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In this note we study the properties of a sequence of approximate propagators for the Schrödinger equation, in the

spirit of Feynman’s path integrals. Precisely, we consider Hamiltonian operators arising as the Weyl quantization of a

quadratic form in phase space, plus a bounded potential perturbation in the form of a pseudodifferential operator with

a rough symbol. The corresponding Schrödinger propagator belongs to the class of generalized metaplectic operators, a

fact that naturally motivates the introduction of a manageable time-slicing approximation scheme consisting of

operators of the same type. By leveraging on this design and techniques of wave packet analysis we are able to prove

several convergence results with precise rates in terms of the mesh size of the time slicing subdivision, even stronger

then those which can be achieved under the same assumptions using the standard Trotter approximation scheme. In

particular, we prove convergence in the norm operator topology in L2, as well as pointwise convergence of the

corresponding integral kernels for non-exceptional times.

1 Introduction

The rigorous analysis of Feynman path integrals has been, and still is, a challenging source of intriguing
problems for mathematicians from manifold areas. The knowledge accumulated over the last seventy years
encompasses several aspects, ranging from foundational issues to applied ones; the interested reader can consult
the monographs [2, 39] for in-depth studies on the topic.

Inspired by the custom in physics, the sequential approach to path integrals is an operator-theoretic
framework aimed at providing explicit representation formulae for the Schrödinger evolution operator in terms
of sequences of approximate propagators on L2 – see for instance [27, 28, 34, 37] in this connection.

In the Euclidean d-dimensional setting we consider the Cauchy problem for the Schrödinger equation{
iℏ∂tψ = (H0 + V )ψ

ψ(s, x) = ψs(x)
(1)

with initial datum ψs ∈ S(Rd) at time t = s. As an illustration of the sequential approach we recall a classical
result due to Nelson [41], which relies on the Trotter formula. Under suitable assumptions on the Hamiltonian
operator H = H0 + V (see e.g., [14, 46]) we have that the sequence of approximate propagators

Tn(t, s) :=
(
e−

i
ℏ

t−s
n H0e−

i
ℏ

t−s
n V
)n

converges to the Schrödinger evolution operator U(t, s) = e−
i
ℏ (t−s)(H0+V ) generated by H in the strong topology

of operators on L2(Rd):
U(t, s)f = lim

n→∞
Tn(t, s)f, f ∈ L2(Rd).

A careful design of the sequence of approximate propagators is of paramount importance in order to obtain
stronger convergence results. For instance, the time-slicing approximations introduced by Fujiwara in [25, 26] rely
on techniques of oscillatory integral operators and semiclassical analysis. The use of sophisticated mathematical
techniques is repaid by deep convergence results in the norm operator topology and also at the subtler level of
kernels, even in the semiclassical regime ℏ → 0.
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1.1 The role of Gabor analysis

Only in recent times the techniques of Gabor wave packet analysis have been successfully brought into play in
the study of mathematical path integrals, leading to relevant advances and new directions to be explored [45].

By way of illustration let us mention here the papers [42] and [44] – an expository overview of these and
other related results can be found in [54]. The power of a phase-space approach is fully displayed in the first
contribution, where it allows one to “break the barriers” of the standard L2 setting and derive convergence
results for Fujiwara’s time-slicing approximations in Lp-Sobolev spaces with p ̸= 2.

The second paper focuses on the pointwise convergence of integral kernels of the Feynman-Trotter
approximate propagators Tn(t, s) introduced above. Generally speaking, this issue has been heuristically
conjectured by Feynman himself [20, 21] and remained a widely open problem for a long time, at least until the
pioneering results by Fujiwara already mentioned above – which actually involve sufficiently regular potentials
and different, more refined parametrices. In the paper [44] the problem has been solved in the case where H0

is a quadratic Hamiltonian and V is a bounded potential perturbations with low regularity, mainly using tools
and function spaces of Gabor analysis [10, 30].

This is a convenient stage where to briefly discuss the basic notions of time-frequency analysis, both
for clarity and future reference. Recall that a phase-space representation of a signal u can be obtained as a
decomposition with respect to Gabor wave packets of the form

π(z)g(y) = e2πiξ·yg(y − x), z = (x, ξ) ∈ R2d,

where g is a fixed (non-trivial) function on Rd that is well localized in the time-frequency space Rd × R̂d ≃ R2d.
To be more precise, the function Vgf(z) := ⟨u, π(z)g⟩ of z resulting from duality pairing between f ∈ S ′(Rd)
and π(z)g with g ∈ S(Rd) is called the Gabor transform of f .

A concrete, alternative point of view on the procedure just described comes from signal analysis. Consider
for instance the case where f ∈ L2(Rd). Then we have explicitly

Vgf(x, ξ) =

∫
Rd

e−2πiξ·yf(y)g(y − x) dy = F(f · g(· − x))(ξ),

and thus the Gabor transform corresponds to the Fourier transform of the variable slice of the signal f obtained
by localization near x with a sliding window function g. This remark explains why the Gabor transform is also
widely known as the short-time Fourier transform.

Modulation spaces can be naturally introduced at this stage as spaces of distributions characterized by
prescribed summability conditions for the corresponding phase-space representations [3]. In the simplest setting,
for 1 ≤ p ≤ ∞ and a fixed g ∈ S(Rd) \ {0} we set

Mp(Rd) := {f ∈ S ′(Rd) : ∥u∥Mp <∞}, ∥f∥Mp := ∥Vgf∥Lp(R2d).

Modulation spaces constitute a family of Banach spaces, increasing in p, whose norm is stable under change of
window – precisely, different choices of g result in equivalent norms. We emphasize that many typical function
spaces of harmonic analysis turn out to coincide with (generalized) modulation spaces. The most important
example is M2(Rd) ≃ L2(Rd). Together with the extremal spaces M1(Rd) (the original Feichtinger algebra
[16, 38]) and M∞(Rd) (the space of mild distributions [19]) they provide a convenient framework for basic
Fourier analysis in the form of a Banach-Gelfand triple [22], also known in quantum physics and spectral theory
as the formalism of rigged Hilbert spaces.

1.2 The Schrödinger propagator and the FIO class

Modulation spaces are widely used in the aforementioned papers [42, 44] both to rigorously frame the problem of
path integrals from a phase space perspective and to tune the regularity of potential perturbations, following an
established series of results for the Schrödinger equation - see the monograph [10] for a state-of-the-art account.

We focus here on the problem (1) with ℏ = 1/2π for consistency with the previous section, under similar
yet more general assumptions than those in [44]. Precisely, we assume that H0 is the Weyl quantization Qw

of a homogeneous quadratic polynomial Q : R2d → R and the potential perturbation V is a pseudodifferential
operator with Weyl symbol σ(t, ·) = σt(·), in the Sjöstrand class M∞,1(R2d) [51] – that is a modulation space
characterized by a mixed Lebesgue-type norm in phase-space:

∥σt∥M∞,1 :=

∫
R2d

sup
z∈R2d

|VΦσt(z, ζ)| dζ <∞, Φ ∈ S(R2d) \ {0}.
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It is additionally assumed that the correspondence R ∋ t 7→ σ(t, ·) ∈M∞,1(R2d) is continuous in a mild sense -
see Definition 2.4 below for further details. We highlight the article [35] for the pioneering use of Weyl operators
in path integral problems.

