interesting results [97, 128–130]. The
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bottleneck of this technique is that the amount of data needed to fully reconstruct the number
of links insisting on a node is proportional to the number of links, which can be a problem in
the presence of hubs or in scale-free networks.

1.3 Models of networks

In this section, we will show some of the most important models of networks, and their graph
representation [131]. Generally, we will refer to a network as the representation of the system
under study, it being a physical set of elements and their interactions, or a schematic depiction
of interconnected concepts. We usually call nodes the representation of entities, and links the
representation of interactions among nodes. The graph associated with a network will be its
mathematical representation, composed of vertices, in place of nodes, and edges, in place of
links.

Basic concepts

A graph [132] is an ordered pair G = (V,E) where V is the set of all vertices and E is the set of
edges.

Generally we can say that the set of edges is E ⊆ {{i, j}|i, j ∈V} . If we add the condition
that {i ̸= j} we say that no self-loop is present, meaning a vertex cannot be connected to itself.
A graph is said to be undirected if the set {i, j}|i, j ∈V is unordered, otherwise the graph is
directed.

Different mappings of E 7→ R or V 7→ R can exist. These mapping may represent different
properties and qualities of vertices and edges. Notably, when one mapping of E 7→ R exists,
we say that the associated graph is weighted.

Moreover, we could have that a pair {i, j} is present more than once in E. If more than one
instance of {i, j}|i, j ∈V} is present in E, then G = (V,E) is a multigraph.

Static Networks

Statics networks are those directly derived from graph theory, and they represent a network as
an object that does not evolve in time, of which here we present some of the most prominent
models in the field.
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Erdös-Rényi model

The first model we are going to describe is the so-called random graph [133]. It is an undirected
graph G = (V,E), with a fixed number of nodes N, and where the edges are chosen randomly
from the

(N
2

)
possible in the graph if the edges have an equal probability of being realized. If

we define the parameter p for the probability of realizing a single edge, the expected number
of edges will be p ·

(N
2

)
. Because of the importance of this parameter, this class of graphs is

often represented with the notation G = (N, p), to emphasize the probabilistic realization of
each possible edge. Each graph G = (N, p) has a binomial likelihood of having exactly e edges
realized,

P(|E|= e) =
(N(N−1)

2
e

)
· pe · (1− p)

N(N−1)
2 − e (1.1)

In their work, Erdös and Rényi explored in detail all the properties of the networks G = (N, p),
for p = [0,1]. The key to the asymptotic behavior of this class of graphs is the parameter
λ = p ·N. A phase change is noted for the system when λ = 1. When this threshold is
overcome a giant connected component emerges in the graph, whereas below it only small
disconnected components are present. In detail:

• If λ < 1 no connected component is present in the graph that is bigger than O(logN),
for N→ ∞

• If λ = 1 then the largest component will be of size O(N2/3), for N→ ∞

• If λ > 1 a giant connected component will be present, where other components will have
less then O(logN) nodes, for N→ ∞.

In this model, the average edges incident on a vertex is similar for all vertices, as the probability
of each edge to be realized is equal. Although this property of the Erdös-Rényi graph is rarely
found in real networks, the simple mathematical formulation, and the interesting phase-change,
have made for a great body of research on this class of graphs [134–136].

Small-world model

In section 1.1 we talked about one of the revolutionary models in network theory, proposed by
Watts and Strogatz [5]. This model is of interest because it evolves drastically the properties
of regular graphs, via the integration of a simple mechanism. The author starts from a regular
lattice of |V | = N vertices, each one having exactly k edges insisting on itself. Then, with



1.3 Models of networks 13

probability p each edge gets rewired, meaning that one of the ends (i, j) of the edge gets
substituted with another vertex l, drawn randomly from all vertex in the network, avoiding
self-loops. Of the k·N

2 edges in the network, p · k·N2 will be originating from this rewiring process,
and (1− p) · k·N

2 will be left from the original lattice structure. Intuitively we can expect the
lattice structure to be disrupted by the rewiring process, introducing new properties in the graph.
Random rewiring will connect otherwise distant parts of the graph lattice, effectively shortening
the distances among vertices.

In the limit case of lim p→ 1, the obtained small-world graph shows the same properties of
an Erdös-Réyni graph having the same number of vertices and a parameter lim p→ k

N−1 . If
the small-world graph has lim p→ 0 the graph is a regular lattice. The greatest improvement
brought by the Watts-Strogatz model is that two properties of the graph, the clustering coefficient
and the average path length, vary in a specific way following parameter p.

For a simple lattice the average path length l(0) is

l(0)≈ N
2 · k >> 1 (1.2)

For a Erdös-Réyni model the average path length l(0) is

l(0)≈ lnN
lnk

(1.3)

In the Watts-Strogatz model, we have that the average path length l(0) falls sharply for
a small increase of p while keeping a relatively high clustering coefficient and a somewhat
regular structure. This property is remarkable, as we said before, because it could explain the
‘small-world’ effect we experience in a society, where groups apparently disconnected share an
element connecting them to one another [137].

Barabási-Albert model

The scale-free model proposed by Barabási and Albert, that we already introduced in section
1.1, takes a different approach to graph modeling, as it introduces a growth technique that
incorporates some of the qualities of a vertex. This technique has some similarities with the
generative process proposed by De Solla Price in 1965 [138], used to explain the growth of
scientific citations. The process of growing a network is obtained by defining an algorithm that
works in different steps, starting from |V |= 0 to |V |= N. Defining ki as the degree of vertex i,
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and m0 as the maximum number of edges that can be created at each iteration, the network is
initialized with a fixed number of vertices, usually one. At each interaction, a new vertex is
added, until all the N vertices are in the graph. Each time a vertex l is added, m≤ m0 edges are
created, each one stemming from the newly introduced vertex and insisting on another vertex i

already in the graph at that iteration. The probability that vertex l connects to a node i is

pi =
ki

∑ j k j
(1.4)

where ki is the degree of a vertex i present in the graph and j are all the nodes present at that
iteration, each one with degree k j. This model generates a so-called ‘rich-get-richer’ dynamic,
where vertices with already a lot of edges are more likely to get even more.

The most interesting property of the graph obtained by following this model is that the
degree distribution follows a power-law

P(k)∼ k−3 (1.5)

This result is extremely important, as it is a property commonly found in many real-life
networks [139–143], an achievement not previously reached with such simplicity from other
models.

Temporal Networks

Static networks can be characterized by a variety of measures, based on the connections
between neighboring nodes, sets of nodes, or related metadata on nodes and links. When
we add the degree of freedom of time into the picture, some of these measurements need a
rethinking. Although classical measures can be adapted and still be meaningful over aggregated
representations of temporal networks, some properties of the system directly rely on the order
of appearance of nodes and links, therefore needing a deeper reformulation. Taking as an
example the path that connects two nodes across a network, we can immediately see that adding
the dimension of time to the order in which we cross one or more of the links of this path
drastically changes the reachability of one node to the other, as many properties cease to be
symmetrical.

Time-respecting paths assess that only some vertices can be accessed by others within a
specific time-window t ∈ [t0,T ]. The set of vertices that can be reached from a vertex i is



1.3 Models of networks 15

named the set of influence of i [144]. This property becomes pivotal when studying diffusion
dynamics on networks, such as epidemic spreading, where an agent can pass the infection onto
another only after having contracted the infection itself. Conversely, we define the source set of
i as the set of vertices that, through time-preserving paths, can reach vertex i [145].

Recognizing that the literature on static networks is many times larger than that on temporal
networks, one approach that has been developed is to reduce or derive static graphs from
temporal networks. Of such approaches two are the most used, the first is to derive a different
static graph for each modification of the temporal network, such as the addition or deletion of a
node or a link [146]. Such an approach may be seen as technically akin to studying persistent
homologies in time [147, 148]. The second approach is to define a characteristic time over
which the contacts that occurred in the network are aggregated and therefore represented as
static graphs [149]. Similarly one could also try to aggregate temporal dynamics to static
networks [150], but the loss of information and the deviation of the model from reality could
be great. Therefore, specific models to describe temporal networks, along with specific tools to
analyze them, have been explored.

Temporal exponential random graphs

Temporal exponential random graphs have been proposed [151, 152] as the temporal counterpart
of exponential random graphs [153]. Just like their static counterpart, a connection with the
Ising model can be found, and therefore a time-varying partition function can be defined. This
may be useful either to define a reference model for measuring biases or as a generative model
to use in simulations. For such a model the probability distribution function can be written as:

P(At |At−1,θθθ) =
1

Z(θθθ ,At−1)
exp{θθθ ·Φ(At ,At−1} (1.6)

Defining At as the weight matrix representation of the network at time t, and making a
Markov assumption that At is independent of A1, ...,At−1. We can then specify the function
Φ : Rn×n×Rn×n→ Rk, the parameter vector θθθ ∈ Rk and a normalizing function Z.

Activity driven networks

Activity driven networks [154] seldom find a specific counterpart in static models, increasing
our interest in them. Many of the most common models are connectivity-driven, meaning that
the network’s topology is at the core of them and their algorithms. Those models are well



16 Introduction

suited to describe systems in which connections are long-lasting or, more precisely, where
the timescale of the persistence of a connection is far larger than any dynamics evolving on
the network. The assumption of long-lasting connections is not well suited for the study of
many real-life scenarios, for example in the case of a disease spreading through face-to-face
interactions [155, 156]. In such a case the timescale of the spreading dynamic and that of
the contact pattern on which it is happening is comparable, and the more fitting paradigm of
activity driven networks is better suited.

In activity driven networks a new parameter is introduced, the activity potential ai = ν · xi

for each one i of the N nodes in the network. The coefficient ν can be chosen so that the
average number of active nodes at each time-step is ⟨x⟩ ·N. The activity potential is in fact a
connection probability over a characteristic time ∆t = τi equal for all nodes. The algorithm to
model an activity driven network is as follows:

• at each time-step t the network Gt has N disconnected nodes

• with probability ai ·∆t the node i becomes active, generating m links to randomly selected
nodes in Gt

• at the next time-step t +∆t all links are deleted from Gt

Such a model is both random and Markovian, meaning that each time-step is agnostic
of its past, and links are created with no preference in the choice of the node to connect to.
Yet we see that the paradigm of activity potentials has drastic consequences in the resulting
network, affecting the dynamics on it, and therefore providing for better explanations of
complex behaviors and dynamics [11, 156–160].

Beyond classic networks

In this section, we will briefly introduce some notions of networks with more generalized
definitions of edges, vertices, and graphs. These new models are interesting because they
show peculiar and useful properties [148, 161–164], that cannot be found within the classical
definition of networks, where an edge connects two vertices in a graph.
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Bipartite networks

In bipartite networks, we have two kinds of nodes, one representing the agents, and the other
representing the properties they’re associated with. Such networks are useful for example to
study the grouping of customers for an online platform [165, 166]. Each user will be connected
to one or more products, and each product with one or more users. No links among products
or customers will be present. From these networks, we can derive two different graphs: one
linking customers with the same preferences, and one linking products with the same buyers.
Similar examples can be generalized, but the practical implications for this model appear
significant.

A bipartite graph is a triple G = (⊤,⊥,E), where ⊤ and ⊥ are two disjoint sets of vertices,
E ⊆⊤×⊥ is the set of edges [167]. Vertices in ⊤ are called top-vertices, and those in ⊥ are
called bottom-vertices. The top-vertices degree distribution is defined as ⊤k =

|t∈⊤|d(t)=k|
|⊤| , and

the bottom-vertices degree distribution is defined as ⊥k =
|t∈⊥|d(t)=k|

|⊥| . For a bipartite graph
a classical representation can be obtained, called the one-mode or ⊥-projection, defined as
G′ = (⊥,E ′) for {i, j} ∈ E ′ if i and j are connected to the same top-vertex in G. A mirror
definition can be made for ⊤-projection. It is interesting to note that a ⊤(⊥)-vertex induces a
clique in the converse ⊥(⊤)-projection.

Multilayer networks

As before, let’s start with a simple example. In our everyday life there are many people that we
can consider friends: colleagues, old classmates, sports partners, and people we met online or
at a bar. At first, we could assume that all these people are part of our network of friends. But
due to the characteristics of the relationship we have with them, and the place and context of
the encounter, the connections and interactions shared do carry a different set of information.
Each context is more correlated with a specific set of friends, and rarely do we share the same
exact behavior and ideas with all of the people we know. Some dynamics, like getting infected
with the common cold, may be impossible if said friends connect with us mainly online or via
the phone. This is only one of the examples [168, 169] that are well suited to be represented
with the use of multilayer networks.

Multilayer networks [170–172] can be seen as a further generalization of the bipartite
networks, and in general, of all static networks we have previously seen. But multilayer
networks can also be leveraged to represent temporal networks, where the multiple grouping,
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or layers, are associated with different characteristic times to be explored. A multilayer
network is an ordered pair M = (G ,E ) where G = {Gα ; α ∈ {1, ...,M}} is a family of graphs
Gα = (Xα ,Eα) each one called a layer of M , and that can be directed, undirected, weighted or
unweighted. Moreover, E = {Eα,β ⊆ Xα ×Xβ ; α,β ∈ {1, ...,M}, α ̸= β} is the set of edges
between nodes of different layers Gα ,Gβ when α ̸= β . The elements of E are called crossed
layers, in that way there can be intra-layer and inter-layers edges. As previously defined graphs,
each Gα has a set of vertices Xα and a set of edges Eα . If Xα = Xβ , ∀α,β ∈ {1, ...,M} then
the multilayer takes on the name of multiplex.

1.4 Main measures on networks

Many measures have been devised to characterize, classify and explore different networks.
The most important measures concern the two main elements of the network: nodes and links.
Others measurements can emerge if ensembles such as communities are taken into account, or
if other dimensions, such as time or layers, are considered.

Basic concepts

The distance, or geodesic d(i, j) on a graph between two vertices i, j is the smallest set of
adjacent edges starting and ending on the nodes i and j. Two edges are considered adjacent if
they insist on one common vertex [131].

The adjacency matrix is defined as a square matrix, A associated with a graph, of size RN×N ,
where N is the number of vertices in the graph. In unweighted graphs the value of the matrix
ai, j = 1 if an edge exist i→ j, and zero otherwise [131].

Degree Centrality

One of the first measures to be devised and used is that of how many links insist on a node
[173]. It is one of the most intuitive and simplest properties of a node in a network, yet is
greatly informative. In an indirect and unweighted network that measure is usually noted with
ki for a node i having exactly k links insisting on it. This measure can be normalized by defining
k′i =

ki
N−1 where N is the number of nodes in the network. More comprehensive information

on the network is obtained from the degree distribution P(k), which represents the fraction of
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nodes in a network having degree k. It has been proved that real-life networks follow specific
degree distribution [6], making this first measure one of the most important in network theory.

Moreover, the study of the degree distribution can go into the correlation between the
degrees of different vertices. This is usually expressed using the joint degree distribution
P(k,k′), that is the probability of an arbitrary node with degree k connecting with a node of
degree k′, and has led to some practical analysis [153, 174] and theoretical advances [175, 176]
in the field.

Degree centrality can also be defined for directed networks [177]. Being edges in directed
graph ordered pairs of vertices, we have that the out-degree for a node i is the number of edges
having i as the first element, usually written as ki,out . The number of edges having i as the
second element is the in-degree, written as ki,in.

Closeness centrality

The closeness centrality [178] is defined as the inverse sum of geodesic distances to every other
vertices from each vertex within the network. It is Ci =

1
∑ j∈V d(i, j) where V is the set of vertices

in the graph and d(i, j) is the geodesic distance between i and j on the graph. This measure has
been extended fruitfully on weighted graph thanks to Dijkstra [179] and applied in different
optimization and mobility problems [180, 181].

Betweenness centrality

This measure has been defined [173, 182] to highlight the importance of a vertex not for the
number of edges but the quality of those connected to it. In particular, the betweenness is higher
for vertices that more often are in the shortest path between all other vertices. Given a graph
G = (V,E) the definition of betweenness centrality is Bi = ∑i̸= j ̸=l∈V

σ j,l(i)
σ j,l

where σ j,l = d( j, l)

is the geodesic distance and σ j,l(i) is a geodesic distance in which two edges insist on i.

Betweenness centrality can also be computed as a measure on edges [183, 184]. It is
defined as the sum of fraction of all shortest-paths that pass trough and edge e ∈ E, specifically
Be = ∑i̸= j∈V

σ i, j(e)
σi, j

. As before σi, j is a geodesic distance, and σi, j(e) is a geodesic distance
that contains the edge e.
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Eigenvector centrality

Based on the adjacency matrix, a new measure of centrality is developed [185] on the computa-
tion of matrix eigenvalues and eigenvectors. Being A the adjacency matrix of a unweighted
graph with elements ai j, The eigenvector centrality of node i is nothing else than xi =

1
λ

∑ j a jix j,
for any vertex j in the graph. The main concept behind this centrality measure is to give impor-
tance to a node if it is connected to important nodes. Even if more mathematically complex,
this centrality has seen theoretical development [186] as well as practical use in the analysis of
real-world scenarios [187, 188].

K-shell centrality

The k-shell centrality focus on the concept of ranking vertices to the membership of sub-graphs
derived from the main graph under study [189]. Starting from the lowest degree present in the
graph G, kmin we remove all vertices i where ki = 1, and assign to the remaining vertices in the
subgraph G′ the k-shell centrality KS = 1. Then we proceed iteratively, removing all vertices
where ki = 2, and assigning to the remaining vertices in the subgraph G′′ a rank KS = 2. This
process can highlight important nodes, as well as communities, in classic graphs [190] or in
weighted networks [191].

Eccentricity

The eccentricity [192] of a vertex i is the largest shortest-path between it and any other reachable
vertex in the graph Ce(i) = 1

max jd(i, j)
. The smallest eccentricity of a graph defines the quantity

called the radius of the graph, whereas the biggest eccentricity is called the diameter of the
graph [193].

1.5 Thesis contribution

This thesis aims to approach the problem of network reconstruction from different perspectives,
contributing to the field with different targeted contributions. Approaching the problem from
different angles allows for a wider study of the problem, which benefits the training of the
candidate, and explores flexible solutions that could benefit from the implementation of hetero-
geneous techniques. Research questions in different areas of study of the same field can be at
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times tackled thanks to the inherent interconnectedness of the scientific approach, with a deep
understanding of the experimental phase, the analysis of data and the theoretical formulation.
This document is split into four parts, to better guide the readers into the work.

