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ON DERIVED EQUIVALENCE FOR ABUAF FLOP: MUTATION
OF NON-COMMUTATIVE CREPANT RESOLUTIONS AND

SPHERICAL TWISTS

W. HARA

In [18], Segal constructed a derived equivalence for an interesting 5-
fold flop that was provided by Abuaf. The aim of this article is to add
some results for the derived equivalence for Abuaf’s flop. Concretely,
we study the equivalence for Abuaf’s flop by using Toda-Uehara’s tilting
bundles and Iyama-Wemyss’s mutation functors. In addition, we observe
a “flop-flop=twist” result and a “multi-mutation=twist” result for Abuaf’s
flop.
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1. Introduction

1.1. Motivation

In [18], Segal studied an interesting flop provided by Abuaf, which we call the
Abuaf flop. Let V be a four dimensional symplectic vector space and LGr(V ) the
Lagrangian Grassmannian. Let Y be a total space of a rank 2 bundle S(−1) on
LGr(V ), where S is the rank 2 subbundle andOLGr(V )(−1) :=

∧2S. Then, Y is a
local Calabi-Yau 5-fold. On the other hand, let P(V ) be the projective space and
put L := OP(V )(−1). Then using the symplectic form on V gives an injective
bundle map L ↪→ L⊥. Let Y ′ be the total space of a bundle (L⊥ /L)⊗L2,
then Y ′ is another local Calabi-Yau 5-fold with an isomorphism H0(Y,OY ) ≃
H0(Y ′,OY ′) =: R of C-algebras. Put X := SpecR. Abuaf observed that the
correspondence Y → X←Y ′ gives an example of 5-dimensional flops. This flop
has the nice feature that the contracting loci on either side are not isomorphic.
In [15], Li proved that a simple flop of dimension at most five is one of the
following

(1) a (locally trivial deformation of) standard flop,

(2) a (locally trivial deformation of) Mukai flop,

(3) the Abuaf flop.

Standard flops and Mukai flops are well-studied. Thus it is important to study
the Abuaf flop from the point of view of Li’s classification.

Based on the famous conjecture by Bondal, Orlov, and Kawamata, it is ex-
pected that Y and Y ′ are derived equivalent. Segal proved that this expectation
is true. The method of his proof is as follows. He constructed tilting bundles T S
and T ′S on Y and Y ′ respectively, and proved that there is an isomorphism

EndY (T S)≃ EndY ′(T ′S).

Then, by using a basic theorem for tilting objects, we have a derived equivalence

Seg′ : Db(Y ′) ∼−→ Db(Y ).

On the other hand, in [21], Toda and Uehara established a method to con-
struct a tilting bundle under some assumptions (Assumption 1 and Assumption
2). The difficulties to use Toda-Uehara’s method are the following:

(a) There are few examples known to satisfy their assumptions.

(b) Since Toda-Uehara’s construction consists of complicated inductive step,
it is difficult to find an explicit description of the resulting tilting bundle
in general.
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However, in the case of the Abuaf flop, it is possible show the following.

Theorem 1.1 (see Section 3.2). Y and Y ′ satisfy Toda-Uehara’s assumptions.

Hence the construction by Toda and Uehara gives new tilting bundles T T
and T ′T on Y and Y ′, respectively. Moreover, fortunately, it is possible to com-
pute the resulting tilting bundles explicitly in this case. Using this explicit de-
scription of the tilting bundle shows that there is another tilting bundle T U on Y
that satisfies

EndY (T U)≃ EndY ′(T ′T).

Therefore applying the basic theorem for tilting objects again provides a new
derived equivalence

TU′ : Db(Y ′)→ Db(Y ).

Note that a tilting bundle constructed by using Toda-Uehara’s method can be
regarded as a canonical one, because it provides a projective generator of a per-
verse heart of the derived category. Thus, it is quite natural to ask the following
questions.

Question 1.2. (1) What is the relation among three tilting bundles on Y , T S,
T T, and T U?

(2) What is the relation between two tilting bundles on Y ′, T ′S and T ′T?

(3) What is the relation between two equivalences Seg′ and TU′?

The aim of this article is to answer these questions.

1.2. NCCRs and Iyama-Wemyss’s mutations

Put

ΛS := EndY (T S) = EndY ′(T ′S),
ΛT := EndY (T T),

ΛU := EndY (T U) = EndY ′(T ′T).

Then these algebras are non-commutative crepant resolutions (=NCCRs) of X =
SpecR. The notion of NCCR was first introduced by Van den Bergh as a non-
commutative analog of crepant resolutions. An NCCR of a Gorenstein domain
R is defined as the endomorphism ring Λ := EndR(M) of a reflexive R-module
M such that Λ is Cohen-Macaulay as an R-module and its global dimension
is finite. As in the commutative case, a Gorenstein domain R may have many
different NCCRs. One way to compare different NCCRs is Iyama-Wemyss’s
mutation (= IW mutation).
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Let A be a d-singular Calabi-Yau algebra and M an A-module whose endo-
morphism ring EndA(M) is an NCCR of A. Let N ∈ addM and consider a right
(addN∗)-approximation of M∗

a : N∗0 →M∗

(see Definition 4). Then IW mutation of M at N is defined as µN(M) := N⊕
Ker(a)∗. In [12], Iyama and Wemyss proved that the endomorphism ring of
µN(M) is also an NCCR of A and there is a derived equivalence

ΦN : Db(modEndA(M))
∼−→ Db(modEndA(µN(M)))

(see Theorem 2.10 for more detail).
In many cases, it is observed that important NCCRs are connected by mul-

tiple IW mutations. For example, Nakajima proved that, in the case of three
dimensional Gorenstein toric singularities associated with reflexive polygons,
all splitting NCCRs are connected by repeating IW mutations [16]. In addition,
the author studied IW mutations of certain NCCRs of the minimal nilpotent or-
bit closure of type A [9]. Also in the case of the Abuaf flop, we can show the
following.

Theorem 1.3 (= Theorem 3.7, Theorem 3.8). The above three NCCRs ΛS, ΛT,
and ΛU are connected by multiple IW mutations.

This result provides an answer to Question 1.2 (1) and (2). We prove this
theorem by relating IW mutations with mutations of full exceptional collections
on Db(LGr(V )) (see Section 5).

1.3. Flop-Flop=Twist result

Recall that Y and Y ′ are 5-dimensional local Calabi-Yau varieties. It is known
that the derived category of a Calabi-Yau variety normally admits an interesting
autoequivalence called a spherical twist (see Section 2.5). Spherical twists arise
naturally in mathematical string theory and homological mirror symmetry.

On the other hand, it is widely observed that spherical twists also appear in
the context of birational geometry. Namely, in many places, it is observed that
a spherical twist arises as a difference of two derived equivalences associated
to a flop [1, 2, 5–7, 9, 20]. We call this phenomenon “flop-flop=twist”. The
following theorem gives the first example of this phenomenon in the case of the
Abuaf flop.

Theorem 1.4 (= Theorem 4.1, Theorem 4.3). (1) Let us consider a spherical
twist TS[2] around a 1-term complex S[2] = S |LGr[2] on the zero section
LGr⊂ Y . Then, we have a functor isomorphism

Seg′ ◦TU′−1 ≃ TS[2] ∈ Auteq(Db(Y )).
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(2) An autoequivalence TU′−1 ◦Seg′ of Db(Y ′) is isomorphic to a spherical
twist TOP(−3) associated to a sheaf OP(−3) on the zero-section P⊂ Y ′:

TU′−1 ◦Seg′ ≃ TOP(−3) ∈ Auteq(Db(Y ′)).

To prove the first statement of the theorem, we provide an explicit descrip-
tion of a Fourier-Mukai kernel of an equivalence TU′. Let Ỹ be a blowing-up
of Y along the zero section LGr = LGr(V ). Then, the exceptional divisor E
of Ỹ is isomorphic to PLGr(S(−1)). Thus we can embed E into the product
LGr(V )× P(V ) via an injective bundle map S(−1) ⊂ V ⊗C OLGr(−1). Set
Ŷ := Ỹ ∪E (LGr(V )×P(V )). We prove the following.

Theorem 1.5 (= Theorem 4.2). The Fourier-Mukai kernel of the equivalence
TU′ is given by the structure sheaf of Ŷ .

Note that Ŷ =Y×X Y ′. This is very close to the case of Mukai flops [13, 17].

1.4. Multi-mutation=twist result.

We also study a spherical twist from the point of view of NCCRs. Namely,
we can understand a spherical twist as a composition of IW mutations in the
following way. Let us consider a bundle on Y

T U,1 :=OY (−1)⊕OY ⊕OY (1)⊕S(1).

We can show that this bundle is also a tilting bundle on Y . Put

M := H0(Y,T U,1),

W ′ := H0(Y,OY ⊕OY (1)⊕S(1)), and

ΛU,1 := EndY (T U,1)≃ EndR(M).

We show that there is an isomorphism of R-modules

µW ′(µW ′(µW ′(µW ′(M))))≃M

(Proposition 4.5). Furthermore, using Iyama-Wemyss’s theorem gives an autoe-
quivalence of Db(modΛU,1)

νW ′ := ΦW ′ ◦ΦW ′ ◦ΦW ′ ◦ΦW ′ ∈ Auteq(Db(modΛU,1)).

This autoequivalence corresponds to a spherical twist in the following sense:
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Theorem 1.6 (= Theorem 4.6). The autoequivalence νW ′ of Db(modΛU,1) cor-
responds to a spherical twist

TOLGr(−1) ∈ Auteq(Db(Y ))

under the identification RHomY (T U,1,−) : Db(Y ) ∼−→ Db(modΛU,1).

