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Hierarchical Vector Bases for Pyramid Cells

Roberto D. Graglia
Dipartimento di Elettronica e Telecomunicazioni (DET), Politecnico di Torino
Torino, Italy
roberto.graglia@polito.it

Abstract—This presentation summarizes a very simple and
straightforward new procedure to build hierarchical vector-
bases for the pyramid that conform to those used on adjacent
differently shaped cells (tetrahedra, hexahedron and triangu-
lar prisms). Our new curl- and divergence-conforming bases,
together with the corresponding curls and divergences, have
simple and easy to implement mathematical expressions. Re-
sults confirming faster convergence and avoidance of spurious
modes/solutions will be reported at the conference.

Index Terms—Electromagnetic fields, finite-element methods,
method of moments, higher order vector elements, pyramidal
elements, numerical analysis

[. INTRODUCTION

Successful three-dimensional (3D) electromagnetic codes
must be able to model complicated geometries using higher-
order vector basis functions on all four types of geometrical
shapes: tetrahedra, hexahedron, prisms, and pyramids. No
commercial code is able to do this because the scientific
literature on pyramid bases has favored mathematical and
theoretical aspects from whose results it is difficult to extract
ready-to-use recipes for computational applications; see the
discussion in the Introduction of [1] as well as [2]- [10] and
references therein.

To overcome this difficulty, we have recently proposed in
[1] a new paradigm for deriving hierarchical vector bases for
quadrilateral-based pyramidal cells which prescribes to map
the pyramid into a grandparent cube, like the one in Fig.
1 on the right, and to directly enforce the conformity of
the vector bases with those discussed in [11] for tetrahedra,
hexahedron and triangular prisms, which are differently shaped
cells which, when attached to a pyramid, share an edge or an
entire face with it.

This paradigm was used in [1] to derive arbitrarily high or-
der curl-conforming bases for pyramids, demonstrating in the
same paper the completeness of the obtained bases. However,
as noted in [12], divergence-conforming bases for the pyramid
can be derived using the same paradigm used in [1]. In both
cases (i.e., in the curl- and divergence-conforming case), the
basis functions of the lowest possible polynomial order are the
historical ones given in [4]. The lowest order bases (i.e., the
zero-order bases) have no volume-based basis functions and
the number of basis functions is equal to the number of edges
(8) in the curl-conforming case, and to the number of faces
(5) in the divergence-conforming case. For higher orders, the
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Fig. 1. The shape functions map the parent pyramid on the left to the child
pyramid in the center. In the grandparent space (7, &5) the shape functions
and the basis functions take polynomial form, while the pyramid is described
by the cubic cell shown on the right. Figure taken from [1].

curl-conforming volume-based functions have zero tangential

component on all faces; instead, in the divergence-conforming

case, the volume-based functions have zero normal component
on all faces.

In the observer’s space, also called child-space, a pyramid
is described by suitable shape functions of the five parent vari-
ables (&1, &2, &3, €4, €5); see [1], [4] and Fig. 1. The difficulties
in defining the vector bases of the pyramid are due to the
fact that the shape functions and the vector basis functions
take fractional (non-polynomial) form in the parent space.
Therefore, for a pyramid

o It is difficult to define what is meant by base order,

o It is difficult to calculate the number of volume-based
basis functions necessary to complete the base up to to a
given order,

o It is difficult to find a simple technique to derive the
volume-based basis functions (that is, the so-called bub-
bles).

As with the other hierarchical volumetric elements in [11],

our new pyramid bases have four distinctive features:

(a) the vector basis functions are subdivided from the outset
into different groups of volume, face and edge-based
functions (the latter only exist for curl-conforming bases);

(b) each edge, face or volume-based basis function is ob-
tained by using one generating scalar polynomial (in turn
based on the given edge, face or volume of the cell)
whose analytical expression involves all the dependent
variables that describe the cell;

(c) the generating polynomials are either symmetric or anti-
symmetric with respect to the variables that describe each
edge and face of the cell, and are organized hierarchically;

(d) in each group, the generating polynomials are mutually
orthogonal for inner product defined by the integral on
the volume, the face or the edge of the cell.



II. THE GRANDPARENT SPACE IS WHERE THE BASIS
VECTOR-FUNCTIONS TAKE ON POLYNOMIAL FORM

In [1], in addition to the parent coordinates & = {&;, &o,
&3, &4, &5}, we have defined and used four scaled coordinates

&
- 1
i 1-¢ (1)
for j =1, 2, 3, 4, with dependence relations (for &5 # 1)
m+nz=1 m+n=1 (2)
and with
V& +n;V
vy, = YuXmVs 3
1-¢&

These coordinates transform surface integrals on the triangular
face §; = 0 of the parent pyramid (i.e. a triangular simplex)
into integrals on a unit square, while volume integrals on the
parent pyramid become integrals on the unit cube of the (1, &5)
grandparent space shown in Fig. 1 (see [1]).

However, as usual, the curl- and divergence-conforming
vector basis functions are convenientely written in terms of
the gradient vectors V§; (with j = 1,2,...,5) or the unitary
basis vectors {£', €%, £°}, respectively [11].

Now, in the grandparent space (n,&5), the shape functions
take on polynomial form. Moreover, in the grandparent space
(n,&5), also the bases of the lowest possible order given
in [4] take on polynomial form while they match the zero-
order functions of adjacent, differently shaped elements on the
boundary of the pyramid. It is therefore logical to state that
these bases which do not contain any volume-based functions
are of order zero [1], [11]. Furthermore, it is also reasonable
to insist that all remaining higher-order basis functions take
polynomial form in the grandparent space, if only for unifor-
mity and energy considerations. In this regard, it should be
noted that not only do we want polynomial basis vectors, but
we also want that the curls of the curl-conforming functions
and the divergences of the divergence-conforming functions
take polynomial form.

Thus, to derive the vector basis functions, and in particular
the volume-based vector functions, we use the following
fundamental results

o In the grandparent space, the gradient of any linear
combination of terms such as

ey €2(1— &)

takes a polynomial form;
« In the grandparent space, the curl of any linear combina-
tion of terms such as

e s €2(1— &) Ve,

takes a polynomial form; it is understood that the sub-
script a in V&, is 1, 2, or 5;

o In the grandparent space, the divergence of any linear
combination of terms such as

ni my €5(1 — &)L

takes a polynomial form; it is understood that the super-

script @ in £% is 1, 2, or 5.
Of course, each term of these linear combinations can have
different values of the exponents «, (3, and z. The role that
the factor (1 — &5) plays in obtaining the previous results it
is also quite evident. Some of the zero-order vector functions
contain this factor while others do not, and this must be kept in
mind when constructing the generating scalar polynomials that
multiply the zeroth order basis functions to build the higher
order ones.

The paradigm introduced in [1] requires to derive polyno-
mial edge-based and face-based basis functions that guarantee
tangential or normal continuity on the boundaries of the
pyramid, and this turns out to be not excessively complicated
since we know the basis functions of all the other 3D elements
other than the pyramid. On the contrary, what is complicated
and in our opinion is the main problem that researchers have
had so far in building the pyramid’s bases is finding a simple
and straightforward way to build the volume-based polynomial
vector functions (at least, those of the lowest order), to then
demonstrate the completeness of the entire family in the space
described by the grandparent variables. Results confirming
faster convergence and avoidance of spurious modes/solutions
will be reported at the conference.
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