For concreteness, let us briefly discuss here the case where V = Vt× is a standard multiplication operator by
Vt ∈M∞,1(Rd) (see Section 2.2). To give a flavour of typical potentials in this family we remark that the latter
includes bounded functions that locally coincide with the Fourier transform of an integrable function, hence
also continuous. This is in fact the least regularity level of such potentials, since members of M∞,1(Rd) are not
differentiable in general – for instance, any piecewise linear function belongs to the Sjöstrand class, see Remark
2.2 for details and further examples. Nevertheless, a relevant subclass of M∞,1(Rd) is the space C∞

b (Rd) of
smooth bounded functions with bounded derivatives of any order. We also have FM(Rd) ⊂M∞,1(Rd), where
FM(Rd) is the space of Fourier transforms of complex finite measures (cf. [44, Proposition 3.4]). Potentials of
this type already appeared several times in the literature on mathematical path integrals, especially in connection
with the Parseval duality approach introduced by Itô [36] and developed by Albeverio et al. [1, 2].

Consider now the Hamiltonian H0 = Qw as above. This setting encompasses some fundamental settings
like the free particle and the harmonic oscillator, possibly in the presence of a uniform magnetic field. A
classical result of harmonic analysis states that the evolution operator U0(t, s) = e−2πi(t−s)H0 is a metaplectic
operator associated with the phase space flow R ∋ τ 7→ Sτ ∈ Sp(d,R) of the corresponding classical system,
that is U0(t, s) = cµ(St−s) for some c = c(t− s) ∈ C with |c| = 1 - see [11, 24] and Section 2.4 for an expanded
account.

The structure of the full Schrödinger propagator U(t) in the presence of a potential V as above can be
investigated by means of standard arguments from the theory of operator semigroups that have their roots the
perturbation method of quantum mechanics. The main steps of this analysis are outlined in Section 2.5 below,
whereas here we recall the final result, that is

ψ(t, x) = U(t, s)ψs(x), U(t, s) = U0(t, s)a(t, s)
w, (2)

where a(t, s) is a symbol in the Sjöstrand class (cf. Lemma 2.6 below) defined by a Dyson-Phillips expansion:

a(t, s) = T exp

(
−2πi

∫ t

s

b(τ, s)dτ

)
(3)

:= 1 +
∑
n≥1

(−2πi)
n

∫ t

s

∫ t1

s

. . .

∫ tn−1

s

b(t1, s)# · · ·#b(tn, s) dtn . . . dt1,

where b(τ, s) := στ ◦ Sτ−s and # denotes Weyl’s twisted product of symbols (see Section 2.2 for further details).
The symbol T exp entails the key notion of causal time ordering [13, 23], which is implemented here by integration
over a bounded simplex in the exponential-like series above.

It is intuitively clear that U(t, s) is intimately connected to the homogenous propagator U0(t, s) described
before. The underlying relationship has been completely elucidated in the papers [5, 6], leading to the
introduction of the class FIO(St−s) of generalized metaplectic operators associated with the flow St−s - more
details are collected in Section 2.5 for convenience. Roughly speaking, an operator T ∈ FIO(S), S ∈ Sp(d,R),
can be thought of as a perturbation of µ(S) that still retain some of its good features, such as continuity on
modulation spaces (T ∈ L(Mp(Rd))), stability under composition, explicit representation as a Fourier integral
operator, approximate localization in phase space near the graph of S by Gabor wave packets.

These properties played a crucial role in the proof of the pointwise convergence of kernels of the Trotter
parametrices in [44]. Indeed, it turns out that these approximate propagators are generalized metapletic operators
as well. Consider for simplicity the case where V = σw with σ ∈M∞,1(R2d) and set ρν = e−2πiνσ, ν = (t− s)/n.
In light of the fact that the Sjöstrand class is an algebra of Weyl symbols [32] one can prove that ρν ∈M∞,1(R2d)
with

e−2πiνV = ρwν = I + 2πiνρ0(t, s)
w,

where ρ0(t, s) belong to a bounded subset of M∞,1(R2d), uniformly with respect to n, we have

Tn(t, s) = U0(t, s)ρn(t, s)
w ∈ FIO(St−s),

ρn(t, s) =

n−1∏
k=0

(1 + 2πiν (ρ0 ◦ Skν)) ∈M∞,1(R2d),

where the Weyl product (with ordering from left to right along increasing values of k) is understood.
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While the previous remarks should shed some light on the suitability and effectiveness of techniques of Gabor
analysis in the setting considered in [44], there are some aspects that seem worthy of further attention. Above all,
while it was proved that the integral kernels of Tn(t, s) converge to that of the Schrödinger propagator U(t, s),
uniformly on compact subsets of R2d, the result comes with no information on the rate at which convergence
occurs. Moreover, even if the strong convergence result implied by the Trotter formula has a role in allowing the
transfer to the level of kernels, it seems not clear how to cover other operator topologies. The lack of information
in connection with rates of convergence or different topologies is not completely surprising, as it is a well-known
limitation of the Trotter formula – in spite of its widespread use in the path integral literature, it just provides
a qualitative strong convergence result that can be hardly refined or extended whenever concerned with the
unitary setting, cf. for instance [56, Appendix D].

In summary, while approximating the Schrödinger propagator U(t, s) with a sequence of operators belonging
to the same class sounds wise and actually leads to interesting results, the dissimilarity between the symbols
a(t, s) and ρn(t, s) makes one wonder if the parametrices arising from the Trotter are too inflexible due to a
limited approximation power by design.

1.3 Main results for novel FIO-type approximate propagators

Motivated by the previous discussion, we are lead to design a novel time slicing approximation aimed at better
grasping the structure of the target propagator U(t, s). In particular, it is natural to consider a short-time
FIO-type approximate propagator E(t, s) such as

E(t, s) := U0(t, s)e(t, s)
w,

where the symbol e(t, s) is defined by mimicking the structure of a(t, s), that is

e(t, s) := exp

(
−2πi

∫ t

s

b(τ, s)dτ

)
. (4)

We prove below that e(t, s) ∈M∞,1(R2d). More importantly, there is a crucial gain in the short-time
approximation power: in Lemma 3.1 below we prove that ∥a(t, s)− e(t, s)∥M∞,1 = O(|t− s|2), whereas a similar
argument shows that ∥a(t, s)− ρnν∥M∞,1 = O(|t− s|). While this fact might be judged as a minor improvement,
it will be clear below that this is the cornerstone of a multilevel enhancement of convergence results for such
novel approximation scheme.

We consider here a more general time slicing pattern than the uniform one associated with the Trotter
formula. Without loss of generality assume that s < t and for a given integer L ≥ 1 consider a subdivision
ΩL = {t0, . . . , tL} of the interval [s, t] such that s = t0 < t1 < . . . < tL = t. Note that the subdivision of t− s
underlying the Trotter formula is uniform, namely ω(ΩL) = (t− s)/L. We accordingly define the time-slicing
approximate propagator as

E(ΩL; t, s) := E(tL, tL−1) · · ·E(t1, t0). (5)

The stability of generalized metaplectic operators under composition (see Theorem 2.7 below) implies that
E(ΩL; t, s) is again an operator in the same class and there exists a symbol e(ΩL; t, s) ∈M∞,1(R2d) such that
E(ΩL; t, s) = U0(t, s)e(ΩL; t, s)

w – see Lemma 3.3 below. To be precise, iterated application of the symplectic
covariance property (18) yields

e(ΩL; t, s) = ẽ(tL, tL−1)# · · ·#ẽ(t1, t0), (6)

where the modified symbols ẽ(tj+1, tj), j = 0, . . . , L− 1, are defined by

ẽ(tj+1, tj) := e(tj+1, tj) ◦ Stj−t0 , j = 0, . . . , L− 1. (7)

We stress that the parametrices E(ΩL; t, s) are different from those considered by Fujiwara as well as from
those associated with the Trotter formula. Still, the short-time propagator E(t, s) is quite easy to handle thanks
to the natural algebraic properties of the FIO family and that integral formulae for the Weyl product [55] can
be used to derive explicit representations for the symbol e(ΩL; t, s).

We present here our main convergence results for this family of approximations.

