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Abstract

The problem of Cybersecurity, together with Privacy are becoming in-
creasingly pervasive and tangled especially in recent years with the relentless
expansion of the Internet: it is becoming more and more important in our
lives and it is the foundation for every business. In this scenario, malicious
entities develop very rapidly and create new and increasingly sophisticated
threats. Since their success could cause various catastrophes for each of us, it is
important to be able to monitor the network and analyze the traffic captured
through passive sensors such as Darknets, or active systems, as Honeypots.
In the first case we are able to observe unwanted traffic (often referred to as
Internet Background Radiation), generally produced by heavy-hitter sources.
Moreover, coupling this tool together with active Honeypots, helps to further
enrich the visibility on malicious events. Honeypots, on the other hand, are
able to reply to unsollicited requests, providing a broader knowledge on the
threat scenario, by engaging the potential attacker.

However, this study scenario clashes with the need to guarantee user privacy:
capturing traffic anywhere on the network can involve packets generated by not
malicious users, therefore identity disclosure could be a serious problem. For all
these reasons, in this thesis I demonstrate how it is possible to perform network
monitoring safely. As a first step, I propose an anonymization system called
α-MON which is able to capture network packets at high speeds (multiple Gb/s)
and apply a desired level of obfuscation for potentially sensitive information.
Here I refer not only to the network addresses in the headers, but also to
the payload: many protocols are still completely in clear (e.g. DNS), or, if
encrypted, they expose the name of the reference service (TLS). It is important
to identify them and consequently act to hide the aforementioned names
contained in the payloads. The z-anonymity algorithm, on which α-MON
is based, is also innovative and has its foundations in the k-anonymity, but
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working on a streaming fashion: the goal is still to hide uncommon identifiers
that can easily be traced back to specific users, leaving the most common
unchanged. I show that this approach is promising and that the use of such
tools does not degrade the quality of the data acquired by studying network
traffic during the Covid-19 pandemic. Here I provide a completely new view of
the changes in traffic patterns from the point of view of a Campus Network,
underlining how the network has been resilient and able to withstand a sudden
increase in traffic caused by users forced to work from home.

In this thesis, in addition to the privacy issue, I provide my contribution
for the analysis of malicious traffic. In particular, I conducted studies on
the performance of Deep Packet Inspection (DPI) systems with the aim of
identifying the most suitable to operate in a streaming fashion. This is a
fundamental point for creating a smart honeypot capable of understanding the
protocol autonomously and actively responding consistently to attackers who do
not necessarily use standard ports (for protocols) to perform their activities. I
called this tool DPIPot. It is able to reveal attack patterns that would otherwise
remain hidden because the most widespread and documented Honeypots tend
to look only for the standard ports of the protocol that they are able to handle.
Subsequently, I deployed DPIPot and a series of further responders within an
address space dedicated to Darknets, demonstrating an increase in attacking
sources. This is interesting, since the infrastructure has allowed me to analyze
all incoming traffic horizontally: my goal is to demonstrate that attackers are
able not only to hit single services with considerable insistence, but also to
interact with different protocols by cycling through all those left open at their
disposal. I show that the purposes can be extremely varied, starting from
Crawlers for the discovery of services to brute force attackers who try to login
with usernames and passwords obtained from published leaks.

In conclusion, the objective of this thesis is to demonstrate that despite
the recent enhancements regarding privacy, network monitoring is still possible
without loss of data quality. In addition, I demonstrate how the use of mixed
passive and active probe infrastructures allows the discovery of new and more
visible attack patterns.
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Chapter 1

Introduction and motivations

The problem of Cybersecurity has become increasingly pervasive and cum-
bersome especially in recent years with the relentless expansion of the Internet
for accessing news, buying goods, developing businesses, building social re-
lations and so on. Currently there are 5,382 million users (about 67.8% of
the world population [1]) who have at least one device capable of surfing the
Internet. In addition, we must take into account the rapid expansion of the
world of the Internet of Things (IoT) which in 2021 counts 330 million con-
nected devices [2] that contribute for instance to the monitoring of the territory
and the simplification of everyday life. These numbers suggest how the nodes
potentially subject to cyber-attacks are increasing and are getting closer to the
people. It is therefore evident that the dangers deriving from cyber-attacks
are no longer a problem of the few: if initially the targets were represented by
large entities such as political or financial institutions [3], it is now appropriate
for each of us to be able to have adequate protections.

These problems have recently worsened due to the advent of the Covid-19
pandemic which represented an important challenge not only in the health
sector (hospitals, pharmaceutical industries, etc.), but also in the IT one:
following the report by China (31 December 2019), the Italian Government, for
instance, proclaimed a state of emergency and implemented the first measures
to contain the contagion, favoring the use of remote working (more commonly
known as Smart-Working). This challenge has severely tested the resilience of
network equipment due to the sudden increase in active users [4]. Given this
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Fig. 1.1 Topology of the data collection system and cybersecurity environment.

emergency situation, Politecnico di Torino, as other Universities, is investing
even more resources to provide adequate training to all its students. In this
sense, an infrastructure has been built from scratch, in order to provide lessons
interactively and remotely, reaching students in all corners of the world. But,
like any new infrastructure, it needs to be monitored in order to ensure its proper
functioning and guarantee security standards. Therefore it needs a monitoring
system that displays all the necessary information, without compromising
users’ privacy: in other words, it is important to guarantee the quality of the
data, together with the property of non-re-identification, in accordance with
European policies [5]. To accomplish this complex task, I have developed a
high performing software system called α-MON, described in Ch. 2 and Ch. 3,
that executes live traffic anonymization at high speed, to cope with the network
packets flowing in the campus backbone. Its integration in the Campus Network
architecture is depicted in Fig. 1.1. All production systems are protected by
firewalls, i.e., internetwork gateways that limit data communication traffic to
and from Politecnico di Torino Campus Network to protect its resources from
external threats. Systems to be monitored are located in PoliTO Didattica
Network. In order to capture valuable traffic, a network splitter has been
deployed: it is capable of replicate a single input signal into multiple outputs,
making it possible to provide traffic to the anonymizer. α-MON is appropriately
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configured to apply different levels of anonymization to the incoming traffic
according to the downstream consumers, providing the datasets analyzed in
Ch. 4, in which I will expose the impact of Covid-19 pandemic from the point
of view of a Campus Network, giving a view of the current trends in the global
network.

As a side effect of this pandemic, correlated to the extensive use of Smart-
Working, is the surge in cybercrime activity. As described before, more connected
devices are deployed, more attack points attackers can gain: according to [6],
in 2021, its damages amounted to $6 trillion per year, $500 billion per month,
$115.4 billion per week, $16.4 billion per day, $684.9 million per hour, $11.4
million per minute, and $190,000 per second, covering mobile devices and
apps [7], video games [8] and IoT devices [9, 10], to name but a few. To
improve network security, it is important to study its on-going evolution,
gathering information in the most targeted way possible and investigating
behaviors and events in order to find effective countermeasures and keep our
knowledge updated. With this in mind, I have build a secure and stable
environment in which to capture data from the network. This process can be
applied in two ways:

• passive monitoring is the packet capture by placing passive probes like
Tstat [11] 1 to monitor already present network traffic, as done in Ch. 6.

• active monitoring is the injection of artificial network traffic through
Honeypots [12] (i.e. active sensors that obtain information about attacks
by answering unsolicited traffic). I will investigate on this in Ch. 7;

Since they offer different levels of visibility, they can be placed together in the
same environment and used in synergy to take advantage of both solutions as
depicted in the red box of Fig. 1.1. This infrastructure is capable of capturing a
large amount of data in the form of network traces and logs at the application
level, calling for a big data approach: it requires the use of scalable software and
hardware such as cluster servers running Apache Hadoop [13] and Spark [14].
Their processing speed is critical for producing results in a short amount
of time, thanks to their distributed architecture that allows to increase the
available resources by relying on different servers (called Nodes) of the cluster

1http://tstat.polito.it

http://tstat.polito.it
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of computers. These aspects play a fundamental role, allowing me to analyze
months of traffic efficiently and in an horizontal fashion.

In this thesis I will provide a study on two aspects of the cybersecurity world,
namely privacy and attackers behavior. The first objective is to provide an
innovative solution to anonymize network traffic in an efficient way, preventing
users re-identification in a live environment and showing how minimal is the
information loss. This is possible thanks to the development of a new algorithm
and an anonymisation tool, which can be easily integrated into already existing
passive traffic capture infrastructures. Secondly, this thesis wants to set the
basis to the development of an advanced network security and monitoring
system, capable of engage attackers by mimicing real services and answering
"intelligently" to probes. This passes through the development of a smart
Honeypot system based on Deep Packet Inspection, capable of engaging an
attacker, regardless of the protocol or port used. Data captured from a system
like this will be fundamental for future studies and to enhance the fight against
cybersecurity threats.

This thesis is structured as follows: Ch. 2 introduces the problem of privacy
in the context of traffic monitoring. I presentα-MON, a flexible and modular
tool to anonymize network packets in a streaming fashion, with zero delay. It is
able to capture network packets, anonymize them in real-time, and immediately
send them to consumers for data capture and future analysis. Next in Ch. 3
I will generalize the z-anonymity algorithm, applied practically in α-MON
in a real environment. I will demonstrate that it can be used in fields that
differs from network packets anonymization. Here I will factually show how
efficient this approach is for data collection and analysis, thanks to its ability to
hide just the necessary information that can lead to users re-identification and
preserving quality of the data. I have then analyzed anonymous data provided
by such a system in Ch. 4. Here I will show the impact of Covid-19 pandemic
on Politecnico di Torino teaching systems, to observe and characterize a trend
for the current state of use of the global network. From Ch. 5 I will move my
focus on the behavior of attackers on the global network. Here I will present
a study on the effectiveness of state of the art Deep Packet Inspection tools.
This is a preliminary work to introduce the development of DPIPot in Ch. 6,
an horizontal honeypot that identifies protocols on the fly, thanks to DPI, on
any port to show that such an interactive responders increase the value of
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darknet data, uncovering patterns otherwise unseen. In Ch. 7 I will look up at
the application layer, analyzing logs generated by the honeypots. This allows
me to filter out noise and backscattering from the equation and highlight the
activities carried out by attackers who have tried to interact with the simulated
system, also revealing and analyzing brute force attacks with the insertion of
access credentials obtained from data leaks. Finally in Ch. 8 I will draw some
considerations and conclusions.



Chapter 2

Network Traffic Anonymization
for Passive Monitoring

To ensure user privacy in the context of network traffic capture and mea-
surement systems, it is important to handle carefully sensitive information that
may be hidden in network packets. To this end, in this chapter I propose a
solution by presenting α-MON: Traffic Anonymizer for Passive Monitoring,
published in the journal IEEE Transaction on Network and Service Manage-
ment [15], which is an extension of my preliminary work [16], presented at 2020
32nd International Teletraffic Congress (ITC 32).

2.1 Introduction

Passive measurements collected from networks are fundamental to the well-
functioning of the Internet. They are widely used to support applications such
as cyber-security and traffic management [17, 18]. Packets flowing on network
links are either saved as full-packet traces or processed on-the-fly to generate
traffic summaries. Network packets, however, carry sensitive information about
users. For example, HTTP, TLS and DNS traffic exposes names of services
contacted by users, which in turn can be used to build users’ profiles [19, 20].
Network measurements thus may expose privacy-sensitive information and shall
be performed with care to avoid threatening users’ privacy [21]. New privacy
regulations (e.g., GDPR [5]) aim at protecting users’ privacy by imposing strict
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rules when handling sensitive information. They provide the interested parties
rights and assign powers to the regulators to enforce these rights. Network
measurements must be treated in the light of these regulations, and technology
must guarantee that sensitive information is not collected unless needed.

The solution to these problems has been anonymization – i.e., replacing
sensitive values by obfuscated copies. Anonymization is usually done in a per-
field fashion, since different network protocol fields represent different privacy
threats. Client IP addresses are identifiers, i.e., they allow one to identify the
users (devices) generating traffic immediately. As such, they must always be
obfuscated. The classic approach is CryptoPAN [22], a method that replaces IP
addresses with pseudo-encrypted copies while maintaining the network prefixes.
Other protocol fields, while not carrying identifiers, still pose risks as they may
help user reidentification, thus acting as quasi-identifiers. Server IP addresses
and server names (e.g., in HTTP or TLS) can be quasi-identifiers. They give
hints about users’ interests and, in some cases, allow user reidentification.
Quasi-identifiers, therefore, shall be obfuscated too.

Replacing all identifiers and quasi-identifiers in traffic measurements with
obfuscated copies reduces the value of the traces substantially. Taking again
server names as an example, popular names (e.g., www.facebook.com or
www.google.com) bring little information to uncover any specific user. Yet,
associating traffic to particular servers is instrumental, e.g., for network man-
agement, accounting and dimensioning.

Anonymization techniques like k-anonymity [23] can handle quasi-identifiers
– i.e., obfuscating values that allow user re-identification. However, these
approaches work with batches of data and are impractical with high-dimensional
datasets, like, e.g., the set of websites users access. In our scenario, packets
arrive at very high speeds and must be processed and forwarded online with
minimum delay. Storing traces for posterior offline anonymization is not a
viable option.

2.1.1 My Contribution

In this chapter, I present α-MON, a flexible and modular tool to anonymize
network packets in a streaming fashion, with zero delay. α-MON acts as an
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anonymization device. It receives packets from the network, anonymizes them
in real-time, and immediately outputs packets to multiple consumers – e.g.,
security monitors or passive meters.

α-MON follows a novel approach to anonymize packets on-the-fly. To this
end, I introduce z-anonymity, a mechanism to hide infrequent field values (like
unpopular server names) from the traffic. When observing a value in a data
stream, z-anonymization removes it if less than z users share the value in the
past ∆T time interval. Performing z-anonymity online requires ingenuity, and
α-MON implements a scalable and parallel solution for this. I show that z-
anonymity introduces minimal errors on volumetric traffic measurements, such
as the estimation of traffic share of popular web services and websites.

I evaluate α-MON performance on Common-Off-The-Shelf (COTS) hard-
ware with traces collected from operational networks. I show that: (i) α-MON
helps to protect sensitive data via z-anonymity, preventing the disclosure of
field values associated with fewer than z users; (ii) α-MON allows most informa-
tion that would be obfuscated by strict per-field anonymization to be exported,
thus generating richer traces than alternatives; (iii) α-MON scales to tens of
Gbit/s with zero packet loss using few cores. In pessimistic scenarios, it easily
achieves several Gbit/s too; (iv) α-MON introduces minimal errors on common
measurement scenarios, e.g., allowing accurate accounting of the heavy-hitters’
traffic. Finally, α-MON is publicly available as an open-source project.1

2.2 Related Work

As said, passive network monitoring threatens users’ privacy [24]. Because
of that, we witness significant efforts to prevent information leakage from the
network, and these efforts have been mostly centered around the deployment
of encryption [25, 26]. For example, all newest web protocols by the time of
writing (e.g., QUIC and HTTP/2) are built to run seamlessly over TLS. These
initiatives reduce the amount of information exposed during the monitoring [27].
However, users’ privacy can still be exposed in certain fields of Internet protocols.
Server IP addresses and FQDNs are two prominent examples, which may leak
the sites visited by users. As such, those must be considered quasi-identifiers.

1Project is available on github.com

https://github.com/IngegnerLightyear/Alpha-MON
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Table 2.1 Comparison of α-MON and alternatives.

α-MON ONTAS [34] TCPdPriv [35] TCPurify [36]
HW Implementation ✓
SW Implementation ✓ ✓ ✓
Online Anon. ✓ ✓ ✓ ✓
Stateful Anon. ✓
L2 ✓ ✓
L3 ✓ ✓ ✓ ✓
L4 ✓ ✓
L5-7 ✓

Recent initiatives aim at encrypting plain-text FQDNs seen in traffic, e.g.,
encrypting DNS [28] and Server Name Indications (SNIs) in TLS [29]. However,
not all users will adopt these technologies soon. In any case, those who monitor
the network for legitimate reasons must also protect the users’ privacy, as
mandated by regulations [5].

Several works propose techniques to anonymize traffic by obfuscating fields
of protocol headers. The goal is to allow accurate network monitoring without
threatening users’ privacy. We can roughly group these techniques into (i)
address anonymization and (ii) payload anonymization.

Address Anonymization The simplest approach to achieve anonymization
of IP addresses is the truncation of addresses. Everything, but the first n bits
of the addresses (typically 8, 16 or 24), are set to zero. Truncation only partly
mitigates the problem, as it is still possible to determine the subnet or the
organization the truncated addresses belong to. More sophisticated techniques
propose a prefix-preserving pseudo-anonymization, in which addresses are
completely shuffled, but preserving the structure of subnets [30–32]. Crypto-
PAN is perhaps the most popular prefix-preserving algorithms for IP addresses
anonymization [33, 22]. The mappings between the original and anonymized
addresses are determined by a passphrase and a symmetric block cipher. Here
I rely on Crypto-PAN for IP address anonymization. Finally, in 2020 Kim et al.
propose ONTAS [34], a flexible traffic anonymizer implemented directly in PISA-
based programmable switches, which achieves high speed while anonymizing
IP and MAC addresses.
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Payload Anonymization Payload anonymization is more complex, as per-
sonal information may leak from different and complex protocols. Anonymiza-
tion tools like TCPdPriv [35] and TCPurify [36] truncate TCP and UDP pay-
loads, to remove all information contained in application layer protocols. This
simple “reveal nothing” policy may lead to poor measurements. Other works
propose sophisticated frameworks to handle specific application-level protocols.
The authors of [37] remove sensitive information without affecting the payload.
Packets are reconstructed into data stream flows, and application-level parsers
modify the data streams as specified by a policy written in a high-level lan-
guage. They provide limited anonymization primitives (constant substitution,
sequential numbering, hashing, prefix-preserving, and adding random noise),
forcing the user to write her own functions. The authors of [38] propose a
programmable anonymization tool based on BPF filters, allowing the user to
choose different actions according to the received protocol (IP, TCP, UDP,
ICMP, HTTP or FTP).

Differently from these approaches, I explicitly target an operational de-
ployment, in which anonymization must be achieved in real-time at tens of
Gbit/s. Inspired by k-anonymity, I design a modular and flexible architecture
to support z-anonymity. I focus on scalability and employ state-of-the-art
packet capture techniques to make the system deployable on high-speed net-
works. Table 2.1 compares the features of α-MON against the three closest
previous proposals described above, namely ONTAS [34], TCPdPriv [35] and
TCPurify [36], highlighting the novel capabilities of α-MON.

2.3 z-anonymity

The drastic increase in the rate at which personal data are collected has
pushed researchers to propose techniques to anonymize data. The goal of
anonymization is to avoid disclosing personal information without compromising
the utility of datasets. The seminal work of Samarati et al. proposes the k-
anonymity property [23, 39]. It aims at preventing the reidentification of
individuals or the extraction of sensitive information about them by ensuring
that at least k individuals share the same properties in the dataset. k-anonymity
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has been extended with the l-diversity [40] and t-closeness [41] ideas, which I
will discuss in Section 2.7.

k-anonymity however does not scale [42] and cannot be implemented with
minimal delay. With α-MON I want to achieve some level of anonymity already
during data collection, by hiding the most sensitive information observed in
network measurements. This goal calls for highly scalable and zero-delay
solutions. We lie in a scenario where anonymization must be performed in
real-time and must scale up to multi-Gbit/s streams. Streaming approaches
for anonymity [43, 44] load the incoming records in a structure and release
anonymized data in batches, which is impractical with high-speed network
traffic, given the large speeds of the input streams. In sum, I cannot assume
to have the whole dataset, or a large subset of the data, at disposal for
anonymization.

2.3.1 z-anonymity definitions

Here, I propose a novel concept of anonymity. I call it z-anonymity. It
targets real-time, online processing, with minimum latency. In the following, I
provide a formal definition. I assume that users are identified by an identifier.
The most common identifier in network traces are client IP addresses2.

Quasi-identifiers are attributes whose values must be controlled, as they
may help to re-identify users. In this case, quasi-identifiers are fields present in
protocol headers and payload that may be associated with a small group of
users. Examples include specific server IP addresses and server names present
in payloads (e.g., in DNS) and user-agent strings (e.g., in HTTP requests). For
instance, an attacker could leverage a user’s interest in a particular website to
re-identify her and, in turn, all her traffic. z-anonymity aims at obfuscating
rare values of quasi-identifiers in real-time, preventing these privacy attacks. I
introduce the definition of z-private quasi-identifier.

Definition 1. A z-private quasi-identifier is a value observed at time t that is
associated with less than z users in the past ∆T time interval.

2z-anonymity can handle any protocol field as an identifier.
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Fig. 2.1 z-anonymity concept. Three users access the FQDN private.com over
time. When less than z = 3 unique users’ are seen in the past ∆T , requests must be
anonymized.

If the anonymized dataset hides z-private quasi-identifiers, it achieves z-
anonymity.

Definition 2. A stream of packets is z−anonymized if all z-private quasi-
identifiers are obfuscated, given z and ∆T .

In other words, if a quasi-identifier has been observed by at most z-1 users
in ∆T , we obfuscate it. By adjusting parameters z and ∆T , it is possible to
regulate the trade-off between data utility and privacy. Indeed, a large z results
in the majority of values to be anonymized, while a small z allows rare values
to be exposed. ∆T regulates the memory of the system.

I exemplify the idea of z-anonymity in Figure 2.1. Here the quasi-identifiers
are the Fully Qualified Domain Names (FQDNs) found in packet payloads,
which refer to websites and web services. Suppose different users access the
FQDN private.com. Let z = 3. The first four accesses shall be obfuscated
as only two users accessed it up to then. When we observe User3’s request,
there are 3 users that have accessed private.com in the past ∆T . Thus, I
allow User3’s request to pass without anonymization. Notice that exposing
private.com does not uncover User3, as attackers cannot know who the other
two users are. After some time, User2 accesses the domain again. The previous
entry for User1 is no longer in the current ∆T window, and private.com is
anonymized again.
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Fig. 2.2 Deployment scenario: α-MON anonymizes the traffic coming from a span
port or an optical splitter and forwards it to different legacy monitors.

Clearly, in the above example, popular websites and services would be
accessed by several users, and their names would not be anonymized. Rare
FQDNs that could bring specific information about users would likely be
anonymized. In Section 2.5, I provide a thorough analysis of how z-anonymity
impacts the accuracy of traffic measurements, while in Chapter 3, I provide a
generalization of this anonymization model.

2.4 α-MON design

I now describe α-MON, covering requirements, design choices, and im-
plementation, with a special focus on the data structures used to achieve
z-anonymity at high-speeds.

2.4.1 Deployment scenario and requirements

Figure 2.2 shows the deployment scenario. α-MON operates as a classic
network monitor, receiving packets from one or multiple network cards, either
using span ports or optical splitters. To allow legacy applications to coexist,
α-MON is deployed in front of them and forward anonymized packets to multiple
consumers. Compatible with best-practices for privacy, α-MON performs
different anonymization according to the consumer, thus passing on the minimal
information required by each legacy application. For example, a security
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monitor may need traffic with little modification, while a passive meter used
for traffic accounting can operate with less information.

α-MON must be flexible and support a rich set of functionalities. It shall
satisfy the following requirements:

1. It must achieve z-anonymity to hide private quasi-identifiers with cus-
tomizable z and ∆T ;

2. It must support a flexible set of anonymization policies, covering all
protocol layers;

3. It must be scalable and deployable in high-speed links, handling multiple
tens of Gbit/s with no packet loss;

4. It must support multiple legacy applications with different anonymization
requirements.

2.4.2 Packet ingestion and forwarding design

α-MON runs on a COTS server and receives packets from several network
interfaces. For efficiency, I implement it in C language. For packet capture, I rely
on the Data Plane Development Kit (DPDK) [45], a set of libraries and drivers
for fast packet processing. α-MON follows a multi-threaded design and can take
advantage of all cores available in a server. I use the architecture proposed in a
previous work [46], in which the incoming packets are load-balanced to different
threads – one per CPU core – using the Receive Side Scaling (RSS) feature
of modern network cards. Each network interface implements load-balancing
algorithms so that incoming packets are spread to multiple queues based on
hash functions. This mechanism allows fast and scalable load balancing in
hardware and avoids wasting CPU resources.

Some of the α-MON anonymization capabilities require stateful per-flow
processing and mandate data structures to keep track of TCP and UDP flow
status.3 To avoid expensive synchronizations, network interfaces load-balance
packets in a consistent per-flow fashion. In other words, packets belonging to

3I define a flow by the usual 5-tuple.
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the same flow are always processed by the same thread. I reach this goal by
instrumenting the network interface with a specific RSS hash seed [47].

Each thread receives a fraction of the overall traffic. According to custom-
defined configurations, packets are replicated, their payloads anonymized, and,
finally, forwarded to output interface(s) connected to the legacy monitors. To
avoid concurrent access to network interfaces, α-MON sets up a transmitting
queue dedicated to each thread on each network interface, again using the
DPDK functionalities. Traditional techniques for increasing system robustness
to failures can be applied to α-MON. For example, it can be run in multiple
machines for increasing reliability, as soon as traffic is steered accordingly (i.e.,
consistently sending packets of a flow to the same α-MON instance). In case
of very critical setups, it would be possible to replicate two identical α-MON
deployments by using multiple span ports or optical splitters.

2.4.3 Anonymization modules

I design α-MON to be modular and flexible. As such, the anonymization
functions build a processing pipeline. This approach eases the configuration
of anonymization policies and allows new modules to be integrated into the
system with little effort. α-MON supports multiple configurations, which differ,
e.g., for encryption keys and anonymization pipeline. α-MON takes care of
making copies of packets and performs the desired steps on each pipeline
before forwarding packets to a consumer. This design allows deployments
in which different consumers require different anonymization policies, e.g.,
security monitors receive original packets, while passive monitors receive fully-
anonymized packets.

Currently, α-MON implements the following modules to search and
anonymize identifiers and quasi-identifiers contained in the traffic:

Layers 5-7 The key novelty of α-MON resides in the mechanisms for handling
quasi-identifiers in application-layer protocols. α-MON implements a classifi-
cation engine based on Deep Packet Inspection to identify popular protocols.
In its current implementation, α-MON supports quasi-identifiers contained in
TLS, DNS, and HTTP protocols. In particular, α-MON can apply z-anonymity
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on the found FQDNs, which are deleted from packets in case they are not
z-private. α-MON can also apply z-anonymity on second-level domains – i.e.,
the FQDNs truncated after the top-level domain.4 In this modality, α-MON
releases the FQDN if not z-private. In case it is z-private, it checks if the
second-level domain is not, and, in case, α-MON truncates the FQDN to the
second-level domain. Similarly, any field of protocol headers could be subjected
to z-anonymity, with customized z and ∆T parameters. Alternatively, the
fields can be obfuscated by default (i.e., treated as an identifier).

Layer 4 α-MON keeps a table to track TCP and UDP flows, allowing per-
flow anonymization policies. Tracking flows is fundamental for consistent layer
5-7 anonymization. α-MON currently does not modify L4-headers, but one
could easily implement a mechanism for obfuscating potentially sensitive L4
information (e.g., rarely used TCP options).

Layer 3 α-MON considers client IP addresses as identifiers and anonymize
them using the CryptoPAN algorithm [33, 22]. CryptoPAN encryption keys
can be static or randomly rotated at fixed time intervals. α-MON allows the
administrator to restrict the addresses that undergo anonymization to specific
subnets, e.g., targeting only IP addresses of clients in the administered network.
It supports IPv4 and IPv6. IP addresses that are not identifiers (e.g., server IP
addresses) can be treated as quasi-identifiers and undergo z-anonymity.

Layer 2 α-MON supports the removal of MAC addresses. Alternatively,
as routers generally modify MAC addresses once they forward the packets,
α-MON can store a timestamp in place of the MAC headers. This mechanism
allows consumers to get timestamps of the moment packets entered α-MON,
thus increasing the precision.

Finally, α-MON implements a default policy to completely drop the payload
of specific/unknown protocols at any layer – e.g., forwarding only anonymized
L3 or L4 headers to consumers while removing L5-7 payloads.

4For example private.example.com becomes example.com.



2.4 α-MON design 17

Hash(ID)

BitMap

Hash(QuasiID)

ID-LRU
QuasiID1_1

QuasiID1_2

QuasiID1_3

ID1 ID2 ID3 ID4 ID5 … IDm

Cnt(QuasiID)
oldest_ts

0/1
Time

Active
LastSeen

ID1 - T1

ID58 - T2

ID5 - T3

IDn - Tj

* Head

* Tail

Contains

Points to…

Mutex1 Mutex2 … MutexN Mutex for 
access the listQuasiID1 QuasiID2 … QuasiIDN

QuasiID-LRU

Fig. 2.3 Data structure used to handle quasi-identifiers.

2.4.4 z-anonymity implementation and data structures

I now describe the data structures used to implement traffic anonymization
at tens of Gbit/s. To reach high speeds, it is necessary to carefully design
suitable data structures that avoid expensive global synchronizations. I focus
on the most challenging data structures.