Starting in part I from the theoretical approach to the problem, in chapter 2 we define a
technique to differentiate between weak and strong links in activity driven networks, being
able to identify the backbone structure of them; in chapter 3 we present a technique to infer
whether hidden nodes activity driven networks are designed, starting from the observation of
an epidemiological event unraveling on the system.

In part II we explore the tools of data-analysis for network reconstruction, working in
chapter 4 with a large data-set of online posts used to reconstruct opinion dynamics in the
United States during the recent pandemic

Then, part III is dedicated to an experimental platform to collect network formation data
toward reconstruction; in chapter 5 we describe the development and characterization of two
smartphone applications that, leveraging Bluetooth® technology, have the potential to make
face-to-face experiments within reach of many more researchers in different fields.

Finally, we draw our conclusions in part IV.



Part I

A theoretical approach





Chapter 2

Backbone reconstruction in temporal
networks from epidemic data

In this chapter, we start approaching the problem of reconstructing the nature of links in a
network from a theoretical point of view. In order to do that, we first have to define the scope
and breadth of our approach. As we described before, activity driven networks [154] present
a unique set of features and properties that are well suited to describe real phenomena [23].
Being a relatively new model to represent time-varying networks, very few tools are available to
explore and analyze activity driven networks, therefore we decided to develop ourselves those
we need. The main goal of our work is focused on how to tackle corrupt or noisy information,
such as that originating from an experiment or a real-life data-set, to reconstruct all the actors
and the interactions that generated such data.

We decided to start our research by approaching the problem of reconstructing unknown
links in a graph. Many complex systems are characterized by time-varying patterns of inter-
actions. These interactions comprise strong ties, driven by dyadic relationships, and weak
ties, based on node-specific attributes. The interplay between strong and weak ties plays
an important role in dynamical processes that could unfold on complex systems. However,
we rarely have access to precise information about the time-varying topology of interaction
patterns. A particularly elusive question is to distinguish strong from weak ties, on the basis
of the sole node dynamics. Strong ties represent the dyadic interactions that followed an
underlying structure of the network, called backbone, whereas weak ties represent the random
connections that may happen in real scenarios. Building upon rigorous analytical results, we
explore a statistically-principled algorithm to reconstruct the backbone of strong ties from data
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of a spreading process, consisting of the time-series of individuals’ states. To validate our
approach, we validate it numerically, over a range of synthetic datasets, encapsulating salient
features of real-world systems. In real-life scenarios, a spreading process can be associated with
an infodemic or an epidemic, and having the ability to reconstruct the quality of interactions
enables the researchers to better recognize the structure of the underlying network of contacts.
Better knowledge of the underlying interactions could, in turn, inform better-designed policies,
to prove this we propose the integration of our algorithm in a targeted immunization strategy
that prioritizes influential nodes in the inferred backbone. Through Monte Carlo simulations
on synthetic networks and a real-world case study [194], we demonstrate the viability of our
approach.

2.1 Background

In the last few decades, network science has experienced significant developments, providing
researchers with an array of powerful tools to represent and analyze complex biological, social,
and technological systems [195]. Besides improving our knowledge of the very structure of
complex systems, network science has contributed new paradigms to study dynamical processes
unfolding on a complex system. These paradigms have shed light on the intertwining between
structure and dynamics in the spread of epidemic diseases [196], diffusion of innovation [197],
and opinion formation [198].

Empirical studies suggest that patterns of interactions between nodes in many complex
networks evolve ceaselessly in time [16, 199]. These interactions can be categorized into two
main classes [2]. One class corresponds to interactions that are recurrently formed between
node pairs, following dyadic relationships that are called strong ties [200]. Interactions in the
workplace or family ties belong to this class, which forms the backbone of the network [201,
202]. The second class encompasses interactions that are based on features of the nodes, which
are not attributable to dyadic ties with other nodes. For instance, interactions among people
queuing in a line or sitting on a plane belong to this class, whereby interactions are triggered by
individual attributes such as extroversion in talking to strangers. These relationships are called
weak ties [200]. Strong and weak ties concur in shaping the dynamic behavior of complex
networks [203–205].

Activity driven networks (ADNs) have emerged as a valuable framework for temporal
networks [154], allowing for modeling the co-evolution of the network structure and the un-
folding nodal dynamics at comparable time-scales. The temporal nature of the network is
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captured through a single parameter that measures the node propensity to generate interactions.
The distribution of this parameter, called activity, can be inferred from real-world data [154].
The potential of ADNs has been demonstrated through the study of several network prob-
lems, including epidemics [147, 155, 156, 12, 206], diffusion of innovation [157], opinion
formation [159], and percolation [207].

In their fundamental incarnation, ADNs are an ideal tool to model weak ties, whereby
the whole process of network assembly is driven by a node-specific attribute, the activity.
Routed ADNs (RADNs) have been recently proposed to include strong ties within the ADN
paradigm [208, 209]. In this model, temporal connections are wired according to a stochastic
rule that encapsulates both the topological information of strong ties and the unstructured
connections of weak ties. RADNs share similarities with other approaches to include strong
ties in ADNs, such as the superimposition of a static network [11, 210], and the inclusion of
memory mechanisms in the link wiring process [211, 212].

The use of RADNs in real-world scenarios relies on accurate knowledge of the activity
distribution and the topology of the backbone. While activities can be estimated following the
literature on ADNs [23, 154], the inference of the backbone of strong ties remains an open
challenge. Preliminary efforts in this direction can be found in [213]. Therein, the authors
have proposed a method to reconstruct the backbone of a temporal network from the direct
observation of the pattern of interactions over an accessible time-window. Particularly elusive
is the problem of distinguishing strong from weak ties from observations of node dynamics,
which is typically the only knowledge available in real epidemiological settings [28].

In the technical literature, the problem of link reconstruction and prediction has been
studied from a variety of angles, mostly relying on the direct observations of contacts [93,
214, 215]. Dealing with observations of nodal dynamics, several methods have been proposed
to reconstruct patterns of interactions [94], including the use of similarity [216], information
theory [217], belief propagation [30], likelihood maximization [218], compressed sensing [130,
219], optimization [19], nonparametric Bayesian methods [8], and data-driven approaches [92,
220]. However, these strategies are of limited use when strong and weak ties coexist, thereby
presently challenging the inference of backbone networks from observations of node dynamics.

Drawing inspiration from [164, 221], here we design a backbone detection algorithm that
identifies strong ties from node dynamics, in the form of empirical data about a spreading
process. Because of its widespread use in the study of epidemic outbreaks, we adopt the
epidemiological lexicon throughout the work when referring to the spreading dynamics. How-
ever, the application of our algorithm should not be considered limited to the epidemiological
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field, since spreading processes in temporal networks are widely used to model other phenom-
ena, including diffusion of innovation in social groups [157] and information flow in brain
networks [222–224].

2.2 Mathematical foundation

Our algorithm is based on the intuition that strong ties should leave a distinguishable footprint
on the temporal evolution of an epidemic outbreak. We analytically characterize such a footprint
in terms of the probability for a node to contract the disease, given knowledge about the health
state of other nodes. In this section, we provide mathematical details of the models herein used
to study temporal networks with a backbone structure of strong ties, along with the dynamical
process.

2.2.1 Routed ADNs

We consider a network of n nodes, each belonging to the node set V = {1, . . . ,n}. Temporal
undirected links are represented through time-varying adjacency matrix At ∈ {0,1}n×n, where
t ∈ Z+ is the discrete time index. The adjacency matrix is assembled so that (At)i j = 1 if and
only if node i is connected with node j at time t. We denote by Ni

t the neighborhood of node i

at time t, that is, the set of other nodes to which i is connected at time t.

Both strong and weak ties contribute to the evolution of At . Strong ties are described by
an undirected and time-invariant adjacency matrix G ∈ {0,1}n×n. We indicate with di the
degree of node i in the backbone network. Degrees are gathered in the degree vector d ∈ Nn.
Empirical evidence from real-world observations suggests that real-world backbones are often
sparse [195] and nodes have bounded degree [225]. Without loss of generality, we assume that
the backbone network does not contain isolated nodes, that is, di ≥ 1, for all i ∈V 1.

Following [209], each node i ∈ V is characterized by an activity parameter ai ∈ [0,1].
At each time, node i activates with probability ai and generates an undirected link with
another node. The selection of which node to connect to is probabilistically dictated by a

1Similar to [209], the assumption di ≥ 1, for all i ∈V , can be removed with a slight modification of (2.1).
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row-stochastic 2 matrix P ∈ Rn×n
≥0 such that

P = (1− γ)
1

n−1
J+ γ diag(d)−1G, (2.1)

where γ ∈ [0,1] is a constant parameter and J is the n×n matrix of all ones, except the diagonal
entries, which are set to 0. The generic entry Pi j represents the probability that i connects with
j. The first term on the right-hand side of (2.1) accounts for the weak ties, while the second
summand models strong ties in the backbone. The parameter γ ∈ [0,1] weights the role of
strong versus weak ties in the formation of temporal links. When γ = 0, the model reduces to a
standard ADN [154] such that strong ties are uninfluential; when γ = 1, the probability of a
connection mirrors the adjacency matrix of the backbone network. A realization of an RADN
is shown in Fig. 2.1.

2A matrix is said to be row-stochastic if it is nonnegative (entrywise) and each row sums to 1.
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Fig. 2.1 Illustration of a backbone network (a) along with three consecutive realizations of an RADN
(b–d) at time t = 0,1,2, respectively. Red dashed links are the strong ties in the backbone, and black
solid links are temporal links generated from nodes’ activity.

To generate a temporal network from t = 0, up to time T , we implement the following
steps:

1. the temporal adjacency matrix is initialized as (At)i j = 0, for all i, j ∈V ;

2. each node i ∈V activates with probability ai, independent of the others;

3. for each node i that is active, a node j is selected with probability Pi j, and we set
(At)i j = (At) ji = 1; and

4. the time index t is incremented by 1; if t ≥ T , the algorithm is terminated, otherwise it is
resumed to step 1.
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2.2.2 Susceptible–infected–susceptible model

We focus on a susceptible–infected–susceptible (SIS) epidemic model [226]. In an SIS model,
each node of the network is characterized by a binary health state. Specifically, at time t,
node i ∈ V is either susceptible to the disease (X i

t = 0) or infected (X i
t = 1). At each time,

two contrasting mechanisms govern the evolution of the epidemic process: propagation and
recovery. Each susceptible node can contract the disease through interactions with infected
nodes.

The propagation of the disease may occur with probability λ ∈ [0,1] along each link of the
RADN independently of the others, such that

P(X i
t+1 = 1 |X i

t = 0) = 1− (1−λ )
∑ j∈Ni

t
X j

t . (2.2)

Following the recovery mechanism, instead, each node i that is infected at time t, recovers
at time t + 1 with probability µ ∈ [0,1], becoming again susceptible to the epidemics. The
generality of our theoretical approach suggests that our algorithm could be extended to more
complex epidemic models on ADNs [23, 227].

2.3 Backbone detection algorithm

We present here the main technical innovation, which consists of an algorithm to detect the
backbone of strong ties in a temporal network from epidemic data. Our method is based on the
exact computation of the probability of a node to contract the disease given the health states of
other nodes. Building on the knowledge about neighbors, we are able to pinpoint the effect of
the presence of strong ties through a statistical test.

2.3.1 Conditional probabilities for RADNs

Given two nodes, i and j, observed from the initial time 0 over a time-window of duration T ,
we define the following quantity:

P j→i :=
1
T

T−1

∑
t=0

[
P(X i

t+1 = 1 |X i
t = 0,X j

t = 1)

−P(X i
t+1 = 1 |X i

t = 0)
]
.

(2.3)
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The quantity P j→i summarizes the extent by which the infection of node i over the time-
window 0, . . . ,T is explained by the disease propagation from node j 3. Intuition suggests that
such a quantity is larger when i and j are connected by a strong tie, such that the infection of
nodes connected by the backbone network will increase the chance of contracting the infection.

Let’s compute the infection probability for node i at time instant t, for either the case in
which we include or exclude knowledge about node j. Let x1, . . . ,xn be the state of the system
at time t, then the RADN model indicates that

P(X i
t+1 = 1 |X i

t = 0) = 1− ∏
k∈V∖{i}

(1−λaiPikxk)(1−λakPkixk) . (2.4)

Upon conditioning on X j
t = 1, we factor the term associated with j out of the multiplication to

obtain

P(X i
t+1 = 1 |X i

t = 0,X j
t = 1) = 1−

(
1−λaiPi j

)(
1−λa jPji

)
× ∏

k∈V∖{i, j}
(1−λaiPikxk)(1−λakPkixk) .

(2.5)

First, we consider the case in which nodes i and j do not share a strong tie, that is
Gi j = G ji = 0. In this case, from (2.1) we derive Pi j = Pji = (1− γ)/(n−1). We substitute Pi j

and Pji in (2.4) and (2.5), and we compute the limit for n→ ∞ of their difference as

3In principle, for an arbitrary network model, this quantity might also attain negative values.



32 Backbone reconstruction in temporal networks from epidemic data

lim
n→∞

P(X i
t+1 = 1 |X i

t = 0,X j
t = 1)−P(X i

t+1 = 1 |X i
t = 0)

= lim
n→∞

[(
1− λ (1− γ)aix j

n−1

)(
1− λ (1− γ)a jx j

n−1

)

−
(

1− λ (1− γ)ai

n−1

)(
1− λ (1− γ)a j

n−1

)]
× ∏

k∈V∖{i, j}
(1−λaiPikxk)(1−λakPkixk)

= lim
n→∞

(
λ (1− γ)(ai +a j)(1− x j)

n−1
− λ 2(1− γ)2aia j(1− x j)

(n−1)2

)
× ∏

k∈V∖{i, j}
(1−λaiPikxk)(1−λakPkixk)

≤ lim
n→∞

λ (1− γ)(ai +a j)

n−1
= 0.

(2.6)

We note that (2.6) is the generic summand of P j→i in (2.3), from which the claim in (2.10b)
follows. We further observe that each of the summands of P j→i is a nonnegative random
variable, which is bounded from above by the estimation in (2.6). Even though these random
variables are not independent and not identically distributed (since they depend on the time-
series of the nodes’ health state that are self-correlated) they are bounded and their correlation
tends to 0 in the long-time. Hence, a central limit theorem applies to P j→i, according to [228].
Such an observation guarantees that P j→i converges to a Gaussian distribution, as supported
by the numerics in Fig. 2.2. However, an explicit statement of the central limit theorem cannot
be readily formulated, since it requires the computation of the variance.

We now consider the case in which nodes i and j share a strong tie, that is, Gi j = G ji = 1.
Similar to the previous analysis, from (2.1) we derive Pi j = (1− γ)/(n−1)+ γ/di and Pji =

(1− γ)/(n−1)+ γ/d j. Defining the neighborhood of node i in the backbone Ni
G := { j ∈V :

Gi j = 1}, we proceed specializing to the present case the difference between (2.4) and (2.5) at
time t. Considering that (1− k/x)x−1 ≥ 1/ek, for any x≥ 1 and k > 0, and that di ≤ n−1, for
any i ∈V , we compute
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P(X i
t+1 = 1 |X i

t = 0,X j
t = 1)−P(X i

t+1 = 1 |X i
t = 0) =

=

[(
1−λaix j

(
γ

di
+

1− γ

n−1

))(
1−λa jx j

(
γ

d j
+

1− γ

n−1

))

−
(

1−λai

(
γ

di
+

1− γ

n−1

))(
1−λa j

(
γ

d j
+

1− γ

n−1

))]
× ∏

k∈V∖{i, j}
(1−λaiPikxk)(1−λakPkixk)

≥ λγ(1− x j)

(
ai

di
+

a j

d j
−λγ

aia j

did j

)
∏

k∈Ni
G∖{ j}

(1−λaiPikxk)(1−λakPkixk)

× ∏
h/∈Ni

G∪{i}
(1−λaiPihxh)(1−λahPhixh)

≥ λγ(1− x j)

(
ai

di
+

a j

d j
−λγ

aia j

did j

)
∏

k∈Ni
G∖{ j}

(
1− λai

di

)(
1− λak

dk

)

× ∏
h/∈Ni

G∪{i}

(
1− λ (1− γ)ai

n−1

)(
1− λ (1− γ)ak

n−1

)

≥ λγ(1− x j)

(
ai

di
+

a j

d j
−λγ

aia j

did j

)[(
1− λai

di

)(
1− λaM

dm

)]di−1

×
[(

1− λ (1− γ)ai

n−1

)(
1− λ (1− γ)aM

n−1

)]n−1−di

≥ λγ

exp{λ (1− γ)(ai +aM)}

(
1−λ

ai

di

)di−1

×
(

1−λ
aM

dm

)di−1(ai

di
+

a j

d j
−λγ

aia j

did j

)
(1− x j) := F(x j).

(2.7)

where aM is the maximum node activity and dm is the minimum degree in the backbone.
The bounding function F(x j) is such that F(1) = 0, and F(0)> 0, for any γ > 0.

We now focus on the variable X j
t . According to the SIS dynamics described in 2.2.2, X j

t

changes from 1 to 0 with probability equal to µ , while the probability of switching from 0 to 1
depends on the health state of the other nodes, according to (2.4). However, it can be bounded
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from above as follows:

P(X i
t+1 = 1 |X i

t = 0) =

P

 ⋃
k∈V∖{i}

{i is infected by k}


≤ ∑

k∈V∖{i}
P({i is infected by k})

= ∑
k∈V∖{i}

λaiPikxk +λakPkixk−λ
2aiakPikPkixk

≤ λ ∑
k∈V∖{i}

(aiPik +aMPk) = λ

[
ai +

[
1− γ

(
1− di

dm

)]]
aM.

(2.8)

Hence, the frequency of X j
t = 0 converges almost surely to at least µ/(λ (ai +(1− γ(1−

di/dm))aM)+µ) for T → ∞. Hence, using (2.7) and the definition of P j→i in (2.3), the latter
quantity can be bounded from below as follows:

lim
T→∞

P j→i =

= lim
T→∞

1
T

T−1

∑
t=0

[
P(X i

t+1 = 1 |X i
t = 0,X j

t = 1)−P(X i
t+1 = 1 |X i

t = 0)
]

≥ lim
T→∞

1
T

T−1

∑
t=0

F(X i
t )

= lim
T→∞

1
T ∑

t∈{0,...,T−1}:X i
t =0

F(0)≥ µ

λ [ai +(1− γ(1− di
dm
))aM]+µ

F(0)

≥ µλγ

eλ (1−γ)(ai+aM)(λ (ai +(1− γ(1−di/dm))aM)+µ)

×
(

1−λ
ai

di

)di−1(
1−λ

aM

dm

)di−1 (ai

di
+

a j

d j
− γλ

aia j

did j

)
> 0.