Theorem 1.1. Fix T > 0 and let s, t ∈ R be such that 0 < t− s ≤ T . Consider a subdivision ΩL = {t0, . . . , tL} of
the interval [s, t] such that s = t0 < t1 < . . . < tL = t and set ω(ΩL) := sup{tj+1 − tj : 0 ≤ j ≤ L− 1}. Consider
a(t, s) and e(ΩL; t, s) as defined in (3) and (6) respectively. There exists C = C(T ) > 0 such that

∥e(ΩL; t, s)− a(t, s)∥M∞,1 ≤ Cω(ΩL)(t− s). (8)
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As a result, e(ΩL; t, s) → a(t, s) uniformly in R2d if ω(ΩL) → 0 and there exists C ′ = C ′(T ) > 0 such that

∥E(ΩL; t, s)− U(t, s)∥Mp→Mp ≤ C ′ω(ΩL)(t− s), (9)

for every 1 ≤ p ≤ ∞ – in particular, for M2(Rd) = L2(Rd).

While convergence at the level of symbols in (8) is ultimately a consequence of the short-time approximation
power of e(t, s) up to second order terms (Lemma 3.1), the composition comes with an unavoidable loss resulting
in a first order rate with respect to the mesh size ω(ΩL). Higher order rates, namely ω(ΩL)

N for any integer
N ≥ 2, can be similarly obtained if time ordering is partially retained in the construction of the parametrix
symbol in (4), as discussed in Remark 3.2 and Section 3.4 below. In any case, one is now able to obtain a
convergence result (with the same rate) in the uniform operator topology that is generally out of reach when
the Trotter formula is taken into account.

A natural problem at this stage is the study of convergence at the level of kernels for E(ΩL; t, s). As
already mentioned, generalized metaplectic operators do have a typical explicit form as integral operators - see

Section 2.5 for further details. Let E be the set of exceptional times for FIO(Sτ ), namely if Sτ =

[
Aτ Bτ

Cτ Dτ

]
is the block decomposition of the classical flow, then E = {τ ∈ R : detBτ = 0}. It can be proved that if
U(t, s) ∈ FIO(St−s) and t− s ∈ R \ E then there exist a phase factor c = c(t− s) ∈ C, |c| = 1, and an amplitude
function a′(t, s) = a′(t, s; ·) ∈M∞,1(R2d) such that

U(t, s)f(x) =

∫
Rd

u(t, s, x, y)f(y) dy, (10)

u(t, s, x, y) := c|detBt−s|−1/2e2πiΦt−s(x,y)a′(t, s, x, y),

where Φt−s(x, y) is a quadratic polynomial whose coefficients depend only on the entries of St−s. Under the
same assumptions one similarly proves that there exists e′(ΩL; t, s) ∈M∞,1(R2d) such that

E(ΩL; t, s)f(x) =

∫
Rd

k(ΩL; t, s, x, y)f(y) dy, (11)

k(ΩL; t, s, x, y) := c|detBt−s|−1/2e2πiΦt−s(x,y)e′(ΩL; t, s, x, y).

The estimates in Theorem 1.1 can thus be used to infer refined convergence results at the level of integral kernels.

Theorem 1.2. For 0 < t− s ≤ T with t− s /∈ E, let u(t, s) = u(t, s, ·) and k(ΩL; t, s) = k(ΩL; t, s, ·) be the
integral kernels of U(t, s) and E(ΩL; t, s) in (10) and (11) respectively. Under the same assumptions of Theorem
1.1, for any real-valued function Ψ on R2d with compact support there exist constants C1 = C1(t− s,Ψ) > 0
and C2 = C(T,Ψ) > 0 such that

∥[k(ΩL; t, s)− u(t, s)]Ψ∥FL1 ≤ C1ω(ΩL)(t− s), (12)

∥[e′(ΩL; t, s)− a′(t, s)]Ψ∥FL1 ≤ C2ω(ΩL)(t− s). (13)

In particular, the latter bounds imply uniform convergence on compact subsets of R2d as ω(ΩL) → 0.

This result should be compared with those proved in [44] in the Feynman-Trotter scheme. They are similar
in nature and to some extent also for what concerns the proof strategy – which relies here on a generalized
version of the one pioneered in the aforementioned works by Fujiwara. A key difference is that here we are able
to control the rate of convergence in (12), thanks to quantitative estimates on the convergence of amplitudes
such as (8). This is a further illustration of how the advantages of a carefully designed time-slicing approximation
reflect into better convergence results, eventually overcoming inherent limitations such as those associated with
the unitary Trotter formula. We also stress that while it is expected that the bound in (12) for the full kernels
cannot hold uniformly with respect to t− s in view of the possibly degenerate behaviour of the oscillatory
integral phase Φt−s and “normalization” |detBt−s|−1/2, the finer bound for the amplitudes in (13) is in fact
locally uniform with respect to t− s in (0, T ) \ E.
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1.4 Further comments

We emphasize that setting ℏ = 1/2π is not restrictive as soon as ℏ is interpreted as a small fixed parameter.
The more challenging problem of the semiclassical limit, namely convergence also for ℏ → 0, would require the
occurrence of positive powers of ℏ in bounds such as (8). While this issue would certainly fall within the scope of
our analysis, it seems clear that approximate propagators must be carefully revised in order to embrace such a
different perspective. Consider again Fujiwara’s short-time parametrices [27], which have the form of oscillatory
integral operators where the phase depends on the action functional S(t, s, x, y) of the system along the classical
path γ such that γ(t) = x and γ(s) = y – that is unique if |t− s| is small enough. This subtler design reflects into
a time slicing approximation scheme along piecewise classical paths in spacetime, rather than broken lines as in
Nelson’s approach. This deeper connection with the classical dynamics is certainly accountable for the notable
performance in the semiclassical regime. Generalized metaplectic operators such as E(t, s) ∈ FIO(St−s) share
some formal similarities with Fujiwara’s propagators, but there are some fundamental differences. In particular,
the integral representation of operators in FIO(St−s) for t− s /∈ E gives rise to an (oscillatory) integral operator
with phase Φt−s(x, y). Such generating function depends only on the metaplectic Hamiltonian H0 and actually
coincides with the variation of action along a corresponding classical path with endpoints y and x at times s
and t respectively, the latter being unique if |t− s| is sufficiently small – see [12, Chapter 4] for further details.
The effect of the potential perturbation is then encoded by a suitable amplitude function in the integral formula
for E(t, s), hence it does not affect the piecewise classical path that is modelled on the dynamics underlying
H0. As a matter of fact, while the technical difficulties in Fujiwara’s analysis are indeed related to the control
of phases and amplitudes, the starring role in our FIO-based approach is played by the symbols involved in
the deformation of a basic metaplectic operator – as evidenced by estimates like (8) and (27). In a sense, the
FIO-type approximation scheme outlined here lies somewhere between the one relying on the Trotter formula
and that based on oscillatory integrals introduced by Fujiwara.

In addition to the previous remarks, let us highlight that the effort of a refinement of the parametrices
E(t, s) having in mind a semiclassical setting is not expected to be successful, since the underlying framework of
perturbation theory inherently involves expansions and estimates with negative powers of ℏ. In view of the lack
of semiclassical approximation power for our parametrices, we also preferred to abstain from a careful revision
of the basic notions of Gabor analysis in order to keep track of ℏ in a consistent way as in [4].

In spite of these remarks, an intriguing related problem is that of paralleling the Gabor wave packet approach
in the context of Hamiltonian path integrals, where paths in phase space are taken into account. Metaplectic
operators already proved to be powerful models in this setting, see for instance [47]. Since the problem and the
techniques are different from those discussed here, we prefer to postpone related investigations to a separate
manuscript.