Donovan and Wemyss proved that, in the case of 3-fold flops, a composi-
tion of two IW mutation functors corresponds to a spherical-like twist [7]. In
the case of Mukai flops, the author observed that a composition of many IW
mutation functors corresponds to a P-twist [9]. The theorem above provides a
new example of this phenomenon for the Abuaf flop.

1.5. Plan of the article

In Section 2, we provide some basic definitions and theorems we use in later
sections. In Section 3, we give an explicit description of the tilting bundle ob-
tained by Toda-Uehara’s construction. In addition, we show that NCCRs ob-
tained as the endomorphism rings of Toda-Uehara’s or Segal’s tilting bundle are
connected by repeating IW mutations. In Section 4, we prove “flop-flop=twist”
results and a ”multi-mutation=twist” result for the Abuaf flop and provide an
explicit description of the Fourier-Mukai kernel of the functor TU′. In Section
5, we explain the definition of exceptional collections and its mutation. As an
application of them, we explain how to find a resolution of a sheaf from an
exceptional collection.

1.6. Notations.

In this paper, we always work over the complex number field C. Moreover, we
adopt the following notations.

• V = C4 : 4-dimensional symplectic vector space.

• P(V ) :=V \{0}/C× : projectivization of a vector space V .

• LGr(V ) : the Lagrangian Grassmannian of V .

• Tot(E) := SpecX SymX E∗ : the total space of a vector bundle E .

• mod(A) : the category of finitely generated right A-modules.

• add(M) : the additive closure of M.

• Db(A) : the (bounded) derived category of an abelian category A.
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• Db(X) := Db(coh(X)) : the derived category of coherent sheaves on a
variety X .

• FMP , FMX→Y
P : A Fourier-Mukai functor from Db(X) to Db(Y ) whose

kernel is P ∈ Db(X×Y ).

• TE : the spherical twist around a spherical object E .

• µN(M) : the left (Iyama-Wemyss) mutation of M at N.

• ΦN : Db(modEndR(M))→Db(modEndR(µN(M))) : the (Iyama-Wemyss)
mutation functor.

• Symk
R M (resp. Symk

X E) : k-th symmetric product of an R-module M
(resp. a vector bundle E on X).
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2. Preliminaries

2.1. Abuaf flop

This section explains the geometry of the Abuaf flop briefly. For more details,
see [18]. Let V be a four dimensional symplectic vector space. Let LGr(V )
be the Lagrangian Grassmannian of V and S ⊂ V ⊗C OLGr(V ) the rank two
universal subbundle. Note that OLGr(V )(1) :=

∧2S∗ is the ample generator
of Pic(LGr(V )), and this polarisation identifies the Lagrangian Grassmannian
LGr(V ) with the quadric threefold Q3 ⊂ P4. Note that the canonical embedding
LGr(V )⊂Gr(2,V ) coincides with a hyperplane section Q3 =Q4∩H ⊂Q4⊂P5.
Let Y be the total space of a vector bundle S(−1):

Y := Tot(S(−1)) π−→ LGr(V ).
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Since
∧2(S(−1))≃OLGr(V )(−3)≃ ωLGr(V ), the variety Y is a five dimensional

(local) Calabi-Yau variety.
Let LGr ⊂ Y be the zero section. Then, it is possible to contract LGr and

this gives a flopping contraction φ : Y → X . The algebra R := φ∗OY is a normal
Gorenstein algebra such that X = SpecR.

Next, consider the 3-dimensional projective space P(V ). The symplectic
form on V gives an embedding of the universal line bundle L=OP(V )(−1) into
Ω1

P(V )(1)≃ L
⊥. Consider the total space

Y ′ := Tot((L⊥ /L)⊗L2)
π ′−→ P(V )

of a vector bundle (L⊥ /L)⊗L2, which is another five dimensional (local)
Calabi-Yau variety. The zero section P ⊂ Y ′ can be contracted, and gives a
flopping contraction φ ′ : Y ′→ X . Combining Y and Y ′ provides a diagram of a
flop

Y Y ′.

X

φ φ ′

The affine variety X has a unique singular point o ∈ X . In contrast to the case
of the Atiyah flop or the Mukai flop, two fibers φ−1(o) = LGr and φ ′−1(o) = P
are not isomorphic to each other. Since this interesting flop was first provided
by Abuaf, we call this flop the Abuaf flop.

2.2. Non-commutative crepant resolution and tilting bundle

Definition 1. Let R be a normal Gorenstein (commutative) algebra, and M a
non-zero reflexive R-module. We set Λ := EndR(M). We say that the R-algebra
Λ is a non-commutative crepant resolution (=NCCR) of R, or M gives an NCCR
of R, if gldimΛ < ∞ and Λ is maximal Cohen-Macaulay as an R-module.

The notion of NCCR is a non-commutative analog of the notion of crepant
resolutions. The following conjecture is due to Bondal, Orlov, and Van den
Bergh.

Conjecture 2.1 ([23], Conjecture 4.6). Let R be a Gorenstein C-algebra. Then,
all crepant resolutions of R and all NCCRs of R are derived equivalent.

The theory of NCCRs has strong relationship to the theory of tilting bundles.

Definition 2. Let X be a variety. A vector bundle T (of finite rank) on X is
called a partial tilting bundle if
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(1) ExtiX(T ,T ) = 0 for i ̸= 0.

Further, if a partial tilting bundle T satisfies the following condition,

(2) T generates the category D(Qcoh(X)), i.e. for E ∈D(Qcoh(X)), RHomX(T ,E)=
0 implies E = 0

we say that the bundle T is a tilting bundle.

Example 1. In [3], Beilinson showed that the following vector bundles on a
projective space Pn

T =
n⊕

k=0

OPn(k), T ′ =
n⊕

k=0

Ω
k
Pn(k+1)

are tilting bundles. Note that these tilting bundles come from full strong ex-
ceptional collections of the derived category Db(Pn) of Pn that are called the
Beilinson collections.

A tilting bundle on a variety gives an equivalence between the derived cate-
gory of the variety and the derived category of a non-commutative algebra that
is given as the endomorphism ring of the tilting bundle. This is a generalisation
of classical Morita theory.

Theorem 2.2. Let T ∈ Db(X) be a tilting bundle on a smooth quasi-projective
variety X. If we set Λ := EndX(T ), we have an equivalence of categories

RHomX(T ,−) : Db(X)
∼−→ Db(mod(Λ)),

and the quasi-inverse of this functor is given by

−⊗Λ T : Db(mod(Λ)) ∼−→ Db(X).

For the proof of Theorem 2.2, see [10, Theorem 7.6] or [21, Lemma 3.3]. A
tilting bundle on a crepant resolution provides an NCCR.

Proposition 2.3. Let φ : Y → X = SpecR be a crepant resolution of an affine
normal Gorenstein variety X. Let T be a tilting bundle on Y and assume that
T contains a trivial line bundle OY as a direct summand. Then, we have an
isomorphism EndY (T ) ≃ EndR(φ∗T ). In particular, the R-module φ∗T gives
an NCCR of R.

To prove this proposition, we need the following three propositions.
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Proposition 2.4 (c.f. [9] Lemma 3.1). Let φ : Y → X = SpecR be a crepant
resolution of a Gorenstein affine scheme X and F be a coherent sheaf on Y .
Assume that

H i(Y,F) = 0 = ExtiY (F ,OY )

for all i > 0. Then, an R-module φ∗F is Cohen-Macaulay.

Proposition 2.5 (see e.g. [9] Proposition 2.8). Let R be a normal Cohen-
Macaulay domain and M a (maximal) Cohen-Macaulay R-module. Then, M
is reflexive.

Proposition 2.6 (see e.g. [9] Proposition 2.9). Let R be a normal Cohen-
Macaulay domain and M,N (maximal) Cohen-Macaulay R-modules. Then, the
R-module HomR(N,M) is reflexive.

Proof of Proposition 2.3. Since T contains OY as a direct summand, we have

H i(Y,T ) = 0 = ExtiY (T ,OY )

for all i ̸= 0. Thus φ∗T is a Cohen-Macaulay R-module and hence EndR(φ∗T )
is a reflexive R-module. On the other hand, since H i(Y,T ∗⊗T ) = 0 for i ̸= 0
and (T ∗⊗T )∗ ≃ T ⊗T ∗, the R-module φ∗(T ∗⊗T ) = EndY (T ) is also Cohen-
Macaulay and reflexive. Since EndR(φ∗T ) and EndY (T ) are isomorphic to each
other in codimension one, we have an isomorphism

EndR(φ∗T )≃ EndY (T ).

Since there is an equivalence of categories Db(Y ) ≃ Db(modEndR(φ∗T )), the
algebra EndR(φ∗T ) has finite global dimension.

2.3. Toda-Uehara’s construction for tilting bundles and perverse
hearts

Van den Bergh showed in [22, 23] that if f : Y → X is a projective morphism
that has fibers of dimension at most one and satisfies R f∗OY ≃OX (e.g. 3-fold
flopping contraction), then there is a tilting bundle on Y that is a projective gen-
erator of a perverse heart 0 Per(Y/X). As a generalisation of this result, Toda
and Uehara provided a method to construct a tilting bundle in higher dimen-
sional cases that satisfy certain assumptions [21]. They also provided a perverse
heart 0 Per(Y/An−1) that contains the tilting bundle as a projective generator.
In the present subsection, we recall the construction of Toda-Uehara’s tilting
bundle.

Let f : Y →X = SpecR be a projective morphism from a Noetherian scheme
Y to an affine scheme X of finite type. Assume that R f∗OY ≃OX and dim f−1(x)≤
n for all x ∈ X . In addition, let us assume the following condition holds for Y :
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Assumption 1. There exists an ample and globally generated line bundleOY (1)
such that

H i(Y,OY (− j)) = 0

for i≥ 2, 0 < j < n.