α-MON includes a dedicated module for z-anonymity. When processing a
packet from a user identified by ID and containing the quasi-identifier QuasiID,
α-MON must decide whether to keep QuasiID or hide it. The decision is
based on the counter Cnt(QuasiID) of users sharing the QuasiID in the time
window ∆T .

To keep track of these counters, I rely on the specifically designed data
structure depicted by Figure 2.3. As z-anonymity must globally count the
number of users sharing each QuasiID, the data structure must be shared
between all threads. Therefore, α-MON needs to handle concurrent accesses,
which is a potentially expensive operation. Its core is composed of a shared
hash table Hash(QuasiID), in which each bucket is protected by a Mutex lock
to handle concurrent accesses. A list handles hash collisions, organized as a
Least Recently Used (LRU) structure for efficiency – QuasiID-LRU in the
figure. Each entry in the LRU contains the information related to a quasi-
identifier value (QuasiID). Beside metadata, it contains a second LRU, the
ID-LRU list, that stores the ordered set of users sharing the QuasiID, along
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with the timestamp of respective last occurrence. This ID-LRU is instrumental
for purging those IDs whose occurrences happened more than ∆T time ago.

The metadata for QuasiID contains pointers to both head and tail of the
ID-LRU (illustrated by orange arrows), the oldest timestamp at which QuasiID

has been observed and the counter of unique IDs currently active. A second
inner hash table guarantees O(1) access to ID-LRU elements (illustrated by
blue arrows) using the ID as key in Hash(ID).

When a α-MON thread has to decide whether to anonymize or not the
quasi-identifier value QuasiID, it first accesses the hash table Hash(Quasi-ID).
If QuasiID is empty, the corresponding entry is created; otherwise, α-MON
looks for QuasiID through the collision list. Once found (or newly created),
α-MON updates the QuasiID-LRU of the collision list, moving the current item
to the top. Next, it updates the corresponding metadata for the QuasiID.
Specifically, α-MON checks if the user ID is already listed among those that
share QuasiID in the past ∆T window. If such ID is present, its timestamp is
updated to the current time. If not, the new ID is added to the ID-LRU, and
the counter Cnt(QuasiID) of users sharing QuasiID is increased. α-MON also
goes through the ID−LRU and deletes IDs older than ∆T . The Cnt(QuasiID)
is decreased consequently.

At last, α-MON decides whether to anonymize QuasiID based on the
counter of the number of active users. If it is smaller than z, α-MON replaces
the quasi-identifier value with random bytes.

Note that it is needed to purge from the data structure those entries older
than ∆T . When accessing a Hash(QuasiID) bucket, α-MON expurges the
expired entries in the QuasiID-LRU with a controllable probability P . This
scheme limits extensive cleaning operations at each access. When cleaning
QuasiID-LRU, α-MON controls the ID−LRU for IDs older than ∆T . Again,
the Cnt(QuasiID) is decreased consequently. If the counter indicates that the
current QuasiID is no longer in use, α-MON deletes it altogether.

Note that α-MON can perform most operations in O(1) for each packet,
thanks to the two hash tables used to access quasi-identifier values and per-
identifier counters. This design allows high processing speeds as I will show in
Section 2.6.2.
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2.4.5 Auxiliary data structures

α-MON implements an efficient structure to support per-flow management.
This structure is instrumental for applying consistent anonymization decisions
based on flow state – e.g., removing the payload of specific protocols (e.g.,
HTTP) or parsing application layer protocols whose fields are split across
multiple packets. The data structure for active flows follows the same ideas
used by the authors of [11]. It builds on a hash-based data structure that
provides O(1) accesses to the per-flow metadata.

Given the current packet, the dedicated module performs a search in the flow
table to verify the action performed previously: if the first packet of the flow has
been subject to anonymization, the current one follows the same procedure. In
the case of a new stream, α-MON creates the appropriate flow entry and checks
how to anonymize the packet. The module includes a lazy garbage collection
system for expired flows, similar to the one used in the z-anonymity module.

Finally, α-MON implements caching to speed up the anonymization of IDs,
e.g., maintaining a per-thread cache of the anonymized IP addresses computed
by CryptoPAN. In Section 2.6, I show that this design allows α-MON to scale
to several Gbit/s of traffic.

2.5 The impact of z-anonymity on traffic mea-
surements

I now quantify to what extent the traffic anonymized with the z-anonymity is
useful to provide accurate network measurements. The aim is to understand how
common traffic analyses are affected when run behind an α-MON deployment.
To this end, I perform a case study in which users (identified by client IP
addresses) contact several hosts characterised by FQDNs (and second-level
domains), which are considered quasi-identifiers.

I use a traffic trace collected on an operational network including more than
8000 users who generate several millions of packets per second of traffic. The
trace is three-days long, during which the users contacted 135 k (45 k) FQDNs
(second-level domains). The FQDNs are present in TLS, DNS, and HTTP
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Fig. 2.4 Fraction of traffic obfuscated by z-anonymity with different values of z and
∆T . z-anonymized field: FQDN
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Fig. 2.5 Fraction of traffic obfuscated by z-anonymity with different values of z and
∆T . z-anonymized field: Second-level domain.

headers. I apply z-anonymity directly on FQDNs or on the corresponding
second-level domains. Client IP addresses are used as identifiers. For these
analyses, I implement an offline version of z-anonymity to process the traces,
obtain statistics and show how these statistics vary with different parameters.

2.5.1 Anonymized volumes

I first analyze the fraction of traffic that z-anonymity would obfuscate when
considering different values for z and ∆T . I show results in Figure 2.4 for the
case of z-anonymity on FQDNs and in Figure 2.5 for second-level domains.
First, consider the fraction of FQDNs that z-anonymity would obfuscate in
Figure 2.4a. Notice that z = 2 already causes ≈ 75% of the FQDNs to be
obfuscated. When z = 10, the fraction increases to 90%. ∆T has a small
overall impact. Similar considerations hold for the case of second-level domains
(Figure 2.5a). Here, on the one hand, the coarser data granularity makes it
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more likely for a domain to pass z-anonymity. However, I find a smaller number
of quasi-identifiers (45 k instead of 135 k), which balances the picture, allowing
a similar share of domains to pass z-anonymity.

Different is the picture if I consider the number of flows (Figure 2.4b) and
the byte-wise volume (Figure 2.4c) carried by flows for which the FQDN gets
obfuscated. With z = 2, z-anonymity obfuscates the FQDN in only 10% of the
flows, which account for ≈ 25% of the traffic volume. Most of the obfuscated
FQDNs are used by CDNs and include digits or random strings in the sub-
domains. Taking instead the second-level domains as quasi-identifiers reduces
the percentage of obfuscated bytes to negligible numbers for z = 2. This is
caused by the nature of Internet traffic, where the majority of flows are directed
towards a limited set of services [48].

The impact of a large ∆T is more pronounced for high values of z, allowing
a larger number of flows to avoid obfuscation. For example, if I set z = 100, a
∆T = 30min results in 60% of obfuscated flows; this fraction decreases to 52
(46)% if I set ∆T = 1h (2h). If I consider second-level domains (Figure 2.5b
and Figure 2.5c), it is possible to observe a similar picture. Considering the
byte-wise volume, notice how the fraction of obfuscated traffic decreases, mainly
due to the aggregation of CDN nodes and randomly generated domains to a
single quasi-identifier.

In a nutshell, popular domains that carry little sensitive information are
responsible for the majority of traffic. Letting their names in clear poses little
threats for privacy, while still being very important for increasing visibility
of network monitors. z-anonymity obfuscates the vast majority of FQDNs or
second-level names that carry little traffic while allowing the popular names to
be monitored.

2.5.2 Impact of z-anonymity on traffic accounting

As a use case on accounting, I study how z-anonymity changes the traffic
volume measured for the most popular services on the network. I assume that
services can be identified by their second-level domains. In Figure 2.6a I show
the number of flows for the top-15 services as measured on the original trace



22 Network Traffic Anonymization for Passive Monitoring

google.
com

faceb
ook.co

m

googlea
pis.c

om

apple.
com

micr
osoft.c

om

fbcd
n.net

doublec
lick

.net

whatsa
pp.net

gsta
tic

.co
m
sky.i

t

skycd
n.it

apple-
dns.n

et

adnxs.c
om

googlev
ideo.co

m

akadns.n
et

0.00

0.25

0.50

0.75

1.00

1.25

F
lo

w
s

[M
]

Original

z = 10

z = 20

z = 50

z = 100

(a) z-anonymity on FQDN

google.
com

faceb
ook.co

m

googlea
pis.c

om

apple.
com

micr
osoft.c

om

fbcd
n.net

doublec
lick

.net

whatsa
pp.net

gsta
tic

.co
m
sky.i

t

skycd
n.it

apple-
dns.n

et

adnxs.c
om

googlev
ideo.co

m

akadns.n
et

0.00

0.25

0.50

0.75

1.00

1.25

F
lo

w
s

[M
]

Original

z = 10

z = 20

z = 50

z = 100

(b) z-anonymity on second-level domain

Fig. 2.6 Per-service volume measured from an z-anonymized trace.

and after z-anonymity with different values of z. In this experiment, ∆T is
fixed to 1 hour, and z-anonymity is applied to the FQDN.

It is no surprise that the most popular service is google.com, followed by
common services/platforms such as Facebook and Apple. The red bar represents
the values measured on the original trace that I use as a baseline. If the traffic
undergoes z-anonymity, the measured volume slightly decreases, but in almost
all cases, the drop is limited to 10−15% even with high values of z (yellow and
cyan bar). In other words, z-anonymity would introduce a small measurement
error in terms of traffic volume for these services, e.g., because less z users have
requested their FQDNs in some ∆T (1 hour).

For a few cases, the difference is more pronounced; see, for example, apple-
dns.com. In these cases, a single service/second-level domain holds a very large
number of FQDNs, making them more likely to be anonymized. Indeed, in
the case of apple-dns.com, I observe 1044 sub-domains, most of them differing
uniquely for a two-digit code. Not shown in the figure, I observe a similar
phenomenon for the CloudFront CDN, for which I observe 3115 sub-domains,
each referring to a hosted website. In these cases, the measurement error
introduced by z-anonymized increases. The issue can be solved by running
z-anonymity on the second-level domains directly – i.e., configuring α-MON to
release the second-level domain if it passes the z-anonymity checks. With this
setup the measured volume is practically equal to the original traces, as I show
in Figure 2.6b. Here, the users’ privacy is still preserved, as α-MON hides the
sub-domains, releasing only the z-private second-level domains. Yet, the value
of the anonymized traces is increased substantially.
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Fig. 2.7 Per-service flows measured on the original and on a (z = 10)-anonymized
trace.

I complete the above analysis with Figure 2.7, in which I broaden the
bounds of pictures presented before. In the figure, I show with the red solid
line the traffic volume (in terms of flows) for all services in the trace exceeding
a minimum threshold of 1000 flows (more than 1000 names). They are sorted
by popularity. The blue dashed line represents the volume as measured after
z-anonymity with z = 10 and ∆T = 1 h. I am interested in the deviation
between the two lines, representing the measurement error. Considering z-
anonymity on FQDNs (Figure 2.7), the error is minimal for the top-ranked
domains, as already shown by the blue bars in Figure 2.6a. The deviation is
still limited for the services with sizeable traffic, never exceeding an order of
magnitude for those with at least (around) 10 k flows – top-200 names, left
part of the figure. Clearly, the less frequent services are, the higher the chances
α-MON anonymizes their FQDNs, thus increasing the measurement error. If
z-anonymity is applied on second-level domains directly, Figure 2.6b shows that
more reliable measurements are obtained also for less popular services. Also in
this case, the error becomes high for infrequent services or those accessed by a
very small number of users (see right side of the figure).

In summary, volumetric statistics are still reliable when targeting heavy-
hitter services. For less frequent services, α-MON introduces a larger mea-
surement error, as enforcing z-anonymity may lead to most occurrences of the
associated FQDNs (or second-level names) to be obfuscated. By tuning z and
∆T , one can regulate the trade-off between privacy and data utility.
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Fig. 2.8 Domains known by z-anonymity with different ∆T , in relation with the
memory needed by α-MON.

2.5.3 Load on α-MON data structures

An important question for practically implementing z-anonymity is the
number quasi-identifiers that z-anonymity has to track over time. This is
fundamental to quantify its memory footprint and correctly size α-MON internal
hash tables (see Section 2.4.4) as well as the ∆T parameter. For each quasi-
identifier, indeed, I need to track the set of users associated in the last ∆T

window.

Taking again FQDNs as an example, I consider the size of the set that
z-anonymity must track – i.e., those FQDNs observed in the last ∆T interval.
Figure 2.8 depicts results over time for our trace, considering three possible
values for ∆T . After a short warm-up phase (not visible at this scale), the
curves follow the daily trend of network usage. I observe a peak during evenings,
when ≈ 150000 unique FQDNs are seen in a two-hour interval – solid red line,
see leftmost y-axis. No more than 100000 (60000) FQDNs appear with a ∆T

of 1 hour (30 minutes). During the night, when traffic reduces, the number of
active FQDNs is more than halved. I observe a sudden peak on the evening of
the third day (a Friday) with almost 200000 unique domains accessed in two
hours. The rightmost y-axis of Figure 2.8 reports the memory footprint of the
QuasiID metadata, considering their actual size in our implementation. The
memory usage is always below 17 GB for this setup.

Recall that the experiments refer to a traffic trace from a population of
8000 users. However, given the nature of Internet traffic, where most flows are
directed to few services, the set of domain names scales sub-linearly with the
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Table 2.2 Packet traces.

Flows (M) Flows per-class (%) Pktsize
Trace TCP UDP HTTP HTTPS P2P oth avg
ISP-FULL 3.08 7.76 10.8 8.2 46.2 34.7 716
ISP-HDR 3.08 7.76 - - - - 54
DNS - 14.07 - - - 100 172

number of users. For example, during the peak hour, 1000 (or 3000) randomly
selected users already contact 35000 (or 60000) FQDNs, while all 8000 users
contact 150000 domains.

2.6 Performance Evaluation

I now evaluate the performance of α-MON in processing high speed traffic. I
aim at evaluating how α-MON performance scales with the number of cores and
the impact of different conditions, workloads and system parameters. I follow
the standard benchmarking procedures defined in [49] for throughput tests.

2.6.1 Testbed and dataset

I instrument a testbed composed of a Traffic Generator (TG) and a Device
Under Test (DUT). TG and DUT are each equipped with two quad-port Intel
X710 10 Gbit/s network cards. TG replays traffic traces stored in pcap format,
sending packets to DUT over a first set of 10 Gbit/s links. The DUT runs
α-MON to anonymize network traffic that is sent back to the TG over a second
set of 10 Gbit/s links.

DUT is a high-end server equipped with 4 Intel Xeon Gold 6140M processors
and 512 GB of memory. The total number of physical cores is 72. I disabled
hyperthreading to isolate α-MON performance when varying the number of
cores.

The TG is a medium-sized server with no particular requirement except for
a large amount of memory. Indeed, it is not trivial to read and send stored
traffic traces at tens of Gbit/s with commercial solid-state drives whose read
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speed is in the order of 4-5 Gbit/s. As such, I equipped the TG with 1 TB of
RAM so that it can fit large traces in memory. I use DPDK-Replay to replay
the traces on the selected network interfaces at the desired rate.5 DPDK-Replay
can loop over traces in memory, eventually replacing IP addresses on each pass,
so to allow arbitrary benchmark duration.

I perform experiments using real traffic traces collected from an operational
network (see Table 2.2). Packets are captured by instrumenting a Point-of-
Presence of a European Internet Service Provider (ISP) that aggregates the
traffic of about 8000 households. I capture raw packets using a passive probe
equipped with several high-end SSD disks.

For the first benchmarks, I use a 1-hour long trace captured at peak time.
I obtain a 575 GB of packets that I call ISP-FULL. It contains 3.1 M TCP and
7.7 M UDP flows, with an average packet size of 716 B, for more than 800 M
packets. This trace represents the typical workload that α-MON would face in
an ISP network.

I process this trace to keep only up to TCP/UDP headers, removing payloads.
This step results in a second packet trace – called ISP-HDR– in which packets
are truncated to 54 B on average. I use this trace to benchmark the per-packet
capture, processing and transmission speed of α-MON in a pessimist scenario
composed of lots of small packets.

At last, I collect DNS traffic from the same network for one day. I use this
trace to benchmark the z-anonymity module since each packet likely contains
a QuasiID, e.g., a FQDN. This trace is 7.23 GB large, with more than 1 M
packets. I call it DNS trace.

For each experiment, I seek the throughput [49], i.e., the fastest rate at
which the count of frames transmitted by the DUT is equal to the number of
frames sent by the TG. I progressively increase the TG sending rate using a
binary search process. As I increase speeds, benchmarks require the TG to
perform multiple passes on the original traces. All experiments are performed
with z = 10 and ∆T = 60s. Each benchmark lasts 3 minutes. I set the hash
table Hash(QuasiID) size to 100000 entries to maintain collision lists reasonably
short (cfr. Figure 2.8).

5https://github.com/marty90/DPDK-Replay
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Fig. 2.9 Performance with four input and four output interfaces using the ISP-FULL
trace.

2.6.2 Horizontal scalability

I first focus on α-MON horizontal scalability to understand how its through-
put increases with the number of cores. Recall that each core manages an
α-MON thread via DPDK. TG sends traffic to DUT using four 10 Gbit/s links.
The DUT must anonymize packets before forwarding them on four output links.
For each input interface, I configure one output feed on a dedicated output
interface, thus, avoiding duplicating packets. Thanks to RSS load balancing,
each of the N cores processes an average 1/N of the traffic from each input
interface – 4/N in total, given I use 4 input interfaces. This load-balancing
scheme makes the throughput to depend only on the aggregate incoming rate,
regardless of the rates of single input interfaces. I employ the ISP-FULL trace
for this experiment.

I report results in Figure 2.9, which shows the throughput versus numbers
of cores. When α-MON runs on a single core, it handles around 10 Gbit/s. In
my experiments, the throughput is equivalent if packets come from a single
input link at line rate or spread on the four interfaces. With two cores, α-MON
sustains 18 Gbit/s, and the performance scales linearly with additional cores,
reaching 38 Gbit/s on four cores. With just five cores α-MON fully sustains
40 Gbit/s – i.e., all input interfaces at line rate. Unfortunately, my testbed
does not allow higher rates due to the limited number of network interfaces,
but I expect the performance to further increase before hitting the PCI bus
bandwidth limit [50].
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Fig. 2.10 Performance with different traces and consumer numbers.

In summary, α-MON sustains ≈ 10 Gbit/s per-core on a realistic traffic
trace. Its performance scales to up 40 Gbit/s when using just five CPU cores,
reaching line rate on all four input links.

2.6.3 Benchmark with other workloads

I evaluate α-MON performance under different workloads. I vary both the
input traffic mixture and the number of consumers. In these experiments, the
TG sends packets to the DUT using a single 10 Gbit/s link. I configure α-MON
with one, two, or four output feeds, each of them anonymized using all available
modules, but with different encryption keys. As such, α-MON not only has to
make packet copies, but also performs all anonymization steps multiple times.

Recall that different traffic classes trigger different α-MON modules, result-
ing in performance variations. While the ISP-FULL trace is a typical workload
that α-MON could face at an edge network, DNS represents an extreme scenario
in which every packet triggers the z-anonymity module for FQDN. ISP-HDR is
a second extreme scenario since all packets are small. It should not be observed
in practice except for anomalous situations, e.g., during cyber attacks. ISP-
HDR stresses α-MON packet replication capability toward multiple consumers
as well as L2-L4 anonymization modules.

I show results in Figure 2.10. I report throughput for different traffic traces
in separate figures, where lines indicate the number of output feeds. X-axes
show the number of cores.

Figure 2.10a depicts the performance with the ISP-FULL trace. As already
shown previously, a single core sustains 10 Gbit/s with a single consumer (solid
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red line). The performance is reduced when α-MON has to feed multiple
consumers. For a single CPU core (leftmost points), the throughput is reduced
to 4 Gbit/s with two consumers (dashed blue line) and 2.4 Gbit/s with four
consumers (dashed green line). The extra load imposed by the need for
duplicating packets causes this degradation: DPDK allows zero-copy processing
only when single output is required. Here, α-MON needs 3 cores to feed 2
consumers with 10 Gbit/s each, and 6 cores to feed 4 consumers. Note also
how the throughput scales linearly with the number of cores in all cases. Here,
contention on the Hash(QuasiID) has little impact.

Next, I use the ISP-HDR trace to stress α-MON packet copying, processing
and forwarding. Whereas the TG sends out 1.7 million packets per second
(Mpps) when replaying the ISP-FULL trace at 10 Gbit/s, ISP-HDR results in
23 Mpps. α-MON throughput naturally decreases. A single core handles no
more than 2 Gbit/s in this scenario (Figure 2.10b - red curve). However, thanks
to the scalable architecture based on RSS, α-MON throughput increases linearly
with the number of cores – and 5 cores handle 10 Gbit/s when outputting traffic
to a single consumer (red line). Similar to the previous scenario, the throughput
is reduced when having multiple consumers (blue and green lines). A single
core can sustain 1 (0.7) Gbit/s of the ISP-HDR trace with 2 (4) consumers. Yet,
throughput continues to grow linearly with the number of cores. As such, a
proper resource provisioning would allow α-MON to perform its tasks without
loss also in these scenarios.

Next, I consider the DNS trace to stress the z-anonymity module. In
Figure 2.10c I see that throughput further decreases. Remind that packets
undergoing z-anonymity generate updates on various data structures to track
the set of users associated with each quasi-identifier. Moreover, parsing the
payload to recover quasi-identifiers is time consuming too (e.g., to extract
FQDNs in DNS payloads). Figure 2.10c shows that a single core sustains
0.6 Gbit/s with one output feed. Again, the throughput increases almost
linearly with the number of cores, and eight cores can handle 3 Gbit/s of DNS
traffic. Here too, α-MON incurs a penalty for the packet copying in case of
multiple consumers. The slightly sublinear scalability is due to the Mutex on
the Hash(QuasiID) which slows down processing when a large number of cores
are used.
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Fig. 2.11 Percentage of time spent on the most impacting modules.

In summary, α-MON can process 10 Gbit/s of typical ISP traffic with one
core. Additional output feeds bring extra costs due to packet copying. A
handful of cores allows achieving line rate in different scenarios. Worst-case
scenarios, such as pure DNS traffic and millions of packets without payload,
require a proper dimensioning of the system. α-MON scales linearly with the
number of cores in all scenarios.

2.6.4 α-MON sub-module performance

I next show the impact on performance of α-MON components, by dissecting
their execution time under different workloads. To this end, I instrument each
α-MON sub-module with counters that use the CPU Time Stamp Counter to
measure the elapsed time with a negligible performance penalty.6 I then make
experiments with the ISP-FULL and DNS traces, configuring α-MON with a
single output feed, a single core, and replaying traffic at the sustainable rate –
i.e., 10 Gbit/s for ISP-FULL and 0.6 Gbit/s for DNS.

Figure 2.11 shows the percentage of time spent on the main α-MON modules.
I first notice how the nature of the traces determines different execution patterns.
With ISP-FULL (blue bars), removing the payload from packets of insecure
protocols (e.g., HTTP) absorbs most of the time due to a large number of
memory write operations. Differently, with DNS (red bars), the z-anonymity
module is invoked at each packet and accounts for 28% of the total execution

6The CPU Time Stamp Counter is a CPU register, thus, very fast to read.
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Fig. 2.12 Performance when applying z-anonymity on IP addresses and FQDNs
(ISP-FULL trace).

time (it is less than 1% for ISP-FULL). The packet capture (with DPDK) and
general management routines in both cases have a significant impact, larger
for DNS due to the smaller size of packets (see Table 2.2) and, thus, higher
packet rate. Finally, note how IP address anonymization with CryptoPAN and
protocol header parsing always have a marginal impact.

2.6.5 z-anonymity on other protocol fields

I now evaluate α-MON performance when applying z-anonymity on a wider
range of protocol fields. Indeed, as described in Section 2.4, the z-anonymity
module is flexible and can operate on different protocol fields, from FQDNs
contained in DNS, TLS and HTTP, to the IP addresses of the contacted servers.
In this experiment, differently from the previous cases, I make use of this feature
and configure α-MON to apply z-anonymity on both FQDNs and IP addresses.7

This imposes a high load on data structures. Indeed, the z-anonymity hash
table is loaded with additional QuasiIDs and the flow hash table needs to be
used to make consistent decisions on a per-flow basis.

α-MON performance slightly decreases, as I show in Figure 2.12, in which
I report the sustainable rate with different numbers of output feeds. α-MON
achieves line rate with 2, 4 and 9 cores with 1, 2 and 4 output feeds, respectively.

7α-MON applies z-anonymity on server IP addresses only, obfuscating internal client
addresses with CryptoPAN.
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Fig. 2.13 Analysis of the behaviour of Hash(QuasiID) collision list. Lines represent
different hash table sizes.

When z-anonymity runs on FQDNs only (see Figure 2.10a), only 1, 3 and
6 are needed. In short, adding an additional field to z-anonymity decreases
performance. As IP addresses are present in every single packet, decisions must
be taken much more often than for FQDNs only. z-anonymity on IP address
entails a ≈ 30% performance drop due to the higher number of operations.

2.6.6 Tuning of the z-anonymity data structure

Here I study the impact of the data structure size for the z-anonymity mod-
ule. Indeed, my implementation builds on the (large) hash table Hash(QuasiID)
used to accommodate the quasi-identifiers, and, for each quasi-identifier, the
ordered list of associated users in the last ∆T . Collisions on the hash table are
handled with lists, whose length should be kept as short as possible to avoid
performance impairments. This section evaluates the impact of the hash table
size on the list length and the time z-anonymity spends iterating on them. To
this end, I run multiple experiments using the DNS trace and varying the hash
table size. During the experiments, I record, for each access to the z-anonymity
data structure, the length of the collision list (if any) and the position at which
α-MON found the matching quasi-identifier. The latter metric is particularly
important given that α-MON handles collision lists in an LRU. As such, it is
likely to find popular quasi-identifiers on the top of the list, avoiding exhaustive
scans.

Figure 2.13a reports the distribution of the collision list length with different
hash table sizes, from 10 k to 1 M elements. Clearly, a hash size much smaller
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than the number of quasi-identifiers leads to long collision lists. When the size
is 10 k (red solid line), lists are 25-element long in median, but can reach up to
40 elements. Large hash sizes reduce the length of collision lists, and I notice
that quasi-identifiers are uniformly distributed among all hash buckets (not
shown in the figure). However, collisions happen by chance, and, even with a
10 M elements (yellow dashed line), I sporadically find a handful of collisions.

Fortunately, α-MON does not need to fully scan collision lists, as a searched
quasi-identifier is usually much before the tail of the list. Only for still unknown
items (a mismatch), the list must be scanned exhaustively to ensure the quasi-
identifier is not already present. In Figure 2.13b, I report the distribution of
the position in the list of the matching element for each access to the data
structure. Comparing it with Figure 2.13a, I notice how in most cases α-MON
does not scan the lists entirely. Even with a small 10 k hash size (red solid line),
on 80% of cases the matching item is found on the first or second position, and
in less than 5% the search goes further than the 20th position. With large sizes,
the probability of evaluating more than 10 list elements becomes negligible.

In summary, the hash table must be sized to the deployment scenario to
prevent collision lists from growing excessively. If properly done, Hash(QuasiID)
allows O(1) access, with reasonably short collision lists, thanks also to the LRU
policy which saves exhaustive scans.

2.7 Discussion on the z-anonymity approach

z-anonymity represents a new proposal for anonymizing sensitive informa-
tion in network traffic. It shares with k-anonymity, l-diversity and t-closeness
the idea that quasi-identifiers must be somehow controlled to prevent users’
re-identification. No scheme can provide a guarantee of anonymity, and all
schemes trade privacy with utility [51]. Indeed, publishing any data results in a
potential privacy loss for individuals, and any anonymization technique makes
data imprecise causing losses in potential utility. At last, efficient algorithms
that provide anonymized data with such properties [52] are not well-fit for real-
time and online usage as they make decisions based on the global distribution of
quasi-identifiers. Like traditional approaches, z-anonymity provides a trade-off
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and not full privacy guarantees. It however allows tuning the desired trade-off
between privacy and data utility.