2 Preliminary results

2.1 Notation

We set x · y for the inner product on Rd. The bracket ⟨f, g⟩ denotes the extension to S ′(Rd)× S(Rd) of the

inner product ⟨f, g⟩ =
∫
Rd f(t)g(t)dt on L

2(Rd).
We choose the following normalization for the Fourier transform:

F(f)(ξ) = f̂(ξ) =

∫
Rd

e−2πix·ξf(x)dx, ξ ∈ Rd.

2.2 Weyl pseudodifferential operators

The usual definition of the Weyl operator σw = opw(σ) with symbol σ : R2d → C is

σwf(x) :=

∫
R2d

e2πi(x−y)·ξσ
(x+ y

2
, ξ
)
f(y) dydξ. (14)

The way to rigorously interpret this (formal) integral operator relies on the function spaces to which the symbol
σ and the function f belong. For instance, classical symbol classes such as Hörmander’s Sm

ρ,δ(R2d) [33] are usually
defined by means of decay/smoothness conditions.

One can also approach the issue from the point of view of time-frequency analysis [31]: a straightforward
computation (yet formal in general) shows that

⟨σwf, g⟩ = ⟨σ,W (g, f)⟩, (15)
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where we have introduced the (cross-)Wigner transform of f, g:

W (f, g)(x, ξ) :=

∫
Rd

e−2πiξ·yf
(
x+

y

2

)
g
(
x− y

2

)
dy.

This is in fact a standard representation in the phase-space formulation of quantum mechanics [57]. It turns out
that there is an intimate connection between the Gabor transform and the Wigner distribution. For instance, the
Lp norm of the (cross-)Wigner transform can be equivalently used to measure the modulation space regularity
of a signal [11].

We are thus lead to interpret (14) in the weak sense and consider (15) as a definition of σw for a generalized
symbol σ ∈ S ′(R2d), for any f, g ∈ S(Rd). Note that this choice paves the way to using modulation spaces both
as symbol classes as well as target spaces for Weyl operators; the interested reader can find more details on this
perspective in [30, 10].

By way of illustration let us mention that the multiplication by a function V (x) is a special example of
Weyl operator with symbol

σV (x, ξ) = (V ⊗ 1)(x, ξ) = V (x), (x, ξ) ∈ R2d.

One may similarly prove that a Fourier multiplier with symbol m(ξ) is a Weyl operator with symbol
(1⊗m)(x, ξ) = m(ξ). The symbolic calculus relies on the composition of Weyl transforms, which provides a
bilinear form on symbols known as the Weyl (or twisted) product :

σw ◦ ρw = (σ#ρ)w, σ#ρ = F−1(σ̂♮ρ̂),

where the twisted convolution [30] of σ̂ and ρ̂ is (formally) defined by

(σ̂♮ρ̂)(x, ξ) :=

∫
R2d

eπi(x,ξ)·(η,−y)σ̂(y, η)ρ̂(x− y, ξ − η) dydη.

We remark that in phase space quantum mechanics and deformation quantization it is customary to refer to
σ#ρ as the Moyal star product of σ and ρ after [40].

2.3 The Sjöstrand class

We already introduced the Sjöstrand class in Section 1. As the name suggests, it was first presented by Sjöstrand
in [51] as an exotic class of non-smooth symbols still giving bounded pseudodifferential operators in L2(Rd). It
was later rediscovered in Gabor analysis by Gröchenig [29, 32], who obtained novel proofs of known results
but also a number of new important characterizations (e.g., almost diagonalization in phase space of the
corresponding Weyl operators and the Wiener property).

We recall that, as a fully fledged modulation space, M∞,1(Rd) can be designed the collection of f ∈ S ′(Rd)
such that, for some (hence any) non-trivial g ∈ S(Rd),

∥f∥M∞,1 :=

∫
Rd

sup
x∈Rd

|Vgf(x, ξ)| dξ <∞.

Using the properties of the Gabor transform [30, Lemma 3.1.1], it is not difficult to show that if

f ∈M∞,1(Rd) then ∥f̂∥W∞,1 <∞, where we set

∥h∥W∞,1 :=

∫
Rd

sup
ξ∈Rd

|Vgh(x, ξ)|dx.

Equivalently, reversing the order of time and frequency variables in the norm of M∞,1(Rd) provides a natural
norm for the spaceW∞,1(Rd) := FM∞,1(Rd). In general, for 1 ≤ p ≤ ∞ we setW p(Rd) := FMp(Rd), the latter
being special examples of Wiener amalgam spaces [15, 17]. To be precise, we have that W p(Rd) =W p,p(Rd),
where W p,q(Rd) =W (FLp, Lq)(Rd) is the amalgam space with local and global components FLp(Rd) and
Lq(Rd) respectively. Further details on the topic can be found for instance in [10, Section 2.4].

We list here some properties that will be used below. The reader can consult the aforementioned papers for
a more comprehensive account.

Proposition 2.1. (i) M∞,1(Rd) ⊂ (FL1(Rd))loc ∩ L∞(Rd) ⊂ Cb(Rd), where Cb(Rd) is the space of bounded
and continuous functions Rd → C. More precisely, M∞,1(Rd) ⊂W 1,∞(Rd).
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(ii) (M∞,1(Rd))loc = (FL1(Rd))loc.

(iii) FM(Rd) ⊂M∞,1(Rd), where M(Rd) is the space of complex finite measures on Rd.

(iv) M∞,1(Rd) is a Banach algebra under pointwise multiplication:

f, g ∈M∞,1(Rd) ⇒ f · g ∈M∞,1(Rd).

(v) M∞,1(Rd) is a Banach algebra under the Weyl product of symbols:

ρ, σ ∈M∞,1(Rd) ⇒ ρ#σ ∈M∞,1(Rd).

(vi) If σ ∈M∞,1(R2d) then σw is a bounded operator on L2(Rd) and, in general, on Mp(Rd) for 1 ≤ p ≤ ∞.
To be precise, there exists C > 0 independent of σ and p such that

∥σw∥Mp→Mp ≤ C∥σ∥M∞,1 . (16)

Proof . (i) It is a direct consequence of the definition. The refined inclusionM∞,1(Rd) ⊂W 1,∞(Rd) is readily
obtained by means of a straightforward application of Minkowski’s integral inequality.

(ii) See [3, Proposition 2.9] for a proof.

(iii) A direct proof can be found in [44, Proposition 3.4]. Arguing in terms of Wiener amalgam spaces, since
M(Rd) =W (M, L1)(Rd) by [18, Theorem 1] we can resort to [15, Remark 1.2] to equivalently conclude
that M(Rd) =W (M, L1)(Rd) ⊂W (FL∞, L1) = FM∞,1(Rd).

(iv) This is a special case of a more general characterization, see [48, Theorem 3.5 and Corollary 2.10].

(v) Proofs can be found in the original paper [51] by Sjöstrand as well as in the already mentioned paper [32]
by Gröchenig.

(vi) The same comments of the previous item apply here. For a streamlined textbook proof see also [30,
Theorem 14.5.2].

Remark 2.2. As a further illustration of the Sjöstrand class regularity, it may be useful to observe that any
function f = g ∗ h obtained by smoothing a mild distribution h ∈M∞(Rd) with a filter g ∈M1(Rd) belongs to
M∞,1(Rd). The proof is easily carried on the spectral side by means of the properties of Wiener amalgam spaces
(cf. for instance [10, Theorem 2.4.9]), namely

f̂ = ĝ · ĥ ∈W 1(Rd) ·W∞(Rd) ⊂W∞,1(Rd).