Step 1. Under this setting, partial tilting bundles Ek for 0≤ k≤ n−1 are defined
inductively as follows. First, put E0 :=OY . Assume that 0 < k≤ n−1. Let rk−1
be a minimal number of generators of Ext1Y (Ek−1,OY (−k)) over EndY (Ek−1).
Take a rk−1 generators of Ext1Y (Ek−1,OY (−k)) and consider an exact sequence
corresponding to the generators:

0→OY (−k)→Nk−1→E⊕rk−1
k−1 → 0.

Then Ek := Ek−1⊕Nk−1 is a partial tilting bundle [21, Claim 4.4]. Repeating
this construction gives a partial tilting bundle En−1 but this is not a generator in
general.

Step 2. Put An−1 := EndY (En−1) and consider the following functors

F := RHomY (En−1,−) : Db(Y )→ Db(modAn−1),

G :=−⊗L
An−1
En−1 : Db(modAn−1)→ Db(Y ).

Note that G is the left adjoint functor of F . Let us consider an object F(OY (−n)) :=
RHomY (En−1,OY (−n)). Let P be a projective An−1-resolution of F(OY (−n))
and σ≥1(P) the sigma stupid truncation of P. Then, there is a canonical mor-
phism σ≥1(P)→ P. Furthermore, there is a morphism

G(σ≥1(P))→ G(P)≃ G(F(OY (−n)))
adj−→OY (−n).

PutNn−1 := Cone(G(σ≥1(P))→OY (−n)) and En := En−1⊕Nn−1. This En is a
generator of Db(Y ) but it is not possible to conclude that En is tilting in general
[21, Lemma 4.6].

Step 3. Under the following assumption, we can conclude that En is tilting.

Assumption 2. For an object K ∈ D(Y ), if we have

RHomY

(
n−1⊕
i=0

OY (−i),K

)
= 0,

the equality

RHomY

(
n−1⊕
i=0

OY (−i),Hk(K)

)
= 0

holds for all k.
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Theorem 2.7 ([21]). Under Assumption 2, En is a tilting bundle on Y .

Remark 2.8 ([21], Remark 4.7). We can also conclude that the object En is a
tilting bundle if we assume the vanishing

H>1(Y,OY (−n)) = 0

instead of Assumption 2. In this case, the bundleNn−1 lies on an exact sequence

0→OY (−n)→Nn−1→E⊕rn−1
n−1 → 0,

where rn−1 is the minimal number of generators of Ext1Y (En−1,OY (−n)) over
An−1.

Perverse heart. Put E := En and A :=EndY (E). Using the tilting bundle E gives
a derived equivalence

ΨE := RHomY (E ,−) : Db(Y ) ∼−→ Db(modA).

In [21], Toda and Uehara also studied the perverse heart

0 Per(Y/An−1)⊂ Db(Y )

that corresponds to modA under the equivalence ΨE . The construction of 0 Per(Y/An−1)
is as follows. First, let us consider a subcategory of D(Y )

D†(Y ) := {K ∈ D(Y ) | F(K) ∈ Db(modAn−1)}

and set

C := {K ∈ D(Y ) | F(K) = 0},
C≤0 := C ∩D(Y )≤0,

C≥0 := C ∩D(Y )≥0.

By definition, there is an inclusion i : C ↪→ D†(Y ). The advantage to consider
the subcategory D†(Y ) is that it gives the left and right adjoint of i:

i∗ : D†(Y )→C, i! : D†(Y )→C.

Using these functors, the perverse heart 0 Per(Y/An−1) is defined as

0 Per(Y/An−1) := {K ∈ D†(Y ) | F(K) ∈modAn−1, i∗K ∈ C≤0, i!K ∈ C≥0}.

Theorem 2.9 ([21] Theorem 5.1). Under the Assumption 2, the abelian cate-
gory 0 Per(Y/An−1) is the heart of a bounded t-structure on Db(Y ), and
Ψ(0 Per(Y/An−1))=modA. In particular, E is a projective generator of 0 Per(Y/An−1).
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2.4. Iyama-Wemyss mutation

In the present subsection, we recall some basic definitions and properties about
Iyama-Wemyss mutation. Iyama-Wemyss’s mutation provides a basic tool to
compare two different NCCRs.

Definition 3. Let R be a normal Gorenstein algebra. A reflexive R-module M
is say to be a modifying module if EndR(M) is a (maximal) Cohen-Macaulay
R-module.

Definition 4. Let A be a ring, M,N A-modules, and N0 ∈ addN. A morphism
f : N0→M is called a right (addN)-approximation if the map

HomA(N,N0)
f◦−→ HomA(N,M)

is surjective.

Let R be a normal Gorenstein algebra and M a modifying R-module. For
any 0 ̸= N ∈ addM, consider

(1) a right (addN)-approximation of M, a : N0→M, and

(2) a right (addN∗)-approximation of M∗, b : N∗1 →M∗.

Put K0 := Ker(a) and K1 := Ker(b).

Definition 5. With notations as above, we define the right mutation of M at N
to be µR

N(M) := N⊕K0 and the left mutation of M at N to be µL
N(M) := N⊕K∗1 .

Note that, the right and left mutations are well-defined up to additive closure
[12, Lemma 6.3]. In [12], Iyama and Wemyss proved the following theorem.

Theorem 2.10 ([12]). Let R be a normal Gorenstein algebra and M a modifying
module. Assume that 0 ̸= N ∈ addM. Then

(1) R-algebras EndR(M), EndR(µ
R
N(M)), and EndR(µ

L
N(M)) are derved equiv-

alent.

(2) If M gives an NCCR of R, so do its mutations µR
N(M) and µL

N(M).

The equivalence between EndR(M) and EndR(µ
L
N(M)) is given as follows.

Let Q := HomR(M,N) and

C := Im(HomR(M,N1)→ HomR(M,K∗1 )) .
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Then, one can show that V ⊕Q is a tilting Λ := EndR(M)-module and there is
an isomorphism of R-algebras

EndR(µ
L
N(M))≃ EndΛ(C⊕Q).

Thus, there is an equivalence

ΦN := RHom(C⊕Q,−) : Db(mod(EndR(M)))→ Db(mod(EndR(µ
L
N(M)))).

In this paper, we only use left IW mutations and hence we call them simply IW
mutations and write µN(M) instead of µL

N(M). We also call the functor ΦN an
IW mutation functor.

The following lemmas are useful to find an approximation.

Lemma 1 ([12], Lemma 6.4, (3)). Let us consider a right exact sequence

0→ K b−→ N0
a−→M,

where a is a right (addN)-approximation of M. Then, the dual of the above
sequence

0→M∗ a∗−→ N∗0
b∗−→ K∗

is also right exact and b∗ is a right (addN∗)-approximation of K∗.

Lemma 2. Let φ : Y → X = SpecR be a crepant resolution of an affine Goren-
stein normal variety X . LetW be a vector bundle on Y and

0→K→ E → C → 0

an exact sequence of vector bundles on Y . Assume that

(a) E ∈ add(W),

(b) W⊕K andW⊕C are tilting bundles, and

(c) W contains OY as a direct summand.

Then,

(1) The sequence
0→ f∗K→ f∗E → f∗C → 0

is exact and provides a right (add f∗W)-approximation of f∗C.

(2) The IW mutation functor

Φ f∗W : Db(modEndY (W⊕K))
∼−→ Db(modEndY (W⊕C))

coincides with the functor RHom(RHomY (W⊕K,W⊕C),−).
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Proof. First, note that there are isomorphisms of R-algebras

EndY (W⊕K)≃ EndR( f∗W⊕ f∗K), EndY (W⊕C)≃ EndR( f∗W⊕ f∗C)

by Proposition 2.3. The assumptions (b) and (c) imply H1(Y,K) = 0, and thus
the sequence

0→ f∗K→ f∗E → f∗C → 0

is exact. Moreover, as in the proof of Proposition 2.3, we have

HomY (W,E)≃ HomR( f∗W, f∗E), HomY (W,C)≃ HomR( f∗W, f∗C).

Since Ext1Y (W,K) = 0, the map

HomR( f∗W, f∗E)→ HomR( f∗W, f∗C)

is surjective. This shows (1).
Let V := HomR( f∗W⊕ f∗K, f∗W) and

Q := Im(HomR( f∗W⊕ f∗K, f∗E)→ HomR( f∗W⊕ f∗K, f∗C)).

Then, the IW mutation functor is defined as

Φ f∗W := RHom(V ⊕Q,−).

First, as in the proof of Proposition 2.3, we have

V = HomR( f∗W⊕ f∗K, f∗W)≃ HomY (W⊕K,W)

and
HomR( f∗W⊕ f∗K, f∗E)≃ HomY (W⊕K,E).

Since the R-module HomY (W⊕K,C) is torsion free and isomorphic to HomR( f∗W⊕
f∗K, f∗C) in codimension one, the natural map

HomY (W⊕K,C)→ HomR( f∗W⊕ f∗K, f∗C)

is injective. Thus, we have the following diagram

HomY (W⊕K,E) HomR( f∗W⊕ f∗K, f∗E)

HomY (W⊕K,C) HomR( f∗W⊕ f∗K, f∗C)).

Therefore, Q = HomY (W⊕K,C) and hence V ⊕Q≃ RHomY (W⊕K,W⊕C).
This shows (2).
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2.5. Spherical twist

In this subsection, we recall the definition of spherical twists.

Definition 6. Let X be an n-dimensional smooth variety.