With z-anonymity, I propose a novel anonymization property that can
be achieved in real-time and in an online fashion. As such, it is well-suited
for network traffic anonymization. k-anonymity and similar approaches work
on tabular data where the entire database (or a batch of data) are readily
available. I instead want to anonymize a continuous stream of data and output
the results in real-time. Notice that this differs from k-anonymity over data
streams [53] – i.e., a system capable of applying k-anonymity on a stream
database, where windows of data are considered. Other proposals [43, 44] work
similarly, buffering data and releasing anonymized batches. Such approaches
do not apply to my context since I cannot buffer lots of data while performing
high-speed measurements in the network. Thus, I need to decide on a per-
datum basis. Every decision has to be made in an atomic fashion, and the
processed datum must be immediately available for later processing.

z-anonymity does not require to buffer data and scales very efficiently. As
such, it is suitable for real-time deployments. To achieve that, z-anonymity is
applied to each quasi-identifier in isolation as a performance trade-off. If the
combination of multiple quasi-identifiers could lead to user re-identification,
α-MON must be explicitly set to apply z-anonymity to the field combination.
In fact, α-MON does not automatically search for such field combinations to
increase performance.

Finally, in z-anonymity, the first z−1 user appearing in a ∆T would have
their quasi-identifier values removed, while the z-th user would be the first
one to have it visible. Nevertheless, she belongs to a set of at least z users,
whose z−1 are unknown. In this sense, z-anonymity reduces the visibility of
quasi-identifiers in the output stream.

2.8 Conclusion

In this chapter, I presented α-MON, a flexible and modular tool to
anonymize network traffic according to a rich set of policies. I designed α-MON
to be flexible and provide anonymized traffic to multiple legacy monitors with
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different traffic visibility requirements, from security monitors to simple passive
meters. A key innovation in α-MON is the implementation of z-anonymity, a
stream-based traffic anonymization technique that obfuscates protocol fields
that can be uniquely traced back to a small set of users. α-MON can search
for them, for example, in the FQDNs present in DNS, TLS and HTTP traffic.

I designed a scalable architecture and efficient data structures to implement
z-anonymity at line-rate speed on multiple 10 Gbit/s links. α-MON reaches
high throughput in typical scenarios with few CPU cores. Even in worst-case
scenarios α-MON scales linearly with the number of cores, thanks to its design
based on DPDK. I quantified the impact of z-anonymity on common traffic
measurements, showing that it introduces negligible measurement errors. For
example, if applied before accounting traffic of websites, only for very infrequent
sites the measured values would substantially differ from correct values due to
the anonymization.

α-MON is available to the community as open-source software. As privacy
and privacy-preserving analytics are gaining momentum, I believe α-MON can
help researchers, network administrators and practitioners maintain visibility
on network traffic while preserving users’ privacy at the same time. Future
work includes the development of mechanisms to find identifiers and quasi-
identifiers in network traffic automatically as well as the analysis of the impact
of z-anonymity on the operations of different classes of legacy monitors, which
is addressed in the next chapter (Ch. 3).



Chapter 3

Generalizing z-anonymity as
Zero-Delay Anonymization for
Data Streams

In this chapter I will discuss the theoretical foundations on which α-MON
is based, namely the z-anonymity, by presenting z-anonymity: Zero-Delay
Anonymization for Data Streams, published in 2020 IEEE International Con-
ference on Big Data [54].

3.1 Introduction

Big data have opened new opportunities to collect, store, process and, most
of all, monetize data. This has created tension with privacy, especially when it
comes to information about individuals. We live in the data era, where a big
part of our life is readily available in digital format, from our online activity
to our location history, from what we buy to how we spend out free time [55].
Recently, legislators have introduced privacy laws to regulate the data collection
and market, with notable examples of the General Data Protection Regulation
(GDPR) in EU, or the California Consumer Privacy Act (CCPA) in the US.

The classical approach to publish personal information is anonymization,
i.e., generalizing or removing data of the most sensitive fields. Thanks to this,
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Privacy-Preserving Data Publishing (PPDP) has gained attention in the last
decade [56]. It is now even more popular (and critical) with the birth of data
markets where data buyers can have access to large collections of data about
individuals. Removing the user’s identifiers (name, social security number,
phone number, etc.) is not sufficient to make a dataset anonymous. Indeed, an
attacker can link a user’s apparently harmless attributes (such as gender, zip
code, date of birth, etc.) called quasi-identifiers (QIs) to a (possibly even public)
background knowledge. In this way, the attacker can re-identify the person and
gain access to further sensible information from the dataset (disease, income,
etc.) called sensitive attributes (SAs) [57]. Famous is the de-anonymization of
Netflix public dataset [58] based on the study of QIs.

Researchers proposed several properties that anonymized data should respect
to avoid re-identification, the most popular of which is the k-anonymity [23]. De-
spite its limits, it remains the golden standard for anonymization. k-anonymity
imposes that the information of each person contained in the release cannot
be distinguished from at least k− 1 individuals whose information also ap-
pears in the release. k-anonymity is conceived for tabular and static data. In
other words, the dataset must be completely available at anonymization-time.
Extensions to a streaming scenario have been proposed, where continuously
incoming records are processed, typically using sliding windows [44]. In this
case, the new records are temporarily stored, processed and released after an
unavoidable delay. However, for specific applications it is fundamental to avoid
any processing delay. For example, for network traffic, where it is unfeasible to
store packets for a long time, or location history, if a real-time (but anonymous)
stream shall be used for, e.g., mobility optimization.

3.1.1 My Contribution

This chapter explores in a more theoretical and rigorous way the z-
anonymity. As already introduced in 2, it is designed to work with data
streams and can be achieved with zero-delay (hence the choice of the letter z

instead of k). I assume to observe a raw stream of data, in which users’ new
attributes are published in real-time as they are generated. Apart from network
traffic (which has been already discussed), I can assume, for instance, a new
transaction in their credit card, a new position of their car, or a new website
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they visit. These attributes are QIs, and, when accumulated over time, may
allow users’ re-identification.

For the sake of simplicity for the reader, I report here some concepts that
have already been introduced in the previous chapter. z-anonymity builds on
the same idea of k-anonymity. When a new attribute arrives, it is released only
if at least z−1 individuals have presented the same attribute in the past window
∆t. Otherwise, it is blurred. z-anonymity is weaker than k-anonymity since it
cannot guarantee that at least k−1 users present the same combinations of QIs
(i.e., the aggregated record). Implementing z-anonymity in real-time at high
speed requires ingenuity, especially considering the large number of attributes
the system deals with - i.e., the high-dimensional data problem, which is one
of the problems hampering k-anonymity too [59]. In this chapter, I show that
z-anonymity can be obtained both with zero-delay and in an efficient way when
employing a scalable implementation and appropriate data structures. Lastly,
I present a probabilistic framework to map z- into k-anonymity properties. I
find out that z-anonymity can provide k-anonymity with desired probability,
for appropriate values of z.

There are various examples of application of z-anonymity. For instance,
I originally proposed it for internet traffic analysis, as discussed in Ch. 2, or
similarly, the user browsing history, the credit card history, and the location
history that offer rich information for companies which want to access as
quickly as possible, i.e., datum after datum, without waiting for records to be
aggregated. For instance, recent credit card transactions can be useful for fraud
detection or shopping recommendations; the browsing history for personalized
advertisements or market intelligence; the location history to promptly optimize
the mobility, or study patterns of real-time traffic.

In the remainder of the chapter, I formalize the z-anonymity property and
present an approach to implement it efficiently and in real-time (Section 3.2).
I then propose a probabilistic model to derive k-anonymity properties from
z-anonymized streams (Section 3.3), and study the effect of the different
parameters (Section 3.4). I then apply the model to the browsing history use
case (Section 3.5). Finally, I discuss the limitations of my approach and future
work (Section 3.6) and draw the conclusions (Section 3.7).



3.2 z-anonymity 39

3.2 z-anonymity

3.2.1 The z-anonymity approach

I work on a data stream, in which I continuously receive observations that
associate users with a value of an attribute. I define an observation as (t,u,a),
which indicates that, at time t, the user u exposes an attribute-value pair a.1

For example, if Sex is the attribute, and Female is the value assumed by the
attribute of user u at time t, then a is the pair (Sex, Female). Attributes can
be related to whatever field: a visit to a web page, a GPS location, a purchase,
etc. I consider attributes a as quasi-identifiers, while sensitive-attributes are
not present. I want to keep private those values of attributes associated with a
small group of users. As mentioned in Definition 1, an attribute-value pair a is
z-private at time t if it is associated with less than z users in the past ∆t time
interval.

Notice that the same attribute a can be both z-private and not z-private at
different time t.

If the anonymized dataset hides all z-private attribute-value pairs, it achieves
z-anonymity. Recalling Definition 2, a stream of observations is z-anonymized
if all z-private attribute-value pairs are obfuscated, given z and ∆t.

In other words, the attributes that are associated with less than z users
in the past ∆t shall be obfuscated, i.e., removed or replaced with an empty
identifier. The goal is to prevent rare values of attributes to be published, thus
reducing the possibilities of an attacker to re-identify a user through unusual
attributes.

z and ∆t are system parameters that can be tuned to regulate the trade-off
between data utility and privacy. This allows z-anonymity to adapt to the
needs of the desired use case, resulting in a flexible paradigm that can be used
in many different fields. A large z and a small ∆t result in the majority of
attributes to be anonymized, while a small z or a large ∆t allows rare values
to be possibly released. ∆t regulates the memory of the system.

1Here I will use attribute and attribute-value pair interchangeably.
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It is important to recall that z-anonymity acts in an attribute-by-attribute
fashion, not considering their combinations as in the k-anonymity property.
Hence, it is interesting to study which guarantees the z-anonymity algorithm
offers in a global perspective, i.e., which assumptions it is possible to make on
the overall privacy properties (e.g., it terms of k-anonymity) of the output.

3.2.2 Implementation and complexity

The z-anonymity property can be achieved in real-time with zero delay using
a simple algorithm based on efficient data structures. I propose to generalize
the approach presented in Ch. 2: the attribute-value pairs a are stored as a
hash table H, with linked lists to manage collisions. Each value H(a) in the
hash table contains three elements:

• metadata about a;

• a Least Recently Used list LRUa of tuples (t,u);

• a hash table Va for the users.

The idea is to minimize the time spent searching into the data structures,
therefore reducing the memory accesses. By assuming that the number of
attributes a has the same order of magnitude of the hash structure dimension,
collisions are infrequent, and consequently, the total computational cost is O(1)
for each incoming observation.

The H(a)’s metadata include the counter ca and the reference for the LRUa

first and last attribute. Referring to Algorithm 1, once an observation (t,u,a)
arrives, the value a should be inserted in the hash table, if not already present
(lines 2-6), otherwise an update should be performed (lines 7-21). The hash
value is calculated and the access to the table is done in O(1).

If the user u comes with attribute a for the first time in the previous ∆t,
the user u is inserted into Va in O(1), ca is increased by one and the tuple (t,u)
is inserted on top of the LRUa in O(1) thanks to the aforementioned references
(lines 8-11). If u was instead already present in Va and in LRUa with value
(t′,u), I replace t′ with t and the tuple (t,u) is moved on the top of the LRUa.
Again all is done in O(1) (lines 12-14).
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Algorithm 1 Pseudo code of the algorithm to implement z-anonymity.
1: Input: (t,u,a)
2: if a /∈H then
3: H←H∪a //new attribute: insert it for the first time
4: Va←{u} //insert new user u
5: LRUa← (t,u)
6: ca = 1
7: else
8: if u /∈ Va then
9: Va←Va∪{u} //insert new user u

10: ca← ca +1 //add new user
11: LRUa← (t,u)
12: else
13: (t′,u)← (t,u) //update timestamp of user u
14: move (t,u) on top of LRUa

15: end if
16: end if
17: //Always evict old users
18: for ((t′,u′) = last(LRUa); t′ < t−∆t; (t′,u′)=next) do
19: remove (t′,u′) from LRUa

20: remove (u′) from Va

21: ca← ca−1
22: end for
23: if (ca ≥ z) then
24: OUTPUT (t,u,a)
25: end if

Last, to evict old entries and consequently decrease ca, I traverse the LRU
in reverse order: I remove each tuple (t′,u′) where t′ < t−∆t, and I decrease ca

accordingly (lines 17-21). At last, if ca ≥ z the observation (t,u,a) is released
(lines 23-24).

k-anonymity has been proved [60] an NP-Hard problem. Differently, z-
anonymity property can be achieved for each observation with O(1) complexity
with properly sized hash-tables.

3.3 Modelling z-anonymity and k-anonymity

I now study the relationship between the z-anonymity and k-anonymity
properties. In particular, I quantify how a z-anonymized dataset could result



42 Generalizing z-anonymity as Zero-Delay Anonymization for Data Streams

in a k-anonymity release with a certain probability. Intuitively, z-anonymity
ensures that each published value of an attribute a is associated at least with
z users in the past time interval, while, with k-anonymity, any given record
(i.e., the combinations of all user’s attributes) appears in the published data
at least k times. Recall that with high-dimensional data, the set of attribute-
value combinations becomes extremely high, thus making k-anonymity tricky
to guarantee. Here I show that with a proper choice of z, it is possible to
release data in which users are k-anonymized.

I define a simple model where users generate a stream of attributes. Each
attribute has a given probability of appearance that reflects its different popu-
larity. I assume few attributes are very popular, with a long tail of infrequent
attributes that may seldom appear. This often happens in real-world systems
that are governed by power-law distributions [61].

3.3.1 User and attribute popularity model

I consider a system in which a set of U users can access a catalog of A
attributes. Let U = |U| and A = |A|.

Users generate a stream of information, exposing in real-time the attribute
they have just accessed. For instance, this reflects a location tracking system
in which black boxes installed on a fleet of vehicles periodically exports each
car location; or operating system telemetry that periodically reports which
application is running; or network meters reporting which website a user is
visiting. The system collects reports in the form of the tuple (t,u,a), i.e., at
time t, the user u∈ U exposes the attribute a∈A. For simplicity, I assume that
users are homogeneous and all reports are independent, so that the probability
of getting a report, only depends on the value assumed by a.2 In particular, I
assume any user u exposes the attribute a with a given rate λa, with exponential
inter-arrival time. Hence, given the time interval ∆t, the number of times a
user exposes an attribute a is modeled as a Poisson random variable Ra with
parameter λa ·∆t (Ra ∼ Poisson(λa ·∆t)).

2I can relax this assumption, e.g., by considering classes of users. I leave this for future
work.
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I denote as Xa the random variable describing whether a user exposed at
least once attribute a in a time interval ∆t. Xa assumes value 1 if a user
exposes a in ∆t, 0 otherwise. I note that Xa ∼Bernoulli(pX

a ), where pX
a is the

probability that a user exposes attribute a at least once in the past ∆t. It is
straightforward to compute pX

a given λa and ∆t as:

pX
a = P [Ra ≥ 1] = 1−P [Ra = 0] = 1− e−λa·∆t (3.1)

3.3.2 Applying z-anonymity

I study how a stream of data modeled as above appears when released
respecting z-anonymity. With z-anonymity, z-private attributes at time t are
removed. Namely, if less than other z−1 users are associated with a in the
previous ∆t, the current association is blurred. I here define the event of a
report (t,u,a) to be published when exposed as a random variable Oa. I have
that Oa is a Bernoulli random variable with parameter pO

a .

pO
a = P [Oa = 1] = P

⎡⎣ ∑︂
v∈U\u

Xa ≥ z−1
⎤⎦ (3.2)

Given our assumption of independent and homogeneous users, I am summing
U−1 times the same random variable Xa. I remove one user since I are checking
the z-anonymity for the report (t,u,a). Hence one user is already involved
by construction. Since Xa is a Bernoulli with success probability pX

a , its sum
results in a Binomial distribution, measuring the number of occurrences in a
sequence of U −1 independent experiments ∑︁v∈U\u Xa ∼ B(U −1,pX

a ).

Starting from Equation (3.2) and using the probability mass function of
the Binomial distribution I can derive pO

a as:

pO
a = 1−

z−2∑︂
i=0

(︄
U −1

i

)︄(︂
pX

a

)︂i (︂
1−pX

a

)︂U−1−i
(3.3)

Similar to what I did in Section 3.3.1, I denote as Ya the random variable
describing if a user published at least once attribute a in a time interval ∆t. I
note that Ya ∼Bernoulli(pY

a ), where pY
a is simply:
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pY
a = P [Xa = 1] ·P [Oa = 1] = pX

a ·pO
a

The set of the random variables describing the presence or absence for all
the possible attribute-value pairs a ∈ A for a user is denoted as Ȳ = {Ya}a∈A.
Again this is equal for all users, being them homogeneous.

3.3.3 The attacker point of view

I assume an attacker observes the z-anonymized output streams for all users
u ∈ U for a time N∆t with N ∈ R+ (for simplicity, in our model I considered
N ∈N,N ≥ 1). Hence, in our scenario, the attacker can accumulate the output
for a time span possibly much larger than the parameter ∆t. Similarly to
Ya, I can thus define the random variable Y N

a , that models whether a user
exposed and published attribute a at least once during the total observation
period N∆t. It is clear that Ya and Y N

a are strongly related. In fact I have
Y N

a ∼Bernoulli(pN
a ), where the parameter pN

a can be computed as follows:

pN
a = [1− (1−pY

a )N ]

This is because for a user u to expose and publish an attribute a in the
period N∆t, (s)he has to be associated with a value 1 of Ya at least in one
of the N periods ∆t long. At the end of the period N∆t, the attacker has
observed U users hence obtaining U realizations yN of the random variable
Y N = {Y N

a }a∈A including all the possible attributes.

The attacker will not know the random variable Y N , and will observe only
realizations of it. Let us denote as yN

a a realization of the random variable Y N
a

and as yN = {yN
a }a∈A a realization of the random variable Y N .

3.3.4 Getting to k-anonymity

I want to check to what extent a z-anonymized stream of a user satisfies
also k-anonymity property in the whole stream of U users. Given a specific
realization yN of a user, our goal is to derive the probability to observe at
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least other k−1 users in U having the same realization yN . If this happens,
the system lets k users release the same attributes and thus they cannot be
uniquely re-identified, resulting k-anonymized.

Let us consider first the probability that two realizations of Y N
a are equal.

Let us denote the two realizations, related to two users u and v, as yN
a (u) and

yN
a (v). The probability is simply (pN

a )2 +(1−pN
a )2 because either both take

the values of 1, or both take the value of 0. Remind that the users are assumed
to act independently. The probability that two users have the same realization
of Y N is then the following:

pQ = P
[︂
yN (u) = yN (v)

]︂
=
∏︂

a∈A

(︃
(pN

a )2 +
(︂
1−pN

a

)︂2)︃

where yN (u) and yN (v) are the two realizations of Y N . The parameter
pQ can be seen as the parameter of a Bernoulli random variable Q describing
whether two realizations are equal (assuming value 1) or not (assuming value 0).

Finally I define the probability that a given realization yN (u) satisfies the
k-anonymity property. Hence, it means that there are at least k−1 other users
with the same realization. I denote this probability as pk−anon.

pk−anon = P

⎡⎣ ∑︂
v∈U\u

Q≥ k−1
⎤⎦

Then pk−anon is the probability that at least other k− 1 realizations are
equal to the one studied. Again, as in Equation (3.2), ∑︁v∈U\u Q follows a
Binomial distribution of U −1 experiments with probability pQ. Then I can
derive pk−anon as in Equation (3.3):

pk−anon = 1−
k−2∑︂
i=0

(︄
U −1

i

)︄(︂
pQ
)︂i (︂

1−pQ
)︂U−1−i

In summary, our model describes the probability that a data stream under-
going z-anonymity results in dataset which respects the k-anonymity property.
Although I can only provide a probabilistic guarantee that the released data
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Table 3.1 Terminology used to model z-anonymity and k-anonymity.

Term Definition
U ,U Set and number of users
A,A Set and number of attribute-value pairs
∆t The time interval length used for evaluating z-anonymity

N
Length of the data stream, in multiples of ∆t
on which I test the k-anonymity

λa Exposing rate for attribute a

Ra
Random variable counting number of times a user exposes
attribute a in ∆t. Ra ∼ Poisson(λa ·∆t)

Xa
Random variable representing whether a user exposes
attribute a in ∆t. Xa ∼Bernoulli(pX

a )

Oa
Random variable representing whether a report (t,u,a)
is published when exposed. Oa ∼Bernoulli(pO

a )

Ya
Random variable representing whether a user published at
least once attribute a in ∆t. Ya ∼Bernoulli(pY

a )

Y N
a

Random variable representing whether a user published at
least once attribute a in N∆t. Y N

a ∼Bernoulli(pN
a )

Y N Set of random variables {Y N
a }a∈A

Q
Random variable representing whether two realizations of
Y N are equal. Q∼Bernoulli(pQ)

pk−anon
Probability that a realization of Y N satisfies
k-anonymity property

will be k-anonymized, I can study and control this probability as a function of
the parameters.

3.4 Comparing z-anonymity and k-anonymity

In the following, I show the impact of the system parameters on the k-
anonymity and z-anonymity properties. In my model, I assume a small set
of popular attributes and a large tail of infrequent ones. This allows us to
catch the nature of systems where users are more likely to expose top-ranked
attributes, but there exist a large catalog. As such, I choose that the λa for all
attributes follow a power law in function of their rank. Let us suppose attributes
are sorted by rank, and the most popular attribute is a1 and the least popular
aA. I impose λa1 = 0.05 and set the remaining λa as the power-law function
λar = 0.05/r, where r is the rank of attribute ar. The pX

a value is evaluated as
described in Equation (3.1) - for the sake of simplicity, I consider ∆t = 1 unit
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Table 3.2 The default values used for the model.

Variable Default Value
U 50 000
A 5 000

λar 0.05 / r
N 24
z 20
k 2

100 101 102 103

Attribute rank

10−10

10−8

10−6

10−4

10−2

pY a

z = 1
z = 10
z = 20
z = 30

Fig. 3.1 The probability pY
a for a user to publish attribute a in ∆t, according to its

rank.

of time. Notice that the different attributes are independent and pX
ar

is not a
distribution probability mass function, hence it does not have to sum to 1.

I have defined a model that describes the probability that in the released data,
satisfying z-anonymity, a user has at least k−1 other users with the same set of
associated attributes. Formally speaking, pk−anon = F(U,A,λ,N,z,k)→ [0,1].
As such, F gives the probability a generic user is k-anonymized in the released
data. Each of the above parameters has an impact on the output probability
pk−anon. Here, I study the impact of different combinations of parameters.
Where not otherwise noted, the default parameters listed in Table 3.2 are used.
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Fig. 3.2 he impact of A on pk−anon, considering both different k and z values.

3.4.1 The impact of the attribute rank

I first focus on the pY
a , i.e., the probability of observing at least once the

attribute a in a ∆t, for a given user, in the released data, after z-anonymization.
Figure 3.1 shows the pY

a in function of the attribute rank. Remind that the
popularity of attributes follows a power law, since λar ≈ r−1. Indeed, the
blue solid line in the figure shows the probability of observing an attribute
in case z = 1, i.e., no anonymization (equal to pX

a ). The curve appears as a
straight line, representing a power law on the log-log plot. When enabling
z-anonymity (z > 1), I notice that the probability of observing uncommon
attributes abruptly decreases with an evident knee. For example, if I observe
the curve for z = 20 (green dashed line in the figure), already the 300th-ranked
attribute is observed with a probability below 10−6, while it appears on the
original stream with 10−3. A higher z moves the knee of the curve closer to
the top-ranked attributes. In other words, the figure shows how z-anonymity
operates in preventing uncommon attributes from being released. Indeed, those
attributes are released only when enough users are exposing them, hence very
rarely.

3.4.2 The impact of A

In Figure 3.2, I study the impact of the size of the catalog of attributes A.
In Figure 3.2a I show in a z-anonymity dataset how the probability pk−anon

of a user being k-anonymized varies with A. To this end, I perform different
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simulations with increasing numbers of attributes A. I consider a system
where only the top A ranked attributes exist. Intuitively, with a large number
of attributes, it is harder to find users with the same output attribute set
yN . However, my assumption of a long tail of infrequent attributes plays
with us. indeed, the probability of observing them rapidly goes to to 0 (see
Figure 3.1), and, as such, these attributes rarely appear in the users’ released
sets. Figure 3.2a shows this behavior with k = 2,3,4, while keeping constant
values of z and U . With a very small catalog of top-100 or less attributes,
users are k-anonymized with reasonable certainty, being very likely to observe
multiple users with the same set yN . When A increases, I start releasing
less-popular attributes. The number of possible attribute combinations thus
explodes exponentially3, and z-anonymity starts showing its effects. Focusing,
for example on the orange dashed curve for k = 2, when A exceeds 100, the
probability of finding 1 or more identical users to a given one suddenly decreases.
However, it settles to approximately 0.9 with A > 100, clearly showing the effect
of z-anonymity. The infrequent attributes are not released, and, as such, this
limits the explosion of the possible combinations. Further enlarging A does not
affect pk−anon, as the attributes in the tail are anyway not published. Increasing
the value of k results in lower probability of satisfying k-anonymity property.

For comparison, in Figure 3.2b I report the effect of finding at least an
identical user to a given one with different values of parameter z of z-anonymity.
Similarly to the other cases, pk−anon starts at 1, when few attributes are present,
and the number of their possible combinations is low. When A increases, less
frequent attributes start to appear. The possible combinations of attributes
explode exponentially. With z = 1, i.e., no z-anonymity in place, the probability
of finding identical users rapidly goes to 0. Enabling z-anonymity, I prevent
rare attributes to be released, thus reducing the possible combinations. The
higher z, the higher the pk−anon.

In summary, z-anonymity allows k-anonymity to be satisfied with a non-zero
probability, even with a long tail of attributes.
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Fig. 3.3 The impact of z on pk−anon for different k values.

3.4.3 The impact of z

I now evaluate the impact of z on the pk−anon. In Figure 3.3, I report
how different values of z result in different probabilities for a given user to
be k-anonymized, i.e., there are at least k−1 other users with the same set
of released attributes. The other parameters are fixed to the values shown in
Table 3.2, and different lines correspond to different values of k. Intuitively, the
larger is z, the higher is pk−anon. Focusing on k = 2 (blue solid line), pk−anon

increases starting from z = 4. With z = 20, the probability of finding at least a
user with an identical set of released attributes is already 0.8. When k > 35,
pk−anon approaches 1 for the three curves, giving the almost certainty that the
whole release is k-anonymized (for k = 2,3,4). In other words, it is possible to
choose a proper z to enforce a desired k and pk−anon on the released data.

3.4.4 The impact of U

Next, I study in Figure 3.4 how the number of users U impacts the privacy
of the released data. If I only increase the number of users U , not shown in
the Figure, there is a higher chance that some users have even rare attributes
released, breaking thus k-anonymity. This would happen because a large
number of users would cause even less-popular attributes to overcome the

3The attribute combinations increase as 2A.
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Fig. 3.4 The impact of U and z on pk−anon for different k values (z = 20).

z threshold, increasing the number of possible combinations, and decreasing
pk−anon. Hence, for a fair comparison, z is set proportional with U , and I
report it on the upper x-axis of Figure 3.4. Again, A is fixed to 5000. Focusing
on k = 2 (blue solid line), I notice how pk−anon grows quickly with U . With
U = 22000 (and z = 9), the probability of a user of having another user with
identical attributes is already 0.5. pk−anon keeps growing, even if at a lower
pace, reaching value very close to 1 with U = 100000. This result shows that a
large number of users leads to better guarantees of k-anonymity as far as z is
set proportionally to U .

3.4.5 The impact of N

Finally, Figure 3.5 shows the impact of the observation time of the attacker
(N), defined for simplicity in multiples of ∆t. The figure quantifies how
increasing N affects pk−anon. In Figure 3.5a N varies on the x-axis, while
different lines represent different k. Intuitively, having a larger observation
time makes it more difficult for users to be k-anonymized, since the probability
that rare attributes are released increases, and, thus, the number of attribute
combinations. When an attacker can access enough z-anonymized data, pk−anon

drops. Looking at the blue solid line for k = 2, after N = 22 periods of ∆t, the
probability of finding identical users starts falling, reaching 0 with N = 45. I



52 Generalizing z-anonymity as Zero-Delay Anonymization for Data Streams

0 10 20 30 40
N

0.0

0.2

0.4

0.6

0.8

1.0

p k
−

an
on

k = 2
k = 3
k = 4

(a) pk−anon changing k (z = 20)

0 100 200 300 400
N

0.0

0.2

0.4

0.6

0.8

1.0

p k
−

an
on

z = 1
z = 50
z = 100
z = 120

(b) pk−anon changing z (k = 2)

Fig. 3.5 The impact of observation time N on pk−anon, considering both different k
and z values.

observe a similar behavior with higher values of k (dashed lines), for which the
decrease starts earlier and it is steeper.

Figure 3.5b shows different insights, observing the impact of the attacker
obtaining data in a longer time window. Here, I fix k = 2, and I draw different
lines for different z, with N up to 400. With z = 1, no k-anonymity can be
guaranteed as soon as the attacker observes the data for N > 3. z-anonymity
preserves k-anonymity for longer time (e.g., up to N = 70 for z = 120). This
suggests to use z-anon in combination with other privacy preserving approaches,
e.g., user ID rotation or randomization after N∆t time. Interestingly, with
larger values of z, pk−anon grows again as the observation time increases. This
happens because, sooner or later, the most popular attributes will be exposed
and published by almost every user. Hence, the observations yN (u) will be
mostly composed of 1s, and thus most likely be equal to others. For this
phenomenon to occur within a reasonable observation time, z must be large
enough to just consider most popular attributes, that will take less time to be
exposed by almost every user.