This remark gives us the opportunity to build several interesting examples of functions in the Sjöstrand class in
a straightforward way. Consider for instance functions that are obtained via periodization of a given g ∈M1(Rd)
along a regular lattice Λ = αZd with α > 0, that is f(x) = g ∗XΛ(x) :=

∑
k∈Zd g(x− αk), where we introduced

the Dirac comb XΛ :=
∑

k∈Zd δαk ∈M∞(Rd). More generally, we have that f = g ∗ h ∈M∞,1(Rd) for any

g ∈M1(Rd) and h =
∑

k∈Zd vkδαk with (vk)k∈Zd ∈ ℓ∞(Z), since h ∈W (M, ℓ∞)(Rd) ⊂M∞(Rd) as well.
In this connection, a concrete family of relevant potentials in dimension d = 1 withM∞,1 regularity is given

by continuous piecewise linear functions f with values (vk)k∈Z ∈ ℓ∞(Z) at nodes {αk}k∈Z ⊂ R, for some α > 0.
Indeed, any such function can be represented as f = gα ∗ h, where gα(x) = max{1− |x|/α, 0} is a suitable
triangular function (with FL1 regularity and compact support, hence gα ∈M1(R)) and h =

∑
k∈Z vkδαk ∈

M∞(R) as above.

Remark 2.3. Let (A, ⋆) be a unital Banach algebra. From the very definition we have that there exists C > 0
such that

∥a1 ⋆ a2∥A ≤ C∥a1∥A∥a2∥A, a1, a2 ∈ A.

Recall that it is always possible to introduce an equivalent norm on A for which the product estimate above
holds with C = 1 and the unit has norm equal to 1 (cf. e.g. [50, Theorem 10.2]). From now on we will tacitly
consider such equivalent norm whenever concerned with a Banach algebra.
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It was already noted in [51] that S(Rd) is not dense in M∞,1(Rd) with the norm topology. This issue can
be fixed if one introduces the following notion [7, 51].

Definition 2.4. Fix I ⊆ R. The map I ∋ ν 7→ σν ∈M∞,1(Rd) is said to be continuous in the sense of the
narrow convergence if:

(i) it is weakly continuous in S ′(Rd) (i.e., the map ν 7→ ⟨σν , g⟩ is continuous for every g ∈ S(Rd)), and

(ii) there exists a function h ∈ L1(Rd) such that for some (hence any) window g ∈ \{0} one has
supx∈Rd |Vgσν(x, ξ)| ≤ h(ξ) for any ν ∈ I and a.e. ξ ∈ Rd.

The latter condition implies that σν belongs to a bounded subset of M∞,1(Rd), uniformly with respect to
ν – precisely, supν∈I ∥σν∥M∞,1 ≤ ∥h∥L1 <∞.

Finally, we recall from [6, Lemma 2.2] and [44, Lemma 3.1] a result on uniform estimates for linear changes
of variable in the Sjöstrand class that will be used later.

Lemma 2.5. Let σ ∈M∞,1(R2d) and t 7→Mt ∈ Sp(d,R) be a continuous mapping defined on the compact
interval [−T, T ], T > 0. For any t ∈ [−T, T ], we have σ ◦Mt ∈M∞,1(R2d); precisely, there exists C(T ) > 0 such
that

∥σ ◦Mt∥M∞,1 ≤ C(T )∥σ∥M∞,1 . (17)

2.4 Metaplectic operators and quadratic Hamiltonian operators

There are several equivalent ways to define metaplectic operators. The reader is referred to the monographs
[11, 24, 49, 53] for comprehensive treatments of the topic. Here we confine ourselves to recall that the metaplectic
group coincides with the two-fold covering of the symplectic group Sp(d,R). In particular, there exists a
faithful and strongly continuous unitary representation of Mp(d,R) on L2(Rd), called the Shale-Weil metaplectic
representation, which allows us to recast the issue in terms of a correspondence between any symplectic matrix
S ∈ Sp(d,R) and a pair of unitary metaplectic operators differing only by the sign, both denoted by µ(S) with
a slight abuse of notation.

Among the several properties satisfied by metaplectic operators, it is important to our purposes to highlight
that the Weyl quantization satisfies a characterizing intertwining relationship called symplectic covariance (cf.
[11, Theorem 215]): for every symbol σ ∈ S ′(R2d) we have

(σ ◦ S)w = µ(S)−1σwµ(S). (18)

While boundedness results on modulation spaces for metaplectic operators can be readily derived from
phase-space estimates obtained by localization via Gabor wave packets [9, Theorem 2.3], we need below a more
precise bound where the dependence on S of the underlying constants is completely clarified. A result in this
spirit has been recently obtained in [8, Corollary 3.4] and reads as follows: for every S ∈ Sp(d,R) and 1 ≤ p ≤ ∞
there exists an absolute constant C > 0 such that, for every f ∈Mp(Rd),

∥µ(S)f∥Mp ≤ C(σ1(S) · · ·σd(S))|1/2−1/p|∥f∥Mp , (19)

where σ1(S) ≥ . . . ≥ σd(S) ≥ 1 are the d largest singular values of S.
A concrete characterization of metaplectic operators can be given in terms of Schrödinger propagators

with quadratic Hamiltonian [47]. Consider the Schrödinger equation i∂tψ = 2πH0ψ where H0 = Qw is the Weyl
quantization a real-valued, time-independent, quadratic homogeneous polynomial Q on R2d. Precisely, if

Q(x, ξ) =
1

2
Aξ · ξ +Bx · ξ + 1

2
Cx · x,

for some matrices A,B,C ∈ Rd×d with A = A⊤ and C = C⊤, then

H0 = Qw = − 1

8π2

d∑
j,k=1

Aj,k∂j∂k − i

2π

d∑
j,k=1

Bj,kxj∂k +
1

2

d∑
j,k=1

Cj,kxjxk − i

4π
Tr(B). (20)

It is well known that the associated propagator is a metaplectic operator, precisely

U0(t, s) = e−2πi(t−s)Qw

= cµ(St−s),
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for some c = c(t− s) ∈ C with |c| = 1, where the (continuous) mapping

R ∋ τ 7→ Sτ =

[
Aτ Bτ

Cτ Dτ

]
∈ Sp(d,R) (21)

is the phase-space flow determined by the Hamilton equations for the corresponding classical system with
Hamiltonian Q(x, ξ).

Another classical result concerns the explicit characterization of the propagator U0(t, s) as an integral
operator, cf. [24, Theorems 4.51 and 4.53] and [11]. Recall that the matrix Sτ is said to be free if the upper-right
block Bτ in (21) is invertible. In this case, we have

U0(t, s)f(x) = c|detBt−s|−1/2

∫
Rd

e2πiΦt−s(x,y)f(y)dy, f ∈ S(Rd), (22)

again for some c = c(t− s) ∈ C with |c| = 1, where Φt−s is a quadratic form on R2d known as generating function
of St−s:

Φt−s(x, y) =
1

2
Dt−sB

−1
t−sx · x−B−1

t−sx · y + 1

2
B−1

t−sAt−sy · y.

We accordingly define the set of exceptional times for Sτ to be

E = {τ ∈ R : detBτ = 0},

that is the collection of values of τ such that Sτ is not a free symplectic matrix. The exceptional nature of these
values does not just concern the lack of integral representations as in (10), since the subset of free symplectic
matrices has codimension 1 in Sp(d,R) [12, Proposition 171]. Some of the properties of E can be immediately
inferred from the fact that it actually coincides with the zero set of an analytic function: apart from the case
E = R (which trivially occurs when H0 = 0), E is a discrete (hence at most countable) subset of R which always
includes τ = 0 and possibly only this value (this is the case of the free particle).

2.5 Generalized metaplectic operators

Let us consider the perturbed problem in (1) with the assumptions stated in Section 1, recalled below.

Assumption 1. We consider the Hamiltonian operator H = H0 + V , where H0 = Qw is the Weyl quantization
of a real quadratic form on R2d as in (20) and V = σw

t for a one-parameter family of symbols σt ∈M∞,1(R2d)
such that the correspondence R ∋ t 7→ σt ∈M∞,1(R2d) is continuous in the sense of the narrow convergence.