(1) We say that an object E ∈ Db(X) is a spherical object if E ⊗ωX ≃ E and

RHomX(E ,E)≃ C⊕C[−n].

(2) Let E be a spherical object. Then a spherical twist TE around E is defined
as

TE(F) := Cone(RHomX(E ,F)⊗C E →F).

It is well-known that a spherical twist gives an autoequivalence of Db(X)
(see [19]).

3. Toda-Uehara’s tilting bundles and Segal’s tilting bundles

3.1. Notations

From now on, we fix the following notations.

• Y := Tot(S(−1)) π−→ LGr(V ).

• Y ′ := Tot((L⊥ /L)⊗L2)
π ′−→ P(V ).

• ι : LGr ↪→ Y , ι ′ : P ↪→ Y ′: the zero sections.

• Y o := Y \LGr≃ Y ′ \P≃ Xsm.

• φ : Y → X , φ ′ : Y ′→ X : two crepant resolutions. We will regard this Y o

as the common open subset of Y , Y ′ and X in the isomorphisms above.

• OY (1) := π∗OLGr(V )(1), OY ′(1) := π ′∗OP(V )(1).

• We write S instead of π∗S .

3.2. Toda-Uehara’s assumptions for Y and Y ′

In the present subsection, we check that Toda-Uehara’s assumptions (Assump-
tion 1 and Assumption 2) hold for Y and Y ′. The first assumption follows from
Segal’s computation.

Lemma 3 ([18]). We have
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(1) H≥1(Y,OY ( j)) = 0 for j ≥−2.

(2) H>1(Y ′,OY ′( j)) = 0 for j≥−3. Further, we have H1(Y ′,OY ′( j)) = 0 for
j ≥−2 and H1(Y ′,OY ′(−3))≃ C.

In particular, pairs (Y,OY (1)) and (Y ′,OY ′(1)) satisfy Assumption 1.

Lemma 4. Y and Y ′ satisfy Assumption 2.

The proof of this lemma is almost same as in the one provided in [21, Sec-
tion 6.2].

Proof. First, we provide a proof for Y . By using the bundle OY (1), we can
embed Y into P4

R:
h : Y → P4

R .

Let g : P4
R→ X = SpecR be a projection. Note that the derived category Db(P4

R)
has a semi-orthogonal decomposition

Db(P4
R) = ⟨g∗Db(X)⊗OP4(−4),g∗Db(X)⊗OP4(−3), · · · ,g∗Db(X)⊗OP4⟩.

Let K ∈ D(Y ) and assume that

RHomY

(
2⊕

i=0

OY (−i),K

)
= 0.

Then h∗K ∈ ⟨g∗Db(X)⊗OP4(−4),g∗Db(X)⊗OP4(−3)⟩ and hence there is an
exact triangle

g∗W−3⊗OY (−3)→ h∗K→ g∗W−4⊗OY (−4),

where Wl ∈ Db(X). Note that the support of Hk(h∗K) is contained in Y and the
support of Hk(W−4)⊗ROP4

R
(−4) is the inverse image of a closed subset of X

by g. Thus, the map

Hk(h∗K)→Hk(W−4)⊗ROP4
R
(−4)

should be zero and we have an exact sequence

0→Hk−1(W−4)⊗ROP4
R
(−4)→Hk(W−3)⊗ROP4

R
(−3)→Hk(h∗K)→ 0.

Using this sequence implies

RHomY

(
2⊕

i=0

OY (−i),Hk(K)

)
= 0.
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Next, we prove the lemma for Y ′. Let K′ ∈ D(Y ′) and assume that

RHomY ′

(
2⊕

i=0

OY ′(−i),K

)
= 0.

In this case, using an embedding h′ : Y ′ ↪→ P3
R gives

h′∗K′ ∈ ⟨Db(R)⊗ROP3
R
(−3)⟩.

ThusHk(h′∗K′) ∈ ⟨Db(R)⊗ROP3
R
(−3)⟩, which proves the result.

Corollary 3.1. Y (resp. Y ′) admits a tilting bundle that is a projective generator
of the perverse heart 0 Per(Y/A2) (resp. 0 Per(Y ′/A′2)).

Explicit descriptions of these tilting bundles are given in the next section.

3.3. Tilting bundles on Y and Y ′

3.3.1. Tilting bundles on Y .

Theorem 3.2. For −2≤ k ≤ 1, let T k be a vector bundle

T k :=OY ⊕OY (−1)⊕OY (−2)⊕S(k).

Then, T k is a tilting bundle on Y .

Proof. By Lemma 3 (1), the direct sum of line bundlesOY ⊕OY (−1)⊕OY (−2)
is a partial tilting bundle on Y . It also follows from [18] that S is a partial tilting
bundle. Since S∗ ≃ S(1), it is enough to show that

H i(Y ′,S( j)) = 0

for all j ≥−2 and i > 0. Adjunction of functors yields

H i(Y ′,S( j))≃ H i(LGr(V ),
⊕
l≥0

Syml(S∗(1))⊗S( j))

≃
⊕
l≥0

H i
(

LGr(V ),Syml(S)⊗S⊗O(2l + j)
)

≃
⊕
l≥0

H i
(

LGr(V ),Syml+1(S)(2l + j)⊕Syml−1(S)(2l + j−1)
)
.

Using the Borel-Bott-Weil theorem as in [18] implies the vanishing of this co-
homology for all i > 0.
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Proposition 3.3. Let us consider

T T := T −2 =OY ⊕OY (−1)⊕OY (−2)⊕S(−2).

Then, T T coincides with the bundle on Y constructed by Toda-Uehara’s method
(up to additive closure), and hence is a projective generator of the perverse
heart 0 Per(Y/A2).

In the proof of this proposition, we use an exact sequences of vector bun-
dles, whose existence is proved in Section 5 using the theory of exceptional
collections.

Proof. Let Ek (0 ≤ k ≤ 2) be the partial tilting constructed in Toda-Uehara’s
inductive steps. Lemma 3 implies Ek =

⊕k
i=0OY (−i). Put A2 := EndY (E2) and

F := RHomY (E2,−) : Db(Y )→ Db(modA2).

The semi-orthogonal decomposition

Db(LGr(V )) = ⟨S(−2),OLGr(−2),OLGr(−1),OLGr⟩,

implies that there is an exact triangle in Db(LGr(V ))

G →OLGr(−3)→S(−2)⊕4→G[1],

where G ∈ ⟨OLGr(−2),OLGr(−1),OLGr⟩. Moreover, using Lemma 12 (1) yields
a quasi-isomorphism

G[1]≃qis (· · · → 0→OLGr(−2)⊕11→OLGr(−1)⊕5→OLGr→ 0→ ···)

of complexes (note that the degree zero term is OLGr(−2)⊕11, see Lemma 12
for the proof). Pulling back the above triangle to Y by π gives an exact triangle

π
∗G →OY (−3)→S(−2)⊕4→ π

∗G[1].

Consider the left adjoint functor G =−⊗L
A2
E2 : D−(A2)→ D−(Y ) of F . Since

every term of a complex

· · · → 0→ F(OY (−2))⊕11→ F(OY (−1))⊕5→ F(OY )→ 0→ ·· ·

is a projective A2-module, the tensor product G =−⊗L
A2
E2 applied to this com-

plex does not derive, and hence

G
(
· · · → 0→ F(OY (−2))⊕11→ F(OY (−1))⊕5→ F(OY )→ 0→ ···

)
≃ π

∗G[1].
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Since F ◦G≃ id, the complex(
· · · → 0→ F(OY (−2))⊕11→ F(OY (−1))⊕5→ F(OY )→ 0→ ·· ·

)
is a projective resolution of the complex F(π∗G[1]). On the other hand, since
F(S(−2))⊕4 ∈ modA2, there is a projective resolution (P′)• of F(S(−2))⊕4

such that (P′)i = 0 for i≥ 1.
From now on, we construct a projective resolution of F(OY (−3)) explicitly.

First, there is a chain morphism

S(−2)⊕4→
(
· · · → 0→OY (−2)⊕11→OY (−1)⊕5→OY → 0→ ···

)
whose cone is OY (−3)[1]. Applying a functor F gives a morphism

F(S(−2))⊕4→
(
· · · → 0→ F(OY (−2))⊕11→ F(OY (−1))⊕5→ F(OY )→ 0→ ···

)
that remain a morphism of chain complexes, hence there is a morphism of chain
complexes

(P′)•→
(
· · · → 0→ F(OY (−2))⊕11→ F(OY (−1))⊕5→ F(OY )→ 0→ ···

)
whose cone is quasi-isomorphic to F(OY (−3))[1]. Thus F(OY (−3)) is quasi-
isomorphic to a complex P• such that

Pi =



(P′)i if i≤ 0
F(OY (−2))⊕11 if i = 1
F(OY (−1))⊕5 if i = 2
F(OY ) if i = 3
0 otherwise.

Since all terms of P• are projective A2-modules, P• is a projective resolution of
F(OY (−3)). In particular σ≥1P• ≃ F(π∗G), and hence

G(σ≥1P•)≃ GF(π∗G)

≃ GFG
(
· · · → 0→ F(OY (−2))⊕11→ F(OY (−1))⊕5→ F(OY )→ 0→ ·· ·

)
[−1]

≃ G
(
· · · → 0→ F(OY (−2))⊕11→ F(OY (−1))⊕5→ F(OY )→ 0→ ···

)
[−1]

≃ (π∗G[1])[−1]≃ π
∗G.

Thus the resulting bundle obtained by Toda-Uehara’s construction is OY ⊕
OY (−1)⊕OY (−2)⊕S(−2)⊕4.
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Definition 7. We call the bundle

T T := T −2 =OY ⊕OY (−1)⊕OY (−2)⊕S(−2)

Toda-Uehara’s tilting bundle on Y . On the other hand, let us consider a bundle

T S := (T 0)
∗ ≃OY ⊕OY (1)⊕OY (2)⊕S(1).