3.5 A practical use case: the visits to websites

Differently from Ch. 2, in this section I explore an other practical use case
for the z-anonymity: the users’ navigation data. To this end, I use the data
gathered on a real network to set the parameters of my model. I build on passive
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measurements collected by Tstat [62], a passive meter that collects rich flow-
level records, including hundreds of statistics on the monitored traffic. Essential
to my analysis, Tstat builds a log entry for each TCP connection observed on
the network, and, for each, it reports, among other statistics, the IP address of
the client, a timestamp and the domain name of the server as indicated on the
HTTP or TLS headers.4 I use the entries collected over one day in 2018 in a
Point Of Presence of a European ISP aggregating the traffic of approximately
10000 households. To filter those websites carrying very little information, such
as content delivery networks, cloud providers or advertisement, I keep only
those websites included in the top-1 Million rank by Alexa5 and not belonging
to the aforementioned categories. For privacy reasons, I encrypted the client
identifiers, i.e., the IP addresses, with the Crypto-PAn [63] algorithm, rotating
the encryption keys every day.

I use 1 day of collected data to estimate values of the parameters. I assume
∆t = 1hour and N = 24. I obtain A = 27482 and U = 9670, and I estimate
directly the pX

a for each attribute (a website in this case).6 Then, I setup my
analysis with these obtained parameters, running my probabilistic framework
and showing the results I obtain.

In Figure 3.6, I show the probability pY
a of observing the attribute a, for a

given user, in the released z-anonymity data. The solid blue line corresponds to
z = 1, i.e., no anonymization, thus reporting the popularity of websites in the
dataset. The most popular website is google.com, which has pX

google.com = 0.34,
meaning that in 1 hour any of the users will visit this website at least once with
this probability. There are some very popular websites, with the top-7 ranked
having pX

a > 0.1. In the tail, I find 15464 websites accessed by only one user on
the considered day. When running z-anonymity with z > 1, these uncommon
websites are not released, as they are associated with less than z for most of ∆t.
Focusing on the orange dashed line for z = 10, starting from the 200th-ranked
website, the probability of observing it in the released data falls rapidly (notice
the log scale). Higher values of z (green and red dashed lines) result in earlier
and steeper decrease of pY

a . I can compare this figure with Figure 3.1, which
4In case of HTTP transactions, the domain name is extracted from the Host HTTP

header, while in case of the TLS from the SNI header in the Client Hello message.
5https://www.alexa.com/topsites
6I opt to extract directly the pX

a rather than λa since these were directly available in the
collected data.

https://www.alexa.com/topsites
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Fig. 3.6 The probability pY
a to publish attribute a in a ∆t = 1hour, according to its

rank, as estimated from the users’ navigation data (U = 9670, A = 27482).

shows the same results for the previous case. I first notice that the dashed
lines (for z > 1) move away from the solid blue line (z = 1) in the same range
102− 103. Secondly, I notice that the top-ranked attributes have higher pY

a

than the previous case, with 70 websites having pY
a > 10−2. This is a peculiarity

of the web ecosystem, characterized by a few tens of very popular websites,
including popular search engines, news portals and productivity suites, and
a long tail of niche websites. In the following, I show that z-anonymity also
works for this scenario, despite the large number of popular websites boosting
the number of possible attribute combinations.

I now evaluate the impact of z-anonymity on the released data in terms of
the k-anonymity property. Running the probabilistic framework described in
Section 3.3, I can derive the probability pk−anon that a given user has at least
k−1 other users with the same attribute set. I show the results in Figure 3.7,
where I report how pk−anon varies with z, for different values of k. Focusing
for example on the blue solid line (for k = 2), I notice that z must exceed 200
for pk−anon to move away from 0. pk−anon reaches 1 when z is 350. When
considering higher k (dashed lines), larger z are necessary for pk−anon to get
close to 1. However it is not necessary a drastic increase of z; for k = 4 (green
dashed line), z = 380 is already enough. Interesting is the comparison of the
website visits with the previous case study in Figure 3.3: here z shall reach
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Fig. 3.7 The relation between z-anonymity and k-anonymity in the users’ navigation
data (U = 9670, A = 27482).

380 to obtain k-anonymity almost certainly, while z = 35 is already enough
for the previous case. Two reasons are behind this. Firstly, I have only 9760
users for the website visits, while U = 50000 in the previous case, decreasing
the probability of finding users with the same set of attributes. Secondly, the
probability pX

a to expose an attribute is quite different for the two cases, with
the most popular websites being visited by a large portion of users on a hourly
basis. z-anonymity can provide reasonable guarantees of k-anonymity even in
this case, provided it is properly tuned. However, this guarantees come at the
cost of publishing a small number of attributes. This exemplifies the tension
between data usefulness and privacy.

3.6 Limitations and future work

With z-anonymity, I only prevent users’ re-identification if an attacker
leverages uncommon attributes, by hiding z-private ones. It is designed uniquely
to avoid such kind of re-identification, and, so far, I do not consider other kinds
of attacks, e.g., targeting the timing or order at which users’ entries appear
in the data stream. Moreover, z-anonymity does not consider combinations
of z-anonymized attributes, treating them independently. Still, I provided
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a probabilistic framework that shows that users can be also k-anonymized
with a controllable probability even in case an attacker knows the entire set
of released attributes. With this, I provide guidelines to properly tune the
system parameters to also guarantee k-anonymity. This allows the data curator
to understand the properties of the released data and manage the trade-off
between privacy and data utility.

Future work goes in manifold directions. First, our probabilistic framework
can be employed not only to assess how z-anonymity results into k-anonymity,
but also to dynamically tune z to achieve a desired k. The probabilistic
framework assumes all users behave the same. Clearly, this is a simple and
strong assumption and it can be refined considering classes of users with different
rates of activity as well as diverse behaviors. Moreover, in z-anonymity, I only
considered blurring z-private attributes. Alternatively, I could generalize the
attributes so that they pass the z-threshold. For example, I could generalize a
website to its second level domain or its content category. Moreover, I argue
that I can achieve better data utility while avoiding users’ re-identification at
the same time even if some z-private items are released. This can be obtained
by introducing perturbations in the released data, e.g., by inserting noise in the
data stream or modifying some of the associations between users and attributes.
Such an approach melds concepts from the classical k-anonymity with the ideas
of differential privacy, where the addition of noise is the means to achieve users’
privacy. All this is going to be addressed in [64], where further studies are
underway to improve the model and study its full potential.

3.7 Conclusion

In this chapter, I presented z-anonymity, a novel anonymization property
suitable for data streams. I designed it to operate with high dimensional
data, organized in transactions (atomic information about users) and with the
constraint of zero-delay processing. The idea at the base of z-anonymity is to
hide z-private users’ attributes, i.e., those associated with less than z−1 other
users, which could be used by an attacker for re-identification. I show that
z-anonymity can be achieved with an efficient algorithm if using suitable data
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structures. A data stream undergoing z-anonymity is immediately anonymized
and is available with zero delay to the consumer.

z-anonymity is weaker than k-anonymity, as it operates on users’ attributes
independently without considering their combination. However, I provided a
probabilistic framework to map z-anonymity into k-anonymity, using which the
data curator can tune the trade-off between privacy and data utility. I show a
practical use case, in which I evaluate z-anonymity using the characteristics of
a real dataset of users accessing websites. I show that it is possible to tune the
system parameters to obtain k-anonymity with a controllable probability also
in this scenario.



Chapter 4

Analysis of Campus Traffic
during COVID-19 Pandemic

The previous chapters presented the tool that allowed me to obtain anony-
mous information on the functioning of the e-Lerning platform of Politecnico
di Torino. In this chapter I present Campus traffic and e-Learning during
COVID-19 pandemic published in the journal Computer Networks [65].

4.1 Introduction

Since its first outbreak between late 2019 and early 2020 in China, the
COVID-19 pandemic has had a massive impact on people’s lives and habits.
The countries most affected by the virus spreading are facing an unprecedented
health crisis, whose effects will impact their economic and social structures
for a long time. The urge to respect social distancing and lockdown measures
adopted to limit the spreading of the infection led to a shift in the fruition
and supply of a wide number of services. Some examples include the increased
usage of home delivery services, the shift to online lessons and the adoption of
remote working solutions.

Italy has been among the first countries hit by COVID-19. The first case
was identified in the north of Italy on February 21st, and on the same date, the
Government issued the fist law decree to impose quarantine in small selected
towns. On February 25th, the Government extended the restrictions to impose
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Fig. 4.1 Variations in the mobility patterns in Italy between February and April
2020. Colors mark the days in which new Ministerial Decrees introduced mobility
restrictions. Source: https://www.apple.com/covid19/mobility.

remote working for all public offices, shutting down schools, and classes at
Universities. Restrictions applied to the largest four regions in the north of Italy.
On March 1st, these restrictions were extended to the whole Italy, with further
lockdown actions entering in place on March 4th and 8th. On March 11th, the
“#IoRestoACasa” Prime Ministerial Decree imposed a total lockdown to the
whole Italy. Since then, and still at the time of writing, people are allowed to
exit from home only for specific and urgent needs. Common retail businesses,
catering and restaurant services are suspended. Gatherings in public places are
prohibited. All activities not deemed essential for the Italian production chain
are closed. Italy entered the most restrictive lockdown in its history.

Figure 4.1 clearly depicts the impact of these measures.1 It shows the
variation of the mobility patterns in Italy since the begin of the emergency and
the impact of the restrictions and total lockdown. The vertical bars highlight
the relevant events listed above. The leftmost violet bar identifies the date of
the first COVID-19 case in Italy. The central brown bar identifies the school
shutdown. The rightmost bar marks the date of the “#IoRestoACasa” decree.
The decrease in mobility is drastic after each of those events.

Restrictions limited people’s mobility while remote working, e-learning,
online collaboration platforms started to grow along with online leisure solutions,
like gaming and video streaming. These new habits highlighted the fundamental
role of the Internet. Correspondingly, Internet traffic volume has grown by about

1Source: https://www.apple.com/covid19/mobility

https://www.apple.com/covid19/mobility
https://www.apple.com/covid19/mobility
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40%, sometimes with a decrease in the download performance, questioning the
resiliency of the Internet itself [66, 67].

4.1.1 My Contribution

In this chapter, I analyze the changes in the traffic patterns that are visible
from my university campus, the Politecnico di Torino (PoliTO for short) in
Italy. I look at the campus traffic, focusing on collaboration and remote
working platforms usage, remote teaching adoption, and look for changes in
unsolicited/malicious traffic. PoliTO opted to implement an in-house e-learning
solution based on the BigBlueButton framework to support all the classes of the
second semester, which were scheduled to start on March 2nd.2 The platform
has been designed, installed, and tested during the first week of March, going
live for the starting of the online semester one week later. Here I leverage this
unique point of view to observe changes in the campus traffic and services during
such a singular event. Moreover, I dig into details on how students access online
classes and teaching material. Since students enjoy classes from their homes at
different places, connected by different network operators, I check whether and
how these factors affect the performance of the online teaching systems.

Overall, I highlight a 10 times decrease in incoming traffic during the
lockdown. Outgoing traffic grows instead of 2.5 times, driven by more than 600
daily online classes, with around 16 000 students per day that follow classes.
Online collaboration exploded, with faculty and staff members exchanging more
than 17 000 chat messages and participating in more than 1 000 calls per day.
I observe a surge in remote learning and working also during the weekends.
Considering Internet connectivity, I notice no major problems, with only a few
cases of poor performance, possibly related to people connected via 3G/4G
operators.

In a nutshell, I believe this chapter testifies how the Internet proved able
to cope with the sudden need for connectivity. I attest how remote working,
e-learning and online collaboration platforms are a viable solution to cope with
the social distancing policies during COVID-19 pandemic. While I all hope the

2https://bigbluebutton.org/

https://bigbluebutton.org/
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latter will soon be relieved, I believe the experience of online collaboration will
continue also after the COVID-19 disappears.

This chapter is organized as follows: Section 4.3 describes the datasets
and methodology; Section 4.4 reports a drill-down on the aggregate campus
traffic patterns and online collaboration solutions; Section 4.5 focuses on online
classes; Section 4.6 details network performance metrics, breaking down by
operator and region; Section 4.7 looks into possible changes in unsolicited and
malicious traffic, such as portscans and spam emails; Section 4.2 summarizes
related work; finally Section 4.8 concludes the chapter.

4.2 Related Work

The impact of the COVID-19 epidemic on the Internet ecosystem has been
immediately measured by ISPs, content providers and specialized enterprises
and published in the form of reports, news and blog posts. SimilarWeb, a
company that provides web analytics services for businesses, shows how the
habits of people shifted during the outbreak [68], with some sectors like air
travel, hotels and car rentals witnessing a large reduction of accesses while others
(e-commerce, food delivery, and social networks) increased their popularity.
Microsoft reported a 755% increase in usage of its cloud services [69], while
YouTube and NetFlix reduced the streaming quality in Europe to prevent
overload on the network [70]. CloudFlare and Fastly, two of the largest Content
Delivery Networks worldwide, report a 20-40% increase in daily traffic since the
lockdown in Italy [66, 67], with somehow reduced performance. Considering
ISPs, the surge of network traffic has been testified with public news and blog
articles. Vodafone states that fixed broadband usage has increased by more
than 50% in Italy and Spain [71], with a 100% surge in upstream traffic and
44% for downstream. Telefonica IP networks experienced a traffic increase
of close to 40% while mobile voice use increased by about 50% and 25% in
the case of data [72]. Also European Internet Exchange Points measured an
increase of traffic in the order of 10-40% [73, 74]. Outside Europe, Comcast,
one of the largest US operators, reports a 32% increase in upstream traffic
growth and an 18% increase in downstream traffic growth [75]. In this work, I
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complement the above reports with additional figures showing the impact of
the COVID-19 outbreak on the Campus networks and e-learning facilities.

Considering research papers, specific works targeting the effects of the
COVID-19 pandemic have not yet been published. However, the role of the
Internet has already been studied for the past catastrophic events. Cho et al. [76]
study the impact of the 2011 earthquake in Japan on traffic and routing
observed by a local ISP, while Liu et al. [76] focus on inter-domain rerouting
analyzing BGP data. Zhuo et al. [77] underline the importance of the Internet
during the 2011 Egyptian Revolt, while Groshek [78] finds statistical evidence
that the Internet and mobile phones have helped to facilitate sociopolitical
instability. Dainotti et al. [79] further address this aspect by analyzing the
internet outages due to censorship actions that occurred during the Arab Spring
revolts. Heidemann et al. [80] analyze network outages during the 2012 Sandy
hurricane in the US. Sudden variations of Internet traffic have been observed
also during massive software updates or following the born of new services
(e.g., NetFlix) or protocols (e.g., Google QUIC) [11, 81, 82]. Finally, some
works propose general techniques to study or improve Internet traffic during
disruptive events [83–85]. The events connected with the COVID-19 pandemic
have a global scale and forced an unprecedented number of people to suddenly
change their habits. As such, it is of great interest to study the impact on the
Internet, and this chapter provides an in-depth analysis of the Campus network
traffic before and during the outbreak.

4.3 Datasets and methodology

PoliTO is a medium-sized university that offers bachelor, master and
graduate-level courses in the engineering and architecture fields only. It is
among the top Universities in Italy. PoliTO has about 35 000 students, of
which 30% come from the Piedmont region where Torino is, 55% from other
Italian regions, and 15% from the rest of the world. PoliTO employs about
2 000 faculty and researchers, and around 1 000 administrative staff members.3

PoliTO main campus network hosts all its IT services, and offers both Ether-
net and WiFi connectivity to departments, offices, classrooms, student rooms,

3https://www.polito.it/ateneo/colpodocchio/index.php?lang=en

https://www.polito.it/ateneo/colpodocchio/index.php?lang=en
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and laboratories. Two 10 Gbit/s access links connect the campus LAN to the
Internet, through the GARR (Gruppo per l’Armonizzazione delle Reti della
Ricerca) network, which provides Internet access to all Italian universities.

In the following, I describe the data sources I use to gauge the changes in
the traffic and services hosted at the campus network. If not explicitly said, the
data cover the period from Saturday, February 1st to Sunday, April 5th 2020.

4.3.1 Passive traces

I leverage statistics collected by edge routers to observe and compare the
load on different Italian University networks. This data is stored by GARR in
a central database publicly accessible.4 The repository stores the time series of
the traffic volume on each edge link of the GARR network, with a granularity
of five minutes. In my analysis, I consider PoliTO campus and compare it with
two other large Italian universities for reference, namely Politecnico di Milano
(the biggest technical university in Italy) and Università di Torino.5

While GARR offers only high-level aggregated data, here I also leverage on
fine-grained measurements exposed by the monitoring infrastructure deployed
in the Campus network. Such infrastructure is based on α−MON (Ch. 2,
Ch. 3) that anonymizes traffic entering and leaving the Campus, that is then
captured and analyzed by a passive sniffer called Tstat [62]. It computes flow-
level logs similar to NetFlow, exposing information about TCP and UDP flows
observed in the network. Beside classical flow-level fields, such as IP addresses
and port numbers, Tstat exposes metrics such as Round-Trip time (RTT) and
packet losses. I store Tstat logs in a secured Hadoop-based cluster. All data
collection is approved and supervised by the responsible University officers.

4.3.2 Application logs

In addition to passive measurements, I extract data about servers and
network devices offering specific services and applications that staff members

4https://gins.garr.it/home_statistics.php
5Università di Torino is a separate University which offers degrees on sciences, humanities,

economics, etc.

https://gins.garr.it/home_statistics.php
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may use for smart working. I focus on three classes of services: (i) the tools to
access the internal resources of the Campus while working from home, namely
Virtual Private Network (VPN) and Remote Desktop Protocol (RDP) services;
(ii) the Microsoft Teams collaborative platform, which PoliTO adopted since
2019 to offer chat, file sharing, video calls and collaboration services to employees
and students; (iii) email, antispam and security services. Logs available on the
management consoles offer rich information about the usage of these services
over time and let us study how the adoption of such services varied during the
epidemic.

4.3.3 Virtual classrooms

To face the lockdown during the COVID-19 outbreak, PoliTO opted to set
up an internally-hosted virtual classroom service for all classes. The system is
based on the BigBlueButton framework for online learning, with customization
to integrate it in the existing teaching portal. A total of 41 high-end servers
running the BigBlueButton components and hosted in the Campus data center
were set up in the first week of March. All classes started a week late. The
BigBlueButton client-side application is based on HTML5. It provides high-
quality audio, video and screen sharing application using the browser’s built-in
support for web real-time communication (WebRTC) libraries. In a nutshell,
once the virtual classroom has been set up, BigBlueButton servers act as
WebRTC Selective Forwarding Unit (SFU) capable of receiving multiple media
streams (video, audio, screen sharing, etc.) and deciding which of these media
streams should be sent to which participants. Video is encoded using the high-
quality open-source codec VP8. PoliTO’s setup lets the lecturer choose four
video quality levels with a bitrate of 50, 100 (the default), 200, 300 kbit/s. Screen
sharing may require the highest share of bandwidth, and, if the presenter’s
screen is updating frequently, the BigBlueButton client could transmit up to 1.0
Mbit/s. Audio is encoded using the OPUS encoder at 40 kb/s.6 Finally, sharing
slides takes little bandwidth beyond the initial upload/download of the pdf file.

In my analyses, I collect and process the application logs of the video servers
to study the consumption and performance of virtual classrooms. I also make

6https://docs.bigbluebutton.org/support/faq.html#bandwidth-
requirements

https://docs.bigbluebutton.org/support/faq.html#bandwidth-requirements
https://docs.bigbluebutton.org/support/faq.html#bandwidth-requirements
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use of the logs of the legacy teaching web platforms to study access to the
teaching material like lecture notes, pre-recorded classrooms, etc.

4.3.4 Security monitors

At last, I analyze logs from the campus border firewall that limits the access
towards authorized servers while blocking possibly malicious traffic and well-
known attacks. Since I am interested in remote-working solutions, I check the
firewall for alarms related to SSH, RDP, SIP attacks. Intuitively, I want to
check if the attack patterns changed during the COVID-19 pandemic.

The firewall is configured to let three /24 subnets to be completely open
to the Internet, with no hosts connected to it. These sets of addresses act as
“darknets”, i.e., sets of IP addresses regularly advertised which do not host any
client or server. Any traffic the darknets receive is unsolicited by definition [86].
By passively analyzing incoming packets, I observe important security events,
such as the appearance and spread of botnets, DDoS attacks using spoofed IP
address, etc. I use this information to further quantify if there is any change in
attack patterns to my campus network during the pandemic.

4.3.5 Ethics

In this scenario, re-identification is a problem that must be taken into
consideration: as said previously I took advantage of many sources of data
that may contain critical sensitive information. Since I have full control of
the infrastructure (recall Fig. 1.1 for reference), I can ensure impossibility of
re-identification because all datasets are anonymized thanks to α-MON (Ch. 2,
Ch. 3). Here, application level information are discarded, so the z-anonimity
module is not active: hence I take advantage of anonymization up to transport
level. In this way I handle data without knowing any correlation between
source and action.

Regarding the data collected from external sources, re-identification is not
possible since they are already aggregated.
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4.4 Impact on campus traffic and remote work-
ing solutions

In this section, I analyze the impact of the COVID-19 outbreak on campus
networks. I first provide quantitative figures on the overall traffic volume
changes. Then, I focus on services supporting smart working.

4.4.1 Aggregate traffic volume

I first focus on the volume of traffic entering and leaving three Italian
university campuses. Figure 4.2 shows the average hourly bitrate. For each
hour, I compute the average bitrate seen over five working days. The positive y

values represent incoming traffic (traffic directed to clients and servers hosted
in the Campus LAN), while negative y values report the outgoing traffic (traffic
directed to clients and servers on the Internet). Lines mark the volumes before
and after the lockdown: the black lines depict the average per-hour bitrate
observed during the week before the lockdown (third week of February), the red
ones refer to averages calculated on the second week after the lockdown (third
week of March). For comparison, the figure includes plots for the Politecnico
di Torino (PoliTO) in Figure 4.2a, the Politecnico di Milano (PoliMI) in
Figure 4.2b and the Università di Torino (UniTO) in Figure 4.2c.

Focusing on the positive y−axes, observe how the incoming traffic has
shrunk in the three cases, reflecting the lockdown effects. Since the second
week of March, most students, researchers and staff members cannot access
the campuses. The traffic after the lockdown is about one tenth of the traffic
before it in both PoliTO and UniTO, with PoliMI still observing some sizeable
incoming traffic. This difference reflects the different lockdown policies imposed
by each university. PoliTO and UniTO completely blocked all teaching and
research activities, while PoliMI still allows the activity of some laboratories.

The negative y−axes report the outgoing traffic. Again, the three campuses
present different behaviors: I see a major increase in outgoing traffic from
PoliTO, which is not observed in other campuses. This behavior is justified by
the online teaching platform hosted in PoliTO which causes an increase of about
2.8 times the baseline outgoing traffic during peak time. PoliMI and UniTO
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Fig. 4.2 Traffic from three Italian Universities before and after the lockdown.
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Fig. 4.3 Daily accesses to in-house PoliTO smart working systems.

have resorted to cloud-based solutions, hence the outgoing traffic volume does
not show relevant changes before and after the lockdown.

Takeaway: Campus incoming traffic drastically reduced during lockdown.
Outgoing traffic changed in PoliTO, where an in-house online teaching service
has been deployed. This system caused a massive inversion on traffic patterns,
with significant growth in upload traffic due to online teaching services.

4.4.2 Smart working adoption

I now focus on PoliTO only and drill down on the services used by the
personnel for working remotely.

In Figure 4.3 I show how the number of users relying on VPNs and remote
desktop (RDP) solutions have changed over time. VPNs are used to access
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Fig. 4.4 Daily activity on PoliTO Microsoft Teams systems.

in-campus services and servers, while RDP allows one to remotely access files
or run applications on their office computers. Curves in Figure 4.3 depict the
total number of unique users accessing the services at least once in a day.7 The
effect of the lockdown started on March 11th 2020 is astonishing. Since the
lockdown started, these solutions simultaneously present a relevant increase in
usage. PoliTO offers VPN services both over IPSec and SSL. Interestingly, SSL-
based VPN usage increases significantly more than the IPSec-based solution.
This suggests that the lockdown forced non-expert users to resort to a VPN,
and they have opted for SSL-based VPN, which is easier to configure.

Users working from home also heavily rely on RDP, with about 500 users
contacting such services at least once in a day after the lockdown. Sessions
(not reported for the sake of brevity) last several hours, suggesting that this
remote access method is mostly used for regular working sessions, and not only
to access files on computers left in offices. Notice also the growth in the number
of accesses over weekends, with more than 200 RDP accesses per day. This
suggests that people, forced at home, keep working during the weekend, too.

7VPN accesses are directly extracted from the VPN terminator logs. I identify RDP
connections from Tstat logs, considering TCP flows directed to port 3389 that exchanged at
least 10 MB of data. I count users by their client IP addresses, which I assume to be unique
on a daily basis.
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4.4.3 Remote collaboration

I now move to remote collaboration suites. PoliTO offers all employees
and students free access to the Microsoft Teams platform for smart working.
Running on the cloud, it puts little loads on the campus network. Yet, its
usage provides insights on people’s habits during the lockdown.8 Figure 4.4
summarizes the activity of Microsoft Teams users. It shows the number of
team chat messages (i.e., chat messages to groups), private chat messages, calls
and meetings. In Teams’ jargon, both calls and meetings are online video
conferencing; calls have two participants.9

Each point in Figure 4.4 marks the number of people using each functionality
at least once in a day. Teams was already available but only marginally used in
the campus before the lockdown, with few tens of users per day. As for other
services supporting smart working, its usage explodes during March. Compared
to smart working connectivity solutions – see Figure 4.3 – the growth is slightly
less abrupt, showing that the people resorted first to means to access their
data and office computers, and then to online collaboration tools. People rely
on Microsoft Teams as a means to exchange direct messages – more than 700
daily users sent private chat messages over Teams in the last week of March. In
total, they exchanged more than 17 000 messages per day. Interestingly, video
calls and meetings keep growing as well, topping to 400 users per day, making
more than 1 500 calls per day. Team chat messages instead show a drop in
popularity after an initial surge.

Takeaway: The lockdown has pushed smart working to widespread adop-
tion. Remote services access via VPN and RDP, VoIP communications and
online conferencing suddenly become regular for PoliTO users.

4.5 Online teaching

In this section, I study in detail the fruition and the performance of the
online teaching system deployed at PoliTO. The compelled moving of all classes

8PoliTO staff members are not compelled to use Microsoft Teams, I, therefore, expect
other platforms to show similar significant growth.

9https://docs.microsoft.com/it-it/microsoftteams/teams-analytics-and-
reports/teams-reporting-reference - accessed April 2020

https://docs.microsoft.com/it-it/microsoftteams/teams-analytics-and-reports/teams-reporting-reference
https://docs.microsoft.com/it-it/microsoftteams/teams-analytics-and-reports/teams-reporting-reference
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Fig. 4.5 Daily number of virtual classrooms and connected students (faculties and
students).

to an online solution allows us to evaluate (i) the impact of such a scenario on
the campus networks, (ii) how students accessed these new services, and (iii) if
students suffered any impairment due to limitation in the remote connectivity.

4.5.1 Audience

Figure 4.5 provides a summary of the audience of PoliTO’s online teaching
system. Only March is shown since the university has deployed the system
from scratch to cope with the emergency.

The number of virtual classrooms (black bars) follows the pattern of the
university lecturing schedules, with around 700 virtual classrooms per day. The
drop registered on Thursday of the first week was caused by an outage. More
than 16 000 students connect to at least one virtual classroom on a daily basis.
Considering that around 35 000 students are registered at the university, and
some join a few lectures a day, a large percentage of the community engages in
online teaching each day. The trend on active classrooms and students is stable
over time, suggesting that students and faculty found the virtual teaching
platform appropriate. This is confirmed by the feedback students leave at the
end of each class which sees more than 70% of students giving a feedback of 4
or 5 stars (5 being the highest rating) to the technical quality of the session.

Interestingly, 47% of classes have been followed by students outside Pied-
mont, where PoliTO resides. Some students have indeed returned to their
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home countries or regions before the start of the second semester and could
not return to Torino because of the lockdown. Other statistics show that most
students follow classes using a Windows 10 PC (64.5%) or Mac OS X (14.1%),
and Chrome (71%), Safari (10.1%) or Firefox (9.9%) browser. Yet, 6.2% and
2.4% of students follow the class from an Android or iOS device, respectively.

Takeaway: Engagement in online teaching is impressively high during the
COVID-19 emergency, with a large part of the academic community participat-
ing on a daily basis. Virtual classrooms allowed students to follow classes, with
almost 50% of them connecting from outside Piedmont.