(2.9)

As shown in Fig. 2.2, our bound is accurate, albeit conservative. The main bottlenecks for
improving the bound are in the substitution of the random variables X j

t with 1 in (2.7) and in
the estimation of the time elapsed with X j

t = 0 in the derivation of (2.9). To obtain a tighter
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bound, one should rigorously compute the endemic state of an SIS model over a RADN, which
is a nontrivial open problem [206].

Similar to our observations following (2.6), we should note that a central limit theorem
could in principle be established here as well, since P j→i is a temporal average of the transition
probabilities. However, the derivation of its explicit statement is not possible, since it requires
the exact computation of mean and variance of the summands.

Specifically, we demonstrate that, in the asymptotic limit of large time-windows, if there
exists a strong tie between i and j, that is, if Gi j = 1, then

lim
T→∞

P j→i ≥
µλγ

[(
1−λ

ai
di

)(
1−λ

aM
dm

)]di−1

λ (ai +(1− γ(1− di
dm
))aM)+µ

×

× 1
eλ (1−γ)(ai+aM)

(
ai

di
+

a j

d j
− γλ

aia j

did j

)
> 0,

(2.10a)

almost surely, for any network size, where aM and dm are the maximum activity and the
minimum backbone degree over the node set, respectively. On the other hand, if the two nodes
are disconnected in the backbone, that is, if Gi j = 0, we find that in the asymptotic limit of
large networks,

lim
n→∞

P j→i = 0. (2.10b)

As a consequence, if the size of the network is sufficiently large, the probability that a node
becomes infected is not influenced by the health state of another, unless they share a strong
tie. Based on this analytical result, we construct our identification algorithm, which starts from
empirical observations of the disease dynamics to detect strong ties.

Figure 2.2 compares the empirical estimation of P j→i for pairs of nodes that share (orange)
or not (blue) a strong tie. These simulations validate our analytical results and suggest that
P j→i is close to its asymptotic expressions in (2.10), also for reasonably small population
size (that is, starting from 200−300 nodes, according to our numerical simulations) and an
observation window of limited duration. In fact, while the empirical distribution of the entries
of P j→i that correspond to strong ties (in orange) is shifted and bounded away from 0, the
empirical distribution of the entries that do not correspond to strong ties is centered at 0.

By comparing our analytical bound from (2.10a) (dotted red line) with the empirical
observation, we propose that our estimation, albeit conservative, yields an accurate estimate of
the order of magnitude of P j→i. The two empirical distributions are well separated and both of
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Fig. 2.2 Empirical estimation of P j→i in a realization of an RADN with n = 200 nodes, γ = 0.95,
λ = 0.9, µ = 0.1, and ai = 0.3 for all nodes, over all the pairs of nodes (i, j) ∈ V ×V . The orange
distribution relates to nodes that share a strong tie and the blue one to the opposite case. The backbone
network is a 4-regular random graph. The network is simulated for 35,000 time-steps. The figure
suggests that conditioning on the state of node j affects the infection probability for nodes that share a
strong tie with j, confirming our analytical results. The red dotted line is the lower bound on P j→i in
the presence of the strong tie {i, j}, computed using (2.10a).

them can be accurately fitted by a Gaussian distribution (dashed blue and orange, respectively)
with mean equal to 0.000 and 0.026, respectively, and variances both equal to 0.003. This
evidence suggests that a central limit theorem should hold for P j→i, which is defined as an
average over T . As a consequence, we may conjecture that the length of the time-window T

plays a key role in shaping the two distributions and, consequently, in determining whether
strong and weak ties are statistically distinguishable. More details to support our conjecture
can be found in Section 2.4.

We conclude this section by noting that our derivation is performed by using specific
properties of the SIS epidemic model. We believe that a similar argument could be pursued to
establish rigorous bounds on the transition probabilities for other dynamics, including more
complex and realistic epidemics processes, or opinion dynamics, such as the voter model. In
fact, the key properties of our argument is that the state transitions (from susceptible to infected)
are triggered by the interactions and that they occur multiple times, due to the spontaneous
recovery process. The former leaves the footprint of strong ties on the nodal dynamics, the
latter affords the use of statistical tests to ensure significance to our results.
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2.3.2 Statistical test

Building on our analytical results, we put forward a statistically-principled analysis to determine
the presence of a strong tie between the two nodes for a network of conveniently large size.
To perform such an analysis, for any pair of nodes i and j, we measure the following four
quantities over the observation time-window of duration T :

• the number of time-steps in which node i is susceptible, denoted as si;

• the number of transitions of node i from susceptible to infected, denoted as ii;

• the number of time-steps in which node i is susceptible and node j is infected, denoted
as ni j; and

• the number of transitions of node i from susceptible to infected with node j being infected
at the previous time, denoted as qi j.

From the first two quantities, we compute the ratio ri = ii/si, which measures the sampling
probability that a susceptible node i at time t becomes infected at t +1.

According to (2.10b), if i and j do not share a strong tie, then the probability that i contracts
the infection should not be influenced by j, that is, qi j should be a realization of a Bernoulli
trial with expected value equal to rini j. We set this as the null hypothesis of our statistical
test, which is rejected if qi j is significantly larger than rini j. We associate with the node pair a
p-value, coming from the binomial cumulative distribution, equal to

πi j = 1−
qi j−1

∑
h=0

(
ni j

h

)
rh

i (1− ri)
ni j−h . (2.11)

This procedure generates a set of n−1 statistical tests for each node, that is, n(n−1) tests,
overall. Hence, a multiple comparison correction should be implemented to assess whether
each one of the null hypotheses can be rejected. We adopt the Benjamini–Hochberg procedure
to control the false discovery rate, which offers a less conservative criterion with respect to the
standard Bonferroni criterion [229]. This method is implemented as follows.

First, we set the level of significance α ∈ [0,1]. The quantity α measures the largest
admissible probability that at least one of the null hypotheses is erroneously rejected and it is
typically a small quantity, to ensure the test significance. Then, the n(n−1) p-values are sorted
in ascending order and denoted as π(1) < π(2) < · · ·< π((n−1)n). Let L be the largest integer
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for which it holds π(L) < Lα/(n−1)n. Then, the null hypothesis is rejected for all the pairs of
nodes associated with a p-value smaller than π(L). If the null hypothesis is rejected for i and j,
then we estimate that there is a link in the backbone network between nodes i and j. Hence, we
set the corresponding element of the estimated backbone adjacency matrix Ĝ as Ĝi j = Ĝ ji = 1.
We note that this is the step that requires the highest computational effort since the n(n−1)
p-values should be computed and sorted in ascending order. The algorithm can be implemented
according to the pseudo-code below.

Algorithm 1: Backbone detection algorithm
Data: empirical observations ri, ni j, qi j, ∀ i, j ∈V

Result: estimation of the adjacency matrix Ĝ

Ĝ←− 0;
for i ∈V , j ∈V , j ̸= i do

compute πi j using (2.11);

sort πi j in ascending order π(1) ≤ π(2) ≤ . . . ;
L←−max{k ∈ N : π(L) < Lα/(n−1)n} ;
for i ∈V , j ∈V , j ̸= i do

if πi j ≤ π(L) then
Ĝi j←− 1 ;
Ĝ ji←− 1 ;

Examining more in-depth the analytical results in (2.10a), we foresee some issues that
might hinder the applicability of our algorithm, yielding a small value of P j→i, even though a
strong tie connecting i to j exists. In particular, this can occur in two cases. First, if both degrees
di and d j are large, such that the two nodes have a large degree centrality in the backbone
network. Second, if both activities ai and a j are small. In the following, we present detailed
numerical simulations with different parameter choices to demonstrate the accuracy of the
algorithm.

2.4 Numerical validation

We validate our backbone detection algorithm on several synthetic datasets, to illustrate its
applicability in real-world scenarios and identify potential limitations. These synthetic datasets
consist of benchmark networks with n= 200 nodes, generated according to the RADN paradigm
described in Section 2.2.1. We consider different distributions for the nodes’ activities and
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Fig. 2.3 Fraction of strong ties identified by our algorithm in the scenario with both homogeneous
activity distribution and backbone degrees, for different values of the parameter γ . The backbone is a
4-regular network with 200 nodes. The other parameters are λ = 0.9, µ = 0.1, and ai = 0.3, for all the
nodes.

backbone degrees. Specifically, the latter follows a configuration model [195]. The epidemic
process is simulated using the SIS model illustrated in Section 2.2.2 with λ = 0.9 and µ = 0.1.
Unless otherwise specified, we set the significance level of the statistical test to α = 0.05 and
the parameter γ = 0.95.

2.4.1 Homogeneous activity distribution and homogeneous backbone

We first examine the possibility of identifying regular networks of strong ties against weak ties
generated using a common activity value for all the nodes. In this scenario, the backbone is
chosen to be a 4-regular random network and the activity is equal to ai = 0.3, for all i ∈V .

In Fig. 2.3, we plot the true positive rate (TPR), which is the fraction of links that the
algorithm is able to correctly predict (green); and the false discovery rate (FDR), which is the
ratio between the number of times it fails to properly identify a link and the number of links
in the backbone (red). Perfect reconstruction is attained when the number of true positives is
equal to the total number of positives (TPR= 1) and the number of false positives is equal to
zero (FDR= 0). The computations are carried out for different values of T , such that larger
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values of T imply access to a longer time-window for the estimation of the probabilities of
transitions in the algorithm.

For sufficiently large values of T , our algorithm is successful in exactly reconstructing the
topology of the backbone, for any choice of the parameter γ . As suggested by the analytical
expression in (2.10a) where γ appears as a multiplicative coefficient, the smaller γ , the larger
values of T are required by our algorithm. Choosing small values of T may hamper the
correct identification of links, but it rarely results in the identification of false positives (for
instance, only four false positives are overall identified for γ = 0.95). Thus, increasing T , we
progressively improve the detection of strong ties, attributing a very small quantity of wrong
links to the backbone. This is an important feature of the algorithm, whereby all the links it
discovers can be relied upon with extremely high confidence. When little data is available, that
is, for small T , the output of our algorithm could be poor. A possible strategy to circumvent
the issue of limited data could be to not perform the multiple comparison correction, which,
however, could beget a larger number of erroneous identifications.

2.4.2 Heterogeneous activity distribution and homogeneous backbone

To better proxy a real-world setting, we release the assumption that all the nodes have the same
activity. As a stepping stone, we consider the case in which nodes are randomly divided into
two activity classes with 100 nodes each: low-activity nodes (ai = 0.2) and high-activity nodes
(ai = 0.8). Similar to the previous analysis, the backbone is a 4-regular random network. To
help tease out the role of heterogeneity, we also simulate the scenarios in which all the nodes
are either in the low- or high-activity classes.

Again, we examine the effect of T on true and false positives, with respect to the number
of positives. Results in Fig. 2.4 confirm those from Fig. 2.3, whereby the fraction of correctly
identified links increases with T , and the fraction of misclassified links is always negligible.
Comparing the three scenarios, we observe that large values of the activity have a negative
effect on the performance of the algorithm. In fact, an increased observation window is required
to detect strong ties in the homogeneous case with high activity, with respect to the scenario
with low activity.

Heterogeneity further reduces performance, hampering the detection of strong ties between
low-activity nodes. Even though networks with a heterogeneous activity distribution require
a longer window to correctly detect all the strong ties, we observe that, for sufficiently large
T , our algorithm is able to correctly reconstruct the backbone, with a negligible fraction of
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Fig. 2.4 Fraction of strong ties correctly identified by our algorithm for both heterogeneous and homoge-
neous activity distributions, and for homogeneous degree in the backbone. The backbone is a 4-regular
network with n = 200 nodes. The other parameters are γ = 0.95, λ = 0.9, and µ = 0.1. Three cases for
the activity distribution are examined: all the nodes have the same activity ai = 0.2 (ho-low, dashed),
ai = 0.8 (ho-high, dotted), and half the nodes have ai = 0.2 and half have ai = 0.8 (he, colored). For
the last case of heterogeneous activities, the TPR curve is plotted with respect to links between nodes
with low activity (blue), links between nodes of different activity (orange), and links between nodes
with high activity (green). Only one FDR curve is plotted for all the cases since they are practically
indistinguishable (he, red).
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Fig. 2.5 Fraction of strong ties correctly identified by our algorithm for both heterogeneous and homo-
geneous backbones, and homogeneous activities ai = 0.3, for all the nodes. The other parameters are
n = 200, γ = 0.95, λ = 0.9, and µ = 0.1. Three cases for the backbone are examined: all the nodes
have the same low-degree di = 2 (ho-low, dashed); all the nodes have the same high-degree di = 8
(ho-high, dotted); and half the nodes have di = 2 and half have di = 8 (he, colored). For the last case of
heterogeneous degrees, the TPR curve is plotted with respect to links between nodes with low degree
(blue), links between nodes of different degree (orange), and links between nodes with high degree
(green). Only one FDR curve is plotted for all the cases since they are practically indistinguishable (he,
red).

erroneous identifications. Overall, these results are in agreement with the theoretical analysis
in section 2.3, whereby decreasing the activities causes a reduction in the probability difference
in (2.10a).

2.4.3 Homogeneous activity distribution and heterogeneous backbone

Next, we examine a backbone where the degree of the nodes is not held constant throughout
the network. Specifically, we consider a network in which nodes are partitioned into two
classes of 100 nodes each with low- (di = 2) or high-degree (di = 8). To avoid confounding,
we maintain the activity at a common value of ai = 0.3, similar to the results in Fig. 3. Once
again, to facilitate the assessment of the effect of a heterogeneous degree distribution on the
algorithm performance, we analyze two control cases in which all the nodes have the same low-
or high-degree.
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Figure 2.5 illustrates the fraction of links predicted as a function of T for three considered
settings. Consistently with our previous results, we observe that increasing the length of
the observation steadily benefits the algorithm’s precision in inferring strong ties, as shown
in Fig. 2.5. The number of false positives is always negligible, even for small values of T ,
confirming that the algorithm can be reliably utilized for backbone inference.

Comparing the two homogeneous cases of low- and high-degree distributions, we register
an expected decrease in performance when dealing with higher degrees. In this case, the value
of added knowledge regarding the state of health of one node is diluted by the presence of
many other neighbors that could have triggered the infection. Analytical results in the section
2.3 provide a theoretical basis for this explanation, whereby increasing the values of the degree
causes a reduction in the probability difference in (2.10a).

As one might expect, the performance of the algorithm toward the inference of the hetero-
geneous network is in between the two cases of homogeneous networks. To gain further insight
into the relationship between topological features and successful reconstruction, we can isolate
the specific links that are first detected by the algorithm for small values of T . In agreement
with our analytical result in (2.10a), the links that require shorter observations are incident to
low-degree nodes. These links encompass both strong ties between low-degree nodes and strong
ties between nodes with high and low degrees that might exemplify disassortative structures of
real networks [230, 231]. Longer time-windows are required for detecting links that connect
pairs of high-degree nodes.

2.4.4 Highly-heterogeneous activity distribution and backbone

To offer insight on the performance of our algorithm over a wider class of RADNs, we
systematically examine a two-dimensional grid of salient parameters. We assume that both the
activity and the degree distributions follow a power-law with exponents βa and βd , respectively.
We vary each parameter from −5 to −2, which are representative of real-world scenarios [232].
Parameters are varied in 11 steps with cutoffs at 0.1 and 1 for the activity, and at 1 and n−1
for the degree.

We observe that smaller values of the exponent of power-law yield distributions with a
larger dispersion, in which most of the nodes have small activity (degree) and few have an
extremely high activity (degree). Two different realizations are examined, one with T = 10,000
and T = 30,000, respectively. The weight γ is reduced to 0.5 to guarantee the spread of
the epidemic diseases for all the choices of parameters investigated and the network size is
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increased to n = 300 to ensure the presence of high-degree (activity) nodes in the power-
law distributions. The epidemic parameters are set as λ = 0.9 and µ = 0.1, similar to the
simulations in Section 2.4.

(a) (b)

(c) (d)

Fig. 2.6 TPR (a,b) and FDR (c,d) of our algorithm implemented on a network of n = 300 nodes
with heterogeneity in both activity distribution and backbone degree, for an observation window of
T = 10,000 time-steps (a,c) or T = 30,000 time-steps (a,c). Both activities and backbone degrees follow
power-law distributions with exponents βa and βd , respectively. Other parameters are set to λ = 0.9,
µ = 0.1, and γ = 0.5. Each point is an average of ten independent simulations.

From Fig. 2.6, we recognize a marked effect of the parameters on the performance of our
algorithm. For lower values of both parameters, βa and βd , our algorithm fails to identify the
backbone, under-predicting the number of strong ties. This is in agreement with Figs. 2.4
and 2.5, which indicate that longer observation windows are required to infer the backbone
when the RADN is dominated by high-degree and high-activity nodes. The best performance is
attained for higher values of the two parameters. In this case, the algorithm correctly detects all
the strong ties, with a very small quantity of false positives.

Comparing the results for T = 10,000 and T = 30,000, interestingly, βa seems to have a
stronger effect on performance than βd , whereby at T = 30,000, the algorithm is able to detect
most of the strong ties for small values of βd but its performance is strained when examining
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small values of βa. This confirms our preliminary observation from Fig. 2.4 that heterogeneity
in the activity distribution hampers the detection of strong ties.

2.5 Application to targeted immunization

In epidemiology, knowledge about the backbone network might offer valuable information
about how diseases spread and which is the role played by individuals [233]. In this vein,
we conclude this chapter by presenting an application of our algorithm to design a targeted
immunization protocol. Our control strategy observes the disease spreading for a finite time-
window to identify the backbone network, and then utilizes such an inference to prioritize
immunization of nodes in the network according to a centrality criterion. Specifically, we
immunize nodes according to decreasing values of their PageRank centrality [234]. By means
of Monte Carlo numerical simulations, we evaluate the performance of the approach against a
randomized immunization, where no information regarding the backbone is utilized.