This tilting bundle coincides with the one found by Segal [18]. Thus we call
this bundle Segal’s tilting bundle on Y .

3.3.2. Tilting bundles on Y ′.

Since H1(Y ′,OY ′(−3))≃C by Lemma 3 (2), there exists a rank 2 vector bundle
Σ on Y ′ that lies in the extension

0→OY ′(−1)→ Σ→OY ′(2)→ 0

corresponding to the generator of

Ext1Y ′(OY ′(2),OY ′(−1))≃ H1(Y ′,OY ′(−3))≃ C .

Segal’s tilting bundle on Y ′ is given as follows.

Proposition 3.4 ([18]). Put

T ′S :=OY ′⊕OY ′(−1)⊕OY ′(−2)⊕Σ(−1),

Then, T ′S is a tilting bundle on Db(Y ′).

On the other hand, using Toda-Uehara’s construction provides a new tilting
bundle.

Proposition 3.5. Put

T ′T :=OY ′⊕OY ′(−1)⊕OY ′(−2)⊕Σ(−2).

Then, T ′T is Toda-Uehara’s tilting bundle on Y ′, and hence is a projective gen-
erator of the perverse heart 0 Per(Y ′/A′2), where A′2 is the endomorphism ring
of a vector bundle OY ′⊕OY ′(−1)⊕OY ′(−2).

Proof. If k≤ 2, then H i(Y ′,OY ′(−k))= 0 for all i≥ 1. Furthermore, H1(Y ′,OY ′(−3))≃
C and H i(Y ′,OY ′(−3)) = 0 for i ≥ 2. Recall that the vector bundle Σ(−2) lies
in an exact sequence

0→OY ′(−3)→ Σ(−2)→OY ′ → 0

that corresponds to the generator of H1(Y ′,OY ′(−3)). Since

Ext1Y ′(OY ′⊕OY ′(−1)⊕OY ′(−2),OY ′(−3))≃ H1(Y ′,OY ′(−3)),

the bundle T ′T is the Toda-Uehara’s tilting bundle on Y ′ and a projective gener-
ator of the perverse heart 0 Per(Y ′/A′2) by Remark 2.8.
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3.4. Derived equivalences for the Abuaf flop

In this section, we define derived equivalences induced by tilting bundles. Put

T U := (T −1)
∗ ≃OY ⊕OY (1)⊕OY (2)⊕S(2).

Lemma 5. The following isomorphism of tilting bundles on Y o holds.

(1) T S |Y o ≃ T ′S |Y o .

(2) T U |Y o ≃ T ′T |Y o .

Thus, the following isomorphism of R-algebras holds.

(i) EndY (T S)≃ EndY ′(T ′S).

(ii) EndY (T U)≃ EndY ′(T ′T).

Proof. In [18], Segal proved that

OY (a)|Y o ≃OY ′ |Y o and S |Y o ≃ Σ|Y o .

The result follows from these isomorphisms. The second statement follows from
the fact that the endomorphism rings are reflexive R-modules.

Remark 3.6. The vector bundle T T |Y o on Y o extends to an bundle

OY ′⊕OY ′(1)⊕OY ′(2)⊕Σ(2)

on Y ′. Unfortunately, this bundle is not tilting.

Definition 8. We set

ΛT := EndY (T T),

ΛS := EndY (T S) = EndY ′(T ′S),
ΛU := EndY (T U) = EndY ′(T ′T),

and

ΨT := RHomY (T T,−) : Db(Y ) ∼−→ Db(modΛT),

ΨS := RHomY (T S,−) : Db(Y ) ∼−→ Db(modΛS),

ΨU := RHomY (T U,−) : Db(Y ) ∼−→ Db(modΛU),

Ψ
′
T := RHomY ′(T ′T,−) : Db(Y ′) ∼−→ Db(modΛU),

Ψ
′
S := RHomY ′(T ′S,−) : Db(Y ′) ∼−→ Db(modΛS).
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Definition 9. Consider equivalences of categories that are given as

Seg := (Ψ′S)
−1 ◦ΨS : Db(Y ) ∼−→ Db(Y ′),

Seg′ := Seg−1 = (ΨS)
−1 ◦Ψ

′
S : Db(Y ′) ∼−→ Db(Y ).

These equivalences are introduced by Segal [18]. Hence we call these functors
Segal’s equivalences. On the other hand, there are equivalences

TU′ := Ψ
−1
U ◦Ψ

′
T := Db(Y ′)→ Db(Y )

UT := TU′−1 = Ψ
′−1
T ◦ΨU : Db(Y )→ Db(Y ′).

Since we construct these equivalence by using Toda-Uehara’s tilting bundle on
Y ′, we call these equivalences TU′ and UT Toda-Uehara’s equivalences.

3.5. Segal’s tilting vs Toda-Uehara’s tilting

In this subsection, we compare Toda-Uehara’s tilting bundles with Segal’s by
using IW mutations. We will use the following lemma.

Lemma 6. LetW be a vector bundle on a smooth variety Z and

0→E0
a0−→ E1

a1−→ E2
a2−→ ·· · am−2−−→ Em−1

am−1−−→ Em→ 0

a long exact sequence consisting of vector bundles Ek (0≤ k≤m) on Z. Assume
that

(a) W⊕E0 andW⊕Em are tilting bundles.

(b) Ek ∈ add(W) for 1≤ k ≤ m−1.

Then,W⊕ Im(ak) is a tilting bundle for all 0≤ k ≤ m−1.

Proof. SinceW⊕E0 is a tilting bundle, ExtiZ(W,E0) = ExtiZ(W, Im(a0)) = 0
for i≥ 1. Let k > 0 and assume Exti(W, Im(ak−1)) = 0 for i≥ 1. Then the exact
sequence

0→ Im(ak−1)→Ek→ Im(ak)→ 0,

and the assumption (b) imply ExtiZ(W, Im(ak))= 0 for all i≥ 1. Thus, ExtiZ(W, Im(ak))=
0 for all i≥ 1 and 0≤ k ≤ m−1.

Similarly, using the assumption that W ⊕Em is a tilting bundle implies
ExtiZ(Im(ak),W) = 0 for all i≥ 1 and 0≤ k ≤ m−1.

Next, assume that Im(ak−1) is partial tilting. Consider the exact sequence

0→ Im(ak−1)→Ek→ Im(ak)→ 0.
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Applying the functor RHom(−, Im(ak−1)) to this sequence gives an exact trian-
gle

RHomZ(Im(ak), Im(ak−1))→RHomZ(Ek, Im(ak−1))→RHomZ(Im(ak−1), Im(ak−1)).

The assumption (b) and the above arguments shows ExtiZ(Ek, Im(ak−1)) = 0 for
all i≥ 1. Therefore, ExtiZ(Im(ak), Im(ak−1)) = 0 for all i≥ 2.

Consider the sequence

0→ Im(ak−1)→Ek→ Im(ak)→ 0

again, and then applying the functor RHomZ(Im(ak),−) to this sequence gives
a triangle

RHomZ(Im(ak), Im(ak−1))→RHomZ(Im(ak),Ek)→RHomZ(Im(ak), Im(ak)).

The assumption (b) and the above arguments imply Exti(Im(ak),Ek) = 0 for all
i≥ 1. Thus, from the above computation, we have ExtiZ(Im(ak), Im(ak)) = 0 for
all i≥ 1.

It is clear thatW⊕ Im(ak) is a generator. Thus, the bundleW⊕ Im(ak) is
tilting.

For the next theorem, we fix the following notations:

Ma := φ∗OY (a), Sa := φ∗S(a).

Note that M0 = R. First, we compare two NCCRs ΛT and ΛS.

Theorem 3.7. A derived equivalence of NCCRs

ΨS ◦Ψ
−1
T ≃ RHomΛT(RHomY (T T,T S),−) : Db(modΛT)

∼−→ Db(modΛS)

can be written as a composition of nine IW mutation functors.

As in the proof of Proposition 3.3, we will use some exact sequences from
Lemma 12.

Proof. Put

ν T :=OY ⊕OY (−1)⊕OY (−2)⊕S(1)
ν

2T :=OY ⊕OY (−1)⊕OY (1)⊕S(1).

By Theorem 3.2, these bundles are tilting. Set

W1 := R⊕M−1⊕M−2, W2 := R⊕M−1⊕S1, W3 := R⊕S1⊕M1.
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We will show that there are three isomorphisms

µW1 µW1 µW1(EndY (T T))≃ EndY (ν T ),
µW2 µW2 µW2(EndY (ν T ))≃ EndY (ν

2T ),
µW3 µW3 µW3(EndY (ν

2T ))≃ EndY (T S),

and each IW mutation functors can be written as

Φ
3
W1
≃ RHomΛT(RHom(T T,ν T ),−) : Db(ΛT)

∼−→ Db(modEndY (ν T )),

Φ
3
W2
≃ RHomEndY (ν T )(RHom(ν T ,ν2T ),−) : Db(modEndY (ν T ))

∼−→ Db(modEndY (ν
2T )),

Φ
3
W3
≃ RHomEndY (ν2 T )(RHom(ν2T ,T S),−) : Db(modEndY (ν

2T )) ∼−→ Db(ΛS).

First we provide the proof for mutations at W1. Recall that there exists an exact
sequence 0→ S(k)→O⊕4

Y → S(k+ 1)→ 0 for all k ∈ Z. Composing these
exact sequences for −2≤ k ≤ 0 gives a long exact sequence

0→S(−2)
a−2−−→OY (−2)⊕4 a−1−−→OY (−1)⊕4 a0−→O⊕4

Y
a1−→S(1)→ 0.