4.5.2 Network workload

How much massive online teaching costs in terms of network traffic? Clearly,
the answer to this question depends on the technical parameters of the online
teaching environment. PoliTO’s infrastructure includes the deployment of
teaching tools for (i) virtual classroom; (ii) on-demand video of pre-recorded
classes (stored as 720p video); (iii) other teaching material (e.g., slides, teachers’
notes, other useful files). The virtual classroom service allows the students to
watch a live video of the lecturer, an optional whiteboard as well as the direct
sharing of the lecturer’s screen. The BBB platform uses dedicated servers
and WebRTC to set up multiple RTP streams that carry the live video and
audio. On-demand video and teaching material are instead offered by additional
servers as standard HTTP downloads.

Figure 4.6a details the traffic volume for each service during the fourth
week of March. The figure reports the average bitrate of the traffic leaving the
Campus – i.e., from the servers to the clients, for each hour. During weekdays,
the total bitrate exceeds 1 Gbit/s, with live streaming of classes responsible for
a bit more than one third of the traffic. During the weekend, when no lecture
is scheduled, I still observe large traffic (up to 750 Mbit/s) due to students
downloading on-demand lectures and teaching material. Virtual classroom
traffic starts and ends within the schedule, while students keep accessing on-
demand classroom and material also at night.

Figure 4.6b shows how the accesses to teaching facilities are distributed
over the day. I take the start time of each student connection to a teaching
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Fig. 4.6 Access pattern to the teaching services.

server and plot the number of new connections observed every five minutes.
Accesses to live classrooms (red solid line) clearly follow the schedule of the
campus lectures, which begin every 90 minutes, from 8:30 AM until 7 PM.
When lectures begin, thousands of students start a new session with the live
classrooms servers, resulting in peaks of more than 4 500 connections. Different
is the case for on-demand classrooms and teaching material (blue and green
dashed lines, respectively), whose consumption is spread over the day. As said
above, students download such material also late in the evenings, including
sizeable accesses even after midnight.

I complement the above picture with Figure 4.7, in which I show different
characteristics of the virtual classroom sessions. Using logs exported by Tstat,
I analyze the RTP streams that serve multimedia content (audio and video)
to the students and report the distribution of the per-flow average bitrate in
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Fig. 4.7 Characteristics of virtual classroom sessions.

Figure 4.7a, separately per audio and video.10 All classes carry an audio track,
with 40 kbit/s average bitrate – the expected VoIP bitrate according to the
BBB configuration. Considering video, I observe that lecturers usually select
the medium quality at 100 kbit/s, but I observe a considerable amount of
streams at 50 kbit/s (low quality) and 200 kbit/s (high quality). Remind that
PoliTO setup allows four quality levels, as explained in Section 4.3.3. In only
10% of the cases, streams reach 300 kbit/s or higher, meaning that ultra-high
quality video and screen sharing are seldom used. In all cases, bandwidth is
not a major problem for BBB, and students need no more than 0.5-1.0 Mbit/s
to enjoy a lecture.

At last, I consider session duration in Figure 4.7b. Half of the streams last
less than 30 minutes, but it is hard to link this short duration to abandonment
by students, as the server could reset multimedia streams for other reasons
(e.g., the lecturer temporarily mutes the microphone, or takes a break during a
class). Interestingly, I still notice two bumps at 1.5 and 3 hours, which are the
typical duration of PoliTO classes.

Takeaway: Live classrooms put a large workload on teaching servers with
significant peaks on scheduled lecture times. Yet, bandwidth is not a major
problem. Students need less than 1 Mbit/s downstream bandwidth to fully

10RTP streams are defined by the combination of endpoint addresses and port numbers,
plus the SSRC stream identifier. I distinguish audio and video using the RTP Payload Type
field.
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enjoy live lectures. Not-live teaching media are heavily consumed also during
evenings and weekends.

4.6 Network performance

I now evaluate network performance metrics to understand whether people
accessing teaching material experience problems to obtain the content. I first
investigate the performance by breaking down data according to the students’
Internet Service Providers (ISPs). Then, I break down figures according to
the geographical region from where students connect. In both cases, I map
their ISPs and regions using the MaxMind datasets.11 Results in this section
are computed by considering the downloads of on-demand video or teaching
material with TCP connections. Both contents are provided through HTTP
bulk transfers and thus constitute a valid download performance test. To
reduce noise, I consider only downloads of objects of at least 10 MB.

4.6.1 Internet Service Providers breakdown

Figure 4.8a shows the distribution of the number of connections according
to the ISPs hosting the client IP addresses. As expected, the largest 4 ISPs in
Italy dominate the list, with TIM grabbing 31% of the connections, followed
by Vodafone, Fastweb and Wind Tre getting 20%-15% of the share. Some
ISPs rely on specific access technologies. For instance, EOLO, Linkem, and
Free Mobile offer Internet over 3G/4G technologies only. Would students using
them suffer eventual impairments?

For this, I check the distribution of download throughput for each ISP.
Violin plots in Figure 4.8b depict results. Each violin plot represents the
probability density function of the average per-flow throughput; White dots
mark the median values of distributions. I sort providers by this median. Most
flows experience average throughput higher than 5 Mb/s. For example, the
median on Fastweb customers (a provider offering mostly fiber access solution)
is as high as 10 Mbit/s. Figures for 3G/4G-only providers are, instead, below
5 Mbit/s, thus pointing to possible client-side impairment (e.g., congestion).

11https://www.maxmind.com/

https://www.maxmind.com/
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Fig. 4.8 Access to teaching servers per ISP. Only flows larger than 10 MB are
considered.

Figure 4.8c provides more insights. The violin plots depict the distributions
of the minimum RTT which Tstat computes by measuring the time between
a data segment and its corresponding acknowledgment. RTT is impacted
(i) by the physical distance from clients to servers, (ii) by access technology
delays and network congestion, and (iii) Internet routing. Notice how the RTT
distribution is very condensed for Fastweb (median at around 20 ms). On the
other extreme, wireless-only providers have widespread distributions, with a
median over 40 ms, and peaks above 100 ms (see Free Mobile as the clearest
example). Figure 4.8d extends the analysis showing a per-flow comparison of
RTT versus throughput for two providers. The low RTT for the (fiber-most)
customers on Fastweb comes together with a large throughput. The more
variable 3G/4G network on Free Mobile results in higher and more distributed
RTT and lower throughput. In extreme cases, very large RTT values together
with very low throughput are symptoms of possible network congestion.
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Fig. 4.9 Access to teaching material per Italian region. Only flows larger than 10
MB are considered.

Takeaway: Despite the variability of results, the very large majority of Ital-
ian ISPs can easily meet the roughly 1 Mbit/s required to enjoy live-streaming
classes. Only a few customers, in particular those relying on 3G/4G access
technologies, may suffer large delays and limited throughput with potential to
disturb the user experience.

4.6.2 Geographical characteristics

I repeat the performance analysis considering the geographical region from
where students connect to the online teaching system. Students in some
countries12 are reported to have problems following online lectures due to
poor Internet connectivity. Whereas I cannot measure the number of students
suffering from a total lack of connectivity, I can estimate whether PoliTO’s
students and faculty experience different performance when connecting from
different regions of Italy.

Figure 4.9 visually reports the number of flows per Italian region. Again, I
consider only connections downloading at least 10 MB. I can see that people
have connected to the teaching system from all Italian regions. Naturally, a
larger number of connections is seen for Piedmont, where PoliTO is located –

12https://www.theguardian.com/commentisfree/2020/mar/23/us-students-
are-being-asked-to-work-remotely-but-22-of-homes-dont-have-internet

https://www.theguardian.com/commentisfree/2020/mar/23/us-students-are-being-asked-to-work-remotely-but-22-of-homes-dont-have-internet
https://www.theguardian.com/commentisfree/2020/mar/23/us-students-are-being-asked-to-work-remotely-but-22-of-homes-dont-have-internet
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the region marked in dark-blue in northwestern Italy. Still, significant numbers
of students are seen in other regions, allowing us to make fair comparisons.
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(b) Download throughput distribution

Fig. 4.10 RTT and throughput distributions (flows larger than 10 MB) per Italian
region.

Figure 4.10 compares performance metrics for connections coming for the
several Italian regions. I use violin plots once again, and sort regions in
the x−axes from the best to the worst median value for the metric in each
plot. Figure 4.10a presents the distributions of RTT. Here physical distance
is expected to play a key role. Yet, interesting patterns emerge. First, note
that connections from Latium (the region where Rome is located) typically
experience lower RTT than connections from Piedmont. This is an artifact
due to Internet routing: Most Internet providers peer with GARR via Internet
exchanges in Rome or Milan. This aspect causes routing detours that artificially
increase RTT for all regions, but Latium and in part Lombardy. Second,
whereas southern regions are penalized by their distance to PoliTO, much
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noisier RTT distributions are seen for some northern regions. Observe, for
example, that Veneto and Emilia-Romagna, two economically strong regions in
northern Italian, have a large portion of connections with larger RTT than the
median connection from Sicily (an island in southern Italy). This reflects again
the different mix of access technologies and Internet routing of ISPs.

Figure 4.10b depicts distribution of the average connection throughput. I
can see a large difference in throughput for the different regions. Connections
coming from the best-performing regions have median average throughput twice
as high as the regions with the lowest figures. Observe how some regions with
large median RTT, such as Sicily and Friuli-Venezia-Giulia, still present good
throughput figures. These results suggest that their large RTTs are mostly
due to physical and routing distances rather than congestion. In some cases,
large RTT variations, such as those observed for Veneto, are coupled with low
throughput figures, which result in low Internet quality for a sizeable percentage
of customers.

Takeaway: While some people reported limited Internet performance due
to traffic increase after COVID-19 lockdown [66, 67], my data show that overall
performance is still good to access online teaching. Physical/routing distance
has little impact in general, with Internet access technology that is still critical
for flow performance.

4.7 Security events and unsolicited traffic

Finally, I check events visible from PoliTO’s network security monitoring
solutions. My goal is to gauge evidence of possible changes in malicious network
activities during the lockdown.

In Figure 4.11 I report the variation on the number of events reported by the
university firewall per week. The first week is taken as a reference. The three
most common events are shown, namely scan/brute-force attacks against SIP,
RDP and SSH. The numbers for SIP and SSH show little variation throughout
the weeks. These small variations are in line with the normal operations of
this firewall. For RDP, some significant changes appear in the week of March
16th. Indeed, the number of RDP events reported by the firewall has more
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Fig. 4.11 Variations in the number of events reported by the university firewall
between February and March 2020.

than doubled in the first week of lockdown. Recall that many RDP servers
were enabled during that week for easing smart working. Yet, this increase is
a consequence of the deployment of the new systems and would happen even
without the lockdown. As potential attackers have found new RDP servers
online, they perform more scanning and brute-force activity against these nodes,
too. The posterior decrease in RDP events is explained by changes in the
firewall setup, performed to limit such scan activity.

A close inspection of traces of the darknet deployed at PoliTO leads to
similar remarks. Figure 4.12 shows the variations in the number of packets
reaching the most contacted ports of the darknet. Traffic reaching the darknet
is always noisy and great variations are normally seen when new large-scale
Internet scans are performed [86]. I observe precisely this typical pattern during
the weeks of lockdown as during any other period of time. I indeed observe
episodes of sudden increases for some particular ports (e.g., port TCP/23 used
by Telnet). However, there is no evident correlation among these variations
and the lockdown itself.

At last, I check the load on email servers, but I omit figures for brevity.
I observe a clear decreasing trend in SPAM emails. While the trend seems
more prominent during March, the decrease has started months before. Again,
there is no evidence that the reduction in SPAM would be a consequence of
the lockdown.
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Fig. 4.12 Variation in the darknet traffic between January and March 2020.

Takeaway: I observed little changes in unsolicited traffic, SPAM email
and other security-related events. There are no clear signals that the most
significant events are a consequence of the lockdown.

4.8 Conclusions

To mitigate the spread of the COVID-19 pandemic, the world issued severe
restrictions like social distancing and lockdown measures. This forced people
to change their habits and pushed them to online services for learning, smart
working and leisure, generating an unprecedented load on the Internet. Since
March 11th and still at the time of writing, Italy is facing a total lockdown,
with 80-90% of people forced to stay at home.

In this chapter, I took the perspective of the Politecnico di Torino campus,
analyzing the changes in traffic patterns due to the lockdown measures and the
switch to online collaboration and e-learning solutions. I observe that incoming
traffic drastically decreased, while outgoing traffic has more than doubled to
support online learning.

Remote working and online collaboration exploded as well, with hundreds
of staff members using the Microsoft Teams collaboration platform, VPN and
remote desktop services to keep working from home. Since then PoliTO’s in-
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house e-teaching infrastructure is serving more than 600 daily classes to more
than 16000 students, generating peaks of 1.5 Gbit/s of traffic. I also looked for
eventual impairment suffered by students using different ISPs, or connecting
from different regions. Results show that the campus and the Internet have
proved robust to successfully cope with challenges and maintain the university
operations.
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Chapter 5

DPI Performances Evaluation
for Live Applications

Starting from this chapter, I will shift my attention to the aspects of network
measurements that are more related to Cybersecurity by describing the right
box (red) of the infrastructure depicted in Fig. 1.1 and the related datasets
obtained. The first step consists in revisiting the concept of Deep Packet
Inspection, useful for the construction of a system of Smart Honeypots. In
this chapter I present DPI Solutions in Practice: Benchmark and Comparison
presented in IEEE Security and Privacy Workshops (SPW) [87].

5.1 Introduction

The Internet is a continuously growing ecosystem composed by diverse
protocols and applications. The rise and spread of smart devices, video-
conference platforms as well as the continuous appearance of sophisticate cyber-
attacks keeps changing the characteristics of traffic observed in the network.
Understanding protocols that are carrying specific flows in the middle of such a
variety of traffic has always been essential for multiple applications, in particular
for those supporting network security like firewalls and IDS.

Deep Packet Inspection (DPI in short) has been the dominant approach to
perform protocol recognition, showing effectiveness in several traffic monitoring
scenarios. DPI parses traffic payload searching for signatures that characterize
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the protocols. Indeed, many DPI solutions do exist and still find important
applications, despite the increasing usage of encrypted protocols. DPI is
particularly useful in cyber-security scenarios, such as for intrusion detection
systems, firewalls and other tools supporting security (e.g., flexible honeypots).
The timely identification of a broad range of protocols remains a key first
step in the security use case, calling for accurate, efficient and up-to-date DPI
solutions. Yet, previous efforts providing an independent evaluation of DPI
are already aged [88] or leverage on restrict traffic traces, which questions the
applicability of such results to practical scenarios.

5.1.1 My Contribution

I revisit the question on the quality of DPI-based protocol identification.
I select and evaluate four popular, open source projects implementing DPI,
namely nDPI [89], Libprotoident [90], Tstat [46] and Zeek [91]. I first study
their classification using passively captured traces, covering a wide range of
scenarios, i.e., traffic produced by IoT devices, collaborative platforms/video-
calls, malware, as well as production Internet traffic. Establishing a ground-
truth is challenging when dealing with such diverse traces composed by dozens
of protocols. I here evaluate the consistency of the classification provided by
the tools, relying on heuristics and domain knowledge to validate the decision
of each tool when finding conflicting cases.

After that, I investigate whether the DPI solutions operate consistently when
exposed to a limited number of packets per flow. Indeed, network applications
usually perform protocol identification on-the-fly using the initial packets of
each flow, in order to take timely decisions. For this, I investigate the number
of packets per flow each solution needs to reach a decision, as well as the
consistency of such decisions as more traffic is observed. The goal of this is
to understand if and which DPI solutions are able to operate in a streaming
environment and be incorporated into active network traffic capture systems.

My results show that:

• All tested solutions perform well when facing traces with well-established
protocols. This is particularly true for popular protocols that account for
the majority of production traffic;
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• Some DPI solutions struggle when facing unusual events, such as massive
scans or malware traffic;

• All tested tools reach a final decision already after observing the first
packets with payload in a flow;

• nDPI outputs labels more often than others, and it usually agrees with
the majority when tools diverge about the protocol of a flow.

To foster further research and contribute to the community, I share my code
and the instructions to build the complete datasets used in my experiments.1

Next, Section 7.2 summarizes the related work. Section 5.3 introduces
my datasets and methodology. Section 5.4 describes the results, and finally
Section 5.5 concludes the chapter.

5.2 Related Work

DPI has been applied to protocol identification since the early 2000s, when
the usage of well-known ports for traffic identification turned out to be unreliable.
Multiple approaches have been proposed. Some works rely on “shallow” packet
inspection [92], i.e., they parse only packet headers in the search for protocol
fingerprints. Such techniques still find practical applications, as encryption
protects protocol payloads. Others propose efficient approaches for DPI, e.g.,
using pattern matching [93] or finely-tailored DPI algorithms [94]. Finally,
some works rely on stateful information from multiple flows to label traffic, e.g.,
leveraging the DNS to obtain the labels used to classify encrypted traffic [46].

Many DPI tools have been introduced implementing such techniques. Here
I consider four alternatives, which have been evaluated by original authors
in [90, 89, 91, 95]. In contrast to them, I perform an independent evaluation of
the tools, thus providing also a validation of the authors’ results.

Past works compare DPI solutions. Authors of [96] perform an extensive
benchmark covering port-based classification, packet signature algorithms etc.
In [97], authors survey approaches to overcome the lack of ground truth in

1https://smartdata.polito.it/dpi-in-practice/

https://smartdata.polito.it/dpi-in-practice/


86 DPI Performances Evaluation for Live Applications

Fig. 5.1 Testing methodology.

such studies. In some cases manual labelling of packet captures is used for
DPI comparisons [98], while other works rely on active measurements to enrich
captures with information about underneath applications [99–101].

Closer to my analysis is the work presented in [88], where authors also
provide an independent comparison of DPI solutions. In contrast to [88], I
leave out of my evaluation proprietary tools and libraries, since the lack of
source code makes it hard to explore and explain discrepant results. I also
refrain from evaluating tools no longer maintained. More important, I provide
an updated comparison of DPI tools considering recent and real traces, thus
covering scenarios not evaluated in the previous work, with a particular focus
on modern security applications.

5.3 Datasets and Methodology

Fig. 5.1 summarizes my methodology. I describe the DPI tools selected
for testing (Sect. 5.3.1). Then, I build up a set of traces covering different
traffic scenarios (Sect. 5.3.2). Next I process the traces with the DPI tools. As
matching the obtained labels requires ingenuity, I perform several steps and
build up heuristics to find discrepancies on the final classifications (Sect. 5.3.3).

5.3.1 Selection of DPI Tools

I restrict my analysis to DPI tools that perform protocol identification
(e.g., HTTP, TLS, SSH etc.), ignoring those aiming at the identification of the
services generating traffic (e.g., Google, Facebook etc.) [102, 103]. Namely, I
focus on the following four alternatives:



5.3 Datasets and Methodology 87

• nDPI [89] is an open-source DPI library written in C and based on dissec-
tors, i.e., functions that detect the given protocols. It is an OpenDPI [104]
fork optimized for performance and supports more than 100 protocols.

• Libprotoident [90] is a C++ library that focuses on L7 protocols. It
applies a lightweight approach that uses just the first 4 bytes of payload.
The idea is to overcome drawbacks of DPI, i.e., computational complexity
and privacy risks. The library combines pattern matching with algorithms
based on payload sizes, port numbers and IP matching. It supports over
200 protocols.

• Zeek2 – formerly Bro [91] – is a complete framework for traffic analysis that
also allows L7 protocol recognition. It exploits a combination of protocol
fingerprint matching and protocol analyzers. It currently supports more
than 70 protocols.

• Tstat [46] is a passive traffic monitoring tool that classifies traffic flows.
It identifies a set of L7 protocols using payload fingerprint matching. It
supports over 40 protocols.

Recall that I ignore projects no longer active. In particular, I leave L7-
filter out since it has been shown to produce unreliable results in more recent
scenarios [98]. Equally, I ignore proprietary alternatives, given the intrinsic
difficulty to evaluate the root-causes of conflicting results without access to
source codes [89]. Finally, I do not evaluate tshark3 as it has proved much
slower than the alternatives.

5.3.2 Selection and pre-processing of traces

I consider four scenarios to compare the DPI alternatives, including not
only common internet protocols, but also protocols encountered by security
applications.

I select 421 different PCAP traces that are aggregated in four macro-
categories: (i) User, which includes ordinary browsing activity of ISP users

2https://zeek.org
3https://www.wireshark.org/docs/man-pages/tshark.html

https://zeek.org
https://www.wireshark.org/docs/man-pages/tshark.html
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while at home; (ii) Media & Games [105–107] that includes conference-calls,
RTC applications, multimedia and gaming traffic; (iii) Malware [108], which
aggregates several samples of malware4 and security experiments;5 and IoT [109,
110], captured in different labs hosting a variety of IoT devices. I include
both traces captured in my premises and third-party traces available on public
repositories. Traces cover multiple years, and total more than 143 GB of PCAP
files. For brevity, I do not provide details of each PCAP file here, instead
describing only the aggregated macrotraces. To allow others reproduce my
results, I link the public PCAP files.6

I need to match flows as defined by each DPI tool for comparing their
performance.7 However, tools employ different rules for defining and exporting
flow records. For example, each tool uses various timeouts to terminate flows
that become inactive. Equally, traffic flags (e.g., TCP FIN and RST flags) are
possibly used to identify the end of flows, releasing memory in the traffic monitor.
The way such rules are implemented differs and, as a consequence, tools identify
and report different numbers of flows. Thus, I need ingenuity to compare results.

Table 5.1 summarizes the number of flows reported by each tool. I see major
differences, e.g., Zeek usually identifies more flows than Tstat, even when
configured with similar timeouts. This happens because of the way midstream
traffic and incomplete flows are processed by the tools.

Most of the cases creating discrepancies are however not interesting for my
analysis, since they usually refer to flows that carry no payload. Indeed, a
lot of flows without payload is present in particular for the Malware traces
due to internet scanning traffic. These flows cannot be evaluated with DPI.
As such, I perform a pre-processing step using Tstat as reference to keep
in the final macrotraces only complete flows, i.e., UDP flows with payload
and TCP flows with complete three-way handshake. All remaining flows are
discarded. Whenever possible, I set the tools with similar timeout parameters
for the experiments that will follow. I next normalize results ignoring the small
percentage of flows that are not revealed by tools other than Tstat to avoid

4https://www.malware-traffic-analysis.net
5https://www.netresec.com/?page=PcapFiles
6https://smartdata.polito.it/dpi-in-practice/
7I use the classic 5-tuple definition for a flow: Source IP address, destination IP address,

source port, destination port and transport protocol.

https://www.malware-traffic-analysis.net
https://www.netresec.com/?page=PcapFiles
https://smartdata.polito.it/dpi-in-practice/
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Table 5.1 Flows exported by the different tools before the pre-processing.

Macrotrace Tool Flows
TCP UDP

User Traffic

Tstat 681 k 1.1 M
Libprotoident 678 k 1.1 M
nDPI 543 k 1.1 M
Zeek 804 k 1.2 M

Media & Games

Tstat 15 k 16 k
Libprotoident 15 k 14 k
nDPI 10 k 21 k
Zeek 17 k 16 k

Malware

Tstat 858 k 979 k
Libprotoident 858 k 993 k
nDPI 891 k 1 M
Zeek 1242 k 971 k

IoT

Tstat 118 k 50 k
Libprotoident 118 k 51 k
nDPI 120 k 62 k
Zeek 119 k 52 k

artifacts related to the way flows are expired or terminated. At last, I keep only
the first 20 packets per flow in the final macrotraces to speed-up the analysis
(see column “Filtered”). I will show later that all tested tools achieve a final
protocol classification using a small number of packets per flow. As such, this
pre-processing step does not impact results.

Table 5.2 Macrotraces characteristics with pre-processing results.

Macrotrace
Flows PacketsTCP UDPComplete Ignored Original Filtered

User 440 k 241 k 1.1 M 118 M 10.1 M
Media&Games 11 k 4 k 16 k 81 M 2 M

Malware 392 k 466 k 979 k 33 M 26 M
IoT 39 k 79 k 50 k 5 M 2 M

I report a summary of the final macrotraces in Table 5.2. I show the number
of packets and flows reported by Tstat, with the latter split as TCP and UDP.
For TCP flows, I detail the number of complete and ignored flows.
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Table 5.3 Label standardization

Standardized
Label

Original
Label

p2p p2p, edonkey, emule, ed2k, cacaoweb,
kademlia, bittorrent, torrent

netbiosSmb netbios, smb, smb2, nbns
krb krb, kerberos, spnego-krb5spnego
dns dns, llmnr, mdns
sslTls ssl, tls
skype skype, skypetcp
ldap ldap, cldap
quic quic, gquic

Table 5.4 Example of flow label constistency and score.

Flow ID Tool Reference
Label ScoreTstat Libprotoident nDPI Zeek

1 krb krb krb krb krb 1
2 unk unk unk unk unk 1
3 krb unk krb krb krb 0.75
4 unk unk krb krb krb 0.5
5 unk unk unk krb krb 0.25
6 unk sip unk p2p conflict 0
7 krb krb p2p p2p conflict 0

In total, my final macrotraces include more than 3 M flows, and 40 M
packets after all pre-processing steps are applied.

5.3.3 Matching flow labels

We need some ingenuity to normalize the output of the tools and compare
their classifications. First, we normalize all labels, e.g., using always lower case
and removing special characters. Then, we manually verify the output strings
to identify possible synonyms used across tools. Table 5.3 reports a subset of
labels that require manual standardization. In total we manually evaluated
225 labels, replacing cases such as those in the right column of Table 5.3 by a
single common label (left column).
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Next, we face the question on how to determine the label for each flow in
absence of ground truth. Indeed, the lack of ground truth has pushed most
of previous works to resort to testbeds or emulated traffic that we want to
avoid [97]. We thus decide to focus on the consistency of different tools, i.e.,
we assume that the most common normalized label assigned to a flow is the
reference label for such flow, and calculate a confidence score for each decision.
In case of conflicts, we manually verify each case.

Table 5.4 reports examples of classification, along with the per-flow con-
fidence score. The easiest cases happen when there is an unanimous decision
towards the same protocol (e.g., Flow 1) or towards the unknown label (e.g.,
Flow 2). Both decisions result in a score equals to 1. When at least one tool
is able to recognize the protocol, we ignore the unknown labels and pick the
recognized label as reference label. Yet, our confidence score is lower in this
case, e.g., see Flow 5. It rarely happens (e.g., Flow 6) that all tools recognize
a different protocol, or there is a draw (e.g., Flow 7). Some of these cases have
been solved by inspecting the source code of the DPI tools, e.g., giving pref-
erence to labels found by pattern matching over those guessed based on port
numbers or other heuristics. The few cases we could not resolve are ignored,
with confidence score equals to zero.

Finally, once the reference labels are defined, we calculate performance met-
rics for each tool. We consider the following metrics: (i) accuracy, the percent-
age of flows with label matching the reference; (ii) precision (per protocol), the
percentage of such flows that match with the reference; and (iii) recall (per pro-
tocol), the percentage of such flows the tool has classified as the given protocol.

5.4 Results

I show a summary of the identified flows per tool and I summarize the clas-
sification performance in the several scenarios. Next, I discuss the performance
in terms of the number of packets required to reach a steady classification, and
briefly discuss computational performance of tools.
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Fig. 5.2 Percentage of labelled flows for each tool. The last bar in the plots reports
percentages for my reference label.

5.4.1 Labelled flows per protocol

Fig. 5.2 shows a break-down of the number of labelled flows reported by
each tool. Four plots depict results for the different macrotraces. The last
bar on each plot reports the percentage of flows given by my reference label,
i.e., the label selected by the majority of tools. Each figure reports the most
common lables in order of popularity.

In the User Traffic case (top-left plot), Tstat shows the best performance,
reporting labels for around 85% of the flows. All the libraries recognize popular
protocols (e.g., HTTP, DNS and TLS), but Libprotoident, nDPI and Zeek fail
to recognize some P2P traffic, thus leaving a larger number of flows marked as
unknown. Yet, notice how the number of unknown flows is small for the reference
label – i.e., flows marked as unknown by Tstat are recognized by others.

In the Media & Games case – Fig. 5.2b – all tools recognize close to 80%
of the flows. This trace is mostly composed by HTTP, DNS and TLS traffic,
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Fig. 5.3 Average per flow confidence score for the top reference labels.

which are well recognized by all tools. The reference label reports again a lower
percentage of unknown than each single tool, showing potential for achieving
higher classifications by merging the output of different tools.

The analysis of the Malware macrotrace – Fig. 5.2c – leads to worse numbers
for all cases. The percentage of labelled flows ranges from 66% to 70%. Here the
presence of UDP scans towards multiple ports impact results. Manual inspection
shows the presence of payload that matches the fingerprints of scan UDP attacks
against certain IoT devices. None of the tools is able to identify the protocol of
this malicious traffic, calling for specialized DPI approach in security use cases.