Similar to the analysis in Section 2.4.4, we examine a benchmark network with n =

300 nodes. The backbone is generated using a configuration model with power-law degree
distribution of power βd = −3 and cutoffs at 1 and n− 1. Activities are also drawn from a
power-law distribution with exponent βa =−3 and a lower cutoff at 0.1. We consider an SIS
epidemic with λ = 0.9 and µ = 0.1. We run the model over a window of 50,000 time-steps
implementing our algorithm to identify the backbone. At this time, we execute two control
strategies (targeted and randomized), with the number of interventions limited to 5% of the total
number of nodes. We perform Monte Carlo simulations by averaging over 100 independent
runs of the two control strategies.

The results of these simulations are summarized in Fig. 2.7. In Fig. 2.7a, we compare the
performance of the two immunization strategies for γ = 0.95, as in the numerical analysis
in Section 2.4. While randomized immunization decreases the portion of infected nodes
by 13%, targeted intervention decreases it by 55%, on average. The difference between
these two strategies is statistically significant (p-value≪ 0.0001, according to a two-sample
z-test) comparing the average fraction of infected individuals after the implementation of
the immunization strategy, for 100 independent runs. In Fig. 2.7b, instead, the comparison
between the two techniques is conducted for different values of the parameter γ , spanning
from 0.5 to 0.95 in steps of 0.05. Therein, we report the average fraction of infected nodes in
the 500 time-steps that follow the application of the control strategy. Predictably, the larger
the parameter γ , the stronger the improvement of the targeted immunization with respect to
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(a) (b)

Fig. 2.7 Monte Carlo estimation over 100 runs of the effect of randomized (orange) and targeted (blue)
immunization on the fraction of infected nodes. Dotted lines indicate the fraction of infected nodes in
the absence of any immunization technique. In (a), we show the entire realizations for γ = 0.95. The
solid line is the average, while the light band is one standard deviation. In (b), we compare the average
fraction of infected nodes for different values of γ . Bands identify 95% confidence intervals. Other
parameters are n = 300, βd = βa =−3, λ = 0.9, and µ = 0.1.

the randomized one. In fact, for small values of γ , the backbone has a marginal role on the
link formation process, reducing the effect of targeted immunization exploiting the centrality
measures in the backbone. However, the difference between the two strategies is statistically
significant in all the performed simulations.

Encouraged by these promising results, we apply our targeted immunization technique to
real-world face-to-face interactions measured through proximity sensors in a high school [194],
available at [38]. The dataset comprises 188,508 temporal links, generated over T = 7,375
time-steps among n = 327 nodes. We run an SIS epidemic model for half of the available
dataset, starting from a fraction of one-third of infected nodes, selected uniformly at random.
Then, 5% of the nodes is immunized following either the randomized or the targeted strategy.
By performing an extensive Monte Carlo simulation with 1,000 runs, we compare the two
strategies for different values of the epidemic parameters λ and µ . Figure 2.8 demonstrates that
our immunization technique should always be preferred to randomized immunization, whereby,
for most parameter choices, it outperforms randomized immunization.

2.6 Conclusions

In this chapter, we propose an algorithm to unveil the backbone of strong ties in a temporal
network from empirical data of a spreading process unfolding on the network nodes. Building
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Fig. 2.8 Difference in the fraction of infected nodes after the immunization phase, between the random-
ized and the targeted strategy (color coded) in the high-school case study. The dashed line represents the
epidemic threshold, below which none of the nodes is infected at the onset of the immunization strategy.
Darker blue areas identify parameter regions where targeted immunization has a superior outcome. Each
point is an average of 1,000 independent simulations.

on analytical insight regarding the role of strong ties in the process, we have put forward
a statistically-principled approach to discover strong ties from empirical data. Extensive
simulations are performed to assess the effectiveness of the proposed technique, which has
proved to be reliable in a variety of scenarios. Finally, we examined the integration of the
proposed algorithm in the solution of an important challenge in epidemiology, namely, targeted
immunization during an outbreak. Therefore the main innovations proposed in this chapter
are: i) the analytical computation of the effect of strong ties on the infection probability
for a susceptible–infected–susceptible epidemic model on routed activity driven networks;
ii) the design of a backbone detection algorithm and its numerical validation; and iii) the
implementation of a targeted immunization technique.

The promising preliminary results of our numerical analysis pave the way for several
avenues of future research. Future efforts should focus on the development of accurate methods
to deal with limited data, without increasing the number of erroneous identifications. In
the analytical derivation of our bounds, we specialize the computations to the SIS epidemic
model. However, the generality of our proving argument suggests that similar bounds could be
established for other models, as well, provided that they do not admit permanently attractive
states. These achievements would be key to providing a theoretical basis for the generalization



48 Backbone reconstruction in temporal networks from epidemic data

of our algorithm to deal with other dynamics, including richer epidemic processes or opinion
diffusion. Such an extension will be part of our future research. In most real-world scenarios,
it is not tenable to have access to the entire node set, thereby calling for methods to discover
missing nodes, beyond links, as we will explore in chapter 3.

The ability to reconstruct the structure of the backbone of a complex system from the
observation of an unfolding spreading process finds application in disparate fields of inves-
tigation. Our study on targeted immunization has demonstrated how information about the
backbone can be leveraged to design effective control techniques that could steer the behavior
of dynamical systems. Extending the framework to other disease models and mathematically
proving performance bounds is the objective of future research.



Chapter 3

Hidden nodes in activity driven networks

In this chapter, we approach the problem of recollecting the number of nodes in a network
given only partial information about it. Once we were able to find a viable approach to tackle
the problem of reconstructing the nature of links in activity-driven networks, we questioned
the feasibility of identifying hidden nodes. Our curiosity stems from the consideration that in
almost all data-driven approaches a perfect sampling of the network under study is impossible,
and dealing with missing data may greatly mislead researchers while inferring spreading
processes in different contexts. In our approach, we set to only rely on the data originating
from a diffusive process, in order to be able to assess how many nodes were hidden from our
knowledge in the network under study. We propose an analytic framework capable of assessing
the imprint left by hidden nodes on the dynamics of a network. Focusing on a variant of the
voter model, and using statistical approaches based on combinatorial analysis, a descriptive tool
is developed to assess the variation caused by inaccessible nodes in activity-driven networks.
Our technique proves robust to noise and parameters variation, bringing a new perspective on
node identification and network reconstruction.

3.1 Background

Network science, since its beginnings, always had two entangled souls, a theoretical one and an
experimental one [6, 64, 195, 235–237]. Relying on data and observation has proven essential
to discover counter-intuitive phenomena and emerging behaviors. Since the advent of social
networks and electronic databases, the methodologies utilized to study human interactions have
changed [238–243]. Data integrity has become an issue, sometimes due to the sheer amount of
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information that needs to be cleaned of noise, and sometimes due to an unreliable collection
technique that leaves researchers in the dark about missing data [194, 244–246].

New techniques are needed to assess the quality and completeness of both obtained and
observable data. Unrecognized connections and interactions among individuals, and the
inability to retrieve all the parties involved in a diffusion process, may be extremely detrimental
to the process of assessing and evaluating the characteristic of the phenomena under study.

In this regard we focused our attention on activity-driven networks, which emerged as
a powerful paradigm to describe diffusion processes on networks [154]. Thanks to the co-
evolution, at the same timescale of the diffusion process and the network itself, ADN can capture
events that happen at a fast pace [156] and may leave a feeble imprint on the network dynamic.
This property is often essential to properly studying a phenomenon, such as an epidemic
diffusion [12, 23, 147, 155, 227], information diffusion[157, 247] or opinion formation
[15, 160, 248].

Different techniques have been proposed to infer the size and the nodes involved in a network
system, with different uses of Bayesian models [83, 249–251], spectral clustering algorithms
[252, 253], optimization processes [254] or multiple techniques combined [76, 255]. More
exact and reliable results may be limited to some epidemic parameters [256] or near a specific
stable state of the dynamic [20]. The process of reconstructing the real size of a network has
been faced in data-driven approaches, using compressing sensing algorithms [257], maximum
likelihood approaches [258], or scale-up methods [259, 260]. A more in-depth focus is needed
on the subject, in order to develop reliable and robust tools available to any researcher working
with data sets.

In this study, we build on previous works that have focused on retrieving fundamental
structures in a network [27, 208, 209, 213] obtained thanks to the observable effects these
structures produce. Our technique focuses on the ability to discern if there are nodes hidden
in an observable system from the external observer. If this is the case, we aim to assess the
number of hidden nodes participating in the unraveling diffusion process.

Our main goal is to analytically assess the effect caused by hidden nodes in a diffusion
process on Activity Drive Network. Once the diffusion process is established, all the states of
the visible nodes are recorded, computing the probability for each to change state given the total
number of visible infected nodes in the system. A statistical analysis, rooted in a combinatorial
and probabilistic calculation, allows estimating the shift caused by one or more hidden nodes in
this probability of changing state. The robustness of the analysis is tested through an extensive
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simulation campaign. A simple optimization technique is then proposed to infer the correct
size of the system leveraging the main results of our work.

The main contribution of this chapter are: 1) defining a technique to identify the presence
of hidden nodes in a system; 2) computing the exact effect that hidden nodes have on visible
nodes; 3) validating the robustness and efficiency of the technique, and finally 4) the definition
of a simple technique to infer the exact number of hidden nodes in the system is proposed.

The rest of the chapter introduces in sec.3.2 the model and analyzes the dynamics of the
diffusion process under study, and in sec.3.3 a technique to classify if a model has hidden
nodes is defined. In sec.3.4 a thorough analysis of the visible effects of hidden nodes left in
the diffusion process is carried out, and a simple application using optimization techniques is
proposed for real applications. In sec.3.5 numerous simulations are carried out to assess the
robustness and sensibility of the analysis.

3.2 Dynamics

For our study, we choose a modified version of the voter model for its straightforward analytical
description and the symmetrical properties in the state change of each node [261]. The
constituent elements of our model are the interacting nodes of the system. Each node i is
characterized by two elements: a Boolean state xi

t that can vary at each time-step, and an activity
ai ∈ [0,1], fixed for the whole process, representing the propensity to create a link with another
node at each time-step. The complete system is composed of N nodes and following the ADN
paradigm [154], the population size does not change during the diffusion process. Different sets
of edges Et among the nodes are created at the beginning of each time-step and removed at the
end of it. Parameter µ is the same for all the nodes in the system at all time-steps, representing
noise affecting the propagation process.

At the beginning of a time-step, each node has a probability µ ∈ (0,1) of changing its
Boolean state from 0 to 1 or vice-versa. if such state-change does not happen, node i creates an
edge (i, j) ∈ Et , with another node j, with probability ai, independent form all the others. Node
j is chosen with uniform probability among N \{i}. When the edge (i, j) is created by node i,
it copies the status of node j: xi

t+1 = x j
t , node j is not affected otherwise by such interaction.

At the end of the time-step, all edges are removed, and the state of each node is updated. To
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clarify this process, we show in eq.(3.1)

P(xi
t+1 = 1|xi

t = 0) = µ +(1−µ) ·ai ·
It

N−1
(3.1)

the probability of changing state for a given node i, at time-step t.

The set of nodes with state equal to 1 will have size It , and we will commonly refer to the
nodes in this set as infected. We want to compute the probability of changing state, for a node i,
conditioned to the number of infected nodes in the system, as it will vary for different values of
It = k.

P(xi
t+1 = 1|xi

t = 0, It = k) = µ +(1−µ) ·ai ·
k

N−1
(3.2)

From eq.(3.2) we can derive all the probabilities of changing from one state to another for
each node i:

pi
10(k) := P(xi

t+1 = 1|xi
t = 0, It = k) = µ +(1−µ) ·ai ·

k
N−1

(3.3)

pi
01(k) := P(xi

t+1 = 0|xi
t = 1, It = k) = µ +(1−µ) ·ai ·

N− k
N−1

(3.4)

pi
00(k) := P(xi

t+1 = 0|xi
t = 0, It = k) = 1− pi

10(k) (3.5)

pi
11(k) := P(xi

t+1 = 1|xi
t = 1, It = k) = 1− pi

01(k) (3.6)

The value of k ∈ [0,N−1] for eq.(3.3,3.5), having those equation the assumption of xi
t = 0,

and k ∈ [1,N] for eq.(3.4,3.6), for the assumption of xi
t = 1 .

The value I = limt→∞ It will be the number of infected nodes in the system at the steady
state of the dynamic, following a probability distribution ΠN(k) = limt→∞ P(It = k), better
explored in sec.3.4. Must be noted that, if parameter µ ̸= 0, the process has no absorbing state.
If µ = 0, the states I = 0 and I = N are absorbing, since pi

10(0) = ai · 0
N−1 = 0 implying that

no node can ever be infected again, and pi
01(N) = ai · 0

N−1 = 0 implying that no node can ever
be non-infected.
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3.3 System identification

In many real systems, the extent of the number of subjects involved in a diffusion process
is unknown, and the analysis is carried out on the visible population. Following that line of
thought, we assume of being able to observe only a subset of nodes in our system, the set
N ′ of size N′. A subset of Q nodes, of size Q, is fully participating in the dynamic but
inaccessible to an external observer. The size of the observed system will then be N′ = N−Q.
Even if the nodes in the subset Q are not possible to observe, they are fully participating in the
network dynamics, getting infected and infecting nodes over time. In the model here under
study, we have that the probability of changing state is directly proportional to the number
of infected nodes in the system It . Given that some nodes are hidden, the number of visible
infected, denoted by I′t , will not always be coincident with the real number of infected It . The
probabilities in eq. (3.3,3.4,3.5,3.6) will be denoted as pi

10(k
′) when the observed number of

infected in the system is k′ and the real number of infected k is unknown.

3.3.1 Homogeneous activities

Let’s start our analysis assuming that all nodes have the same activity ai = a ∀i ∈N . Thanks
to this assumption, we can drop the index i from all the probabilities in eq.(3.3,3.4,3.5,3.6),
because all values will be equivalent for each node. Any hidden node in the system will have the
same probability of participating in the diffusion process as any other. Therefore, the influence
on any hidden given node h ∈Q will be the same. Discrepancies of the computed probabilities
of eq.(3.3,3.4,3.5,3.6) with the observed probabilities from a simulation or a data-set can be
assessed using a z-test for each different value of k in the system.

We illustrate the methodology by comparing the analytic prediction to a preliminary
simulation. After computing the probability p10(k) as in eq.(3.3), we compare it against the
measured probability obtained from a simulation with N = 4, aggregated over 10 runs each of
time-steps = 1.000, µ = 0.5,a = 0.5, and no hidden nodes. For each node we computed the
fraction of times a transition from state 0 to state 1 happens given the total number of infected
nodes in the system. Since all probabilities are equivalent, the data points are aggregated for
each value of k. The adherence between the predicted values and the observed is assessed with
a null hypothesis that in our system no hidden node is present by performing a z-test between
the predicted value and the measured probabilities, for each value of k, with an acceptance of
α = 0.05. For this situation, we compute that all pvalues above the threshold α , therefore all



54 Hidden nodes in activity driven networks

z-test are accepted and our null hypothesis of no hidden nodes participating in the system is
confirmed.

We then perform the same procedure on a system with not all nodes visible. After computing
p10(k′) as in eq.(3.3), we compare the computation with the measured probability obtained in a
simulation with N′ = 4, aggregated over 10 run each of time-steps = 1.000,µ = 0.5,a = 0.5,
and 1 hidden node. The real size of the system will then be N = 5. Testing this scenario for the
null hypothesis that we are observing a system with no hidden nodes, we observe all pvalues
below the acceptance threshold α , thus correctly rejecting the assumption that there are no
hidden nodes.

3.3.2 Heterogeneous activities

Let’s now explore systems in which the activity for each node is different, normally distributed
around a mean value ⟨a⟩, with a small variance. The activity of each node i will be ai =

⟨a⟩+σ · si, where the term si is normally distributed around 0 with unit standard deviation, σ

represent the standard deviation of the activities. In this framework, each node will be subject
to different probability pi

10(k) of changing state, and will not be possible to fully understand
the dynamics of the system unless all activities are known.

A simple method that can address this issue is not to consider the probability of changing
state of each node but consider the average of all the probabilities of changing state.

1
N ∑

i∈N
pi

10(k) =
1
N ∑

i∈N
µ +(1−µ) ·ai ·

k
N−1

=

µ +(1−µ) · k
N−1

· 1
N ∑

i∈N
ai = µ +(1−µ) · ⟨a⟩ · k

N−1

(3.7)

Thanks to the result of eq.(3.7), we can correctly predict the average probability of changing
state for all nodes in the system, knowing only the average activity. Similarly to the previous
scenario of homogeneous activities, we will preliminarly compare our predicted value against
the aggregated set of pi

10(k) ∀i ∈N against a simulation aggregated over 10 runs each of
time-steps = 1.000. We illustrate the methodology by comparing the analytic prediction to a
simulation, our acceptance threshold will be α = 0.05 as in the previous examples for a null
hypothesis of no hidden nodes in the system. For our test we start with a system composed of
N = 4 and no hidden nodes, with parameters µ = 0.5, ⟨a⟩= 0.5, σ = 0.01. In this scenario,
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all the pvalues for the different values of k are above the threshold, so we correctly accept the
null hypothesis that no hidden nodes are present in the system.

As before, we move on to explore the situation in which hidden nodes are indeed present. To
test our claim we compare the analytical results with a simulation aggregated over 10 runs each
of time-steps = 1.000. Testing in this scenario for the null hypothesis that we are observing a
system with no hidden nodes, we obtain all pvalues below the specified threshold, therefore
correctly rejecting the assumption that there are no hidden nodes.

3.4 Node Reconstruction

Once a suitable method to classify if a system has or not hidden nodes, it is of certain interest
to be able to estimate the number of hidden nodes in the system under study. The problem
involves computing all the possible combinations of states of visible and hidden nodes, in order
to be able to assess the effect of each node on the probability of changing state for all the other
nodes in the system.

3.4.1 Homogeneous activity

As before, we start from the assumption of homogeneous activity, ai = a ∀i ∈N . We will
describe a system having Q hidden nodes, and N′ = N−Q visible nodes. A generic hidden
node will be h, and its state at a generic time-step xh

t . While we try to compute the probability
pi

10(k) of changing state for a visible node, we are affected by not knowing if the state of the
hidden node is xh

t = 0 or xh
t = 1. For example, while we observe the system having I′ = k′

infected nodes, it could be having I = k = k′ or I = k = k′+ 1 infected nodes. The limit
probability pi

10(k
′) = limt→∞ P(xi

t+1 = 1|xi
t = 0, It = k′) , in a system with N′ visible nodes and

k′ visible infected, must be re-written to account for hidden nodes. Equation (3.15) describes
the corrected probability for a node in the system to change state from 0 to 1 when k′ infected
are visible in the system, and Q hidden are present.