Pushing out this exact sequence to X gives an exact sequence

0→ S−2
a−2−−→M⊕4

−2
a−1−−→M⊕4

−1
a0−→M⊕4

0
a1−→ S1→ 0,

whose splices are
0→ Si

ai−→M⊕4
i

ai+1−−→ Si+1→ 0.

for−2≤ i≤ 0. By Lemma 2, the morphism ai+1 is a right (addW1)-approximation
of Si+1 for −2≤ i≤ 0 and

µW1(W1⊕Si) =W1⊕Si+1.

Let Qi := HomR(W1⊕Si,W1) and

Ci := Im(HomR(W1⊕Si,M⊕4
i )→ HomR(W1⊕Si,Si+1)).

Then, IW mutation functor

ΦW1 : Db(modEndR(W1⊕Si))→ Db(modEndR(W1⊕Si+1))

is given by
ΦW1(−) := RHomEndR(W1⊕Si)(Qi⊕Ci,−).

Again, by Lemma 2, there is an isomorphism

RHomY (W1⊕S(i),W1⊕S(i+1))≃ Qi⊕Ci
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for −2≤ i≤ 0 and hence the following diagram commutes

Db(Y )

Db(modEndY (W1⊕S(i))) Db(modEndY (W1⊕S(i+1))),

Ψi

Ψi+1

ΦW1

where Ψi := RHomY (W1⊕S(i),−). Therefore

Φ
3
W1
≃Ψ1 ◦Ψ

−1
−2 ≃ RHomΛT(RHom(T T,ν T ),−).

To show the result for W2, we use an exact sequence in Lemma 12 (2)

0→OY (−2) b1−→OY (−1)⊕5 b2−→O⊕11
Y

b3−→S(1)⊕4 b4−→OY (1)→ 0.

Put W2 := OY (−1)⊕OY ⊕S(1). Then, W2⊕OY (−2) and W2⊕OY (1) are
tilting bundles by Theorem 3.2. Therefore, by Lemma 6, the bundle W2 ⊕
Cok(b j) is also a tilting bundle for all 1≤ j ≤ 4. Then the same argument as in
the case of W1 shows the result.

One can show for W3 by using the same argument. We note that the exact
sequence we use in this case is

0→OY (−1) c1−→O⊕5
Y

c2−→S(1)⊕4 c3−→OY (1)⊕5 c4−→OY (2)→ 0,

which is provided in Lemma 12 (3), and the cokernels are given by

Cok(c1)≃ π
∗(TP4(−1)|LGr), Cok(c2)≃ π

∗(Ω1
P4(2)|LGr).

Next, we compare ΛS with ΛU. The IW mutation that connects ΛS and ΛU
is much simpler than the one that connects ΛT and ΛS.

Theorem 3.8. Let W4 := M0⊕M1⊕M2. ΛU is a left IW mutation of ΛS at W4.
Furthermore, if we set the IW functor

ΦW4 : Db(modΛS)
∼−→ Db(modΛU),

then the following diagram commutes

Db(Y ) Db(modΛS)

Db(modΛU).

ΨS

ΨU
ΦW4



ON DERIVED EQUIVALENCE FOR ABUAF FLOP 355

Proof. Consider an exact sequence

0→ S1→V ⊗C M1→ S2→ 0

obtained by pushing an exact sequence

0→S(1)→V ⊗COY (1)→S(2)→ 0

on Y by φ . Then, by Lemma 2, this sequence is a right (addW4)-approximation
of S2 and we have µW4(W4⊕S1) =W4⊕S2. The commutativity of the diagram
also follows from Lemma 2.

Summarizing the above results, we have the following corollary.

Corollary 3.9. Let Φ be an equivalence between Db(modΛT) and Db(modΛU)
obtained by composing ten IW mutation functors:

Φ := ΦW4 ◦ΦW3 ◦ΦW3 ◦ΦW3 ◦ΦW2 ◦ΦW2 ◦ΦW2 ◦ΦW1 ◦ΦW1 ◦ΦW1 .

The equivalence between Db(Y ) and Db(Y ′) obtained by a composition

Db(Y ) ΨT−→ Db(modΛT)
Φ−→ Db(modΛU)

Ψ
−1
T−−→ Db(Y ′)

is the inverse of the functor TU′.

Later, we show that the Fourier-Mukai kernel of the functor TU′ is the struc-
ture sheaf of Ỹ ∪E (LGr×P), where Ỹ is the blowing up of Y (or Y ′) along the
zero section and E is the exceptional divisor.

4. Flop-Flop=Twist results and Multi-mutation=Twist result

In this section, we show “flop-flop=twist” results and “multi-mutation=twist”
results for the Abuaf flop.

4.1. spherical objects

First, we study spherical objects on Y and Y ′. For the definition of spherical
objects and spherical twists, see Section 2.5.

Lemma 7. (1) Let ι : LGr ↪→Y be the zero section. Then, an object ι∗OLGr ∈
Db(Y ) is a spherical object.

(2) Let ι ′ : P ↪→ Y ′ be the zero section. Then, an object ι ′∗OP ∈ Db(Y ′) is a
spherical object.
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Proof. Here we provide the proof of (2) only, but one can show (1) by using the
same argument. The normal bundle NP/Y ′ of the zero section is isomorphic to
(L⊥ /L)⊗L2. Note that this bundle lies on the exact sequence

0→OP(−3)→Ω
1
P(−1)→NP/Y ′ → 0.

Thus, we have

RΓ(P,
0∧
NP/Y ′)≃ C,

RΓ(P,
1∧
NP/Y ′)≃ 0, and

RΓ(P,
2∧
NP/Y ′)≃ RΓ(P,OP(−4))≃ C[−3].

Let us consider a spectral sequence

E p,q
2 := H p(Y ′,Extq

Y ′(ι
′
∗OP, j′∗OP))⇒ E p+q = Extp+q

Y ′ (ι ′∗OP, ι
′
∗OP).

Since we have an isomorphism

Extq
Y ′(ι

′
∗OP, ι

′
∗OP)≃ ι

′
∗

q∧
NP/Y ′ ,

we have

E p,q
2 =

{
C if p = q = 0 or p = 3,q = 2,
0 otherwise.

Therefore, we have

ExtiY ′(ι
′
∗OP, ι

′
∗OP) =

{
C if i = 0 or i = 5,
0 otherwise.

Since Y ′ is Calabi-Yau, the condition ι ′∗OP⊗ωY ′ ≃ ι ′∗OP is trivially satisfied.
Hence the object ι ′∗OP is a spherical object.

4.2. On the side of Y ′

In the present subsection, we prove a “flop-flop=twist” result on the side of Y ′.
The next lemma is a key of the proof of Theorem 4.1, which provides a “flop-
flop=twist” result. Let Ỹ be a blowing up of Y along the zero section LGr. This
is isomorphic to the blowing up of Y ′ along the zero section P, and these two
blowups give the same exceptional divisor E ⊂ Ỹ [18].
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Lemma 8. There is an exact sequence

0→ Σ(−1)→V ⊗COY ′(−1)→ Σ(−2)→ ι
′
∗OP(−3)→ 0

on Y ′.

Proof. On Y , there is a canonical exact sequence

0→S(1)→V ⊗COY (1)→S(2)→ 0.

By restricting this sequence on Y o and then extending it to Y ′, we have a left
exact sequence

0→ Σ(−1)→V ⊗COY ′(1)
a−→ Σ(2).

Thus, it is enough to show that Cok(a)≃OP(−3).
Consider two open immersions j′ : Y o ↪→ Y ′ and j̃ : Y o ↪→ Ỹ . Since j̃ is an

affine morphism, there are an exact sequence

0→ j̃∗Σ(−1)|Y o →V ⊗C j̃∗OY ′(1)|Y o → j̃∗Σ(2)|Y o → 0

and an isomorphism

R j′∗(Σ(−1)|Y o)≃ R p̄∗ j̃∗Σ(−1)|Y o .

On the other hand, there exists an exact sequence

0→OỸ → j̃∗OY o →
∞⊕

d=1

OE(dE)→ 0.

This exact sequence together with the projection formula implies

R1 j′∗(Σ(−1)|Y o)≃ R1 p̄∗ j̃∗Σ(−1)|Y o

≃ Σ(−1)|P⊗
⊕
d≥1

R1 p̄∗OE(dE)

≃ Σ(−1)|P⊗
⊕
d≥1

Symd−2(L⊥ /L)⊗L2d

≃
⊕
d≥1

(
Symd−2(L⊥ /L)⊗L2d+2

)
⊕
(

Symd−2(L⊥ /L)⊗L2d−1
)
.

Since the sheaf Cok(a) is a subsheaf of R1 j′∗(Σ(−1)|Y o), the map Σ(−2)→
R1 j′∗(Σ(−1)|Y o) factors through as

Σ(−2)→ Σ(−2)|P ↠ Cok(a) ↪→ R1 j′∗(Σ(−1)|Y o).
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Note that Σ(−2)|P = OP⊕OP(−3). It is easy to observe that two sheaves (on
P)

Symd−2(L⊥ /L)⊗L2d+2 and Symd−2(L⊥ /L)⊗L2d−1

do not have global sections for all d ≥ 1. Thus, Cok(a) is a torsion free sheaf on
P that can be written as a quotient ofOP(−3), which means Cok(a)≃OP(−3).

Theorem 4.1. We have a functor isomorphism

UT◦Seg′ ≃ Tι ′∗OP(−3) ∈ Auteq(Db(Y ′)).