In the IoT case – Fig. 5.2d – nDPI is the best performing, labelling almost
all flows. Tstat is penalized by the lack of fingerprints for NTP, STUN and
SSDP. All in all, most flows in this trace are labelled by at least one tool (see
the reference label bar).

Finally, I evaluate the average confidence scores for different protocols. With
this analysis, I aim at identifying protocols for which the tools demonstrate
high consistency. Fig. 5.3 shows the average scores for flows labeled with one
of the top-20 protocols considering all four macrotraces. Common protocols
such as TLS, HTTP and NTP are recognized with an average score higher or
equal to 75% (left side of the figure). That is, such protocols are consistently
identified by at least three tools on average. As I move to less popular labels,
the confidence scores reduce significantly. Indeed, the score is reduced to around
25% for Netbios, QUIC and SSDP (right side of the figure). In other words,
only one tool outputs a label for flows carrying these protocols, with others
marking flows as unknown.
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5.4.2 Classification performance

I next quantify the percentage of flows classified by each tool as well as
their classification performance in respect to the reference labels. Results are
presented in Tab. 5.5. I highlight in bold the best performing tool per trace
and metric.

Consider the first row group in the table. It reports the percentage of labelled
flows, summarizing the results presented in the previous section. As said, Tstat
reports more labels for the User Traffic scenario, thanks to its abilities to spot
P2P flows. nDPI instead reaches the largest percentages in the other scenarios,
thanks to its capabilities to guess labels based on multiple heuristics.

Considering accuracy (second row group), I see numbers similar to those for
labelled flows across all scenarios. That is, the overall accuracy (with regards to
the reference labels) is driven by the percentage of unknown flows reported by
each tool. Yet, some particular cases can be noticed, such as minor differences
between nDPI and Libprotoident in the Media & Games Macrotrace. These
minor mismatches arise from cases in which one of the tools, although capable
to label the given flow, disagree with the label given by the majority. As I see
in the table, these cases are rare and indeed confirm that once tools labels a
flow, the provided label is usually reliable.

Zeek wins when it comes to the average precision per protocol (third row
group), almost always reaching 100%. That is, when Zeek recognizes a protocol,
its label matches the reference. Yet, Zeek suffers in terms of average recall
(fourth row group), due to its limited set of labels. Libprotoident, on the other
hand, reaches the highest average recall per protocol in most scenarios, which
can be explained by its large set of labels, with over 200 protocols. nDPI
shows balanced numbers for both precision and recall per protocol. nDPI find
a good number of labels (high recall) that usually match with the reference
(high precision).

5.4.3 How many packets are needed for DPI?

I analyze the performance of tools while limiting the number of packets per
flow. This test has been performed by cutting off each flow after observing
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Fig. 5.4 Average accuracy when increasing the number of packets per flow. Tools
reach a final classification already in the first packet with payload.

its n first packets with payload, i.e., ignoring initial TCP handshake packets.
Flows composed by n or less packets with payload are kept untouched. The
goal is to evaluate the number of packets needed to reach a final classification,
and whether labels change as more packets are observed.

Fig. 5.4 shows the resulting average accuracy among all macrotraces. Clearly
results do not change when increasing the number of packets, and all tools reach
an almost steady classification after just one packet. Some tools (e.g., nDPI)
increase accuracy further after observing the second packet with payload, but
gains are marginal. This result is particularly relevant, as DPI tools are often
used for real-time identification of protocols on security applications. Note that
nDPI has average accuracy slightly superior than others, with Libprotoident
and Tstat coming next.

Finally, I also controlled the performance of the tools in terms of memory
fingerprint and processing time. Here a general conclusion is hard to be reached,
since the tools are delivered for different target scenarios. For example, the
basic installation of Zeek runs as multiple processes, prepared to handle several
Gbps. Libprotoident and nDPI are libraries that can also be integrated in
simple demonstration programs. In my tests, all tool, but Zeek, present similar
performance figures when processing a single PCAP at a time.
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Table 5.5 Summary of classification results.

Metric Library Macrotrace

User
Traffic

Games
&

Media
Malware IoT

Labelled
Flows

Tstat 0.85 0.77 0.67 0.73
Libprotoident 0.69 0.86 0.66 0.89
nDPI 0.63 0.86 0.70 0.98
Zeek 0.40 0.78 0.66 0.89

Accuracy

Tstat 0.85 0.77 0.67 0.73
Libprotoident 0.69 0.82 0.66 0.85
nDPI 0.62 0.79 0.70 0.98
Zeek 0.40 0.78 0.66 0.89

Average
Precision

Tstat 0.99 0.87 0.98 1
Libprotoident 0.96 0.91 0.99 0.80
nDPI 0.93 0.89 1 0.99
Zeek 1 0.97 1 1

Average
Recall

Tstat 0.71 0.62 1 1
Libprotoident 1 0.89 1 0.94
nDPI 0.82 0.78 1 1
Zeek 0.66 0.62 0.97 0.79

5.5 Conclusions

I presented an evaluation of DPI solutions in several traffic scenarios,
comparing the consistency of their classifications. The tools are practically
equivalent when the input traffic is composed by popular and well-known
protocols (e.g., HTTP, DNS and TLS). When applied to complex scenarios,
such as to traffic generated by Malware scans, DPI tools struggle. I also
observed discrepancies on the classification of less popular protocols, with some
protocols being supported by only one of the tools. In sum, there is space
for improving these DPI tools by extending their label sets. Interestingly,
tools reach steady-state classification after one packet, suggesting they can be
exploited in online scenarios, as described in the next chapter (Ch. 6).



Chapter 6

Augmenting Darknet Capabilities
through Smart Honeypots

In this chapter I will use what was discussed in the previous chapter for
the development and analysis of an innovative Honeypot system, presenting
Enlightening the Darknets: Augmenting Darknet Visibility with Active Probes,
currently under evaluation at IEEE Transactions on Network and Service
Management [111].

6.1 Introduction

Darknets or network telescopes are IP addresses advertised by routing
protocols without hosting any services. They have been used for years as passive
sensors in a variety of network monitoring activities and research projects [112–
115]. Traffic reaching a darknet is inevitably unsolicited. Therefore, it is helpful
to highlight network scans (both from malicious and legitimate scanners),
backscattering (i.e., traffic received from victims of attacks carried out with
spoofed IP addresses), and traffic due to bugs and misconfigurations [113].

To increase the visibility of attackers’ activities, honeypots allow researchers
to obtain more information about events on darknets [116–119]. Honeypots
are active sensors that collect information by responding to unsolicited traffic.
The goal is to engage with potential attackers using simulators that replicate
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the basic functions of real systems (low-interaction honeypots) or actual live
systems deployed in controlled environments (high-interaction honeypots).

Darknets and honeypots are complementary: the former provides a broad
but shallow view of scanning activity; the latter provides deeper insights into
specific attack patterns. A combination of the two cases could enrich the type
of information currently being gleaned from darknets while providing broad
coverage and deep insights. Darknet traffic is known to change significantly,
not only in the IP address space, but also due to production services hosted
“near” the darknet’s address space [120, 121].

6.1.1 My Contribution

I present my efforts to systematically and quantitatively compare different
levels of interactive responders that I deploy within different portions of my
darknet address space. I consider the following four types of sensors: (i)
Darknet, silent listeners that capture received traffic; (ii) L4-Responders, which
complete the TCP handshake and store all possible application layer requests
sent by clients; (iii) L7-Responders, low-interaction honeypots that mimic
specific application protocols on their usual and known ports; (iv) DPIpot,
a novel responder that identifies the application protocol used by the sender
regardless of the destination port.

I design two experiments to observe how senders1 interact with the respon-
ders. In the first setup, I activate the responders in a /24 darknet, while keep-
ing a second /24 network as a pure darknet. I run this setup for months and
observe the traffic that each sensor attracts over an extended period of time.
In the second experiment, I first turn off all responders to measure the effects
of darkening a network with active services. After 15 days, I turn on respon-
ders in my second /24 darknet, measuring the transient effects of deploying
active responders in a darknet.

My goal is to revisit and update some well-known facts about darknet
deployments and add new and fresh insights that highlight the advantages and
disadvantages of alternative response strategies. Summarizing my key findings:

1I call sender hosts contacting my darknet, e.g., attackers, scanners, etc.
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• I quantify Side-Scan phenomena where a node hosting a service receives
more traffic for other services and ports. Unlike [120], which observes
similar patterns in CDN nodes, I quantify how the type of service hosted
in the darknet critically affects Side-Scan.

• Activating responders leads to an increase in traffic on darknet neighboring
IP addresses too. The joint use of active responders and passive darknets
increases the visibility of sender patterns and improves the understanding
of phenomena and attacks.

• L4-Responders and L7-Responders increase the visibility of darknets, as
reported in [122, 116]. However, the lack of a wide range of application-
level responders limits interaction and traffic visibility compared to my
multiple L7-Responders and DPIpot.

• DPIpot decouples services from ports, shedding light on activities directed
to non-standard ports, offering a rich picture that is unseen in other
deployments. As a side-effect, it may “trap” senders on some particular
activities, slowing them. This trade-off shows how passive and interactive
deployments are complementary.

• I observe several scanning patterns that senders employ to discover hosts
and services in a network. I document how fast hosts become the target
of in-depth activity from multiple senders once found online by some
initial scanners. Conversely, senders keep coming back (for weeks) to IP
addresses that once hosted active responders.

In addition to these analyzes, I provide the complete set of responders
used in my analysis as open-source software. I release DPIpot to foster its
development and use. I also make the data analyzed in the following sections
available online in anonymized form to allow for reproducibility.

I provide an overview of related work (Section 7.2), explain my methodology
(Section 6.3), and describe macroscopic traffic characteristics (Section 6.4). I
examine the changes in different deployments (Section 6.5) and the benefits
of DPIpot (Section 6.6). Finally, I observe what happens when I darken and
lighten a network (Section 6.7), before concluding the chapter (Section 7.6).
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6.2 Related work

6.2.1 Darknet research and infrastructure

Darknets have been employed for years in various network monitoring and
research activities [112]. Examples include the study of (i) DDoS attacks [119,
123, 124], (ii) IPv4 address space usage [125], (iii) Internet censorship [126],
(iv) large-scale internet scanning [127, 115, 128], and (v) botnets and malware
proliferation [117, 129].

In terms of infrastructure, previous efforts have characterized the differ-
ences between centralized and sparse implementations, size, and location of
darknets [112, 114]. Several actors maintain darknet infrastructures, including
the decades-old CAIDA/UCSD [130] project, darknets operated by major net-
work operators [113, 114], and other projects run by universities and security
companies worldwide [118, 121, 131–134].

Recent work [120] used servers from Akamai’s Content Delivery Network
(CDN) to study unsolicited traffic. Unlike a traditional darknet, CDN nodes
provide public services and thus receive and process production traffic. Never-
theless, all TCP/UDP ports that do not host production services can be reached
by unsolicited traffic. The authors show that production servers attract un-
solicited traffic that is quite different from the traffic observed in an ordinary
darknet. I extend these findings by uncovering and investigating different de-
ployment combinations and services. Although my deployment is based on
honeypots and thus lacks components of a production environment, I show
that the combination of services exposed in a host is important and shapes the
mix of attacks and noise that targets it.

Similar to my methodology, authors [122] propose Spoki, which completes
TCP handshakes in the darknet to record the first payload sent by scanners.
The authors of [116] present eX-IoT, IoT honeypots deployed in darknets.
Spoki is similar to my L4-Responders, while eX-IoT is a new category of
L7-Responders. My methodology includes multiple functions beyond Spoki
and eX-IoT, including multiple categories of L7-Responders and a new DPIpot
that performs deep packet inspection (DPI) on-the-fly to decide how to respond
to scanners. I show that advanced responders shed light on a new wave of
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scanners and attackers that are not visible in a pure darknet or when using a
single responder type such as in [122, 116].

6.2.2 Honeypot systems and analysis

I study the impact of deploying active services on the darknet using hon-
eypots as responders. Honeypots have been used in the security activities
for years, with well-established projects such as the Honeynet Project [135]
and TPot [136] providing several alternatives. Previous works on honeypots
have covered many aspects, such as (i) introducing new honeypots that tar-
get specific protocols or services [137, 138], (ii) evaluating the effectiveness of
different types of honeypots [139], and (iii) presenting techniques to detect
honeypots[140, 141]. Readers are invited to review the survey at [12], which
provides a broad overview of honeypot research.

Some authors present a general characterization of honeypot traffic, focusing
on the origin of attacks, the targeted services, and the frequency of attacks
(e.g., [142, 143, 138, 144, 145]). A recent work [146] compared the use of
honeypots in different geographic locations. Another work [147] allocated
unused addresses in a cloud for honeypot deployment. I revisit these efforts
here evaluating the deployment of honeypots compared to what is observed
in dark spaces. In addition, I review how measurements from different active
responders differ from (and influence) measurements collected in darknets.

My DPIpot leverages DPI to decide how to respond to incoming traffic.
This setup allows attacks on non-standard ports to be detected. Some meta-
honeypots allow flexible configuration of backends to handle traffic on non-
standard ports [148, 149, 136]. Most of these systems act as proxies (at various
levels) logging the traffic forwarded to the backend. However, they lack DPIpot
mechanisms to identify traffic on-the-fly for a variety of protocols.

Honeytrap [150] is the closest honeypot to DPIpot. Honeytrap is a meta-
honeypot that performs protocol identification. However, it implements only a
limited number of protocol fingerprints. Honeytrap supports about 26 services
and provides the ability to extend the set of protocol identification rules.
DPIpot instead relies on a state-of-the-art DPI library (nDPI [151]), which is
widely used in other network applications and provides hundreds of protocol
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Fig. 6.1 Infrastructure overview. The infrastructure is divided from no interaction
(Darknet) to the highest level of interaction (DPIpot).

fingerprints. In fact, I compared different DPI solutions in 5 and concluded
that nDPI provides the best coverage and precision for DPIpot.

6.3 Methodology and datasets

6.3.1 Infrastructure

Fig. 6.1 schematically represents my measurement infrastructure. Unso-
licited traffic that reaches my dedicated address space is routed – totally un-
filtered – to one of my four deployments that correspond to different levels of
interactivity:

1. Darknet: IP addresses that just receive traffic without responding to any
packet;

2. L4-Responders: responders that complete the TCP three-way handshake,
capture eventual application requests from clients, but never respond to
an application message;

3. L7-Responders: honeypots that mimic popular application layer ser-
vices. I use state-of-the-art honeypots to simulate well-known services;
L7-Responders act as vertical responders that only interact on standard
protocol ports, exposing the related emulated service;
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4. DPIpot: my novel responder that performs L7 switching of requests using
DPI. It decides on-the-fly which protocol to use, and responds to TCP
connections on all TCP ports. Unlike L7-Responders, DPIpot decouples
the default TCP ports from the application protocols.2

Note that none of my deployments respond to UDP or malformed TCP packets
to prevent abuse (see ethical concerns in Section 6.3.5).

For the L7-Responders deployments, I rely on the honeypots organized and
distributed by the TPot project [136]. I activate honeypots to handle a range
of popular application protocols. TPot offers a collection of third-party low-
interaction honeypots, i.e., programs crafted to simulate a vulnerable service
communicating over a given L7 protocol. Most of my L7-Responders offer
login interfaces only [152], registering the brute-force attempts against services
(e.g., RDP, POP3 and IMAP). Some L7-Responders rely on more sophisticated
honeypots, e.g., simulating a vulnerable server accessible via SSH/Telnet [148],
or serving pages that mimic actual services accessible over the web [153]. I
defer the reader to the documentation of TPot for details.

My L7-Responders offer vertical services only: They are deployed behind the
standard TCP ports of the given service, e.g., the HTTP honeypot is deployed
on port TCP/80 whereas the Remote Desktop Protocol (RDP) honeypot
responds on port TCP/3389. To investigate the impact of responding to traffic
arriving on other ports, I implement and deploy DPIpot. DPIpot listens on
all TCP ports. On receiving a new TCP connection request, it completes the
three-way-handshake and waits for the first message from the client. Then it
analyzes the payload looking for the application-layer protocol. DPIpot relies
on nDPI [151]. This choice gives us a flexible system that supports hundreds
of protocols, which is far more than in previous projects [150]. If a known
protocol is found and one of the L7-Responders can handle it, DPIpot directs
traffic to such backend; otherwise it acts like L4-Responders. Note that DPIpot
can identify and direct traffic only in cases that are client initiated, i.e., where
the client sends the first application-layer message. Otherwise, it behaves like
L4-Responders– e.g., in telnet or SMTP, where the client waits for the server
banner before attempting to log in.

2To avoid resource starvation, L4-Responders and DPIpot implement active and inactive
timeouts dropping active (idle) connections after 60 s (10 s).
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Both my L4-Responders and DPIpot are implemented in Python using the
Twisted framework [154]. My architecture (see Fig. 6.1) is intrinsically dis-
tributed, and Twisted is scalable. However, as I will show later, the deployment
of responders increases the traffic reaching the darknet by orders of magnitude.
To prevent abuses, I thus intentionally limit the capacity of my infrastructure
(see Section 6.3.5).

6.3.2 Data capture and processing

I isolate one /23 network to perform experiments with my multiple deploy-
ments – i.e., darknet, L4-Responders, L7-Responders or DPIpot. My setup is
deployed in /16 campus network (at Politecnico di Torino, in Italy) that hosts
servers and clients. My infrastructure captures all packets hitting the /23 dark-
net. I use tcpdump and store all traces on a high-end server to generate sepa-
rate logs for each deployment. 3

I here characterize the traffic focusing on TCP flows, defined by the usual
5-tuple (client/server IP addresses, client/server ports and transport-layer
protocol). A new flow starts when a SYN segment is received, and it terminates
after the connection is closed (in case of the active responders) or an idle
time. I annotate each flow with useful metadata and statistics, including the
application protocol identified by nDPI, if any L7 payload is present.

According to the capabilities of each responder, I identify different flow
stages:

• SYN: Flows for which I observe only the SYN message(s), eventually re-
transmitted by the client multiple times; This is the most common case
on darknets, but it happens also on the blocked ports of other deploy-
ments or when a responder is unable to cope with the workload;

• 2WH: Incomplete three-way handshake, where the client ignores (or resets)
the SYN/ACK message, as in the case of stealth-SYN port scans;

3In this case I forego using high performance tools like α-Mon or DPDK, as I deal with
much lower throughputs.
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Table 6.1 Deployments and protocols. Each row refers to the traffic of 8 IP addresses
during my first capture period (from 15/04/2021 to 16/06/2021). For direct compar-
ison, I report numbers only for the 8 first addresses in Darknet Ext.

Deployment Category Addr. Category: Port Category: Application Flows Flows with
L7 Payload

Sender
Addr.

DPIpot All 136:143 0:65535 All below 1927 M 1207 M 133 k
Mail 128:135 25, 110, 143, 465, 993, 995 pop(s), imap(s), smtp(s) 4 M 71 k 120 k
Terminal 120:127 22, 2222∗, 23, 2323∗ ssh, telnet 10 M 5 M 139 k
Fileserver 112:119 135:139, 445 netbios, CIFS 11 M 6 M 119 k

L7- Remote Desktop 104:111 3389, 5900, 5901, 5800∗, 5801∗, 5938∗, 6568∗ ms rd, vnc, teamviewer, anydesk 13 M 7 M 122 k
Responders Database 96:103 3306, 33060∗, 1433, 4022∗, 1434∗, 5432∗, 27017 mysql, mssql, postgres, mongodb 4 M 212 k 121 k

Proxy 88:95 8080, 8000∗, 3128 generic, squid 5 M 43 k 121 k
Web 80:87 80, 443 http(s) 4 M 93 k 127 k
All 72:79 All above All above 32 M 23 M 157 k
Mail 64:71 25, 110, 143, 465, 993, 995 - 4 M 36 k 123 k
Terminal 56:63 22, 2222, 23, 2323 - 6 M 546 k 123 k
Fileserver 48:55 135:139, 445 - 5 M 1 M 120 k

L4- Remote Desktop 40:47 3389, 5900, 5901, 5800, 5801, 5938, 6568 - 6 M 546 k 147 k
Responders Database 32:39 3306, 33060, 1433, 4022, 1434, 5432, 27017 - 4 M 356 k 123 k

Proxy 24:31 8080, 8000, 3128 - 5 M 38 k 123 k
Web 16:23 80, 443 - 4 M 59 k 131 k
All 8:15 0:65535 - 13 M 6 M 146 k

Darknet Int – 2:5;176:179 0:65535 - 4 M 0 125 k
Darknet Ext – 2:5;176:179 0:65535 - 4 M 0 111 k

(∗) Ports that are forwarded to the L7-Responders, even if the backend (i.e., TPot) does not host any
honeypot. The L7-Responders reset the connection in these cases, as opposed to the darknet (which never
responds to traffic) and the L4-Responders (which always try to open a connection request).

• 3WH: Client and server complete the TCP three-way handshake, but
exchange no payload – this is expected in L4-Responders and DPIpot
when clients wait for servers to initiate the conversation;

• L7 payload: Client and server open the TCP connection and exchange
some application-layer messages.

In addition, I record malformed TCP messages, e.g., SYN/ACK likely arriving
due to backscattering or other packets with bogus TCP flags, as well as any
other protocol (UDP, ICMP etc). These cases are however not discussed in the
chapter, but included in the public traces I release to the community.

6.3.3 First experiment: Deployments and categories

I perform two experiments. In the first round, I record traffic for two
months, from the 15th of April to the 16th of June 2021. This capture starts
several months after the deployment of the active responders, thus representing
a picture of a stable deployment of active responders in a darknet.

In this first experiment, I split the /23 network into two /24 networks. One
/24 network hosts no service and operates as a classic darknet, hereafter called
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Darknet Ext – see Tab. 6.1. Unless explicitly mentioned, all results referring to
my first experiment and using a darknet as baseline rely upon this Darknet Ext.

Then, I split the other /24 addresses in groups of 8 IP addresses. I deploy
several categories of responders inside this single /24 as reported in Tab. 6.1 (see
the third column). Some host L4-Responders and L7-Responders and respond
to 8 specific service categories, 8 for L4-Responders and 8 for L7-Responders.
Each category defines which services the responder supports. I configure the
responders to receive and handle only traffic that arrives to ports typically
hosting services belonging to such category, silently dropping packets arriving
on other ports. I create categories for database, file, mail, proxy, remote
desktop, terminal, and web services. I report all ports opened for each category
on Tab. 6.1, together with some typical applications relying on such ports. I
also create an extra category denoted as All, for which I accept all traffic going
to any port. In the case of the all category in L4-Responders, I perform TCP
handshake for flows arriving in any TCP port. For the L7-Responders category
denoted as All, I pass all traffic to the TPot backend, regardless on whether
there is a honeypot active on that port or not. If no honeypot is present, the
backend explicitly resets the connection.

I devote 8 IP addresses to host DPIpot, which responds in all ports. It
performs DPI on the arriving packets to identify the most appropriate responder
based on the payload, and eventually forwards traffic to a honeypot offered by
TPot.

The remaining IP addresses in the /24 hosting the active responders act as
darknet. I select 8 of these IP addresses and call them Darknet Int.

6.3.4 Second experiment: Deploying and removing re-
sponders

I perform a second experiment to assess the transient impact of activating
and shutting down responders in the darknet. I start by shutting down all
active responders on the 25th of January 2022, thus letting the complete /23
to behave like a darknet. This allows us to observe whether (and how) senders
continue to search for the responders after they are removed from the network.
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Table 6.2 IP allocation in the fresh deployment of active responders.

Deployment Category Addr.
Darknet4 – 192:255
DPIPot All 184:191
Darknet3 – 128:183
L7-Responder All 120:127
Darknet2 – 64:119
L4-Responder All 56:63
Darknet1 – 0:55
Darknet∗

ext – –

(∗) Darknetext in this experiment is equivalent to Darknet Int in Tab. 6.1.

On the 9th of February 2022, I light up fresh responders in the /24 that
previously served as darknet (Darknet Ext). This /24 had been used as darknet
for many years before the start of my experiments. As such, it allows us to
observe the speed senders discover new services as well as all transition steps
from a darknet IP address into an active responders.

I deploy L4-Responders, L7-Responders, and DPIpot using 8 IP addresses
for each deployment, which are distributed in the /24 network as reported in
Tab. 6.2. In this experiment I use only the All category for L4-Responders
and L7-Responders. The deployment is instrumental to maintain an equally
spaced set of dark IP addresses between each group of active responders. This
would let us measure whether the placement of active responders impacts the
neighboring addresses.

6.3.5 Ethics

I take several countermeasures to restrict the impact of my measurements
on third-party networks. First, and most important, I never send packets if my
packets may worsen the position of attack victims. In particular, I never send
UDP traffic, as it could make my infrastructure part of DDoS attacks relying on
spoofed addresses and amplification techniques. For the same reason, I silently
drop all TCP packets with SYN/ACK flags and other malformed flows, as they
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may arrive from victims of DDoS attacks with spoofed addresses. Responding
to such packets may help the attackers to overload the victims’ networks.

The traffic I observe may come from infected machines that are taking
part in botnets. As previously said, I explicitly limit the capacity of my
infrastructure to avoid creating too much traffic for the networks hosting such
infected machines. The setup discussed in this chapter can comprehensively
sustain at most some few Mbps of traffic upstream, which is far insufficient to
overload remote networks.

Finally, IP addresses sending traffic to my infrastructure may uncover
vulnerable computers exploited by attackers [155]. I take all measures to protect
such IP addresses. I anonymize addresses in the datasets I release publicly. I
also collaborate with my security team and my upstream providers, actively
notifying about novel attacks and senders.

6.4 Macroscopic changes in traffic

I report a high-level characterization of the different deployments aiming
to answer the following question: How much extra information one would get
when some IP addresses inside a darknet actively respond to incoming traffic?

For easy comparisons, I restrict my analysis to 8 addresses per deployment.
I focus on those addresses in the all category in the case of L4-Responders
and L7-Responders, and get 8 addresses from Darknet Ext and Darknet Int
(see Tab. 6.1). Here I focus on my first experiment setup, and whenever not
explicitly mentioned I report statistics for the first month of my dataset to easy
visualization.

6.4.1 Breakdown per flow stage

Fig. 6.2 reports the number of flows received in each deployment, breaking
it down per flow stage. The left plot details the number of flows (notice the
y-log scale) while right plot details the share in each deployment.

Darknets observe a large majority of TCP SYN messages, with a few UDP
and bogus TCP segments (about 8% of the total). As soon as I start replying



6.4 Macroscopic changes in traffic 109

SYN 2WH 3WH L7 payload Other

x 1.0 x 1.04
x 3.20

x 7.16

x 418

(a) Flows (notice the y-log scale)

Darknet
Ext

Darknet
Int

L4-R
esp

onder

L7-R
esp

onder

DPIp
ot

0

25

50

75

100

P
er

ce
n
ta

g
e

o
f

fl
o
w

s
(b) Traffic share in the deployment

Fig. 6.2 Flows reaching different deployments. Numbers inside the left plot mark the
increase in respect to Darknet Ext.

with the L4-Responders, the number of flows grows by a factor of 4 compared
to the darknets4 (cfr. Tab. 6.1). Although my deployment shall perform the
full 3-way handshake, a small portion of flows remain in the SYN stage, i.e.,
connection requests to which my L4-Responders deployment cannot reply due
to short-term congestion. Interestingly, 35% of the flows terminate at the 2WH
stage, most likely corresponding to “TCP-SYN scans” (also reported in [122]).
About one forth of the open TCP flows carries no payload, i.e., likely host
discovery actions performed with a “TCP-connect scan”.

Consider now the L7-Responders. the number of flows doubles again. The
SYN stage flows are now about 7%. Part of this traffic is again caused by the
limits I impose on my infrastructure. However, as I will see later, once I respond
to traffic in some ports, more scans are observed in other ports too. This effect
increases the number of SYN-stage flows. Naturally, I observe a strong increase
of L7 payload flows, which are now about 72% of the total.

Moving to DPIpot, it attracts 3 and 2 orders of magnitude more flows than
the darknet and the L7-Responders, respectively. The number of flows grows
to billions – about 70 times more than in the L7-Responders, and 600 times

4Other subsets of darknet addresses yield a stable number of flows
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SYN 2WH 3WH L7 payload Other

Fig. 6.3 Number of flows per deployment. Each bar in the figure reports numbers for
a single IP address of the several deployments.

more than in the darknets. Here I see around 40% of cases finishing on SYN
stage, which correspond to periods in which my deployment hits it capacity.

It is worth commenting that the share of Other traffic remains similar in
all deployments. This suggests that responding to TCP traffic as I do in my
deployments does not stimulate senders to generate packets using UDP/ICMP.

Fig. 6.3 reports the number of flows observed for each IP address selected for
this analysis. Here, I see that the number of flows reaching each deployment is
well-divided among the IP addresses belonging to the given deployment. Little
variations are seen for the L4-Responders, where a couple of sources contribute
with large-scale attempts against two L4-Responders IP addresses.