The probability of changing state from 0 to 1 for a given node i in the presence of Q hidden
nodes is computed as follows. The probability of changing state, for a node i, directly depends
on the number of infected nodes in the system. Specifically, from (3.2), we obtain the, for
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It = k, it holds

p10(k) := P(xi
t+1 = 1|xi

t = 0, It = k) = µ +(1−µ) ·a · k
N−1

(3.8)

If hidden nodes are present, the quantity It is not observable, hence the probability in (3.8)
cannot directly be computed. Let us assume that the number of visible nodes is equal to
N′ = N−Q and the number of visible infected nodes is equal to I′t = k′. We want to compute

p̃10(k′) := P(xi
t+1 = 1|xi

t = 0, I′t = k′). (3.9)

Using (3.8) and the law of total probability, we write

p̃i
10(k

′) =
Q

∑
h=0

p10(k′+h)P(It = k | I′t = k′). (3.10)

Let us consider the process It . For homogeneous networks of agents It is an ergodic Markov
chain, whose transition probability matrix P ∈ [0,1](N+1)×(N+1) can be computed following
(3.17). Let ΠN ∈ [0,1]N+1 be its invariant distribution (computed as the left eigenvector of P
associated with eigenvalue 1), so that ΠN(k) is the probability of having k infected nodes in the
steady state.

When It is in the steady state, we can use Bayes’ theorem to compute

P(It = k′+h | I′t = k′) =
P(I′t = k′ | It = k′+h)P(It = k′+h)

P(I′t = k′)
(3.11)

where, using a combinatorial argument, we write

P(I′t = k′ | It = k) =
(

k′+h
k′

)
·
(

N− k−h
N′− k′

)
(3.12)

Hence, in the steady state, we can write (3.11) using the expression computed in (3.12) as

P(It = k′+h | I′t = k′) =

(k′+h
k′
)
·
(N−k−h

N′−k′
)
ΠN(k′+h)

Θ
(3.13)
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where the denominator is computed using the law of total probability as

Θ =
Q

∑
h=0

P(I′t = k′ | It = k′+h)P(It = k′+h)

=
Q

∑
h=0

(
k′+h

k′

)
·
(

N− k−h
N′− k′

)
·ΠN(k′+h).

(3.14)

Hence, substituting (3.13) in (3.10), (3.9) reads

p̃10(k′) = µ +(1−µ)a
1

N−1
1
Θ
·

Q

∑
h=0

(k′+h)
(

k′+h
k′

)(
N− k−h

N′− k′

)
ΠN(k′+h).

(3.15)

The combinatorial terms are needed to consider the correct realizations of extracting
indistinguishable infected nodes, given the N′ visible and N total in the system.

We indicate with the notation ΠN(k) := limt→∞ P(It = k) the probability for system com-
posed of N nodes to being in a state with k infected nodes. Therefore, when the system it’s
in the steady state, ΠN(k) is the probability distribution of having k infected nodes. To solve
(3.15) we must find the value for the stationary distribution ΠN(k) of the associated discrete
time Markov Chain process defined by

P(It = k) =
N

∑
f=0

P(It = k | It−1 = f ) ·P(It−1 = f ) (3.16)

If parameters µ,a are known, the steady state ΠN(k) of the Markov chain is easily computed
from the transition matrix P(N)∈ [0,1](N+1)×(N+1) encompassing all the transition probabilities
from one state to the other.

Still under the assumption that ai = a,∀i ∈N , we compute the stationary distribution
ΠN(k) of transitioning from It = f to It+1 = k infected in a system of size N.

The diffusion process is re-formulated as a discrete-time Markov Chain, in which each state
is the number of infected in the system. Since the future state of each node only depends on
the current number of infected the process is memoryless. The transition probability from a
state with f infected to one with k infected will be P(It = k | It−1 = f ), and the space of the
chain will be S = {0, ...N}. The stationary state of the Markov Chain to be found is defined in
eq.(3.16).
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Transition probabilities from one state to another can be computed as described in eq.(3.17).

P(It = k | It−1 = f ) :=

i f k > f :
min{ f ,N−k}

∑
p=0

(
f
p

)
[p01( f )]p · [p11( f )] f−p ·

(
N− f

k− f + p

)
[p10( f )]k− f+p · [p00( f )]N−k−p

i f k < f :
min{k,N− f}

∑
p=0

(
N− f

p

)
[p10( f )] f−k+p · [p00( f )]N− f−p ·

(
f

f − k+ p

)
[p01( f )]p · [p11( f )]k−p

(3.17)

If parameters µ,a are known, the steady state ΠN(k) of the Markov chain is easily computed
from the transition matrix P(N)∈ [0,1](N+1)×(N+1) encompassing all the transition probabilities
from one state to the other.

The result in eq.(3.17) is obtained through the combination of all the possible state tran-
sitions realized by indistinguishable nodes. Here we show the derivation concerning k > f

shown in eq.(3.18), all considerations will also be valid for k < f .

The initial state at time t has It = f infected nodes, each one can either change status with
probability p01 or not with probability p11. Conversely, the non-infected nodes initially are
N− f , with probability p10 of changing state and p00 of not changing state. Since k > f the
number of transitions from non-infected to infected must be higher than the opposite and at
minimum k− f .

These k− f transitions must be chosen among all the initially non-infected nodes, N− f .
The event of all the transitions happening is Bernoulli trials that involve an exact number of
infected f and N− f non-infected. If no infected node perform a state transition, p = 0, the
transition from state It = f −→ It+1 = k implies extracting exactly k− f new infected in the
population of non-infected available

(
N− f
k− f

)
[p10( f )]k− f · [p00( f )]N−k (3.18)

The number of infected nodes at time t that can perform a transition is fixed, and besides
the minimum number of k− f , transitions from infected to non-infected are possible as long as
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an equal number of transitions from non-infected to infected balance them out. If p ̸= 0, these
transitions will be extracted among all the infected f , following a Bernoulli trial.

(
f
p

)
[p01( f )]p · [p11( f )] f−p (3.19)

The number of transitions p is bounded either from the number of infected initially, f ,
or the number of non-infected in the final state, N− k Since multiple values of p, from 0 to
min( f ,N− k), may be permitted to reach the same final state with k infected, it is necessary to
sum over all the possible values of the index p. Therefore, combining the two Bernoulli trials
of eq.(3.18),(3.19) we obtain all the possible realizations for state It+1 = k, starting form state
It = f in eq.(3.20).

P(It = k | It−1 = f ) =
min{ f ,N−k}

∑
p=0

(
f
p

)
[p01( f )]p · [p11( f )] f−p ·

(
N− f

k− f + p

)
[p10( f )]k− f+p · [p00( f )]N−k−p

(3.20)

An example is given in eq.(3.21) of the matrix for a system with homogeneous activity and
N = 2.

P(N = 2) =

 (1−µ)2 (µ +(1−µ) ·a)− (µ +(1−µ) ·a)2 µ2

2(µ−µ2) 1−2(µ +(1−µ) ·a)+2(µ +(1−µ) ·a)2 2(µ−µ2)

µ2 (µ +(1−µ) ·a)− (µ +(1−µ) ·a)2 (1−µ)2


(3.21)

Let’s now explicitly compute the influence caused by a single hidden node, in a system
of size N, to the probability of changing state of all visible nodes. The hidden node h will
be infected, or not, following eq.(3.22), when k′ infected are visible. This proportion will be
crucial to weigh the probability for all visible nodes to change status.
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Ph1(N′,k′) =

lim
t→∞

ΠN(k) ·P(xh
t = 1|It = k, |N |= N)

ΠN(k) ·P(xh
t = 1|It = k, |N |= N)+ΠN(k′) ·P(xh

t = 0|It = k′, |N |= N)
=

ΠN(k) · k
N

ΠN(k) · k
N +ΠN(k′) · k′

N

(3.22)

p10(k′) = µ +(1−µ) ·a · 1
N−1

·
{
(k′+1) ·Ph1(N′,k′)+ k′ ·

[
1−Ph1(N′,k′)

]}
(3.23)

Thanks to all the results obtained to this point, we can solve eq.(3.22) and provide a
corrected version of eq.(3.3) for any system with one hidden node. Equation (3.23) describes
the corrected probability for a visible node in the system to change state from 0 to 1 when k′

infected are visible in the system.

3.4.2 Heterogeneous activity

In order to approach the reconstruction of the number of nodes in the system considering
heterogeneous activities, we will follow a process like the one used in sec.3.3. The activity
ai = ⟨a⟩+σsi of each node i will be distributed around a mean value⟨a⟩, the term si is defined
such that ∑i si = 0 with normal distribution and unit standard deviation, and σ will be the
standard deviation of the activities.

As we see eq.(3.16,3.22) still stand, but eq.(3.17) must be reformulated. Since we cannot
assume now that all nodes are equal, we must approach the problem in terms of distinguishable
nodes. Let’s start by unfolding the probability of changing state for a single node:

pi
10 = µ +(1−µ) · (⟨a⟩+σ · si) ·

k
N−1

(3.24)

If in eq.(3.24) the term σ is small enough, an exponential term of pi
10 can be expanded as

follows:
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[pi
10]

α =

[
µ +(1−µ) · (⟨a⟩+σsi) ·

k
N−1

]α

=[
µ +(1−µ) · ⟨a⟩ · k

N−1

]α

+

(1−µ) ·σ · si ·α ·
k

N−1
·
[

µ +(1−µ) · ⟨a⟩ · k
N−1

]α−1

+

O
(
(1−µ) ·σ · si ·α ·

k
N−1

)2

(3.25)

And if we were to multiply two probabilities of different nodes i and j, we would obtain:

pi
10 · p j

10 =

[
µ +(1−µ) · ⟨a⟩ · k

N−1

]2

+[
(1−µ) ·σ · k

N−1

]
·
(

µ +(1−µ) · ⟨a⟩ · k
N−1

)
· (si + s j)+[

(1−µ) ·σ · k
N−q

]
· si · s j

(3.26)

Therefore, deriving from the previous eq.(3.25), we can express the product of multiplying
N different probability terms:

N

∏
i=0

pi
10 =

(
µ +(1−µ) · ⟨a⟩ · k

N−1

)N

+(
µ +(1−µ) · ⟨a⟩ · k

N−1

)N−1

· (1−µ) ·σ · k
N−1

·
N

∑
i=0

si+

O

(
(1−µ) ·σ ·

N

∑
i=0

si ·
k

N−1
+(1−µ) ·σ · k

N−1
·

N

∏
i=0

si

)2

=

(
µ +(1−µ) · ⟨a⟩ · k

N−1

)N

+O

(
(1−µ) · k

N−1
·σ ·

N

∏
i=0

si

)2

(3.27)

The condition will grant us that for heterogeneous activities, equation for P(It = k|It−1 = f )

that contains N! distinct elements, can be approximated with eq.(3.17). Therefore, the influence
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of a single hidden node for the heterogeneous activity system will approximate that of a
homogeneous system, under the condition that σ is small or N is large enough.

3.4.3 Optimization

We propose a simple method, based on optimization techniques, to assess the number of hidden
nodes in a system. Since eq.(3.15) gives the exact estimate for the probability of changing
state, we propose to asses the exact number of hidden nodes minimizing the Least-Square sum
between the average over all observed values and the estimate obtained for a different number
of hidden nodes.

First, we define the function (3.28) of the parameters (k′,q):

f (k′,q) := µ +(1−µ) ·a · 1
N′+q−1

· 1
θ(q)

·
q

∑
h=0

(k′+h) ·
(

k′+h
k′

)
·
(

N′+q− k′−h
N′− k′

)
·ΠN′+q(k

′+h)
(3.28)

Where the normalization term is defined as

θ(q) :=
q

∑
h=0

(
k′+h

k′

)
·
(

N′+q− k′−h
N′− k′

)
·ΠN′+q(k

′+h) (3.29)

The values computed using function (3.28) is compared to the average of the observed
probability of changing state pi

10(k
′) for each node i, as explained in sec.3.4.2, assuming a

Gaussian distribution around the average.

LS(q) :=
N′

∑
k′=0

(
f (k′,q)− 1

N′ ∑
i∈N ′

pi
10(k

′)

)2

(3.30)

The parameter q that minimizes the value for LS(q) will be the best estimate for the number
of hidden nodes in the system.
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3.5 Numerical validation

Once the analytic framework has been developed, we want to explore the effectiveness of our
model with respect to different parameters, to asses where it performs better.

We will use the pvalue to estimate if the predicted probability of changing state, for each
k, is well described by our model. In particular, we will compare the aggregated set of
pi

10(k)∀i ∈N ′ with the predicted values from eq.(3.3), the Null-hypothesis, and eq.(3.15), the
Correct-hypothesis. We will accept a model to be descriptive of the data if all pvalues for each
k′ in the system are above the threshold of α = 0.05.

To mitigate false rejections of a model due to stochastic noise, we will average the number
of successful acceptances of a model over r = 50 repetitions. Wherever the Null-hypothesis
will be rejected more than the Correct-hypothesis, we can assess that our analysis to infer
hidden nodes is correct.

First, in fig. 3.1 we run a simulation with N = 10 nodes and one hidden node. All nodes
having the same activity a = 0.5 and the number of time-steps fixed at time− steps = 10.000.
What we obtain is the portion of times the Null-hypothesis of no hidden nodes in the system is
accepted.

We notice that for higher values of activity and lower values of µ we never accept the
Null-hypothesis, as explored in sec.3.3 and expressed by eq.(3.3), this is correct since one
hidden node is present in the system. For increasing values of the parameter µ , we see that
the probability of erroneously accepting the Null-hypothesis increase, to the point that this test
alone is not useful anymore. This is due to the increased noise in the diffusion process, hiding
the effects of nodes interactions.

Conversely, if we apply the analysis discussed in sec.3.4 and expressed by eq.(3.15), our
Correct-hypothesis will be that we are observing a system with hidden nodes. In fig.3.2 we
notice that over all the parameter-space the performances of our analysis are consistent, and we
correctly accept the hypothesis of one hidden node with a higher ratio than the Null-hypothesis.

We want to explore how different parameters affect the ability to identify if one or more
nodes are hidden and if the technique is robust to heterogeneous activities. In fig.3.3 we
display the difference in erroneously accepting the Null-hypothesis and correctly accepting
the Correct-hypothesis. By doing so, we highlight the contribution given by our exact analytic
solution in a system with heterogeneous activities. Here we see a system with N = 10 nodes
and one hidden, with average activity ⟨a⟩= 0.5, for different values of standard deviation and
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Fig. 3.1 Averaged probability of accepting the Null-hypothesis of no hidden node, time-steps = 10.000,
r=50 repetitions.

Fig. 3.2 Averaged probability of accepting the Correct-hypothesis of one hidden node, time-steps =
10.000, r=50 repetitions.

time-steps. The major difference between our Correct-hypothesis against the Null-hypothesis,
and by extension the more exact predictions, are obtained for long time-series with low standard
deviation in the activity distribution.

A critical aspect of a detection technique is its sensibility. To explore this characteristic,
we simulated different systems of increasing size all having a single hidden node. We notice
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Fig. 3.3 Difference probability of accepting the Null or Correct-hypothesis, µ = 0.5,< a >= 0.5, one
hidden node, over r = 50 repetitions.

that isolating the contribution of the hidden node in bigger systems requires an increasing
number of time-steps. This highlight that the contribution given by the hidden node is ever-less
impacting networks of increasing size. In fig.3.4 we display the difference in the probability
of erroneously accepting the Null-hypothesis and correctly accepting the Correct-hypothesis.
Here we see a system with average activity ⟨a⟩= 0.5 and variance σ = 0.01, with exactly one
hidden node. The best identification occurs for systems with small sizes and longer time steps,
while the sensibility decreases as the system gets larger.

Furthermore, we test the robustness of our technique to identify a varying ratio of hidden
nodes. This task is computationally expensive because, as we have previously seen, a high
number of time-steps is required to have a good reconstruction. In fig.3.5 we see that our system
is capable of identifying a high ratio of hidden nodes, even with an elevated heterogeneity in
activities. Such capability is proof of the robustness ad accuracy of our analysis, at the cost of a
longer time-series needed.

Finally, as an example, in fig.3.6 we show a realization of the process to identify the number
of hidden nodes through minimization of eq.(3.30). A system with N = 20 nodes, of which
Q= 4 hidden, and heterogeneous activity with σ = 0.01 is simulated. We see how the minimum
value is coincident with the real number of hidden nodes, therefore allowing the observer to
correctly asses the size of the system.
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Fig. 3.4 Difference probability of accepting the null or correct hypothesis, µ = 0.5,< a>= 0.5, σ = 0.01,
over r = 50 repetitions.

Fig. 3.5 Difference probability of accepting the null or correct hypothesis, µ = 0.5,< a >= 0.5, over
r = 50 repetitions and time− steps = 100.000.

3.6 Discussion

We explored a derivation of the voter model on activity driven networks. In sec.3.2 we described
the dynamics of the system, and the interest it held in our work, delineating the main equations
to describe it.
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Fig. 3.6 Least Square for different values of q, µ = 1/N, < a >= 0.75, σ = 0.01 over time− steps =
100.000.

Based on the described dynamic, in sec.3.3 we proposed a method to identify if a system
has hidden nodes participating in the dynamics or not. Leveraging the probability of changing
state of the visible nodes, we developed a statistical test to detect the presence of hidden nodes,
for systems with homogeneous and heterogeneous nodes’ activity.

After, in sec.3.4 we computed the exact influence that hidden nodes have on a system.
Analyzing scenarios with homogeneous and heterogeneous nodes’ activity, exact results are
computed to infer the probability of changing state for each node.

Finally, we compared our results with different simulations in sec.3.5, in order to assess
the reliability and the sensibility of our technique with respect to varying levels of noise, the
number of time-steps, and variability in the activities of the nodes. A simple optimization
process is proposed taking advantage of the work’s results, to estimate the correct size of the
system under study.

Our technique seems to be bounded by the high number of time-steps needed to correctly
infer the number of hidden nodes. This is linked to the statistical nature of the techniques
used to infer the probability of changing state of each node involved. Such limitation may be
accentuated in large systems, where pairwise interactions among nodes carry less information,
hindering the detection of hidden nodes. These limitations should be better explored in light of
the big-data available for research, as we will try to do in chapter 4.
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Future work should build on the present results to develop higher sensibility techniques
requiring fewer time-steps to correctly infer the presence of hidden nodes. Furthermore, the
presence of a backbone in the system should be studied, since stronger dyadic interaction could
carry more information for an external observer on the structure under study.