Proof. We have to show the following diagram commutes

Db(Y ′) Db(Y ′)

Db(Y ) Db(modΛS).

T−1
ι ′∗OP(−3)

TU′ Ψ′S

ΨS

Note that there are isomorphisms of equivalence functors

Ψ
′
S ◦T−1

ι ′∗OP(−3) ≃ RHomY ′(Tι ′∗OP(−3)(T ′S),−),

ΨS ◦TU′ ≃ RHomY ′(TU′−1(T S),−),

and of objects

Tι ′∗OP(−3)(T ′S)≃OY ′⊕OY ′(−1)⊕OY ′(−2)⊕Tι ′∗OP(−3)(Σ(−1)),

UT(T S)≃OY ′⊕OY ′(−1)⊕OY ′(−2)⊕UT(Σ(−1)).

Thus, it is enough to show that

T j′∗OP(−3)(Σ(−1))≃ UT(S(1)).

Applying the functor UT to the exact sequence

0→S(1)→V ⊗COY (1)→S(2)→ 0

gives an exact triangle on Db(Y ′)

UT(S(1))→V ⊗COY ′(−1)→ Σ(−2)→ UT(S(1))[1].

On the other hand, the exact sequence

0→OY ′(−2)→ Σ(−1)→OY ′(1)→ 0,
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shows

RHomY ′(ι
′
∗OP(−3),Σ(−1))≃ RHomY ′(ι

′
∗OP(−3),OY ′(1))

≃ RHomP(OP(−3),OY ′(1)⊗ωP)[−2]

≃ C[−2].

The non-trivial extension that corresponds to a generator of Ext2Y ′(ι
′
∗OP(−3),Σ(−1))

is the one that was given in Lemma 8. Thus the object Tι ′∗OP(−3)(Σ(−1)) defined
by a triangle

ι
′
∗OP(−3)[−2]→ Σ(−1)→ Tι ′∗OP(−3)(Σ(−1))

is quasi-isomorphic to a complex

(· · · → 0→ 0→V ⊗COY ′(−1)→ Σ(−2)→ 0→ 0→ ···)

whose degree zero part is V ⊗COY ′(−1). Hence there is an exact triangle

Tι ′∗OP(−3)(Σ(−1))→V ⊗COY ′(−1)→ Σ(−2)→ Tι ′∗OP(−3)(Σ(−1))[1],

which implies the desired isomorphism UT(S(1))≃ Tι ′∗OP(−3)(Σ(−1)).

4.3. The kernel of the equivalence TU′

In the same way as in Theorem 4.1, we can prove a “flop-flop=twist” result on
Y . However, to prove this, we need the geometric description of the equiva-
lence TU′. In the present subsection, we provide a Fourier-Mukai kernel of the
equivalence TU′.

Lemma 9. There is an exact sequence

0→OY (3)→S(2)
b−→OY →OLGr→ 0

on Y .

Proof. On Y ′, there is an exact sequence

0→OY ′(−3)→ Σ(−2)→OY ′ → 0.

Restricting this to Y o and then extending to Y , we have a left exact sequence

0→OY (3)→S(2)
b−→OY .

Thus, it is enough to show that Cok(b)≃OLGr.
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Note that this sequence cannot be right exact. Indeed, if this is a right exact
sequence, then the sequence is locally split. This contradicts to the fact that
there is no non-trivial morphism from S(2) to OLGr on LGr.

Let j : Y o ↪→ Y be the open immersion. As in the proof of Lemma 8, we
have

R1 j∗OY (3)|Y o ≃OLGr(3)⊗
⊕
d≥1

Symd−2(S(−1))⊗ωLGr.

In particular, R1 j∗OY (3)|Y o is a vector bundle on the zero section LGr, and hence
its subsheaf Cok(b) is a torsion free sheaf on LGr. In particular, the surjective
morphism OY → Cok(b) factors through a morphism OLGr → Cok(b), which
is also surjective. Since the sheaf Cok(b) is torsion free sheaf on LGr, the
surjective morphism OLGr→ Cok(b) should be an isomorphism.

The exceptional divisor E ⊂ Ỹ is isomorphic to PLGr(S(−1)) and can be
embedded into LGr×P via the injective bundle map S(−1) ↪→V⊗COLGr(−1).
Put

Ŷ := Ỹ ∪E (LGr×P).

Theorem 4.2. The Fourier-Mukai kernel of the equivalence

TU′ : Db(Y ′)→ Db(Y )

is given by the structure sheaf of Ŷ :

TU′ ≃ FMY ′→Y
OŶ

.

Proof. Let FMOŶ
: Db(Y ′)→Db(Y ) be the Fourier-Mukai functor whose kernel

is OŶ , and FM!
OŶ

the right adjoint functor of FMOŶ
.

First let us show that FMOŶ
(T ′T) ≃ T U. Computations using the exact se-

quence
0→OŶ →OỸ ⊕OLGr×P→OE → 0

yields
FMOŶ

(OY ′(−a))≃OY (a)

for 0≤ a≤ 2 and

Hi(FMOŶ
(OY ′(−3)))≃


OY (3) if i = 0
OLGr if i = 1
0 otherwise.
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It remains to show FMOŶ
(Σ(−2))≃ S(2). Consider the exact sequence

0→OY ′(−3)→ Σ(−2)→OY ′ → 0.

Applying the functor FMOŶ
to this sequence and taking the cohomology long

exact sequence show that FMOŶ
(Σ(−2)) is a coherent sheaf on Y that lies in a

sequence
0→OY (3)→ FMOŶ

(Σ(−2))→OY →OLGr→ 0.

Since Ext1Y (ILGr/Y ,OY (3)) ≃ Ext2Y (OLGr,OY (3)) ≃ C, this exact sequence co-
incides with the one given in Lemma 9. Therefore, FMOŶ

(Σ(−2)) ≃ S(2) as
desired.

Now, for any object x ∈ Db(Y ), there are functorial isomorphisms

Ψ
′
T ◦FM!

OŶ
(x) = RHomY ′(T ′T,FM!

OŶ
(x))≃ RHomY (FMOŶ

(T ′T),x)≃ RHomY (T U,x) = ΨU (x),

of complexes over X = SpecR. This isomorphism together with the R-algebra
homomorphism

f : EndY (T U)→ EndY ′(T ′T)

associated with FMOŶ
induces an action of ΛU = EndY (T U) on Ψ′T ◦FM!

OŶ
(x).

Since the the functor FMOŶ
is an identity outside the singularity of X by con-

struction, the R-algebra homomorphism f is also an identity on Xsm, and then the
Cohen-Macaulay property implies that f is an isomorphism that coincides with
the identification in Lemma 5. Thus the above isomorphism Ψ′T ◦FM!

OŶ
(x) ≃

ΨU(x) is ΛU-linear, and thus the diagram

Db(Y ) Db(Y ′)

Db(ΛU)

FM!
O

Ŷ

ΨU Ψ′T

commutes, which proves the result.

4.4. On the side of Y

Finally, we prove the following “flop-flop=twist” result for Y .

Theorem 4.3. (1) The universal subbundle ι∗S |LGr on LGr is a spherical
object in Db(Y ).

(2) Consider a spherical twist Tι∗(S)[2] ∈Auteq(Db(Y )) around a sheaf ι∗(S)[2] =
ι∗(S |LGr)[2] on LGr. Then, there exists a functor isomorphism

Seg′ ◦UT≃ Tι∗(S)[2] ∈ Auteq(Db(Y )).
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Proof. By Theorem 4.1, it is enough to show that

TU′(OP(−3))≃ S |LGr[2].

The proof of Theorem 4.1 gives a distinguished triangle

Σ(−1)→ UT(S(1))→OP(−3)[−1]→ Σ(−1)[1].

Applying a functor TU′ to this sequence gives

TU′(Σ(−1))→S(1)→ TU′(OP(−3))[−1]→ TU′(Σ(−1))[1].

Thus, we have to compute the object TU′(Σ(−1)). Consider the exact sequence

0→OY ′(−2)→ Σ(−1)→OY ′(1)→ 0

on Y ′. Applying the functor TU′ to this sequence gives an exact triangle

OY (2)→ TU′(Σ(−1))→ TU′(OY ′(1))→OY (2)[1].

Then, a computation using Theorem 4.2 shows that TU′(OY ′(1)) lies in the
following triangle

TU′(OY ′(1))→ ILGr/Y (−1)⊕ (V ∗⊗COLGr)→S∗ |LGr→ TU′(OY ′(1))[1].

In addition, the diagram

V ⊗COLGr V ⊗COLGr

TU′(OY ′(1)) ILGr/Y (−1)⊕ (V ∗⊗COLGr) S∗ |LGr

TU′(OY ′(1)) ILGr/Y (−1) S |LGr[1],

shows that TU′(OY ′(1)) lies in the following sequence

TU′(OY ′(1))→ ILGr/Y →S |LGr[1]→ TU′(OY ′(1))[1].

On the other hand, by Lemma 9 and the construction of morphisms, we have the
following morphism between exact triangles

OY (2) TU′(Σ(−1)) TU′(OY ′(1)) OY (2)[1]

OY (2) S(1) ILGr/Y (−1) OY (2)[1].
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Summarising the above computations implies

TU′(OP(−3))≃ Cone(TU′(Σ(−1))→S(1))[1]
≃ Cone(TU′(OY ′(1))→ ILGr/Y )[1]

≃ S |LGr[2].

4.5. Another Flop-Flop=twist result

Put

T U,1 :=OY (−1)⊕OY ⊕OY (1)⊕S(1),
T ′T,1 :=OY ′(1)⊕OY ′⊕OY ′(−1)⊕Σ(−1),

ΛU,1 := EndY (T U,1) = EndY ′(T ′T,1).