More interesting, the number of unique sources contacting each deployment
changes considerably (see numbers in the last column of Tab. 6.1). Differences
are visible between Darknet Ext and Darknet Int. In fact, IP addresses belonging
to Darknet Int attract thousands of sources more than those in Darknet Ext.
I conjecture that this behavior is a consequence of the presence of active
responders in the same /24 subnet. Once sources find services in a subnet, they
search for services in the neighbour addresses. I will investigate this in more
details in Section 6.7.
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Finally, L4-Responders, L7-Responders and DPIpot attract more senders
than the darknets. In sum, deploying active responders sheds light on new
scanners and attackers that would not be uncovered with simple darknets.

6.4.2 Temporal evolution

Darknets and honeypots are known to receive variable traffic over time.
Fig. 6.4 reports the average per-hour number of flows received by each deploy-
ment (All category). Here I report time-series covering the full 2-month dataset
of my first experimental setup. Notice the y-log scale. As expected, the darknet
is steadily the least contacted deployment with a few hundreds of flows per hour
on average, except during sporadic scans hitting the address space [113, 119, 121].
Both L4-Responders and L7-Responders show a noisier pattern over time, again
with small episodes of increases. The DPIpot registers much more variable fig-
ures. For instance, flows per hour top to more than 1 million on May 7th to
suddenly vanish on May 12th. I will detail this case in Section 6.6.3. As said
above, these episodes bring DPIpot to the limits I impose on the infrastructure.

Takeaway: The number of flows grows by orders of magnitude with
increasingly interactive responders. Vertical honeypots attract many times
more flows than darknets. DPIpot pushes this increase further thanks to its
ability to respond to application traffic on non-standard ports. This growth
creates temporal bursts of traffic that challenge the deployment itself and calls
for protection mechanisms to avoid collapsing the infrastructure and biasing
the collected data.

6.5 Ports and senders

I have observed the effects of answering darknet traffic in terms of traffic
volume. I now assess changes on traffic patterns along two axes: the targeted
services and sender IP addresses. This section answers the following question:
How the presence of active services changes the behaviour of the groups of
senders and of contacted services?
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Fig. 6.4 Temporal evolution of the number of flows.

For this analysis I again rely on my first experimental setup, i.e., long-run
assignment of address to active responders.

6.5.1 Changes on probed ports

The traffic volume is expected to vary over the exposed ports. Already in a
darknet, well-known ports are expected to be more frequently contacted than
others. Fig. 6.5 reports the number of flow per port for the different deployments.
Here I see interesting effects of deploying the active responders. Common for
darknet, L4-Responders and L7-Responders, senders concentrate their interest
on well-known ports below 1024. On the contrary, DPIpot attracts much more
flows on very uncommon ports (notice the y-log scale). Investigating the L7
payload, these flows are related to Remote Desktop Protocol (RDP), hinting
for a specific attack (I investigate this in Section 6.6).

In detail, focus on the darknet (black plot on the left). While some ports do
receive a much larger share of traffic as expected, scanners cover the whole port
range. This confirms how darknets are effective to observe senders performing
horizontal scans, i.e., doing host-discovery.

When I start responding to requests, the picture drastically changes. For
instance, the top ports in the L4-Responders account for more than 60% of
the flows. This percentage grows to more than 70% in L7-Responders. See
how the number of flows increases for low, well-known ports in Fig. 6.5-b and
Fig. 6.5-c. That is, once a target is discovered, senders activate the next stages
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Fig. 6.5 Number of flows per destination port for the four deployments. The presence
of different active responders changes the observed traffic per port.

of scans or attacks. Interesting, senders contacting L4-Responders skip some
ports starting from port 27 000 (the number of flows goes below 1 in the y-log
scale). Curiously, notice the continuous group of ports [35000 : 38000] where
senders again check all ports. For the sake of completeness, note that few ports
go unchecked also in L7-Responders.

I observe a completely different picture for DPIpot. Some hundreds of ports
get millions of flows, and the remaining ports gets some uneven distribution of
traffic. Unlike the darknets and L7-Responders, more than 15 000 ports never
received any flows, similarly to the L4-Responders case. Recall that, for both
L4-Responders and DPIpot cases, all ports result open during port scans. I
conjecture that either senders get trapped performing activities on the found
open ports, or they are more cautious and abort (or time out) scans after
finding a high number of open ports.



114 Augmenting Darknet Capabilities through Smart Honeypots

DPIpot

L4-Responders (ALL)

L7-Responders (ALL)

Darknet

Fig. 6.6 Fraction of flows per sender IP address.

Takeaway: Active responders in some ports engage senders, which activate
the next stage in their scans or attacks. This increases the traffic and sometimes
challenges the monitoring infrastructure. Enabling all ports traps senders in
some activities, possibly limiting/biasing their activity.

6.5.2 Changes on traffic senders

We now investigate changes seen in the set of senders contacting the de-
ployments. We start by highlighting the last column of Tab. 6.1. The number
of unique senders varies substantially across the deployments. In fact, senders
increase by around 40% in the L7-Responders when compared to the Dark-
net Ext. Even more interesting Darknet Int, i.e., those IP addresses hosted in
the same subnet with the responders, observe around 12% more senders than
the pure darknet subnet.

We dig into the behavior of these senders in Fig. 6.6. It reports the
cumulative fraction of flows from each sender. The x-axis reports (in log scale)
the rank of sender IP addresses according to the volume for each deployment.

In the darknet, the three most active senders generate 40% of flows. These
are well-known scanners reported multiple times in blocklists. The top-10 most
active senders are responsible for 63% of the flows. Some of them are always
active. Some senders probe at high rate (hitting 20 000 flows per hour) and
disappear. We also observe a tail of more than 63 000 IP addresses. This tail
is inline with previous work [113] that shows darknet traffic is dominated by
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(a) Darknet (b) DPIpot

Fig. 6.7 Activity pattern of top-1000 sender IP addresses. Each row corresponds to a
sender IP address.

bugs and misconfiguration, with only a minority of senders actually performing
scans and attacks. Flows are more distributed across senders in L4-Responders
and L7-Responders, with the top-10 accounting for 20% and 32% of traffic,
respectively.

The figure is completely different in DPIpot where the top-10 most active
senders account for 95% of the flows. These senders are involved in RDP abuses
observed on non-standard ports. They generate millions of flows per hour,
triggering our rate limiting countermeasures.

Fig. 6.7 offers a visual representation of the activity of the top-1000 most
active senders over time. Each row corresponds to an IP address. A dot is
present if that IP address is active in that hour. We register the presence of
senders that are active most of the time and the continuous arrival of new
senders. For instance, a group of 200 new senders appears in the day 20 in
the darknet. These senders are likely bots that perform a coordinated scan
reaching our address space. In general, we can distinguish different patterns:
some senders are persistent, while others keep coming back periodically. A few
senders interact only for some time before disappearing and never coming back.
The latter is more visible in Fig. 6.7b for DPIpot.

We complement the analysis in Fig. 6.8, where we investigate scan patterns
performed by the top-100 most active senders. We show only darknet for
brevity. The x-axis reports the destination port of flows, sorted by value. Each
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Fig. 6.8 Top-100 senders vs. destination port. Addresses are sorted numerically.

row refers to a single sender IP address. A dot is present if that IP address
sends a flow to such port. The darker the color, the larger the number of flows.

For readability, we highlight some patterns with colors. First, some few
horizontal scanners are visible (cyan). These senders check all ports, even in
the darknet. Second, we observe some vertical scanners (green) - i.e., senders
that sends lots of packets for few ports. Third, some senders cover a large set of
continuous ports, covering a subset of all ports (dark blue). All these patterns
are seen for other deployments too, which however show yet other behaviors.
For example, besides the horizontal scanners, DPIpot allows us to observe
very targeted scans on few ports, i.e, vertical attacks, and a large numbers of
coordinated scanners, i.e., groups of senders that target the same few ports
simultaneously. This has been confirmed in [156]: it leverages embeddings to
discover common sender patterns.

Takeaway: The presence of active responders attracts a new wave of
senders, which target also the addresses remaining dark in the subnet. Most of
traffic comes from few thousand senders that are involved either with vertical or
horizontal scans and attacks. Unlike vertical honeypots, DPIpot lets us observe
scan patterns where also non-standard ports get the attention of attackers.
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Fig. 6.9 Amplification factor for the most targeted ports.

6.6 Amplification of service-specific deploy-
ments

I now focus on the extra information different responders offer compared to
darknets I consider my first experiment.

Here, I answer the questions: Does the presence of specific services attract
traffic to other services? What happens when one deploys services on non-
standard ports?

6.6.1 Service amplification

To quantify the extra traffic per deployment, I define the amplification
factor as the ratio between the number of flows seen on a given port(s) for the
8 IP addresses of a specific deployment, and the number of flows directed to
the same port(s) on the 8 IP addresses belonging to the Darknet Ext.

First, I run a preliminary test to verify whether the amplification factor
changes when comparing IP addresses belonging to the same deployment. For
this, I take all groups of 8 sequential IP addresses (/29 subnets) in the Darknet
Ext and compute – for each destination port – the amplification factor for each
group pair. Not reported here for brevity – the distribution of the amplification
factors is centered between 0.9 and 1.1. I therefore consider significant any
amplification factor outside this range.
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Fig. 6.9 shows the amplification factor for some selected ports. I identify
five major behaviors, which I label with capital letters and for which I provide
two examples per category:

A Invariant (around 50 000 ports): the traffic reaching these ports does not
change significantly from the darknet to the other deployments. Ports
like 2 000 and 6 379 receive only port scan attempts, whose volume does
not change when responders are present;

B Homogeneous (around 13 000 ports): senders find possible services on
some open ports. These open ports trigger senders to contact several other
ports on the host – e.g., ports 2 375 and 2 323 in the figure. However, for
these ports, senders do not send any L7 payload - e.g., because waiting
for servers to initiate the exchange. Here, L7-Responders and DPIpot
behave just like L4-Responders;

C L7 client-initiated (around 500 ports): these are clear cases of open
services on default ports with client-initiated protocols, e.g., SSH and
RDP on ports 22 and 3 389. Both L7-Responders and DPIpot are effective
to engage with the senders. Since frequent attacks are present, we observe
very large amplification factors. L4-Responders are less interesting for
the senders, with reduced amplification factor;

D L7 server-initiated (around 10 ports): open services on default ports
for which the senders expect the server to initiate the L7 exchange. In
this case, the L7-Responders vertical honeypots are more effective, while
DPIpot behaves as the L4-Responders, e.g., on SMTP and SMB on ports
25 and 445, respectively;

E Large-scale attacks on non-standard ports (around 1 500 ports): Senders
discover services on non-standard ports and perform attacks. Only
DPIpot, the only one able to identify the L7-protocol, let us quantify
such behavior. In particular I have witnessed an extensive RDP attack
on multiple non-standard ports, resulting in around 1 500 ports for which
DPIpot amplification grows to almost 1,000.

Takeaway: Different deployments amplify different behaviors. Overall,
the obtained information clearly grows from case A) to case E). The latter is
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Table 6.3 Amplification for L4-Responders and L7-Responders. Cases in which no
amplification is observed are marked with a hyphen.

L4-Responders
DB File Mail Proxy RD Terminal Web Others

DB 15.4 4.3 – – – – – –
File 1.6 42.0 – – – – – –
Mail 1.5 4.1 6.5 – – – – –
Proxy 1.5 4.2 – 2.7 – 1.2 – 1.2
RD 1.5 4.2 – – 21.2 1.6 – –
Terminal 1.5 4.1 – – – 9.3 – 1.3
Web 1.5 4.2 1.4 1.2 – 1.3 8.1 –

L7-Responders
DB File Mail Proxy RD Terminal Web Others

DB 9.3 3.9 – – – – – –
File 1.6 116.3 – – – – – –
Mail 1.5 3.6 9.6 – – – – –
Proxy 1.5 3.8 – 2.8 – – – 1.2
RD 1.5 3.8 – – 254.9 – – –
Terminal 1.5 3.6 – – – 46.6 – 1.2
Web 1.5 3.8 1.2 1.2 – 1.2 5.3 –

particularly interesting, showing effects of performing traffic analysis on non-
standard ports. DPIpot leads to the discovery of active attacks on non-standard
ports, otherwise unseen with darknets or L4-Responders. A simple darknet
would offer a much limited view overall.

6.6.2 Targeted services and Side-Scans

So far I evaluated responders that support All services at the same time. I
now check what happens if I partition responders so that they behave as ver-
tical services. I consider L4-Responders and L7-Responders, with categories/-
ports/applications defined in Tab. 6.1. For each category, I compute the ampli-
fication factor with respect to the corresponding categories/ports/applications
in darknet addresses.

Tab. 6.3 summarizes results. For each vertical deployment, I report the
amplification factor only when significant. Rows report the category of the de-
ployment while columns report the corresponding categories in the Darknet Ext
as reference. As expected, activating specific services attracts the attention of
senders on them (see main diagonal, in bold). L4-Responders suffice to observe
more traffic, but L7-Responders clearly generate much more interaction. Ex-
ceptionally, L4-Responders see higher amplification factor than L7-Responders
in some cases (e.g., DB). This is likely a consequence of my lack of honeypots
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Fig. 6.10 Amplification factor for selected deployments. β marks cases of Side-Scans.

in the L7 backends (see Tab. 6.1). In this case, while L7-Responders reply with
an uninteresting response (reset the connections), the limitation to the TCP
handshake offered by L4-Responders further engages the senders.

I observe also significant amplification factors on services for which the
deployment does not answer, i.e., where I drop the SYN packets. Regardless of
the deployment, once senders find an IP address that is alive (i.e., hosting a
popular service), they target other ports in the DB and File categories. The case
of the Web category is particularly interesting: when a service is found active
on ports typically hosting HTTP services, senders apparently start targeting
multiple other services/ports on the same host. I refer to this phenomenon as
Side-Scan activity.

Fig. 6.10 reports some of the most relevant Side-Scans.

α) marks the well-known (and open) ports for the category. Here as expected
I get significant amplification factors, with L7-Responders getting significantly
more traffic than L4-Responders for some honeypots.

β) marks those Side-Scan ports that suddenly get targeted - despite being
blocked for the particular deployment. These are the ports senders target in
vertical attacks/scans triggered by a different category. For instance, when
opening ports of the Mail category (plot in the left-hand side), I observe
significant amplification factors on ports (445, 1 433), which are usually used
in File and DB services. I see curious Side-Scans also on ports (7 001,8 088).
Similar effects can be seen for the Remote Desktop category.

More expected, ports (2 222, 2 323) are often used as alternative ports for
terminal services – and senders Side-Scan these ports when finding standard
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Table 6.4 Top-5 protocols recognized in DPIpot.

Protocol Flows Sender
Addr.

Dest.
Ports

% of Flows on
Standard Ports

RDP 329 652 678 1 415 28 333 0.8
HTTP 444 715 13 705 9 381 6.2

TLS 221 565 2 806 11 999 4.6
SSH 119 698 1 097 187 72.9

MsSQL-TDS 31 596 3 193 448 92.6

terminal ports open (right most plot). Ports (8 728, 8 291) are known to be
vulnerable services in old versions of software routers. I observe frequent “door-
knocking” attempts: the sender checks port 22 first; if open but no banner is
offered, they check ports (8 728, 8 291). L7-Responders do offer a banner on
port 22. Thus, flows on ports (8 728, 8 291) are smaller than in L4-Responders
that offers no banner on port 22 [157].

Finally, γ) exemplifies some ports that remain invariant, i.e., they are neither
the initial target, nor reached in Side-Scans. Most ports fall in this class.

Takeaway: I observe high amplification in both L4-Responders and
L7-Responders. Deployments targeting a particular service uncover Side-Scans,
which vary according to the service exposed and the behavior of the responder.

6.6.3 DPIpot additional visibility

We now dig into DPIpot data to check the Side-Scan phenomena in this
case. Tab. 6.4 shows that DPIpot observed a vast majority of RDP flows - with
1 415 senders generating more than 330 M flows in one month. These senders
target more than 28 thousand ports, with the standard port 3 389 accounting
for only 0.8% of flows. This behaviour is also seen in Fig. 6.5 and Fig. 6.6 where
the IP addresses involved in this attack dominate the traffic DPIpot collects.

DPIpot lets us observe also other popular protocols like HTTP, TLS and
SSH, with multiple senders targeting thousands of ports. Some of these attacks
focus mostly on the default port - like SSH or MsSQL-TDS where 72.9% and
92.6% of the flows are to the default ports.

To check how senders choose the port to probe for a given protocol, Fig. 6.11
details the most popular target ports for some L7 protocols. Start from the
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Fig. 6.11 Flows percentages on top-10 ports for DPIpot and different L7 protocols.

HTTP case. Port 9 results as the most popular port. This is a Side-Scan
performed by an Internet mapping project of the University of Michigan, which
targets port 9 (about 30 000 flows) and 7 (about 50 flows only), sending bogus
HTTP requests [158]. This scan activity would likely go unnoticed on traditional
honeypots. Besides this curious scan, DPIpot recognizes HTTP requests on
non-standard ports that it correctly handles. Given the popularity of solutions
based on HTTP protocol, it is not surprising to see senders probe open ports
with HTTP requests.

Move to SSH now. Here, most flows target port 22. Yet, the senders
check other ports where system administrators may move the SSH service, e.g.,
8422, 8522, 18522. This behavior suggests a targeted Side-Scan where senders
generate the port to target with some domain-driven algorithm. The Side-Scan
using the MsSQL-TDS protocol is even more vertical. Most of the attacks are
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Fig. 6.12 Flows per port (RDP). Zoom on first 300 ports in inner axis.

directed to the default port 1443, but some few requests go to port 102, likely
trying to abuse some Microsoft Exchange service.

At last, the RDP case is worth more details. RDP has become a viable
solution for malicious hosts for installing ransomware [159] via attacks that
start with password brute-force [160] as well as a common backdoor [161].

Thanks to DPIpot, we observe 1 415 senders performing password brute-
force attacks. The attackers however execute the brute-force in almost any
port announcing RDP support. Fig. 6.12 shows the targeted ports, ranked per
number of received flows. Notice the log-log scale. The step-wise behavior of
the figure suggests the presence of a group of 1 000 ports that receives most
requests, followed by a second group of ports which are contacted less frequently.
This second group may be due to an initial discovery horizontal scan, after
which senders come back to perform the brute-force attack. The inner plot
shows that there is also a clear pattern for the top-300 ports. Checking which
ports each sender targets, we recognize three macro-categories:

• Senders (around 700) that vertically probe only standard RDP port 3389
and the immediately adjacent ones

• Senders that focus on a small group of selected ports (e.g., ports 1289,
23390, 1025, 3418, 50000, 554, 3336) - likely chosen via domain knowl-
edge. The four IP addresses involved in this attack belong to the same
network and have never been reported at the time of writing. They gen-
erate 3.5 million flows
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Fig. 6.13 Effects of removing and adding active responders in darknets.

• Senders that scan thousands of ports (16 IP addresses). These addresses
have been reported as heavy scanners [162] and perform very similar
activity. This suggests they are part of the same botnet.

Takeaway: DPIpot unveils unexpected Side-Scan attacks and scans where
senders target non-standard ports. It also triggers activity that L7-Responders
in the standard ports do not observe. Senders may become very aggressive,
calling for precaution to avoid overloading the monitoring infrastructure.

6.7 Darkening and enlightening networks

I now shift my attention to my second experimental setup, in which I shut
all active responders down, before enlightening new active responders in the
other darknet.

I answer the following questions: Do senders continue to reach IP addresses
that once hosted active responders? How fast does a newly-active IP address
become target of the senders unseen in the darknet? How does the deployment
of active responders impact neighboring IP address?
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Fig. 6.14 Example of host discovery patterns observed in the infrastructure.

6.7.1 From light to darkness, and back

Fig. 6.13 describes the traffic evolution for some deployments in my infras-
tructure. Let us focus first on the deployments that have been shut down.
Fig. 6.13a depicts time-series of the number of flows per hour for groups of
8 IP addresses hosting the Darknet Ext, L4-Responders (All), L7-Responders
(All) and DPIpot in my first experimental setup (see Tab. 6.1). Before the
shutdown (first black dashed vertical line) the active responders observ more
than 103 flows per hour, whereas Darknet Ext between 102 and 103 flows per
hour, respectively. The number of flows per hour remains orders of magnitude
higher in the active responders when compared to Darknet Ext even two days
after the responders are down. In fact, the traffic remains noisier for the IP
addresses that were hosting the responders for weeks. In sum, the senders that
target the active responders insist on reaching these responders, and the traffic
does not return to the darknet levels even two weeks after the shutdown.

Focus now on Fig. 6.13b which depicts the deployment of fresh responders
in the network that originally hosted Darknet Ext. Before the activation of
any service, all groups of IP addresses observe the same amount of traffic (102–
103 flows per hour). As soon as I deploy active responders on Feb 9th 2022,
I spot an immediate increase in traffic for all cases. I will show later that
this increase is partly caused by a new wave of senders that immediately and
suddenly reach each responders to perform an in-depth port scan. This result
hints for coordination with those senders that perform initial host discovery.
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Again, it confirms the advantage of having a deployment that mix both types
of responders.

To shed more light on senders’ strategies for port and service scanning,
Fig. 6.14 shows two examples of common patterns observed when the responders
are deployed. The figure depicts the sequence of IP addresses a given sender
targets over time. On the y-axis, I report the type of darknet/responders on
such IP addresses.

The first example of Fig. 6.14a illustrates the behavior of sequential scanners.
These scanners sequentially visit every IP address in the /24 subnet to find
open services. After this host discovery, they get back to those IP addresses
hosting responders to perform in-depth port scans and application attacks.
Some scanners start from a random initial IP address (as in Fig. 6.14a), while
others start from the first address in the /24 subnet.

Fig. 6.14b instead shows an example of a scanner that performs a random
host scan: these scanners keep contacting random IP addresses in the /24
subnet to perform host discovery. Once this stage is completed, they come back
to those responders for in-depth activity, similarly to the sequential scanners.

Takeaway: It takes days or even weeks for senders to stop targeting
responders that went offline. Conversely, as soon as an IP address is found
responding to traffic, it becomes target of (new) senders almost immediately
to perform an in-depth host and service discovery. Senders employ diverse
strategies to perform the discover activities.

6.7.2 Disturbing the neighbours

I further investigate if the presence of active responders causes disturbance
to IP addresses remaining dark in the same /24 subnet. This question is
important for those running darknets to understand to what extent active
responders pollute the darknet traffic. Recall from previous sections that while
active responders do attract more senders, they sometimes trap senders in
specific activities, thus biasing senders’ behaviors. Here I verify how neighbor
addresses are impacted.
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Fig. 6.15 Jaccard Index among aggressive senders targeting each IP address.

Recall from the last column of Tab. 6.1 that the number of senders varies
substantially across the deployments. I confirm such behavior in my second
experiment. For those darknet IP addresses close to active responders, the
increase in the number of senders starts immediately after the responders
become active.

I now investigate if the additional senders contacting dark addresses are
similar to the ones reaching the responders. For this, I compute the Jaccard
Index for all pairs of addresses in the /24 subnet where I have deployed fresh
responders. To filter out occasional senders, I restrict the analysis to aggressive
senders – those sources that send at least 100 packets over 1 month.

Fig. 6.15 shows the Jaccard Index in the form of a heatmap. Overall, the
figure shows two main effects: 1) active responders attract a different set of
senders, 2) there is a pollution effect, but not directly nearby the responders.

For 1), notice the low Jaccard Index when comparing active responders with
darknet addresses (e.g., the rows/columns corresponding to L4, L7 and DPIpot).
This decrease is due to an increase in the number of senders that target only
the responders (causing an increase in the denominator of the Jaccard Index).
This behavior confirms that some senders perform only the “host scan” phase,
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while other senders become active to perform subsequent phases of attacks, e.g.,
“port scans”, “application scan” and ”vulnerability exploitation” on addresses
that are found alive.

For 2), darknet addresses at the beginning (end) of the /24 address space
tend to observe a higher fraction of senders in common with neighboring
addresses (causing an increase in the numerator of the Jaccard Index). This fact
is reflected into the darker red pattern seen along the diagonal of the Jaccard
Index. This is an effect of the sequential scanners that stop their activity before
complete the scan of the entire /24 subnet.

Finally, focusing on the Jaccard Index computed among addresses in the
external /24 darknet (top and rightmost groups), I observe a different set of
senders. This behavior is due to the set of senders scanning one /24 to be
different from the set of senders scanning the second /24.

Takeaway: Senders involved in darknet scans are typically different from
those seen in subsequent attack stages. These new senders are seen only when
active responders are present. Interestingly, the present of responders attract
new senders also for addresses remaining dark.

6.8 Conclusion

I systematically analyzed the impact of deploying interactive responders on
the darknet address space. My results show the clear benefit of engaging with
senders, with more and more interactive responders that allow one to collect
richer data on the senders’ behaviors. I also showed that a careful design in the
deployment, with the ability to turn on and off responders at need, offers even
more opportunities, uncovering a new wave of senders that otherwise would
remain unobserved.

I show that each deployment has its own benefits, unveiling different activi-
ties and bringing new perspectives. Combining the several interaction levels
augments visibility. However, deployments may impact each other (e.g., pol-
luting neighboring addresses) and may foster traffic increase to the point of
saturating the monitoring infrastructure.
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Beyond my findings, several challenges are waiting ahead of such hybrid
infrastructures. For example, the large amount of collected information calls
for automatic methods for analyzing the data, uncovering correlation between
deployments, fingerprinting senders and, ultimately, identifying the rise of
novel scans and cyberthreats. Distributing my active responders to other IPv4
ranges, IPv6 networks and different geographical locations is also a challenge
that should be faced in future work.



Chapter 7

Exploring Application Level
Attackers’ Interactions

After having explored the activity in the network at Network/Transport
Layer (L3/4), in this chapter I focus my attention on what happens at the Ap-
plication Layer (L7) by collecting and analyzing Honeypots logs. Here I present
my findings discussed in What Scanners do at L7? Exploring Horizontal Hon-
eypots for Security Monitoring presented in 2022 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW) [163].

7.1 Introduction

To gain visibility into network attacks, honeypots are a common means to
collect data. Usually, honeypots are deployed as vertical systems targeting
a specific scenario [12] such as databases, terminal servers, or web applica-
tions [164, 148, 153], each supporting the respective protocols.

Researchers have focused on different aspects when dealing with honeypots.
Most work has focused on the introduction of new honeypots, focusing on
attacks against particular services [137, 138]. Others evaluate the effectiveness
of different honeypots [139] in exposing useful data. Another body of works
focuses on techniques to detect, and avoid the detection, of honeypots [140, 141].
Considering the analysis of honeypot logs, previous works compare deployments
in different geographic locations [146] and study how attackers respond to
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different honeypot sophistication [165]. However, such works focus on single
deployments or services, providing an in-depth analysis of logs in these vertical
deployments.

7.1.1 My Contribution

I here aim at extending these analyses by revisiting the visibility offered
by honeypots from a horizontal perspective. I compare if and how the same
attackers interact with different honeypots offering multiple applications. Do
attackers typically attack a single system or do they extend the attack surface
on multiple systems? Do they use the same strategies for multiple honeypots?

To answer these questions, I rely on the infrastructure depicted in Ch. 6. It
provides multiple low-interaction honeypots. I collect data for 5 months at the
transport and application layers, recording millions of application requests from
tens of thousands of sources. Exploiting this perspective, I observe scanners
that always attack the same service as well as horizontal attackers targeting
multiple services simultaneously. In this chapter I’ll investigate at application
level the what has been discussed in Ch. 6.7.1 to observe attackers that dismiss
the previous targets, discover new systems and return to full-speed campaigns.

Finally, I dig further into the dataset, providing an initial horizontal analysis
of the brute-force attacks against multiple services. I study the credentials used
on login attempts against my honeypots, collecting passwords used on each
system. I observe attackers using password found in known data breaches [166],
but also groups of attackers relying on other password lists.

I revisit and update known facts about honeypot deployments, highlighting
the greediness of some attackers against multiple services.

I believe this work offers some insights that highlight the benefits of a
horizontal perspective when characterising attacks captured by honeypots.
The complexity and multi-facet nature of the data honeypots expose calls for
cooperation on the deployment of (open) honeypot infrastructure and on the
sharing of honeypot data. For that, I here report initial analysis of my dataset
and deployment, which are available to other researchers upon NDA agreement
to protect eventual sensitive information present in the data.
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After describing my deployment in Section 7.3, I provide a general character-
isation of L7 traffic reaching my deployment in Section 7.4. Then, I describe the
brute-force attempts recorded by multiple honeypots in Section 7.5. Section 7.2
summarises related work, while I list conclusions and future work in Section 7.6.

7.2 Related Work

Honeypots have been deployed for cybersecurity purposes for a long time
and multiple honeypot projects exist, as already discussed in Ch. 6.2.