Part II

A data-scientific approach





Chapter 4

Analysis of lockdown perception in the
United States during the COVID-19
pandemic

In this chapter, we explore the online diffusion of sentiments and the perception of sensible
topics. To contain the diffusion of the Sars-CoV-2 virus across the United States, central and
local governments tried to assess the best course of action to stop the spread of this pathogen.
Among the strongest actions taken, there were different forms of limitations imposed onto citi-
zens regarding mobility and access to public spaces, leading to heterogeneous epidemiological,
social, and economic effects. These actions were commonly referred to as lockdown measures.

We present a spatio-temporal analysis of a Twitter dataset comprising 1.3 million geo-
localized Tweets about lockdown, from January to May 2020. Through sentiment analysis, we
classified tweets as expressing positive or negative emotions about lockdown, demonstrating a
change in perception during the course of the pandemic modulated by socio-economic factors.
A transfer entropy analysis of the time-series of tweets unveiled that the emotions in different
parts of the country did not evolve independently. Rather, they were mediated by spatial
interactions, which were also related to socio-ecomomic factors and, arguably, to political
orientations. This study constitutes a first, necessary step toward isolating the mechanisms
underlying the acceptance of public health interventions from highly resolved online datasets.
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4.1 Background

The word lockdown originated in the context of criminal justice in the middle of the 20th

century [262], indicating an emergency measure in which people are temporarily prevented
from entering or leaving a restricted area. Since the first wave of the SARS-CoV-2 outbreak in
2019, this word has been utilized to broadly define the measures adopted by governments and
local administrations to curb the diffusion of the epidemic, by reducing individuals’ mobility
and in-person interactions. These measures include restricted access to shops, workplaces,
and other public spaces, along with travel limitations. With their high population densities
and productive and economic fabric, cities have been dramatically affected by the pandemic
and its containment measures [263]. Lockdowns have had a broad and strong impact on the
life of individuals and communities [264–266], who have experienced different psychological
responses that evolved over time. While such measures are undoubtedly beneficial from an
epidemiological point of view, their economic, social, and psychological costs cannot be denied.

The adoption of lockdown measures to curb the diffusion of COVID-19 has impacted social
interactions, accelerating massive use of online platforms at a rate even faster than the spread
of the epidemic [267–269]. Among social media, Twitter is one of the preferred platforms
for users to express their reactions to the ongoing epidemics and related policies [270, 271].
Twitter is a micro-blogging platform, where users can write posts of up to 280 characters,
including images and URLs. Users interact through re-Tweets, by forwarding the text of others
on their own post stream; mentions, where users explicitly refer to others in their tweets; and
follows, where users decide to permanently incorporate others’ Tweets in their stream.

Twitter has been studied by researchers to investigate public opinion on a variety of topics.
Notably, Twitter was extensively used to understand how the political debate evolved and was
perceived [272–276], to investigate how rumors and opinions spread [277, 278], and to test
the validity of models of complex social behavior [225, 279, 280]. Other efforts aimed at
understanding the spread of contagious diseases that would be otherwise hard to track with
traditional medical testing [281], such as influenza [241–243, 282–284], Ebola virus disease
[285–287], and, more recently, COVID-19 [288].

The availability of data about COVID-19 diffusion and the access to Twitter data enabled
different studies on the perception and reaction to the pandemic [289]. Typically, these studies
rely on sentiment analysis, also known as opinion mining [290]. These tools are statistical
techniques that explore and extract emotions conveyed by selected texts [291–296], in terms
of a discrete classification or a continuous score. Twitter data on COVID-19 pandemic has
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been used to study reactions to the outbreak in different countries [297–299], benchmark and
validate new models for natural language processing [300–302], perform sentiment analysis
about the pandemic [303–305], and to perform analysis surrounding a specific event [263].

Of the entire body of knowledge on the topic, only the study by Rahman et al. [263] frames
the sentiment analysis within a socio-economic perspective, although relying on a relatively
small dataset. Other authors have used Twitter to study real-time events [71], mostly relying on
a limited number of interactions [306] or tackling the analysis mainly from a theoretical point
of view [307]. To the best of our knowledge, sentiment analysis on a big dataset collected over
long periods of time remains elusive, especially in the context of a disruptive event, such as the
COVID-19 pandemic.

In this vein, the present study explores temporal variations in the emotions expressed online
by Twitter users regarding lockdown measures in the United States (U.S.), starting from what
is commonly referred to as the first wave of the virus (January–May, 2020). To identify the
drivers of sentiment dynamics, we consider spatio-temporal variations in the severity of the
pandemic, along with social, economical, and political aspects. Within an information-theoretic
approach, we use the notion of transfer entropy [114] to discover causal relationships that
underlie the spread of emotional content among different geographical regions in the U.S.
Toward the identification of salient factors, we then proceed to a dimensionality reduction
using principal component analysis. In light of the granularity and extent of the available
data, we are successful in spatially correlating emotional shifts to the epidemic prevalence and
socio-economic factors.

4.2 Methods

We examined the sentiment expressed in the online debate surrounding the containment policies
in the U.S. between January 21st and May 31st 2020. The data we processed comprise about 55
million Tweets in English [289], as defined by Twitter’s metadata. The data was subsequently
filtered to retain only those originating from one of the 50 U.S. states and the District of
Columbia. We performed a polar sentiment analysis [308] on all Tweets containing the word
“lockdown," categorizing them as expressions of positive, negative, or neutral emotions. For
each U.S. state and the District of Columbia, we recorded the daily portion of positive and
negative Tweets. Alongside these data, we collected the number of daily infections in the U.S.
from the publicly available dataset of the New York Times [309], and several socio-economic
indicators from the Census Bureau website [310].
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4.2.1 Data, pre-processing, and post-processing

Our analysis is based on the ongoing collection of data curated by Chen et al.[289], which
started on January 21st,2020, and which included more than 123 million Tweets in several
languages when this project started. Complying with the Twitter privacy policy, the database
contains only Tweets IDs. We used the software Hydrator [311] to retrieve the Tweets’ text and
metadata. Specifically, metadata are used to select only Tweets written in English. Re-tweets
are not distinguished from ordinary Tweets, under the premise that a re-Twitting user expresses
a form of endorsement [293].

We filtered the data set by restricting the search to Tweets containing the keywords estab-
lished by the data set curator before February 16th 2020. Specifically, we used the following
keywords: “Coronavirus”, “Corona”, “CDC”, “Ncov”, “Wuhan”, “Outbreak”, “China”, “Koron-
avirus”, “Wuhancoronavirus”, “Wuhanlockdown”, “N95”, “Kungflu”, “Epidemic”, “Sinopho-
bia”, and “Covid-19”. Starting from such a filtered data set, we restricted our field of analysis
to those Tweets containing the term “lockdown,” either as Tweet text or as a hashtag, regardless
of any capitalization. Only Tweets that originated in the U.S. have been retained, through a
geo-localization procedure detailed in what follows. Eventually, the data set contained about
1.3 million Tweets, monthly distributed as follows: January, 56,920; February, 40,030; March,
322,877; April, 857,612; and May, 32,865.

Multiple metadata are associated with Tweets, thereby allowing for inferring the position
of the user at the time of content creation or their home and workplace. The largest portion
of Tweets monthly, ranging in (99.69%−99.92%) have a user-defined location. This is likely
connected to users’ home or workplace [312], although it may not reflect their exact position
and, sometimes, does not contain meaningful information (referring, for example, to imaginary
places, or to whole countries [312]). A much smaller portion of Tweets is associated with
platform-generated locations, based on the Tweet content (0.11%−0.26%). An even smaller
portion of Tweets contains a GPS location (0.02%−0.08%).

To associate specific coordinates to each Tweet we relied on the geoparsing software CLIFF-
CLAVIN [313]. Upon retrieval of a geographical entity in the Tweet, we used the open data
provided by OpenStreetMap Contributors© to determine the country of origin. If the Tweet
originated in the U.S., we sought to narrow the origin to any of the 50 states or the District of
Columbia. In case of conflicting information regarding the state of origin, we discarded the
Tweet.
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We studied polarization and changes in sentiment in the online debate about the topic of
lockdown using a classification of emotions aroused by text, in positive, neutral, or negative.
Such an analysis was performed using VADER [308], a valence-aware sentiment analysis tool.
For each Tweet, VADER assigns a composite score that is used for classification. Specifically,
following [308], we selected three thresholds to assign an emotional quality to each Tweet.
Composite scores below−0.050 were classified as carrying negative emotions; between−0.050
and 0.050 as neutral; and beyond 0.050 as carrying positive emotions.

By performing sentiment analysis on the geo-localized Tweets, we created two local time-
series for each region (all the U.S. states and the District of Columbia), namely, daily fractions
of positive Tweets ρP(t) and negative Tweets, ρN(t). In total, we collected 102 local time-series,
with the resolution of one day, each one with a length of 132 days.

To acknowledge country-wise changes in the perception of the pandemic, we partitioned
each time-series (from the fifty states and the District of Columbia) into three sections: before
the onset of the pandemic (the first day in which the incidence of 5/10,000,000 daily cases in
the population of the corresponding region was registered), from the onset of the pandemic to
the first peak of the infection incidence (evaluated using a moving weekly average), and from
the peak to the end of May 2020.

For each region, we studied the time-series of the portion of positive and negative Tweets
over the total number of Tweets, ρP(t) and ρN(t). From each of these time-series, we computed
the average values over the three sections, ρ i

P and ρ i
N , and the standard deviations, σ i

P and σ i
N ,

with i = {1,2,3}. To ascertain time variations in the positive and negative sentiments across
the three sections, we used Welch’s t-test with a significance level of 0.050.

4.2.2 Socio-economic factors

We considered education and wealth indicators from the 2018 data of the U.S. Census Bureau
[310]. For each region (U.S. state and the District of Columbia), we collected the corresponding
data for Population (POP), Median Household Income (MHI), and the following rates: Poverty
(PR), Employment (ER), Uninsured (UR), High School Diploma (or higher level, HSD),
Bachelor Degree (BD), and Professional or Doctoral Degree (PDD).

To consolidate the number of explanatory variables into interpretable indicators [314], we
performed a principal component analysis on these socio-economic factors [315]. We retained
three main components, accounting for 73% of the total variance and all having a corresponding
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eigenvalue above 0.995. We excluded variables contributing to a principal component with an
absolute loading lower than 0.500. The first principal component, accounting for 37% of the
variance, is interpreted as “Wealth” and is mainly associated with the poverty rate (principal
component loading equal to −0.958), the employment rate (0.816), rate of Bachelor Degree
(0.768), and median household income (0.673). The second principal component, accounting
for 27% of the variance, is interpreted as “Education” and is mainly associated with the rate
of Professional or Doctoral Degree (loading equal to 0.940), the Median Household Income
(0.599), the rate of Bachelor Degree (0.557), and the rate of High School Diplomas (−0.523).
Finally, the third principal component, accounting for 10% of the variance, is interpreted as
“Social Exclusion” and is mainly associated with the rate of high school degree (−0.562) and
the rate of uninsured (loading equal to 0.553).

The obtained principal component scores were used as dependent variables in a Kendall
correlation test [316] with combinations of sentiment analysis parameters. The null-hypothesis
of independence was tested with a two-sided test with p < 0.050.

4.2.3 Spatial interactions

Given the massive use of Twitter throughout the country, it is tenable to expect that local
sentiment does not evolve in silos, but is the result of a spatial influence process. Hence,
we studied the influence of sentiments among regions. We pursued this analysis through an
information-theoretic approach based on the notion of transfer entropy. Transfer entropy is
designed to unveil cause-and-effect relationships in a Wiener-Granger sense. Specifically, a
process X is said to cause another process Y if knowledge of the present state of X improves
the prediction of the future of Y from its present [114].

We separately studied spatial interactions associated with positive and negative Tweets.
For each type of Tweet, we computed transfer entropy between any pair of local time-series,
totaling 51×50 = 2,550 values of transfer entropy. To control for common-driver effects in
the evolution of time-series (for example, one state simultaneously influencing two other states
that would otherwise be independent), we conditioned over the average of positive or negative
Tweets across the entire country. Specifically, given a source process X (local time-series
of positive or negative Tweets), a target process Y (local time-series of positive or negative
Tweets), and the conditioning process Z (national average of time-series of positive or negative
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Tweets), we computed conditional transfer entropy as

T EX→Y |Z = H(Y (t +1)|Y (t),Z(t))−H(Y (t +1)|Y (t),X(t),Z(t)), (4.1)

where H(·) is the Shannon entropy.

In the computation of transfer entropy, we used a symbolic representation with a binary
alphabet to ensure the accuracy of the estimation of the probability mass functions in the
Shannon entropy, similar to our previous work [317]. Specifically, we first detrended the local
time-series of positive and negative Tweets by subtracting at each instant of time the average
value of the corresponding time section (before the onset of the pandemic, from the onset of the
pandemic to the incidence peak, from the incidence peak to the end of May 2020); we verified
the stationarity of the time-series using a Dickey-Fuller test [318]. Then, we symbolized the
time-series into a sequence of binary symbols: ↑ and ↓, associated with daily values above
or below the median, respectively. This transformation is performed separately for both the
time-series of positive and negative Tweets, obtaining a total of 102 symbolic time-series.

Statistical testing was performed by following the approach presented in [319]. To test
whether transfer entropy in Eq. (4.1) was different from chance, we created a surrogate distri-
bution by shuffling the values of the source process, while preserving the associations between
the target and conditional processes. A total of 10,000 permutations were executed for each
statistical test and a significance level of 0.050 was considered.

Hence, for every pair of candidate target and source processes, we rejected (or failed to
reject) the null hypothesis that their directional interaction from positive or negative Tweets
was due to chance. Through this analysis, we determined two directed networks, one from
spatial influences inferred from positive Tweets, and the other from negative Tweets, in which
a link signifies rejection of the null hypothesis. To highlight the strongest patterns of spatial
influence, we studied the normalized in-degree centrality, K(N,P),in and the normalized out-
degree centrality, K(N,P),out [320] of the obtained networks.

Using the directed networks and the centralities described above, we investigated potential
associations between socio-economic factors and spatial influence patterns through Kendall-τ
correlation tests using a two-sided significance threshold of p < 0.050. In addition, we sought
to connect these patterns to political ideology, as defined by Berry et al. [321] and using
updated 2018 data from professor R.C. Fording [322]. To this aim, we assigned to each region
a label, either “liberal" or “conservative", and then we counted in any of the two networks the
number of links connecting nodes with the same or different ideology.



78 Analysis of lockdown perception in the United States during the COVID-19 pandemic

4.3 Results

Across time, we registered a variation in both the means of the positive and negative Tweets
(Fig. 4.1a). Specifically, the portion of positive Tweets before the onset of the pandemic was
lower than the section between the onset of the pandemic and the incidence peak (t74.33 = 6.24,
p < 0.001) and then the section from the incidence peak to the end of May 2020 (t83.12 = 6.12,
p < 0.001). We did not register a difference between the portion of positive Tweets from
the central section to the last section (t96.56 = 0.82, p = 0.416). Likewise, we determined a
temporal variation in the portion of negative Tweets, whereby the central section was higher than
the initial one (t99.88 = 2.04, p = 0.045) and the last section was higher than the central section
(t99.67 = 2.44, p = 0.016). However, such differences did not reverberate into a significant
change from the first to the last section (t99.18 = 0.50, p = 0.620).

Differences in the mean portion of positive Tweets in time were accompanied by changes in
their variability (Fig. 4.1b). Specifically, the standard deviation showed an inverted U-shape, by
increasing from the first to the second section (t96.16 = 5.26, p < 0.001) and decreasing from
the second to the third (t91.78 = 4.81, p < 0.001); no difference was registered when comparing
the first with the last section (t81.86 = 0.84, p = 0.405). On the other hand, the variability of
the portion of negative Tweets was indistinguishable in time (first versus second: t95.06 = 1.66,
p = 0.101; second versus third: t83.18 = 1.27, p = 0.207; and first versus third: t74.82 = 0.11,
p = 0.910).

We further investigated the correlation between socio-economic factors and the shift in
sentiment across the three time sections (Table 4.1). The variation in the portion of positive
Tweets before the onset of the pandemic and between the onset of the pandemic and the
incidence peak correlates with all the identified socio-economic factors: negatively with Wealth
(τ = −0.442, p < 0.001), and positively with Education and Social Exclusion (τ = 0.500,
p < 0.001; τ = 0.487, p < 0.001; respectively). We did not observe a correlation when
examining the variation in the portion of positive Tweets between the onset and the peak and
after the peak with neither Wealth (τ = 0.183, p = 0.058) nor Social Exclusion (τ =−0.228,
p = 0.270). On the other hand, we recorded a correlation with Education (τ = −0.235,
p = 0.015). Exploring the correlation between socio-economic factors and the variation in
the portion of negative Tweets, we did not find a correlation between the variation from the
first to the second time sections and Wealth (τ =−0.112, p = 0.245), Education (τ =−0.079,
p = 0.412) or Social Exclusion (τ = 0.082, p = 0.393). Likewise, we did not register a
correlation between the variation in negative Tweets between the second and the third time
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(b) Standard deviation in time of the portion of daily Tweets in each period

Fig. 4.1 Green and red violin plots represent Tweets corresponding to positive and negative sentiments,
respectively. Each point represent the value for any of the state or the District of Columbia. Stars
indicate significant comparisons at p < 0.001 and diamonds at p < 0.050.
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sections and Wealth (τ = 0.106, p = 0.273), Education (τ = −0.101, p = 0.295), or Social
Exclusion (τ =−0.107, p = 0.266).