Standard arguments of perturbation theory can be used to give a rigorous proof of the following facts (cf. [6,
Theorem 4.1] for the details): the problem under consideration is globally backward and forward well-posed in
L2(Rd) and the corresponding full Schrödinger propagator U(t, s) is a one-parameter strongly continuous group
of automorphisms of L2(Rd) – in fact, of any modulation space Mp(Rd), 1 ≤ p ≤ ∞, hence the phase-space
concentration is preserved under the evolution.

The structure of U(t, s) is intimately related to that of the companion homogeneous problem U0(t, s) =
cµ(St−s). Let us briefly review the main steps of the derivation for the sake of clarity. First, the problem (1)
can be recast in integral form in accordance with Duhamel’s principle, namely

ψ(t, x) = U0(t, s)ψs(x)− 2πi

∫ t

s

U0(t, τ)σ
w
τ ψ(τ, x)dτ.

After setting φ(t, x) := U0(s, t)ψ(t, x) (which leads to the the so-called interaction picture) and using the
evolution property of U0 we have

φ(t, x) = ψs(x)− 2πi

∫ t

s

U0(s, τ)σ
w
τ U0(τ, s)φ(τ, x)dτ. (23)

We resort to the symplectic covariance property (18), which plays here the role of an Egorov-like result for linear
symplectic transformations regulating the flow of the symbol στ [58], that is

U0(s, τ)σ
w
τ U0(τ, s) = (στ ◦ Sτ−s)

w =: b(τ, s)w.

The solution of the Volterra integral equation (23) is thus given by

φ(t, x) = a(t, s)wψs(x),



12 S. I. Trapasso

where the symbol a(t, s) = T exp
(
−2πi

∫ t

s
b(τ, s)dτ

)
was defined in (3). To conclude, we have that U(t, s) =

U0(t, s)a(t, s)
w. Let us emphasize that that U(t, s) is not a unitary propagator in general, unless V is self-adjoint

- equivalently, if στ is a real-valued symbol.
We prove that the symbols a(t, s) belong to a bounded subset of M∞,1(R2d).

Lemma 2.6. Fix T > 0 and let s, t ∈ R be such that 0 < |t− s| ≤ T . Let a(t, s) be defined as in (3). Then
a(t, s) ∈M∞,1(R2d) and there exists C = C(T ) > 1 such that ∥a(t, s)∥M∞,1 ≤ C.

Proof . Let us set

αn(t, s) :=

∫ t

s

∫ t1

s

. . .

∫ tn−1

s

b(t1, s)# · · ·#b(tn, s) dtn . . . dt1, n ∈ N,

so that we can write a(t, s) = 1 +
∑

n≥1 (−2πi)
n
αn(t, s). It is clear that αn(t, s) ∈M∞,1(R2d) since (M∞,1,#)

is a Banach algebra (cf. Proposition 2.1) and b(τ, s) = στ ◦ Sτ−s ∈M∞,1(R2d) for all τ > s in view of Lemma
2.5. To be precise, we have

∥αn(t, s)∥M∞,1 =

∥∥∥∥∫ t

s

∫ t1

s

. . .

∫ tn−1

s

b(t1, s)# · · ·#b(tn, s) dtn . . . dt1
∥∥∥∥
M∞,1

≤
∫ t

s

∫ t1

s

. . .

∫ tn−1

s

∥b(t1, s)∥M∞,1 · · · ∥b(tn, s)∥M∞,1 dtn . . . dt1

≤ |t− s|n

n!

(
sup

τ∈[s,t]

∥b(τ, s)∥M∞,1

)n

≤ C0(T )
n|t− s|n

n!

(
sup

τ∈[s,t]

∥στ∥M∞,1

)n

≤ C1(T )
n

n!
|t− s|n, (24)

where we set C1(T ) = C0(T )
(
supτ∈[s,t] ∥στ∥M∞,1

)
, in particular C0(T ) comes from the estimate (17) and the

supremum is finite since t 7→ σt is continuous in the sense of the narrow convergence. The claim follows from
(24), since

∥a(t, s)∥M∞,1 ≤ 1 +
∑
n≥1

(2π)n∥αn(t, s)∥M∞,1 ≤ eC1(T )T/2π =: C.

Operators of the form of U(t, s) as above, namely arising as combinations of metaplectic and pseudodif-
ferential operators with symbols in M∞,1(R2d), have been thoroughly studied in time-frequency analysis. They
constitute the family FIO(S) of generalized metaplectic operators introduced in [5, 6, 9]. Roughly speaking,
FIO(S) can be thought of as the largest class of “perturbations” of µ(S) that still evolve Gabor wave packets
in phase space essentially following the flow associated with S. A precise condition can be given in terms of the
Gabor matrix of an operator T : S(Rd) → S ′(Rd), defined by ⟨Tπ(z)g, π(w)g⟩, z, w ∈ R2d, for fixed g ∈ S(Rd).
In particular, for every N ∈ N there exists C = C(N) > 0 such that

|µ(S)π(z)g, π(w)g| ≤ C(1 + |w − Sz|)−N , z, w ∈ R2d,

whereas the class FIO(S) is formed by all and only the operators T such that there existsH ∈ L1(R2d) satisfying

|Tπ(z)g, π(w)g| ≤ H(w − Sz), w, z ∈ R2d.

In light of the previous remarks, the following properties of generalized metaplectic operators should not
be surprising – proofs can be found in the aforementioned papers as well as in [10].

Theorem 2.7. Let S, S1, S2 ∈ Sp(d,R).

(i) Let T : S(Rd) → S ′(Rd) be a linear continuous operator. T ∈ FIO(S) if and only if there exist σ1, σ2 ∈
M∞,1(R2d) such that

T = σw
1 µ(S) = µ(S)σw

2 .

In particular, σ2 = σ1 ◦ S.
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(ii) An operator T ∈ FIO(S) is bounded on Mp(Rd) for any 1 ≤ p ≤ ∞.

(iii) If T1 ∈ FIO(S1) and T2 ∈ FIO(S2), then T1T2 ∈ FIO(S1S2).

(iv) If T ∈ FIO(S) is invertible on L2(Rd) then T−1 ∈ FIO(S−1).

The following result provides a concrete picture of generalized metaplectic operators arising as Schrödinger
propagators and clarifies the intimate relation with the representation formula (22) of the companion metapletic
operator for non-exceptional times.

Theorem 2.8. Let U(t, s) = U0(t, s)a(t, s)
w ∈ FIO(St−s) be the Schrödinger propagator corresponding to the

Hamiltonian H = H0 + V as in Assumption 1. For every t, s ∈ R with 0 < |t− s| ≤ T and t− s /∈ E there exists
a symbol a′(t, s) = a′(t, s, ·) ∈M∞,1(R2d) such that

U(t, s)f(x) = c(t− s)|detBt−s|−1/2

∫
Rd

e2πiΦt−s(x,y)a′(t, s, x, y)f(y)dy,

the notation being the same of (22). Moreover, there exists C = C(T ) > 0 such that

∥a′(t, s)∥M∞,1 ≤ C∥a(t, s)∥M∞,1 . (25)

Proof . The representation of T ∈ FIO(S) as a Fourier integral operator is proved in [6, Theorem 5.1], so that
the claim follows after easy modifications as detailed for instance [44, Lemma 3.1]. It remains to prove the
uniformity of the estimate (25). In the aforementioned results (see also [6, Proposition 5.2]) it is shown by direct
computation that

a′(t, s) = U2UU1(a(t, s) ◦ S−1
t−s),

where U ,U1,U2 are the mappings defined on σ ∈M∞,1(R2d) by

U1σ(x, y) = σ(x, y +At−sx), U2σ(x, y) = σ(x,B⊤
t−sy), Ûσ(ξ, η) = eπiξ·ησ̂(ξ, η),

where At−s and Bt−s come from the block decomposition of St−s in (21). For what concerns U , the proof of
[30, Corollary 14.5.5] precisely shows that M∞,1(R2d) is invariant under the action of U . The desired conclusion
thus follows by repeated application of Lemma 2.5.