Some authors [138, 144, 145, 167] present general characterisation of hon-
eypot traffic, focusing on the origin of attacks, targeted services, frequency of
attacks etc. Most previous work is however focused on vertical deployments,
looking at the activity recorded in honeypots deployed for a particular type of
attack, eventually deployed in several regions and networks [168, 169].

I instead report initial data captured with multiple honeypots simultaneously.
I shed light on the differences and similarities of the traffic observed in this
heterogeneous setup, reporting not only patterns in terms of traffic sources,
but also common activities for multiple L7 services, such as brute-force attacks
across various honeypots [170, 171].

7.3 Methodology and Dataset

I set up an infrastructure that relies on the honeypots organised and
distributed by the T-Pot project [136]. In this work I report on a subset of
the T-Pot honeypots, excluding Telnet and SSH, which I leave for future work.
All honeypot services are low-interaction honeypots [12]. I configure T-Pot to
expose the services listed in Table 7.1. Each honeypot logs and registers all
application (L7) interactions, including brute-force login attempts, requests to
specific service functionality etc.

Recall from Ch. 6.3.1 that I use two /24 networks of a university network
that I reserve to run my experiments. The honeypots are thus hosted in a
regular campus network, with no firewall to protect them. To monitor all the
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Table 7.1 Honeypot services and amount of traffic seen in my deployment.

Service Sender
Addr. L7 Requests

smb [164] 30854 25348188
http [164, 153] 18370 1931553
mssql [164] 7119 396391
rdp [172] 4813 46036456
ftp [164] 1845 20834
mysql [164] 1527 32091
mongodb [164] 1364 21112
epmapper [164] 1203 71014
pptp [164] 912 59488
smtp [173] 827 3994871
mqtt [164] 567 4287
echo [164] 314 20378
vnc [152] 172 12741040
postgresql [152] 27 28163
pop3 [152] 12 26194

incoming traffic, I record packet-level traces using tcpdump, which are regularly
processed along with all logs of the honeypots.

I activated my deployment on October 27th, 2021. I here analyse data
collected until March 1st, 2022. Specifically, from October 27th, 2021 to January
25th, 2022, I configured my honeypots as depicted previously in Tab. 6.1 and
considered just the 8 IP addresses in the first /24 network related to L7-
Responders. All IP addresses expose precisely the same services (see Table 7.1).
On January 25th, 2022, I shut the honeypots down for two weeks, after which
I restarted all services on February 9th, 2022, using 8 previously silent IP
addresses in the second /24 network. I perform this experiment to observe
patterns related to the discovery and subsequent attacks against new systems.

I collected about 100 million application layer (L7) requests coming from
more than 57000 unique IP addresses. In the following, I generically refer to
these IP addresses as “attackers”, i.e., senders that have interacted with one
of my honeypots at application layer at least once during the observed period.
In this work I thus ignore cases where a real attacker may use multiple IP
addresses, or cases where multiple real attackers reach my systems from the
same IP address, e.g., on different time periods. Notice that not all of such
senders are malicious. I will show later that many senders are actually crawlers,
e.g., from security companies. I will highlight these cases, and give particular
attention to the clearly malicious activity, such as brute-force password attacks.



134 Exploring Application Level Attackers’ Interactions

20
21

-1
0-

26

20
21

-1
1-

01

20
21

-1
1-

07

20
21

-1
1-

13

20
21

-1
1-

19

20
21

-1
1-

25

20
21

-1
2-

01

20
21

-1
2-

07

20
21

-1
2-

13

20
21

-1
2-

19

20
21

-1
2-

25

20
21

-1
2-

31

20
22

-0
1-

06

20
22

-0
1-

12

20
22

-0
1-

18

20
22

-0
1-

24

20
22

-0
1-

30

20
22

-0
2-

05

20
22

-0
2-

11

20
22

-0
2-

17

20
22

-0
2-

23

20
22

-0
3-

01

smb

http

mssql

rdp

mysql

ftp

mongodb

smtp

epmapper

pptp

mqtt

vnc

echo

postgresql

pop3

S
y
st

em
D

ow
n

-8 · 102

100

101

102

IP
so

u
rc

es
p

er
d

ay

Fig. 7.1 Number of IP sources per service for each day of observation.

Table 7.2 Distribution of traffic per service coming from some known sources.

Class Service (% L7 Requests)
smb http rdp ftp vnc smtp mongodb mqtt mysql others

Mirai 16.13 1.86 59.44 0.1 16.98 4.78 0.02 - 0.03 0.66
Google - 100 - - - - - - - -
Shadowserver 14.52 18.55 37.10 12.10 - - 13.70 4.03 - -
Shodan - - 12.66 22.15 15.82 26.58 - 12.03 10.76 -
Onyphe 100 - - - - - - - - -
Stretchoid - 100 - - - - - - - -
Unknown 97.94 0.45 0.89 0.17 - - 0.28 0.17 - 0.1

Table 7.1 details the number of senders and of L7 requests on each honeypot.
Entries are sorted by the number of senders. Unsurprisingly, the most targeted
services are Samba (smb), (http), Microsoft SQL Server (mssql), and Remote
Desktop Protocol (rdp). For these services, I observe thousands of senders.
Interestingly, the number of attempts is clearly disproportional to the number
of senders, with RDP attackers generating much more attempts than other
cases. Notice the 172 attackers that target the VNC protocol. They sent more
than 12 million brute-force login attempts. These figures already shows the
heterogeneous picture each honeypot produces.
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Fig. 7.2 Evolution on number of IP sources for four honeypots.

Fig. 7.3 Activity of IP sources probing at application level around the period I
shutdown the honeypots.

7.4 Honeypot Traffic Patterns

I report a high-level characterisation of the honeypot traffic to understand
overall attacking patterns.

7.4.1 Evolution over Time

I first check the traffic evolution over time for different honeypots. Fig. 7.1
shows the number of source IP addresses seen each day by the services. For
readability, services are sorted by popularity. As also observed by others [12,
165] the traffic pattern is highly irregular, with sudden changes and spikes.
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Fig. 7.2 details the evolution over time for services with the largest traffic
share. Notice for instance the sudden increase of http sources in mid-Nov and
the sudden decrease of smb attackers in mid-Dec. These sudden changes are
common, and usually are related to changes in attacking patterns [12].

Focus now on the period when I turn back on the honeypots after the
shutdown. I immediately notice a pattern almost similar to the one before the
shutdown. Fig. 7.3 details the traffic on the complete set of honeypots. Given
all the source IP addresses that generate at least one L7 exchange in the whole
time period, I monitor TCP/SYN segments they sent starting from one week
before the shutdown, and ending one week after the restart of my infrastructure
on the different /24 network.1

In Fig 7.3, the red lines highlight the offline period, while the blue line
describes the number of IP sources per hour (left y-axis). Each row (right y-
axis) refers to a given IP address. Dots are single TCP/SYN packets observed
at a given time. IP addresses are sorted by increasing time as they are seen in
the infrastructure during this interval. Several considerations hold:

• Attackers return over time, sometimes being active for rather long periods
(see dark horizontal segments)

• Old and new attackers continue to search for the honeypots when the
systems are offline. The arrival rate is smaller during the shutdown (see
the dark external envelope)

• As soon as the systems become active again, attackers immediately
discover them – the arrival rate of new IP sources grows again

• No major changes are seen when comparing before and after the shutdown,
i.e., attackers get back and keep trying to enter the systems (see also
Fig. 7.1)

• The availability of new possible victims attracts new attackers (see the
appearance of new attackers that appear starting from Feb. 9th only).

The solid blue line quantifies number of active IP sources per hour. The
interest of attackers decreases when the honeypots are unavailable, but it

1The traffic during the shutdown refers to the initial /24 network.



7.4 Honeypot Traffic Patterns 137

does not vanish. Recall that here I consider only IP addresses performing L7
interactions at least once, so hosts scanning the network are not counted. While
an average of 350 hourly IP sources are seen active before and after the shutdown,
I still see around 300 of these attackers active when the infrastructure is offline.

Takeaway Attacking rate is variable over time. Attackers keep returning,
even after the honeypots are unreachable for weeks. Attackers’ arrival rate
grows fast when new honeypots become available.

7.4.2 Popular Sources and Countries

I now check if source IP addresses are associated to well-known actors. For
this, I tag source IP address using well-known lists of scanners and crawlers,
taken from [174], which include IP addresses of security companies. I also use
the well-known Mirai fingerprint to tag sources as Mirai-like node [175].

Tab. 7.2 details the percentage of traffic from these sources to each honeypot.
Rows are sorted by popularity. Mirai attackers are the most popular ones (18586
IP addresses in total). They primarily target remote desktop applications that
use rdp and vnc, often performing brute-force password attacks against these
services 2. A significant percentage of traffic to smb services comes from Mirai
attackers too.

Next, I observe a large quantity of non-malicious sources. For example,
I see many requests coming from Google IP addresses on the http honeypot,
which I associate with Google’s crawlers. I also observe traffic from security
organisations. Some of them focus on specific services, e.g., Onyphe on smb
and Stretchoid on http. Others scan services horizontally, such as Shadowserver
and Shodan. I note that these crawlers do send L7 traffic to test applications,
such as trying to login as anonymous in my ftp honeypot.

The remaining sources (42 IP addresses) target mostly the smb service, with
small percentage of traffic to other services. These are likely bots looking for
vulnerabilities.

2Mirai is known to scan also for Telnet, ADB and other protocols, which I do not consider
in this work.
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Table 7.3 Percentage L7 requests per country considering all honeypots.

Traffic Volume
DE Germany 19.86% UK UK 0.89%
RU Russia 10.12% UA Ukraine 0.70%
US US 5.62% IT Italy 0.67%
LT Lithuania 4.79% IR Iran 0.63%
VN Vietnam 4.57% CO Colombia 0.54%
BR Brazil 1.41% PA Panama 0.15%
PL Poland 1.05% HK Hong Kong 0.12%
CN China 1.02% BE Belgium 0.03%

I also break down the traffic according to the geographic location of source
IP addresses. For that, I tag each IP address with its geographic location using
MaxMind’s GeoIP database 3. Tab. 7.3 shows the traffic share (number of L7
requests) per country considering all honeypots. The geographic distribution
of requests is similar to what is reported in recent previous works [165].

Takeaway Honeypots observe a large volume of non-malicious traffic,
coming from crawlers of security companies that do actively test the services
(e.g., trying to login). Mirai-like bots still stand among malicious actors.

7.4.3 Vertical vs. Horizontal Activity

Here I quantify if IP sources tend to focus on single service (e.g., in vertical
attacks) or multiple services (e.g., in horizontal attacks). Given two services
i and j, I extract the set of sources observed for each service, i.e., S(i) and
S(j). Then, I compute the overlap coefficient defined as the ratio between the
intersection of the sets and the size of smallest one:

Overlap(i, j) = |S(i)∩S(j)|
min(|S(i)|, |S(j)|)

3https://www.maxmind.com/en/geoip-demo

https://www.maxmind.com/en/geoip-demo
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The overlap takes values between 0 and 1, where 0 means the intersection of
the two sets is empty, while 1 means that the smallest set is included in the
largest one.4
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Fig. 7.5 Attackers’ activity.

Fig. 7.4 shows a heatmap of the overlap. The warmer the colour, the higher
the overlap. Focus on smb service (first column). Most of the sources contacting
other services are not interested in smb (dark blue cells). Exceptions are seen

4Given the disparity of sources for each service (see Tab. 7.1) the overlap offers a clearer
information than the Jaccard Index.
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for those contacting epmapper, pptp, mssql: 50% of them do target smb too.
While this is largely expected for epmapper (a service related to Samba), it
also suggests attackers search for several Microsoft services at once (e.g., mssql
and smb). Similar pattern is seen for vnc and rdp, both offering remote login,
with overlap at 70%.

The case for http is interesting. Most of those contacting the http honeypot
also contact other services, but not smb, mssql and rdp, all three related to
Microsoft services.

I next quantify how many services each source contacts and how often
they change the contacted services. For each source, I extract the sequence of
contacted services in temporal order considering the entire 5 months of data.
I then compute, for each source: (i) the number of times the source changes
service; (ii) the total number of unique services it contacts; and (iii) its total
number of requests. Fig. 7.5 shows the scatter plot where each dot represents
a source. Using log-log scale, the x-axis reports the total number of contacts,
the y-axis is the total number of service changes, and colours show the number
of unique services per source.

At the bottom, points form a dense horizontal layer. Those are sources
that contacted only one service (dark blue), thus never changing protocol (0
changes, artificially reported in the base of the y-log scale). These are vertical
attackers. Some of these sources contacted my honeypots few times. Others
returned millions of times. Manual inspection confirms that these are true
attackers focusing on rdp and smb protocols.

At the second layer of points from the bottom, I see sources that contacted
2 services (light blue). These are attackers that moved from one service to
a second and then stayed on this second service (1 change only). A sizeable
number of attackers also targeting 2 services (same light blue colour) keep
alternating between the 2 services multiple times (more than 2 changes). Here I
see the cases of attackers focusing on categories of services, such as the remote
desktop cases mentioned above.

Finally, I observe multiple sources that keep rotating regularly over mul-
tiple services. These are scattered over the diagonal, showing in some case a
number of changes proportional to the number of attempts. I here identify
horizontal scanners, i.e., sources contacting many services (green to red dots)
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and alternating among these services. Some sources are also particularly ac-
tive, contacting my honeypots thousands of times. I associate this behaviour
with some security crawlers, which perform application-layer handshakes to
check for service availability – thus, not necessarily performing malicious activ-
ities. For instance, those sources who contacted more than 10 services, sending
more than 1000 requests in total (red dots in the top right) are scanners run
by security companies, the majority of which managed by AVAST Software.

Takeaway Honeypots observe both vertical and horizontal activity. The
former is predominately attackers focusing on categories of services. The latter
is dominated by scanners and security crawlers.

7.5 Brute-Force Attacks

I now focus on a single type of attack often observed in the honeypots:
brute-force password attempts. I first study the used passwords, then I compare
attackers’ origins and strategies across the various honeypots.

7.5.1 Known vs. Unknown Passwords

Some honeypots in the T-Pot bundle deployed in my network show only
the login functionality of services to attackers. The honeypots then save the
brute-force attempts, thus allowing us to evaluate the attackers’ strategies in
terms of used passwords.

I first verify whether attackers rely on well-known lists of leaked passwords
to perform the brute-force attacks. I compare the hashes of passwords seen in
my deployment to those in the Pwned Passwords project [166].

Fig. 7.6a shows the cumulative number of unique passwords seen in my
honeypots. The red line illustrates the number of passwords found in the Pwned
Passwords database, while the blue line summarises the ones not found in the
database.

I observe an increasing number of known passwords (i.e., present in the
database) until Nov 10th, 2021. After that date, only few new entries are
observed, although attackers still send traffic to the honeypots – see Fig. 7.6b.
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Fig. 7.6 Attacks with passwords from known/unknown sources.

In the last week of Nov 2021, more attempts are observed, this time using
both new known passwords and passwords that are not present in the Pwned
Passwords database.

Fig. 7.6b extends the analysis by showing the total number of attempts per
day using known/unknown passwords. Initially, I record up to 30 thousand
attempts per day, all of them using passwords found in the Pwned Passwords
database. Comparing this figure with Fig. 7.6a, it is clear that attackers keep
repeating the same passwords over an over, thus pointing to different actors
relying on the same password dictionaries. I see that even during the periods in
which few new passwords are observed attackers’ activity continue – compare
the plateau regions in Fig. 7.6a with the same period in Fig. 7.6b. The figure
also reports the start of the attempts with unknown passwords at around Dec
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Fig. 7.7 Unknown and known passwords for multiple honeypots.

1st, 2021. Notice how the attempts with such unknown passwords almost
vanish after two weeks. I manually inspect this latter set and found that these
passwords are probably automatically generated strings.

Finally, in Fig. 7.7 I report the number of unique known/unknown passwords
for the five honeypots that save passwords. Both groups of passwords are seen
in all honeypots, but in strikingly different proportions. For example, vnc has
recorded thousands of passwords, almost all of them present in the Pwned
Passwords database. The mssql and ftp honeypots, on the other hand, have
received more unknown than known passwords overall.

Takeaway Multiple attackers rely on well-known passwords that are seen
over and over in various honeypots. Some attackers rely on other lists, not
present in well-known password databases. The latter is more common in some
honeypots.

7.5.2 Origins of Brute-Force Attacks

Fig. 7.8 breaks down the brute-force password attempts per country. Again,
I use the MaxMind’s GeoIP database in this analysis. The figure shows different
bars for the passwords present in the Pwned Passwords database (red) and
those not present in the database (blue). Note the y-axis log scale, reporting
the percentage of attempts.



144 Exploring Application Level Attackers’ Interactions

Login with known password Login with unknown password

LT RU PL GB US CN IT UA VN PA BE BR DE HK CO IR
10−2

10−1

100

101

102

P
er

ce
n
ta

g
e

Fig. 7.8 Percentage of password attempts per origin country.

An interesting figure emerges, which is completely different from the overall
per-country traffic distribution for all honeypots, reported in Section 7.4.2.

The majority of password attempts in my dataset comes from Lithuania.
The country represents 30% of the attempts with a password found in the
Pwned Passwords database, as well as 20% of the attempts using passwords
not in the database. Recalling that Lithuania generates less than 5% of overall
traffic observed in the honeypots (cfr. Tab. 7.3), I see that sources in this
country are particularly focused on brute-force attacks.

Even more interesting is to observe that all brute-force attempts coming
from some countries use passwords in the Pwned Passwords database (e.g.,
Poland and Vietnam). Equally, attempts coming from several other countries
mainly (or exclusively) use passwords that are not available in the database,
i.e., Ukraine, Brazil, Germany, Hong Kong, Colombia and Iran. This result
suggests disjoints groups of attackers, with the separation among the groups
already visible at country level.

Takeaway The attackers using well-known password databases are clearly
distinct from those relying on other lists. This separation is visible even when
considering their countries of origin.
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7.6 Conclusions

I presented an initial characterisation of the data collected in my horizontal
honeypots. I showed how attackers are fast in discovering and trying to abuse the
infrastructure. I identified not only groups of attackers performing large-scale
attacks against single services, but also those focusing on categories of services or
horizontal attempts against all services. I evaluated the passwords used in brute-
force login attempts and identified i) attackers relying on well-known password
lists; ii) attackers with completely different sets of passwords. The latter ones
usually come from different geographic places and focus on particular services.

As future work it would be interesting to extend the infrastructure to other
honeypots and locations. I will pursue the creation of open honeypot datasets,
which would represent an important asset for security analysts and researchers
that need to understand cyber-threats and fight attacks. The creation of such
open datasets comes with multiple challenges, however. For example, the
privacy and security of previous victims must be preserved, as attackers abuse
their information to perpetrate new attacks. Finally, would be helpful for the
community to use these findings to build updated profiles of active attackers,
using automated methodologies to find groups of attacks showing coordinated
strategies in the multiple honeypots.



Chapter 8

Conclusions

In this thesis I have presented two fundamental and critical aspects in the
context of monitoring modern networks, namely privacy and cybersecurity.

Regarding the privacy problem, my contributions are the following:

• I have engineered an anonymization system (Ch. 2) showing a possible
way to simplify and make the data anonymization process more efficient in
a live environment, demonstrating that the loss of information is minimal.

• I have generalized the algorithm to apply anonymization with zero-delay
(Ch. 3). It is exploitable in many and different fields from network packets
to credit card transactions.

These works allowed me to safely and successfully analyze data collected by
the teaching servers of the Politecnico di Torino during the Covid-19 health
emergency (Ch. 4), presenting a trend of use of the real network that has never
been seen before.

Regarding the cybersecurity problem:

• I studied the performance of DPIs (Ch. 5) for building a smart Honeypot.

• I explored the potential of such smart Honeypot: it uncovers attacks that
darknets and state of the art active responders would not observe. This
“enlightening” brings several benefits and offers opportunities to increase
the visibility of sender patterns (Ch. 6).
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• I investigated malicious traffic at application level arriving at the Politec-
nico di Torino network (Ch. 7), observing attackers that always focus on
one or few services, and others that target tens of services simultaneously,
even practicing brute-force attacks.

As already discussed in the course of this thesis, the first step to be taken
to safely perform network monitoring is to anonymize the contents of the
packets (Ch. 2 and Ch. 3). To this end, I presented the concept of streaming
anonymization which I defined as z-anonymity. This methodology draws
inspiration from k-anonymity: often the data collection and the application
a posteriori of the algorithm could be not feasible due to the dimensionality
of the dataset or to the specific application scenario, so z-anonymity helps in
relaxing these constraints. The potential of this lies in its versatility, as it can
be applied in any scenario that requires the obfuscation of the streaming data:
credit card movements, a new position of the car, or a new visited website. In
particular, I focused on the latter scenario, namely the one of network traffic
by developing α-MON. It let the user capture network packets through passive
probes as if they were already anonymous: it acts transparently simplifying the
subsequent data analysis process. I have shown that thanks to its architecture,
it is extremely efficient in operations and consequently able to handle the high
throughput rates, making network monitoring safe and privacy-preserving.

α-MON has therefore opened the doors to traffic safe analysis in Politecnico
di Torino network, in particular I analyzed data obtained from the teaching
servers to show the impact of the Covid-19 pandemic on the network (Ch. 4).
I showed how the use of the material and the streaming lessons have been a
success:

• training has been guaranteed to students from all parts of the world;

• campus network, together with the global one, has been resilient to a
notable and sudden increase of data in transit.

In this context, the use of a Big Data approach has made it possible to highlight
the evolution of the network projected, at the time of writing, towards a future
in which human activities will be strongly linked to its massive use.
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This increase in the importance of the network in the economy and in
life poses considerable risks and a fertile ground for cybercrime. To give my
contribution in the study of cyber attacks and the profiling of attackers, I
presented a multidimensional bottom-up approach for network traffic analysis
(Ch. 6, Ch. 7): I used Darknets coupled with Honeypots with increasing
complexity (L4-Responders, L7-Responders, DPI-Pot), observing their traffic
from L3 to L7. With the help, here too, of the technology provided by Big
Data approaches, I revisited what the community already knows, bringing some
news in terms of methodologies and discoveries. This has allowed to highlight
how with the help of such systems it is possible to attract malicious traffic,
study it and identify methods to protect systems effectively.

Ultimately with this work I showed that Network Monitoring is possible
safely and privacy can be preserved efficiently.

This thesis aims to provide a contribution to the community of researchers
around the world who work tirelessly for scientific progress and I hope that
the solutions presented here can be a starting point for new methodologies
and discoveries. I firmly believe that privacy and cybersecurity issues are of
extreme importance and that it is important to invest resources to ensure the
safe use of IT tools and promote legality even in the digital world.
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projects

In this appendix I report the list of papers published and under review. I
also present my collaborations and projects.

A.1 Publications

1. J. Fior, T. Favale, L. Cagliero, D. Giordano, E. Baralis, M. Mellia, D.
Moncalvo, P. Baracco, S. Ronchiadin, "Towards data-driven anti-financial
crime: a clustering-based legal entity disambiguator,". Under review at
IEEE International Conference on Big Data 2022 (The 6th International
Workshop on Big Data Analytic for Cyber Crime Investigation and
Prevention).

2. S. Geissler, A. Lutu, F. Wamser, T. Favale, V. Vomhoff, M. Krolikowski,
D. Perino, M. Mellia, T. Hossfeld, "Untangling IoT Global Connectivity:
The Importance of Mobile Signaling Traffic,". Under review at ACM
MobiCom (Annual International Conference On Mobile Computing And
Networking).

3. F. Soro, T. Favale, D. Giordano, I. Drago, M. Mellia, T. Rescio, Z.
Ben Houidi, D. Rossi, "Enlightening the Darknets: Augmenting Darknet
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Visibility with Active Probes,". Under review at IEEE Transactions on
Network and Service Management.

4. T. Favale, D. Giordano, I. Drago and M. Mellia, "What Scanners do at
L7? Exploring Horizontal Honeypots for Security Monitoring," 2022 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW),
2022, pp. 307-313, doi: 10.1109/EuroSPW55150.2022.00037.

5. T. Rescio, T. Favale, F. Soro, M. Mellia and I. Drago, "DPI Solutions in
Practice: Benchmark and Comparison," 2021 IEEE Security and Privacy
Workshops (SPW), 2021, pp. 37-42, doi: 10.1109/SPW53761.2021.00014.

6. T. Favale, M. Trevisan, I. Drago and M. Mellia, "α-MON: Traffic
Anonymizer for Passive Monitoring," in IEEE Transactions on Network
and Service Management, vol. 18, no. 2, pp. 1233-1245, June 2021, doi:
10.1109/TNSM.2021.3057927.

7. T. Favale, F. Soro, D. Giordano, L. Vassio, Z. Ben Houidi, I. Drago,
"The New Abnormal: Network Anomalies in the AI Era," in Com-
munication Networks and Service Management in the Era of Artifi-
cial Intelligence and Machine Learning, cap. 11, September 2021,
https://doi.org/10.1002/9781119675525.ch11.

8. N. Jha, T. Favale, L. Vassio, M. Trevisan and M. Mellia, "z-anonymity:
Zero-Delay Anonymization for Data Streams," 2020 IEEE Interna-
tional Conference on Big Data (Big Data), 2020, pp. 3996-4005, doi:
10.1109/BigData50022.2020.9378422.

9. T. Favale, M. Trevisan, I. Drago and M. Mellia, "α-MON: Anonymized
Passive Traffic Monitoring," 2020 32nd International Teletraffic Congress
(ITC 32), 2020, pp. 10-18, doi: 10.1109/ITC3249928.2020.00010.
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A.2 Research collaborations with research cen-
tres, companies and universities

• Associate Researcher in Intesa Sanpaolo (Italy) for development of An-
tifraud and Anti-Financial Crime systems for hidden risk discovery inside
bank transactions.

• Associate Researcher in Huawei Technologies Co. Ltd. (France) for
development of solutions to enhance Cybersecurity:

– Study and development of a new anonymization algorithm.

– Development of an high-performing anonymization tool for packets
capturing.

– Honeypot infrastructure setup.

– Analysis of malicious activities on Honeypots.

• Associate Researcher in Telefónica (Spain) for modelling of IoT devices
behavior for Cybersecurity purposes through a Big Data and Machine
Learning approach.

• Associate Researcher in GARR (Italy) for enhancing cybersecurity and
study new network traffic patterns during Covid-19 pandemic.

A.3 Projects

A.3.1 α-MON

Packet measurements at scale are essential for several applications, such as
cyber-security, accounting and troubleshooting. They, however, threaten users’
privacy by exposing sensitive information. Anonymization has been the answer
to this challenge, i.e., replacing sensitive information with obfuscated copies.
Anonymization of packet traces, however, comes with some challenges and
drawbacks. First, it reduces the value of data. Second, it requires to consider
diverse protocols because information may leak from many non-encrypted fields.
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Third, it must be performed at high speeds directly at the monitor, to prevent
private data from leaking, calling for real-time solutions.

I present α-MON, a flexible tool for privacy-preserving packet monitoring.
It replicates input packet streams to different consumers while anonymizing
protocol fields according to flexible policies that cover all protocol layers.
Beside classic anonymization mechanisms such as IP address obfuscation, α-
MON supports z-anonymization, a novel solution to obfuscate rare values that
can be uniquely traced back to limited sets of users. Differently from classic
anonymization approaches, z-anonymity works on a streaming fashion, with
zero delay, operating at high-speed links on a packet-by-packet basis. I quantify
the impact of z-anonymity on traffic measurements, finding that it introduces
minimal error when it comes to finding heavy-hitter services. I evaluate α-
MON performance using packet traces collected from an ISP network and show
that it achieves a sustainable rate of 40 Gbit/s on a Commercial Off-the Shelf
server. α-MON is available to the community as an open-source project.

A.3.2 DPI-Pot

Darknets collect unsolicited traffic reaching unused address spaces. They
bring insights into malicious activities, such as the rise of botnets and DDoS at-
tacks. However, darknets provide a shallow view, as traffic is never answered. I
here quantify how their visibility is increased by responding to some traffic. To
this end, I deploy interactive responders (e.g., honeypots) that can answer un-
solicited traffic. Simple at first sight, determining how to answer is challenging:
From the selection of the protocol to talk to the risk of polluting the collectors
with uninteresting data or saturating the infrastructure. I consider four deploy-
ments: Darknets, simple L4-Responders, vertical L7-Responders tied to specific
ports, and DPIpot, a horizontal honeypot that identifies protocols on the fly on
any port. I contrast these alternatives by analyzing traffic attracted by each de-
ployment. I show that interactive responders increase the value of darknet data,
uncovering patterns otherwise unseen. I measure Side-Scan phenomena in which
whenever a host starts responding to a particular port, it attracts traffic to
other ports and neighbor addresses. DPIpot unveils attacks that darknets and
L7-honeypots would not observe, e.g., large-scale activities on non-standard
ports. Some strategies, however, trap senders in certain states, thus hindering
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visibility too. Beyond my findings, my analysis can inform the deployment of
future monitoring infrastructures combining both darknets and active probes.