Not only were socio-economic factors associated with the averages of the portions of
Tweets, but also were they related to the standard deviations in time of the portions of Tweets
(Table 4.1). Across the first and second time sections, we did not register a correlation of
the change of the standard deviation of positive Tweets with Wealth (τ = 0.082, p = 0.394),
Education (τ =−0.049, p = 0.609) or Social Exclusion (τ =−0.059, p = 0.542). Differently,
such a correlation for the same data is observed between the second and the third time sections,
namely, negatively with Wealth (τ =−0.536, p < 0.001) and positively with both Education
(τ = 0.550, p < 0.001) and Social Exclusion (τ = 0.540, p < 0.001). The variation in standard
deviation of the portion of negative Tweets between the first and the second time sections
did not correlate with Wealth (τ = 0.061, p = 0.530), Education (τ = −0.086, p = 0.380),
or Social exclusion (τ = −0.086, p = 0.380). With respect to the standard deviation in the
portion of negative Tweets between the second and the third time sections, we registered a
negative correlation with Wealth (τ =−0.528, p < 0.001), and a positive correlation with both
Education (τ = 0.556, p < 0.001) and Social Exclusion (τ = 0.543, p < 0.001).

In Fig. 4.2, we illustrate a cartographic map obtained from the transfer entropy analysis.
Therein, each state is colored based on the in-degree (top images) and out-degree (bottom
images) centrality as computed from the time-series of positive (green) and negative (red)
Tweets: the higher the out-degree (in-degree) the higher the influence exerted (experienced)
by a node on (from) the rest of the network. In total, the network of positive Tweets has 249
directed edges, whereas the network of negative Tweets is composed of 146 directed edges.
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Table 4.1 Kendall-τ coefficients for the correlation between socio-economic factors and changes in the
averages and standard deviations of the portions of positive and negative Tweets. Numbers in parentheses
report the p-value from the correlation; a bold value indicates p < 0.050.

Kendall-τ Wealth Education Social Exclusion

ρ2
P−ρ1

P
-0.442 0.500 0.487

(p < 0.001) (p < 0.001) (p < 0.001)

ρ3
P−ρ2

P
0.183 -0.235 −0.228

(p = 0.058) (p = 0.015) (p = 0.270)

ρ2
N−ρ1

N
−0.112 0.079 0.082

(p = 0.245) (p = 0.412) (p = 0.393)

ρ3
N−ρ2

N
0.106 −0.101 −0.107

(p = 0.273) (p = 0.295) (p = 0.266)

σ2
P−σ1

P
0.082 −0.049 −0.059

(p = 0.394) (p = 0.609) (p = 0.542)

σ3
P−σ2

P
-0.536 0.550 0.540

(p < 0.001) (p < 0.001) (p < 0.001)

σ2
N−σ1

N
0.061 −0.086 −0.086

(p = 0.530) (p = 0.380) (p = 0.380)

σ3
N−σ2

N
-0.528 0.556 0.543

(p < 0.001) (p < 0.001) (p < 0.001)
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Table 4.2 Kendall-τ coefficients between socio-economic factors and either in- or out-degrees from the
portions of positive and negative Tweets. Numbers in parentheses report the p-value from the correlation;
a bold value indicates p < 0.050.

Kendall-τ Wealth Education Social Exclusion

KP,out
0.468 -0.525 -0.517

(p < 0.001) (p < 0.001) (p < 0.001)

KP,in
0.087 −0.099 −0.102

(p = 0.383) (p = 0.322) (p = 0.306)

KN,out
0.428 -0.437 -0.440

(p < 0.001) (p < 0.001) (p < 0.001)

KN,in
0.313 -0.341 -0.342

(p = 0.002) (p < 0.001) (p < 0.001)

The in-degrees of each region, computed from the network of positive Tweets, correlate
negatively with Wealth (τ = −0.442, p < 0.001) and positively with Education and Social
Exclusion (τ = −0.442, p < 0.001; τ = −0.442, p < 0.001; respectively, Table 4.2). On the
other hand, the out-degrees computed from the same network do not correlate with any of the
socio-economic factors, let them be Wealth (τ = 0.087, p= 0.383), Education (τ =−0.099, p=

0.322), or Social Exclusion (τ =−0.102, p = 0.306). The same analysis was performed on the
centrality measures for the network of negative Tweets. Here, we recorded a positive correlation
between the out-degree and Wealth (τ = 0.428, p < 0.001), and a negative correlation with
Education and Social Exclusion (τ =−0.437, p < 0.001; τ =−0.440, p < 0.001; respectively).
A similar pattern was noted for the in-degree, which also entailed a positive correlation with
Wealth (τ = 0.313, p = 0.002) and a negative correlation with Education and Social Exclusion
(τ =−0.341, p < 0.001; τ =−0.342, p < 0.001; respectively).

Finally, we performed a cluster analysis on the networks based on the liberal or conservative
ideologies of the corresponding nodes. For the network associated with the positive Tweets,
out of the existing 249 edges, we determined 87 (34.9%) links from conservative to liberal,
76 (30.5%) from conservative to conservative, 46 (18.5%) from liberal to conservative, and
40 (16.1%) from liberal to liberal. For the network related to negative Tweets, out of the 146
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edges, 34 (23.3%) were from conservative to liberal nodes, 48 (32.9%) from conservative to
conservative, 37 (25.3%) from liberal to conservative, and 27 (18.5%) from liberal to liberal.

4.4 Discussion

The first wave of SARS-CoV-2 has impacted the health, wealth, and the life of millions of
people all over the country. Information about the pandemic has spread over the globe, creating
waves of polarized emotions and, at times, influencing actions in response to the ongoing crisis.
A controversial debate has emerged about the application of strict containment policies, such
as severe lockdowns and travel bans. Opinions have been extremely heterogeneous across
geographical regions and social strata [323].

Here, we analyzed online sentiment on Twitter from January 21st to May 31th, 2020 in the
U.S. about lockdown measures. Beyond qualitatively describing the opinion throughout the
country, we sought to dissect potential explanations and causal mechanisms. In this vein, we
pursued a principal component analysis of socio-economic factors to consolidate variations
across the country in a few salient explanatory variables (Wealth, Education, and Social
Exclusion). Alongside, we conducted a transfer entropy study to unveil spatial interactions
among different regions of the country (states and the District of Columbia).

In agreement with our expectations, we registered a time variation of public opinion
regarding lockdown measures. People expressed support for lockdown measures in the early
stage of the pandemic, whereby the portion of positive Tweets increased and the portion
of negative Tweets decreased. It is likely that risk perception regarding the spreading of
the infection caused fear in the population, spurring emotional changes toward containment
measures that were evident from our Twitter dataset. As the pandemic progressed, the portion
of positive Tweets remained leveled and the negative Tweets raised, suggesting that pandemic
fatigue, stress, and isolation started taking a toll [324] in how people felt about lockdowns.

Interestingly, the U.S. did not react uniformly, so that different parts of the country re-
sponded differently to the pandemic as a function of socio-economic factors. In the initial
stage of the pandemic, lower Wealth and higher Education and Social Exclusion contributed to
the raise in positive emotions around lockdown policies. Educated individuals, but also those
fearing for their health due to poverty and lack of social safety nets, were more favorable to
containment measures.
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As the pandemic progressed and people changed their views regarding lockdowns, these
correlations were lost and, sometimes, even reversed. In particular, neither Wealth nor Social
Exclusion were explanatory of the changes in positive emotions regarding lockdown. Education
became negatively correlated with the sentiment change so that people living in more affluent
regions with a higher portion of college graduates were those who reduced the most their
support to lockdown measures. Perhaps, this reflected some sort of cheering for the end of
restrictions or the final acceptance of the new normalcy by those individuals who kept abreast
of advancements in the combat against the pandemic. We warn care when interpreting this
claim, whereby its statistical significance was drastically lower than any other of the observed
associations and higher education was also positively correlated with changes in the temporal
variability of positive sentiments, registered in our Twitter dataset and echoed by online debates
[325]. As a result, claims drawn on changes in the mean values may not be indicative of a true
change in sentiment.

It is tenable that the complex response of the U.S. to lockdown was mediated by spatial
interactions supporting the spread of opinions across state borders. Our transfer entropy analysis
offers evidence in this direction, whereby we detected close to four hundred dyadic interactions
in relation to positive and negative Tweets. In agreement with one’s expectation, the distribution
of these links was not random, but rather it was informed by socio-economic factors. People
living in regions with a higher Wealth tended to have a higher influence on how the rest of
the country perceived lockdowns, whether through positive or negative emotions. Such an
influence was, instead, moderated by Education and Social Exclusion, which may exacerbate
political and cultural polarization, as well as differences in the very use of Twitter [326, 327].

Interestingly, we discovered that these associations would also underlie the tendency of
a region to be influenced by, rather than influence, others with respect to negative emotions.
Negative emotions are likely to resonate more in wealthier parts of the country, which could
have been more worried about the downturn caused by the pandemic [328]. Such a worry was
indeed mitigated by higher levels of education and the presence of social safety nets. Perhaps,
political orientations could play a role in these spatial interactions, but present evidence is not
conclusive. We speculate that the positions on lockdowns taken by the two major parties were
partly responsible for the observed spatial interactions, with conservative states playing a more
influential role in opinion spreading.

Our approach is not free of limitations. First, we acknowledge that the Twitter database
could be excessively widespread [329], thereby challenging the retrieval of pertinent informa-
tion from selected keywords, especially when dealing with a new topic. Second, sentiment
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analysis may not allow for a deeper understanding of nuances or sarcasm [308], thereby con-
founding the classification of some of the Tweets in a database. Third, the use of aggregated
socio-economic data only allows for the study of macroscopic phenomena without capturing
fine details of human behavior.

There are several routes for future inquiry from this effort. In principle, our analysis could be
expanded to encompass different sentiment analysis of Tweets than a simple positive/negative
classification, at the cost of a more intricate interpretation of results. Likewise, our correlation
studies could be undertaken without the use of a principal component analysis on socio-
economic factors, thereby allowing for a more detailed assessment of potential drivers. Further
work could also address a finer resolution of time effects, rather than the coarse three-section
representation proposed in this chapter. The use of a finer resolution may help elucidate
sentiment dynamics in the online debate, potentially assisting in the inference of key attributes
of Tweets that become viral. Although our focus was the ongoing pandemic, the approach
presented in this chapter could be beneficial to policy-makers when dealing with unpopular, yet
timely, interventions in general [323]



Part III

An experimental approach





Chapter 5

An open source framework to study
face-to-face interactions

In this chapter, we present an open-source framework that allows for realizing ad-hoc exper-
imental settings in order to gather data on face-to-face and proximity interactions between
individuals, with a high temporal and spatial resolution. This tool, composed of multiple
sub-systems, was created over the course of three years to fill the need for a ready-to-use
solution for researchers to quickly, easily, and inexpensively perform social experiments on
human interactions. Therefore we developed two smartphone applications for the main op-
erating systems in the market, that leverage Bluetooth®’s received signal strength indication
(RSSI) to assess the approximate distance between devices, and therefore participants. The
applications do not impact the normal operation of smartphones, allowing anonymized and
GDPR-compliant [330] data to be sent to a server of the researchers’ choice. Here we present
the main features and functions of the system, as well as the results of preliminary experiments
and data analysis, which provide an assessment of the framework’s capability to be used in
order to research human interactions in real-life scenarios.

5.1 Background

Two of the main fields of network science have been the theoretical one and the experimental
one [6, 64, 195, 235–237]. Leveraging data and quantitative observations has been essential
to discover counter-intuitive phenomena and emerging behaviors. Sparked from observation,
analytic descriptions of networks and dynamical systems shape our field of research.
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The Zachary Karate Club [331] is obtained through oral interviews in the seventies, leaving
to the researcher the decision on what to define as an interpersonal link. Since the advent of
social networks and of electronic databases, the methodologies used to study human interactions
have changed [238–243]. Particularly in recent years, new technologies have been put to use of
understanding how humans interact and behave. Ad-hoc devices or re-purposed ones can be
leveraged to infer coarse positions of individuals [259, 332], or in-depth day-to-day routines
[333]. With adequate resources, extensive experiments and analysis can be performed, where
participants are equipped with dedicated devices capable of multiple measures for extended
periods of time [334–337]. Yet these solutions are out of reach for most researchers, and only
selected institutions may afford to embark in such projects.

Recently, more cost-effective devices have shown great potential to perform social exper-
iments of in-person interactions. Still needing to be provided to each participant, and with
reduced capabilities, single-function low-cost devices have allowed for the study of face-to-face
contact patterns [84, 194, 338, 339]. Wearable sensors have achieved good results in recording
and quantifying meaningful interactions when compared to participant interviews [87, 244].
But this technology still suffers from a range of drawbacks: the usable range is limited, the
devices can break or malfunction, the devices have to be worn by participants and need to be
recharged frequently, and only one experiment at a time can be performed since the number of
wearable sensors is limited. Furthermore, a special infrastructure and logistics must be set up
for the data collection to work properly.

5.2 Development

5.2.1 Functioning principle

The core technology of the proposed framework is the Bluetooth® wireless technology.
Bluetooth® has been proposed and used [340–343] extensively for indoor positioning so-
lutions, both in research and industrial applications. This technology has been widely adopted
on the vast majority of consumer-level handheld devices, particularly smartphones, where it is
used to interface the device with accessories. Bluetooth® technology is nowadays mainly used
to transfer data, such as audio streams, between two or more devices. The maximum distance
that such a wireless connection can cover is usually between 10 and 100 meters, depending on
the protocol version and hardware specifications [344].
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Bluetooth® technology can be leveraged for indoor positioning because the protocol also
encompasses the reading of received signal strength indication (RSSI), a simple measure in
decibels of the attenuation of the received signal. Being the power of the transmitter known,
and set within a range by the nature of the protocol itself, a logarithmic regression can be
used to infer the distance between two Bluetooth® enabled devices. Sadly, different hardware
producers have different tolerances in upholding the standard, and usually, a direct comparison
between signals from different hardware needs to be compensated. Furthermore, the gain and
the orientation of the antenna can differ from one handheld device to another, and that coupled
with the unknown orientation of the device and the surrounding effects of the environment,
make this technology usable only for moderate precision, in the order of magnitude of one
meter [345].

5.2.2 Smartphone applications

Right now the market for smartphone’s operating systems is dominated by two platforms [346]:
Android™ developed by Google Limited Liability Company; and iOS, developed by Apple
Incorporated. Both operative systems originate from the UNIX® operative system, and both
are designed for ARM® chip architecture. This makes for a good degree of interoperability and
communication between the two platforms. Both platforms are capable of running a compatible
Bluetooth® module to transmit and receive data. We decided to develop two smartphone
applications, one for Android® and one for iOS operating systems, capable of exchanging data
via Bluetooth® in order to exploit the previously mentioned capability to infer the relative
position of the devices participating in an experiment. The two applications are made freely
available on the respective online stores:

• https://play.google.com/store/apps/details?id=com.polito.humantohuman

• https://apps.apple.com/it/app/human2human/id1585798094

In order to develop an effective tool for measuring participants’ proximity and interactions,
we aimed at some fundamental goals in the development of our smartphone application:

• The application shall not cause abnormal use of energy, avoiding draining the device’s
battery too fast

• Minimal impact should be felt on the processing power and memory capacity of the
device
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• No disruption of the normal Bluetooth® radio functionality should be felt in the use of
the device

• It must be possible for the user to limit or stop data transmission from and to the server,
as it is in some countries very expensive to use cellular connection for data transmission

From Bluetooth® version 4.0 the feature Bluetooth Low Energy (BLE) has been introduced
in the protocol, which limits the energy consumption of the Bluetooth® hardware. Leveraging
this version’s new modulation protocol and features, we adopted BLE for our project. It has
proven a reliable and stable solution, compatible with a multitude of devices.

Special attention should be put on granting anonymity to all participants involved. In order
to do so, we assign to each device joining an experiment via the developed applications a unique
identifier, which is shared with a predetermined backend server. The association between the
identifier and the device is known only to the user, who does not have to disclose it to join
an experiment. Other devices in proximity of a device enrolled in an experiment will not be
registered, due to the inherent implementation of the unique identifier into the overflow area of
the Bluetooth® protocol.

In order to achieve the goals listed before, we used in an innovative way the overflow area
of the Bluetooth® protocol. This area is designed to give some basic information to a device
before a connection is established, therefore it is not shown to the user, as it is part of the
communication that happens in the background between devices. Each Bluetooth® device that
is available for a connection advertises some of these features, like being a sound accessory, a
vehicle multimedia system, or a printer, to other devices by providing a 128bit identification
code, the UUID. Usually part of this code is unused, and therefore can be manipulated without
repercussion on the device functionality. We exploited an 8bit section of the UUID to set
a unique identifier linked to the device in our experiment. In this way, even if the normal
operation of our application is interrupted by the operating system, the UUID will remain set
and visible for other devices to be picked-up, allowing for the device to be still visible to others
running the application.

The application’s user-interface is very simple, as the interaction with the user is minimal.
Here we will focus on the application developed for Android™ operative system to explain the
general functions as seen by the user. The application developed for the iOS operative system
has been designed to have similar functionalities and interaction, with minor layout and options
differences.
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The landing page of the application has general information about its purpose and the
researchers that developed it, see fig.5.1a or 5.2a. As the user is not enrolled in any experiment
yet, no other option is available but the ‘SETTINGS’ button. Pressing the button lands the user
on the second page of the application, see fig.5.1b or 5.2b, in which a box is available to set the
server address chosen for the experiment to join. The aforementioned server must have been
implemented using the complimentary backend package, freely and openly available on our
GitHub repository [347, 122], and better described in section 5.2.3. Once the server address
is set up, the user is automatically prompted to the consent form, a text downloaded from the
server. The consent form is customizable and uploaded from the server side by researchers, as
it must be prepared to fit the privacy requirements for the experiment being conducted, eg. the
GDPR laws in Europe. If the user does not accept the consent form, the whole application is
reset to the initial state. This is done in order to avoid any data being collected or transmitted
unwillingly from the user. Once the consent form is accepted, the application creates a random
ID for the device, which is sent to the server, and the overflow Bluetooth® area is set accordingly.
Must be noted that no connection can be inferred by researchers looking at the data on the
server between a user and the generated ID, as no details concerning the user of the device are
recorded.

When the device is properly enrolled in the experiment on the chosen server, a set of new
options are made available. First of all in the settings page, in figure 5.1b or 5.2b, the user
can review the consent form by clicking the button ‘CONSENT FORM’, which opens again
the consent form page. If the user decides to withdraw the consent by un-ticking the selection
box, a command is automatically sent to the server associated with the experiment: all data
connected with the ID communicated by the device will be permanently erased. This may seem
like a radical solution, but it ensures perfect data protection from the users’ side, as they can
remove all data collected autonomously. This measure does not act on backups or copies that
may have been done outside the scope of the provided server backend package. The second
button available on this page will be ‘LEAVE EXPERIMENT’. By selecting this command, the
application un-enrolls from the experiment, without erasing data from the server. In fact, it just
resets the application to the initial stage, and stops all actions of recording and sending data to
the server.