Remark 2.9. The previous representation result extends to any T ∈ FIO(S) - in particular it holds for
E(ΩL; t, s) ∈ FIO(St−s) in (5), as claimed in (11). We emphasize that also in this case we have that

∥e′(t, s)∥M∞,1 ≤ C∥e(t, s)∥M∞,1 , (26)

for a constant C = C(T ) > 0 that depends only on T , for 0 < |t− s| ≤ T with t− s /∈ E.

3 Proof of the main results

3.1 Preliminary estimates

For this and the subsequent sections we refer to the problem (1) under Assumption 1. We also use the notation
introduced in Section 1.

First, we prove that the symbols e(t, s) introduced in (4) are good short-time approximations of a(t, s).

Lemma 3.1. Fix T > 0 and let s, t ∈ R be such that 0 < |t− s| ≤ T . Consider a(t, s) and e(t, s) as defined in
(3) and (4) respectively. We have e(t, s) ∈M∞,1(R2d) and there exists C = C(T ) > 0 such that

∥a(t, s)− e(t, s)∥M∞,1 ≤ C|t− s|2. (27)
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Proof . First of all, note that

e(t, s) = exp

(
−2πi

∫ t

s

b(τ, s)dτ

)
=
∑
n≥0

(−2πi)
n 1

n!

(∫ t

s

b(τ, s)dτ

)n

.

To align the notation with the one introduced before, we define

εn(t, s) :=
1

n!

(∫ t

s

b(τ, s)dτ

)n

, n ∈ N,

so that e(t, s) = 1 +
∑

n≥1 (−2πi)
n
εn(t, s). Recall from Proposition 2.1 that M∞,1 is a Banach algebra under

pointwise multiplication, then arguing as in the proof of Lemma 2.6 we readily obtain

∥εn(t, s)∥M∞,1 ≤ C1(T )
n

n!
|t− s|n,

where the constant C1(T ) equals the one appearing in (24). In particular, we similarly infer that

∥e(t, s)∥M∞,1 ≤ eC1(T )|t−s|/2π, (28)

hence the symbols e(t, s) belong to a bounded set of M∞,1 depending only on T . As a result, we have

∥e(t, s)− a(t, s)∥M∞,1 =

∥∥∥∥∥∑
n≥2

(−2πi)
n
[εn(t, s)− αn(t, s)]

∥∥∥∥∥
M∞,1

≤
∑
n≥2

(2π)−n (∥εn(t, s)∥M∞,1 + ∥αn(t, s)∥M∞,1)

≤ 2
∑
n≥2

C1(T )
n

(2π)nn!
|t− s|n

≤ C|t− s|2,

where we set C = (C2
1/2π

2)eC1T/2π.

Remark 3.2. Inspecting the previous proof suggests that partial restoration of time ordering provides a way to
enhance the short-time approximation power of parametrices. For N ∈ N, N ≥ 2, consider indeed the symbols

e(N)(t, s) = T (N) exp

(
−2πi

∫ t

s

b(τ, s)dτ

)
:= 1 +

N∑
n=1

(−2πi)
n
αn(t, s) +

∑
n≥N+1

(−2πi)nεn(t, s).

Arguing as above it is thus easy to show that e(N)(t, s) ∈M∞,1(R2d) and

∥e(N)(t, s)− a(t, s)∥M∞,1 ≤ C|t− s|N+1,

for some C = C(T ) > 0.

We now consider the composition of symbols e(t, s) over a subdivision of a time interval and prove that the
the estimates are uniform with respect to the number of points in the subdivision.

Lemma 3.3. Fix T > 0 and let s, t ∈ R be such that 0 < t− s ≤ T . Fix a positive integer L and consider
the subdivision ΩL = t0, t1, . . . , tL of the interval [s, t], where s = t0 < t1 < . . . < tL = t. Let e(ΩL; t, s) be the
symbol defined in (5). Then there exists a constant C = C(T ) > 1 such that ∥e(ΩL; t, s)∥M∞,1 ≤ C.

Proof . From the very definition of e(ΩL; t, s) we have

∥e(ΩL; t, s)∥M∞,1 ≤ ∥ẽ(tL, tL−1)∥M∞,1 · · · ∥ẽ(t1, t0)∥M∞,1

=

L−1∏
j=0

∥e(tj+1, tj) ◦ Stj−t0∥M∞,1 .

Combining Lemma 3.1 (in particular (28)) with Lemma 2.5 we obtain that

∥e(tj+1, tj) ◦ Stj−t0∥M∞,1 ≤ eC0(tj+1−tj),

for a constant C0 = C0(T ) > 0 that depends only on T . The claim thus follows with C = eC0(T )T .
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3.2 Proof of Theorem 1.1

The strategy of the proof of Theorem 1.1 relies on a time slicing argument first pioneered in [26, Lemma 3.2].
The latter was subsequently generalized in [43, Theorem 10]. Let us focus on deriving (8) first. Consider the
propagator U(t, s) in (2); it is not difficult to realize that the corresponding group property and the symplectic
covariance of Weyl calculus (recall that U0(t, s) = c(t− s)µ(St−s)) imply the following composition law for
s < τ < t:

a(t, s) = (a(t, τ) ◦ Sτ−s)#a(τ, s). (29)

Iteration of this procedure referring to the subdivision ΩL in the claim brings us to introduce modified short-time
symbols in a similar fashion to those in (7):

ã(tj+1, tj) := a(tj+1, tj) ◦ Stj−t0 , j = 0, . . . , L− 1.

As a result, we obtain the decomposition

a(t, s) = ã(tL, tL−1)# . . .#ã(t1, t0).

The arguments in the proof of Lemma 3.3 provide the existence of a constant C0 = C0(T ) > 1 such that

∥ã(tj+1, tj)∥M∞,1 ≤ C0(T ), j = 0, . . . , L− 1. (30)

We also remark that the symbols ã satisfy the composition property

ã(tj+1, tj)#ã(tj , tj−1) = ã(tj+1, tj−1) j = 1, . . . , L− 1, (31)

which can be easily verified as follows, using the symplectic covariance property and the composition law (29)
(the latter is enough if j = 1):

ã(tj+1, tj)
wã(tj , tj−1)

w = U0(t0, tj)a(tj+1, tj)
wU0(tj , t0)U0(t0, tj−1)a(tj , tj−1)

wU0(tj−1, t0)

= U0(t0, tj)a(tj+1, tj)
wU0(tj , tj−1)a(tj , tj−1)

wU0(tj−1, t0)

= U0(t0, tj)U0(tj , tj−1)(a(tj+1, tj) ◦ Stj−tj−1
)wa(tj , tj−1)

wU0(tj−1, t0)

= U0(t0, tj−1)(a(tj+1, tj) ◦ Stj−tj−1)
wa(tj , tj−1)

wU0(tj−1, t0)

= U0(t0, tj−1)a(tj+1, tj−1)
wU0(tj−1, t0)

= (a(tj+1, tj−1) ◦ Stj−1−t0)
w

= ã(tj+1, tj−1)
w.

We can thus write

e(ΩL; t, s)− a(t, s) = ẽ(tL, tL−1) · · · ẽ(t1, s)− ã(tL, tL−1) · · · ã(t1, s)
= (r(tL, tL−1) + ã(tL, tL−1)) · · · (r(t1, s) + ã(t1, s))

− ã(tL, tL−1) · · · ã(t1, s),

where we introduced the residual terms r(t, s) := ẽ(t, s)− ã(t, s). By (27) and Lemma 2.5 we infer the bound

∥r(t, s)∥M∞,1 ≤ C1(T )(t− s)2, 0 < t− s ≤ T, (32)

for some C1 = C1(T ) > 0.