When the device is enrolled in an experiment, see figure 5.1a and 5.2b, the user will have
two new controls available: ‘COLLECT DATA’ and ‘ONLY WIFI’ for the Android® system,
and ‘COLLECT DATA’ for the iOS system. The first command ‘COLLECT DATA’ allows
the users to select when their device is going to collect data to be sent to the server, and
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when to advertise the device presence via Bluetooth® . The first time this action is triggered,
the operative system may request the user to authorize the application to access Bluetooth®

capabilities, per the creator of the operative system policy. When this command gets turned off,
the device stops the recording of Bluetooth® data but completes the sending of registered data to
the server. The command ‘ONLY WIFI’ could be implemented only for the Android® version
of the application, due to the system’s restrictions in iOS. This option makes the application
send the collected information to the server only if the device’s WiFi connection is active. This
option is made available to the users as sending data through the cellular network may be
expensive in some countries. When the option is not selected, the device will use the system
default to send data to the server.

5.2.3 Server backend

The server backend is made available to complement the smartphone applications we are
releasing. Our goal was to implement software that could allow researchers from different
backgrounds and skills to use it effectively:

• The system must be easy to set up

• The software must run on low-power and low specs machines

• Data extraction must be simple

• A level of customization must be available

• Data protection must be integrated

To achieve these goals, we used Python and GO programming languages to develop a
REST API to interface with the mobile application and exchange data using JSONL format,
subsequently all data is stored in a PostgreSQL database. The backend server is designed
to run on Linux-based operating systems, and can be freely downloaded from our GitHub
repository [347, 122]. Computers can be costly to acquire and to run, especially for long
periods of time, when energy consumption and maintenance can weight on the cost of the
experiment. As per our tests, our software is capable of running on system-on-a-chip machines
with modest performances, such as the Raspberry Pi™1 model 3B+. This device mounts
an ARM® quad-core processing unit running at 1.4GHz, with 1Gb of RAM. The memory

1Raspberry Pi is a trademark of Raspberry Pi Ltd
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(a) Landing page (b) Address setting

Fig. 5.1 User interface developed for the Android™ operative system
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(a) Landing page (b) Address setting

Fig. 5.2 User interface developed for the iOS operative system
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needed to store the data connected to an experiment is widely dependent on the amount of data
collected and exchanged, but the JSONL format for data transfer and the lean architecture of
our system suggests that hundreds of megabytes of memory should suffice for tens of devices
running an experiment for multiple weeks. An available internet connection is needed in order
to have the server receive data from the devices, HTTP Secure connection is required to ensure
full protection of the data exchanged and to be compliant with the latest iOS requirements.

Furthermore, the server is designed to run multiple experiments at the same time, without
the devices involved interfering with one another. Each device enrolls in an experiment by
setting in the application the URL for the server compounded with the unique identifier of the
experiment defined by the researchers, such as:

https://serveraddress/humantohuman/experiment/identi f ier

The first time the device enrolls, it sends to the server the generated ID, and the server
records to which experiment it must be assigned. Cross-control is performed each time data is
received from a device: if the advertising and scanning devices are not involved in the same
experiment, or not enrolled at all, the data is discarded.

As we mentioned in section 5.2.2, the server can receive from each device the command to
remove a device from the list of enrolled devices in an experiment, or delete all data sent and
concerning a device. This behavior ensures that users have full control of their data, and can
remove it at any time without the need for a specific request to an operator.

As we mentioned before, the server is responsible for enrolling a new device in the ex-
periment, receiving data from devices, and collecting such data. The server also provides
researchers with a user interface to create new experiments, delete them, or download the
collected data. For all these operations, researchers provide a user interface, as shown in figure
5.3.
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The interface can be accessed via a webpage and is protected by a password that needs to
be set when preparing the server. From this webpage a researcher can:

• Clear the whole database of all experiments, by typing ‘yes’ in the ‘Clear Database’
section.

• Create a new experiment for users to join, by defining a unique identifier and uploading
the proper description and consent form in the ‘Add Experiment’ section.

• Download a list of all the IDs for the devices enrolled in a specific experiment in the
section ‘Download Experiment Nodes’. This action will provide a comma-separated
values file.

• Delete an experiment, by filling in the unique identifier in the section ‘Delete Experiment’

• Download all the data collected from an experiment, in the section ‘Download Experiment
Edges’. This command will produce a comma-separated values file heaving for each
event the data of time, scanned ID, advertiser ID, RSSI, and Power Level.

The user interface has been developed to be easy to use and intuitive, not needing special-
ized knowledge to create, delete or download an experiment from the server. Furthermore,
we decided to provide comma-separated values files in the downloads as this file format is
particularly common, and can be processed with a variety of software while maintaining a
modest size in the memory.

5.3 Preliminary tests

The first tests performed were those connected with the strict functionality of the two appli-
cations. After passing the requirements of Google LLC and Apple Inc. to be released in the
respective online stores and be downloadable, we checked that the two systems were in fact
interoperable and that the communication with the server was as expected. Once the system was
fully set and functional, we wanted to characterize the quality of data that could be extracted
and used for our goal, inferring the relative distance of participants. As mentioned before, the
chipset used for Bluetooth® signal transmission varies from manufacturer to manufacturer, so
our experiment was focused on establishing a baseline for the sampling rate and the accuracy in
distinguishing the distance between two devices. All tests were performed within 10 meters, as
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Fig. 5.4 Diagram of the experimental setting

such distance is the upper limit for the Bluetooth® communication protocol, and no reasonable
human interaction is expected to happen farther between participants.

5.3.1 Experimental setup

The experiment took place in an open field, outside a building, to safeguard the health of
participants and respect the social-distancing rules dictated by the alert for COVID-19. The ex-
perimental setup was done using four devices of different manufacturers all running Android™
operative system. Although the interoperability with iOS products was thoroughly tested, we
could not have at hand such a device for the whole duration of the experimental phase.

As shown in figure 5.4, one device was sitting on the ground at the center of concentric
circles, each circle being 1mt in radius bigger than the other, up to 3mt from the center. Three
participants roughly positioned at 120◦ from each other, had their device on a necklace, standing
in a circle and facing the center. This configuration allows for a direct line of sight of every
device, reducing the effect of absorption of radio frequencies from human bodies. Once the
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Fig. 5.5 Raw signal strength versus distance as seen by one device held by a participant and the central
device and vice-versa, for the duration of the experiment.

experiment is set, the participants start by standing for one minute at a distance of 1mt from the
central device, then each minute they move outward by 1mt on pre-marked spots.

Our objective is to be able to assess if two devices are within 1mt of distance or further.
Being able to reliably assess if two people are close to each other is essential to characterize
face-to-face interactions, and to unveil a number of other dynamics such as the diffusion of
pathogens [348, 349].

5.3.2 Spatial and temporal resolution

The collected data are RSSI values for each participant, plus the central device. As noted before
all manufacturers respect the same Bluetooth® specifications, but by implementing different
technical solutions. So the first step of our analysis was to match the reading of each pair of
devices to establish a common scaling factor, in order to be able to compare one device to
another. An example of non-scaled measurements obtained from two devices, one looking at
the other, is shown in figure 5.5.

Our approach to the rescaling process was centered on the central device by the design
of the experiment, nevertheless, the choice of the device that will be used to rescale all other
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Fig. 5.6 Signal strength versus distance for one device held by a participant and the central device.

signals can be chosen using other factors or procedures. First, we compared the signal reading
over the course of the experiment for each participant’s device of the central device, with that
obtained by the central device of the specific participant’s device. Then we performed a linear
regression among the two, of which an example is shown in figure 5.6. We obtained a total of
six linear regressions, of which the average R2 = 0.65, with the lowest value being R2 = 0.54.
Given the proof-of-concept nature of this experiment, we accepted these regressions as always
explaining more than 50% of the variance in the data. Each regression gives us the parameters
needed to rescale the data collected by each device to the power levels recorded by the chosen
central device.

In figure 5.7 we show the result of the normalization process applied to the raw data of
figure 5.5. Having applied this technique, we have all the data from all the devices scaled and
normalized in a way to be comparable one to another. Such a process can be done iteratively
also for devices not in direct line of sight, given that those share at least a common contact. In
other terms, if the aggregated network of contacts over time has a unique connected component,
this normalizing process can be iteratively applied to have all the signals recorded, scaled, and
normalized in the same way.

Once we completed the normalization process, we explored the data first by aggregating
each record of each device in time-windows of 1 second, for which the average value of signal
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Fig. 5.7 Normalized signal strength versus distance as seen by one device held by a participant and the
central device and vice-versa, for the duration of the experiment.

strength recorded over that time-window is associated. By doing so we explored the sampling
rate for each device, and noted a slight variation in sampling rates, with values from 3.2Hz to
9.3Hz. These sampling rates are much higher than other solutions available to researchers [38],
and allow for a more precise data collection.

Finally, we recall that the participants stood at the same distance from the central device for
1 minute before moving outwards. We show in figure 5.7 the data aggregated over 1 minute for
the signal recorded by a participant’s device as an example of such collected and normalized
data. At first glance, we see that signal strength is decreasing with the distance.

Our goal was not to model the RSSI of a device as a function of distance, but instead to
evaluate the feasibility of distinguishing if two devices are close to each other or not. To do so,
we proceeded by establishing if the collected signals are distinguishable at different distances.
We aggregate all the data concerning the participant’s devices seeing the central device for each
distance, from 1mt to 3mt. This is done because we are interested in assessing if the signal at
distances of interest can be discerned, independently from the device used.

We perform a Welch t-test between all the data recorded at 1mt and all the data recorded at
2mt, under the null hypothesis of the data coming from the same population. We reject the null
hypothesis with a pvalue < 0.05. Then we perform a Welch t-test between all data recorded at
1mt and the aggregated data recorded at 2mt and 3mt, with the null hypothesis of all the data
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Fig. 5.8 Signal strength versus distance for one device held by a participant and the central device.

coming from the same population. We reject the null hypothesis with a pvalue < 0.05. These
results confirm that the signals of devices at different distances can be indeed recognized with
adequate data analysis.

5.4 Conclusions

In this chapter, we presented two smartphone applications and a server backend software aimed
at providing a set of simple and cost-effective tools to study face-to-face interactions. Driven by
the need to better analyze face-to-face interactions, we recognized a lack of tools for this kind
of experiment, and set ourselves to develop a novel framework that could be openly used by
the whole academic community. We decided to build upon the large diffusion of smartphones
to allow for powerful yet economical hardware, for which we developed adequate software.
The applications developed for Android™ and iOS operative systems are easy to set up and
friendly to use. Alongside these applications, we also released software designed to run on
simple Linux-based machines that acts at the same time as a data collection server for the
data received by smartphones and as a control panel to create, run and remove experiments,
download, and manage data.
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We performed standardized quality tests on the applications to be able to release them
on the aforementioned smartphone’s operating systems. Thorough tests are done to ensure
interoperability and the correct functions of the system as a whole, meaning the correct
collection of signals between different devices and the correct reception of collected data by the
server. Furthermore, we performed a simple yet informative experiment in which we tested the
usefulness of the collected data to assess if two participants are close to one another or further
apart. The results we obtained are very promising and show the usefulness of our approach.

We believe that more experiments have to be conducted to fully assess the potential and
limits of our system. More refined techniques, maybe incorporating machine learning and
automated classification can be developed to better analyze the obtained data and provide more
insight to researchers. Some of the techniques exposed in previous chapters could be leveraged
with the data obtained from this system to assess the integrity of collected data, as shown
in chapter 3, and fully reconstruct the network of interaction among participants, as seen in
chapter 2.

Finally, by making this set of tools fully and freely available online, on the Android™online
store, iOS online store, and on GitHub [347, 350], we think that new and exciting work will
spark on face-to-face interactions, both in our research community and in research fields that
previously considered this kind of experimental campaign too costly or complex to set up.
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Chapter 6

Conclusions and future directions

In this Ph.D. dissertation, we have explored different aspects of the problem of network
reconstruction.

First, we approached and explored the theoretical challenges of reconstructing a network.
Starting with the binary data collected by observing the epidemiological states of agents in an
activity driven network, we developed techniques to reconstruct the underlying backbone of
the network.

Working on the model of routed activity driven networks, we developed a technique to
discriminate between the interactions originated by the backbone network of the system and
random connections. The technique is based on the comparison of the probability distribution
of being infected, given the knowledge of the past states for each node. Once the technique
is developed, it is implemented and tested first on Monte-Carlo simulations to evaluate its
accuracy and precision, then on real data of face-to-face interactions to assess the viability of
using this technique to implement immunization strategies in real scenarios.

Another side of network reconstruction is that of accurately knowing the size of the network
under study. Knowing the boolean state of a node in a modified version of the voter model,
we developed an exact solution of the probability distribution for the state of a node. We then
extended those computations for an arbitrary size of the network the node is into, allowing
for statistical testing to take place, thereby assessing the presence or absence of one or more
hidden nodes in the system. A simple method based on optimization is proposed to analyze
bigger networks, and extensive numerical simulations are run to evaluate the accuracy of the
technique.
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Although very effective and precise, we found the developed techniques to be bound by
the availability of sufficient data. Identifying elements in presence of noise or other signals
is a difficult task, and although innovative, our solutions were not perfect. The most pressing
issue is probably having to rely on too many datapoints to reach a high level of accuracy in
the reconstruction. In our numerical validation, the length of the associated time-series in
the Monte-Carlo simulations had to be significant with the increasing size of the network.
Furthermore, we relied on boolean dynamics to explore the diffusive processes on our networks.
This is not necessarily a limitation, but more rich dynamics could have an unexpected effect on
the information available for the reconstruction.

In the second section of this dissertation, we approached challenges connected with the use
of data for network reconstruction.

Our attention was directed at developing proper analysis for data extracted by the social
network Twitter. During the COVID-19 pandemic that started in 2019, the public opinion on
the different policies enacted to stop the spread were applied in different manners across the
states and territories of the United States. Subsequently, we analyzed over 55 million tweets at
the beginning of 2020 to explore how the public discourse was unraveling around the topic of
lockdown policies. After extracting sentiments from each post in our dataset, we were able to
reconstruct the network of sentiment influence among U.S. states by means of applying transfer
entropy in an innovative way. Our findings could also be linked to socio-economic factors,
which we explored.

Our data-based approach to network reconstruction was undoubtedly insightful, yet like
other data-based approaches, bounded by the source and domain of the data. First of all, we
recognize that other dimensionality-reduction techniques are available, and a more widespread
analysis must be conducted to assess the best tools for network analysis. Working with social
media data can be difficult, as data extraction is domain- and platform-specific. One of the
challenges we faced was choosing and applying the appropriate filters, such as keywords,
location, and text interpretation. Moreover, our sentiment analysis was effective yet limited in
the range of classified emotions. This latter technique can be extended and improved, but at the
cost of not being able to apply some of the techniques that rely on entropy analysis which we
implemented, and that led to uncovering of correlations and causality effects among the online
debates in different U.S. states.

In the third section of this dissertation, we explored how to improve data collection of
real-life interactions.
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After recognizing the lack of suitable solutions in order to run experiments aimed at face-
to-face interactions, we set to develop one ourselves. First, we defined the requirements and
decided to leverage omnipresent smartphones as the main hardware solution. Those devices
are capable, thanks to Bluetooth® technology, of being used to infer rough distances among
them. We developed two smartphone applications, for the two main operating systems on
the market, and thoroughly implemented and tested their interoperability. Alongside a server
backend software was developed to allow for smooth data collection from researchers. Once
the solution was ready, preliminary tests were run to ensure that distances among participants
can be reconstructed, and interactions between people studied. All the software has been made
open-source, for the whole academic community to use.

The developed apps are a leap forward in experimental tools for human interactions, their
ease of use however comes at the cost of precision and control. From our preliminary tests,
we understood that fine positioning with Bluetooth® is yet to be easy to implement. Coarse
distances, with meter or sub-meter accuracy are possible, but to increase the precision more
control over the hardware is required. Furthermore, extended experimental campaigns are
needed to asses how environmental factors impact data collection, such as crowds, buildings,
and signal interference.

Many sides of network reconstruction have been tackled and explored in this dissertation,
and a connecting thread is laid out to design an integrated procedure to perform experiments,
collect and process data, and from the processed data infer and reconstruct the underlying
network of people’s interactions.

Comprehensive studies should be conducted to explore the full potential of integrating
these techniques and the possible benefits that could emerge. Increasingly, there is a need to
organically integrate the different phases of research, especially in network theory. In this
field, huge theoretical advances have been made, alongside complex projects of data-analysis
and various efforts in experimental campaigns. The interconnections among those areas are
not always well developed, and at times theoretical models and results are not fully validated
and compared with available data analyses or experimental results. Cross-contamination of
techniques and approaches will improve each area while making the whole field more coherent
and robust.

Activity driven networks have proved to be a reliable model to describe human interactions,
and more work is needed to properly tune this model on real data, and fully translate our
theoretical findings into workable solutions and policy propositions. In the aim of network
reconstruction, higher precision in the number of links or nodes must be sought when smaller
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databases are available. Different epidemiological and diffusion processes should be analyzed
for the collection of information when reconstructing networks, to expand the use cases that
can benefit from network reconstruction.

Information-theoretic approaches, joined with data-analysis techniques have proven essen-
tial to understand complex opinion dynamic processes. More refined approaches in natural
language processing could extract even more information from online data, enriching the dataset
at hand for network analysis. Applying machine-learning techniques seems the natural next step
in this area of research, due to the sheer amount of available data and the complex nonlinear
processes that we expect in online interactions. Deepening the knowledge and application of
entropy-based analysis could prove interesting in unveiling not just correlations, but causality
effects among the elements of the system under study, allowing researchers to develop better
models to explain human behavior.

Extensive campaigns exploring face-to-face interactions are now more than ever needed,
as deepening our knowledge of how people behave is pivotal to facing societal challenges,
from epidemics to fake news diffusion. Leveraging the open-source software developed in this
dissertation, new experiments should be conducted by increasing the number of participants
to uncover more complex behaviors in people’s interactions. Achievable precision in distance
measurement has to be explored, and innovative analysis techniques should be implemented
to increase it. New techniques, leveraging machine-learning and signal processing, should be
developed and implemented in the system, alongside visualization tools, to allow for a wider
pool of researchers to run face-to-face experiments on human interactions.
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