From this point forward, the proof is substantially identical to the one given in [43]. We retrace the main
steps for the sake of completeness. A careful inspection of the previous expansion reveals that it ultimately
consists of the sum of ordered Weyl products of symbols, each of them having the form

ã · · · ã︸ ︷︷ ︸
qk+1

r · · · r︸ ︷︷ ︸
pk

ã · · · ã︸ ︷︷ ︸
qk

· · · r · · · r︸ ︷︷ ︸
p1

ã · · · ã︸ ︷︷ ︸
q1

, (33)

where p1, . . . , pk, q1, . . . qk, qk+1 are non negative integers (in particular pj > 0) that sum to L. Note also that
the symbols ã in each block of qj terms can be grouped using (31).
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We are now in the position to bound the M∞,1 norm of products of the form (33) using the previously
derived estimates, namely (30) and (32). Precisely, we have – recall that C0 ≥ 1:

≤ Ck+1
0

k∏
j=1

pj∏
i=1

C1(tJj+i − tJj+i−1)
2

≤ C0

k∏
j=1

pj∏
i=1

C0C1(tJj+i − tJj+i−1)
2,

where we set Jj = p1 + . . .+ pj−1 + q1 + . . .+ qj for j ≥ 2 and J1 = q1. The sum over p1, . . . , pk, q1, . . . , qk+1 of
terms of this type gives in turn

∥e(ΩL; t, s)− a(t, s)∥M∞,1 ≤ C0

{
L∏

j=1

(1 + C0C1(tj − tj−1)
2)− 1

}

≤ C0

{
exp

(
L∑

j=1

C0C1(tj − tj−1)
2

)
− 1

}
≤ C0 {exp (C0C1ω(ΩL)(t− s))− 1}
≤ C2

0C1e
C0C1ω(ΩL)(t−s)ω(ΩL)(t− s),

where in the last inequality we used eτ − 1 ≤ τeτ , for τ ≥ 0. Setting C = C(T ) = C2
0C1 exp

(
C0C1T

2
)
concludes

the proof of (8) in the claim.

For what concerns uniform convergence of e(ΩL; t, s) to a(t, s) in R2d as ω(ΩL) → 0, it is an easy consequence
of (8) in view of the continuous embedding M∞,1(R2d) ⊂ C(R2d) ∩ L∞(R2d), cf. Proposition 2.1.

Lastly, let us prove (9). Note that

∥E(ΩL; t, s)− U(t, s)∥Mp→Mp ≤ ∥U0(t, s)∥Mp→Mp∥e(ΩL; t, s)
w − a(t, s)w∥Mp→Mp .

The term ∥U0(t, s)∥Mp→Mp can be bounded by a constant C2, possibly depending on T , since the singular values
of St−s in (19) depend continuously on the entries of St−s (cf. e.g. [52, Corollary A.4.5]) and the latter are in
turn continuous functions of t− s ∈ R (note that S0 = I). For the remaining term, by (16) we have

∥e(ΩL; t, s)
w − a(t, s)w∥Mp→Mp ≤ C3∥e(ΩL; t, s)− a(t, s)∥M∞,1 ,

for an absolute constant C3. The bound in (9) thus holds with C = C2(T )C3.

3.3 Proof of Theorem 1.2

Let us finally provide a proof of the convergence result stated in Theorem 1.2 at the level of integral kernels.
The technique is similar to that used in [44]. Fix a real-valued function Ψ ∈ C∞

c (R2d) with compact support,
then choose another real-valued function Θ ∈ C∞

c (R2d) with Θ = 1 on suppΨ. We have

∥F [(k(ΩL; t, s)− u(t, s))Ψ]∥L1

= |detBt−s|−1/2
∥∥F [e2πiΦt−s (e′(ΩL; t, s)− a′(t, s))Ψ

]∥∥
L1

= |detBt−s|−1/2
∥∥F [(Θe2πiΦt−s

)
(e′(ΩL; t, s)− a′(t, s))Ψ

]∥∥
L1

≤ |detBt−s|−1/2
∥∥F [Θe2πiΦt−s

]
∗ F [(e′(ΩL; t, s)− a′(t, s))Ψ]

∥∥
L1

≤ |detBt−s|−1/2
∥∥F [Θe2πiΦt−s

]∥∥
L1 ∥F [(e′(ΩL; t, s)− a′(t, s))Ψ]∥L1 .

Since Θe2πiΦt−s ∈ C∞
c (R2d), it is clear that we can find a constant C0 = C0(t− s,Ψ) such that

∥F
[
Θe2πiΦt−s

]
∥L1 < C0. Finally, using (8),

∥F [(e′(ΩL; t, s)− a′(t, s))Ψ]∥L1 = ∥VΨ (e′(ΩL; t, s)− a′(t, s)) (0, ·)∥L1

≤ C3(Ψ)∥e′(ΩL; t, s)− a′(t, s)∥M∞,1

≤ C3(Ψ)C4(T )∥e(ΩL; t, s)− a(t, s)∥M∞,1

≤ [C3(Ψ)C4(T )C5(T )]ω(ΩL)(t− s),
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where C4(T ) comes from (25) and (26), while C5(T ) comes from (8). The claimed bound (13) thus follows with
C2 = C3(Ψ)C4(T )C5(T ), while (12) is satisfied with C1 = C0(t− s,Ψ)C2(T,Ψ).

Uniform convergence of kernels on compact subsets is then clear: since

∥ (k(ΩL; t, s)− u(t, s))Ψ∥L∞ ≤ ∥F [(k(ΩL; t, s)− u(t, s))Ψ] ∥L1 ,

for any compact subset K ⊂ R2d it is enough to choose Ψ ∈ S(R2d) with Ψ ≡ 1 on K.

3.4 Convergence results for higher order parametrices

The results proved so far easily extend to the higher order parametrices E(N)(t, s) := U0(t, s)e
(N)(t, s), N ≥ 2,

associated with the symbols introduced in Remark 3.2. With obvious meaning of notation, repeating the
arguments in Section 3.2 with slight modifications yields a higher order counterpart of (8), namely

∥e(N)(ΩL; t, s)− a(t, s)∥M∞,1 ≤ C(T )ω(ΩL)
N (t− s).

Since the bounds for FIO symbols are the building blocks of convergence results, all the claims in Theorem 1.1
and 1.2 extend to E(N)(t, s) and the corresponding kernel k(N)(ΩL; t, s) with ω(ΩL) replaced by ω(ΩL)

N in the
relevant estimates.
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081506, 17.

[7] Elena Cordero, Fabio Nicola, and Luigi Rodino. Schrödinger equations with rough Hamiltonians. Discrete
Contin. Dyn. Syst. 35 (2015), no. 10, 4805–4821.

[8] Elena Cordero, Fabio Nicola, and S. Ivan Trapasso. Dispersion, spreading and sparsity of Gabor wave
packets for metaplectic and Schrödinger operators. Appl. Comput. Harmon. Anal. 55 (2021), 405–425.

[9] Elena Cordero and Fabio Nicola. On the Schrödinger equation with potential in modulation spaces. J.
Pseudo-Differ. Oper. Appl. 5 (2014), no. 3, 319–341.

[10] Elena Cordero and Luigi Rodino. Time-frequency Analysis of Operators. De Gruyter, Berlin, Boston, 2020.



18 S. I. Trapasso

[11] Maurice A. de Gosson. Symplectic Methods in Harmonic Analysis and in Mathematical Physics.
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