Note that T U,1 was denoted by ν2T in Theorem 3.7. Consider derived equiva-
lences

ΨU,1 := RHomY (T U,1,−) : Db(Y ) ∼−→ Db(modΛU,1),

Ψ
′
T,1 := RHomY ′(T ′T,1,−) : Db(Y ′) ∼−→ Db(modΛU,1),

UT1 := (Ψ′T,1)
−1 ◦ΨU,1 : Db(Y ) ∼−→ Db(Y ′),

TU′1 := Ψ
−1
U,1 ◦Ψ

′
T,1 : Db(Y ′) ∼−→ Db(Y ).

Then UT−1
1 ≃ TU′1 and the following diagram commutes

Db(Y ) Db(Y ′)

Db(Y ) D(Y ′).

UT1

−⊗OY (1) −⊗OY ′ (−1)

UT

Theorem 4.4. There is a functor isomorphism

TU′1 ◦Seg≃ TOLGr(−1) ∈ Auteq(Db(Y )).

Proof. We have to show the following diagram commutes:

Db(Y ) Db(Y ′)

Db(Y ) Db(modΛU,1).

Seg

TOLGr(−1) Ψ′T,1

ΨU,1
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As in the proof of Theorem 4.1, it is enough to show that

Seg′(OY ′(1))≃ T−1
OLGr(−1)(OY (−1)).

First, using an exact sequence

0→ ILGr/Y (−1)→OY (−1)→OLGr(−1)→ 0

and a computation

RHomY (ι∗OLGr(−1),OY (−1))≃ RΓ(LGr,OLGr(−3))[−2]≃ C[−5]

imply RHomY (ι∗OLGr(−1), ILGr/Y (−1))≃C[1], and hence TOLGr(−1)(ILGr/Y (−1))=
OY (−1). On the other hand, applying the functor Seg′ to the sequence

0→OY ′(−2)→ Σ(−1)→OY ′(1)→ 0,

gives a triangle

OY (2)→S(1)→ Seg′(OY ′(1))→OY (2)[1].

Then Lemma 9 implies Seg′(OY ′(1))≃ ILGr/Y (−1) as desired.

4.6. Multi-mutation=twist result

Note that ΛU,1 is the endomorphism ring of an R-module

M−1⊕M0⊕M1⊕S1.

Let W ′ := M0⊕M1⊕ S1. This W ′ was denoted by W3 in Theorem 3.7. Recall
that ΛS is the endomorphism ring of W ′⊕M2.

Proposition 4.5. Tthe following two isomorphism of R-modules holds.

(1) µW ′µW ′µW ′(W ′⊕M−1)≃W ′⊕M2.

(2) µW ′(W ′⊕M2)≃W ′⊕M−1.

Moreover, the induced IW functor

ΦW ′ : Db(modΛS)→ Db(modΛU,1)

from (2) is isomorphic to Ψ′U,1 ◦ (Ψ′S)−1.
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Proof. (1) was proved in Theorem 3.7. One can show (2) by using Lemma 2.
The exchange sequence for (2) is given by the dual of the exact sequence

0→M2→ S1→M−1→ 0.

This sequence is obtained by taking the global section of the sequence

0→OY ′(−2)→ Σ(−1)→OY ′(1)→ 0.

The following is a “multi-mutation=twist” result for the Abuaf flop.

Theorem 4.6. By Proposition 4.5, we have an autoequivalence of Db(modΛU,1)
by composing four IW mutation functors at W ′:

ΦW′ ◦ΦW′ ◦ΦW′ ◦ΦW′ ∈ Auteq(Db(modΛU,1)).

This autoequivalence corresponds to a spherical twist TOLGr(−1) ∈Auteq(Db(Y ))
under the identification

ΦU,1 : Db(Y ) ∼−→ Db(modΛU,1).

Proof. By Theorem 3.7, Theorem 4.4, and Proposition 4.5, we have the follow-
ing commutative diagram

Db(Y ) Db(Y ) Db(Y )

Db(modΛU,1) Db(modΛS) Db(modΛU,1)

Db(Y ′) Db(Y ′),

ΨU,1 ΨS

TOLGr(−1)

ΨU,1

Φ3
W ′ ΦW ′

ΨS ΨT,1

and the result follows from this diagram.

Remark 4.7. Compare this result with [9, Theorem 5.18 and Remark 5.19].
There, the author proved that a P-twist on the cotangent bundle T ∗Pn of Pn

associated to the sheaf OP(−1) on the zero section P⊂ T ∗Pn corresponds to a
composition of 2n IW mutations of an NCCR.

Remark 4.8. By Theorem 4.6, we notice that an autoequivalence

ΦW′ ◦ΦW′ ◦ΦW′ ◦ΦW′ ∈ Auteq(Db(modΛU,1))
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corresponds to a spherical twist

TF ∈ Auteq(Db(Y ′))

on Y ′ around an object F := UT1(OLGr(−1)), under the identification

Ψ
′
T,1 : Db(Y ′) ∼−→ Db(modΛU,1).

Note that F is also a spherical object on Y ′ because Y ′ has a trivial canonical
bundle. However, in contrast to the case for Y , the object F is not contained in
the subcategory ι ′∗Db(P) of Db(Y ′).

Indeed, we have

RHomY ′(F ,OY ′⊕OY ′(−1)⊕Σ(−1))

≃RHomY (ι∗OLGr(−1),OY ⊕OY (1)⊕S(1))
≃RHomLGr(OLGr(−1),(OLGr⊕OLGr(1)⊕S(1))⊗ωLGr)[−2]

=0.

Thus, if F ≃ ι ′∗F for some F ∈ Db(P), then

0=RHomY ′(ι
′
∗F,OY ′⊕OY ′(−1)⊕Σ(−1))≃RHomP(F,

1⊕
k=−2

OP(k)⊗ωP)[−2].

Since the object
⊕1

k=−2OP(k)⊗ωP spans the derived category Db(P) of the
three dimensional projective space, the above vanishing implies F = 0. This is
a contradiction.

5. Mutation of exceptional objects

In Section 3, we construct a resolution of a sheaf by using the mutation of excep-
tional objects. In this section, we recall the definition of exceptional objects and
mutation of them, and explain how to find resolutions that we used in Section 3.

5.1. Definition

Let D be a triangulated category with finite dimensional Hom spaces.

Definition 10. (i) An object E ∈ D is called an exceptional object if

HomD(E ,E [i]) =
{

C if i = 0,
0 if i ̸= 0.



ON DERIVED EQUIVALENCE FOR ABUAF FLOP 367

(ii) A sequence of exceptional objects E1, . . . ,Er is called an exceptional col-
lection if RHomD(El,Ek) = 0 for all 1≤ k < l ≤ r.

(iii) An exceptional collection E1, . . . ,Er is full if it generates the whole cate-
gory D. In such case, we write

D = ⟨E1, . . . ,Er⟩.

Example 2 ([3], [14]). (1) An n-dimensional projective space Pn has a full
exceptional collection consisting of line bundles called the Beilinson col-
lection

Db(Pn) = ⟨O,O(1),O(2), . . . ,O(n)⟩.

(2) Let V be a four dimensional symplectic vector space and LGr(V ) the La-
grangian Grassmannian of V . Kuznetsov found a full exceptional collec-
tion

Db(LGr(V )) = ⟨OLGr,S(1),OLGr(1),OLGr(2)⟩.

For an object E ∈ D, we define subcategories E⊥,⊥E ⊂ D by

E⊥ := {F ∈ D | RHomD(E ,F) = 0}
⊥E := {F ∈ D | RHomD(F ,E) = 0}.

The following lemma is useful.

Lemma 10. Let
D = ⟨E1, . . . ,Er⟩= ⟨E ′1, . . . ,E ′r⟩

be two full exceptional collections with the same length. Let 1 ≤ i ≤ r and
assume that E j = E ′j holds for all j ̸= i. Then, we have

Ei = E ′i
up to shift.

Proof. This Lemma follows from the fact
⊥E1∩·· ·∩⊥Ei−1∩E⊥i+1∩·· ·∩E⊥r = Db(SpecC)⊗C Ei.

For this fact, see [4].

Definition 11. Let E ∈ D be an exceptional object. For an object F in ⊥E , we
define the left mutation of F through E as the object LE(F) in E⊥ that lies in an
exact triangle

RHom(E ,F)⊗E−→F−→LE(F).
Similarly, for an object G in E⊥, we define the right mutation of G through E as
the object RE(G) in ⊥E which lies in an exact triangle

RE(G)−→G−→RHom(G,E)∗⊗E .
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Lemma 11 ([4]). Let E1,E2 be an exceptional pair (i.e. an exceptional collection
consisting of two objects).

(i) The left (resp. right) mutated object LE1(E2) (resp. RE2(E1)) is again an
exceptional object.

(ii) The pairs of exceptional objects E1,RE1(E2) and LE2(E1),E2 are again
exceptional pairs.

Let E1, . . . ,Er be a full exceptional collection in D. Then

(iii) The collection

E1, . . . ,Ei−1,LEi(Ei+1),Ei,Ei+2, . . . ,Er

is again full exceptional for each 1≤ i≤ r−1. Similarly, the collection

E1, . . . ,Ei−2,Ei,REi(Ei−1),Ei+1, . . . ,Er

is again full exceptional for each 2≤ i≤ r.

(iv) Assume in addition that the categoryD admits the Serre functor SD. Then
the following collections

E2, . . . ,Er−1,Er,S−1
D (E1) and SD(Er),E1,E2, . . . ,Er−1

are full exceptional collections on D.

Example 3. By taking mutations, we have the following different full excep-
tional collections for Db(LGr(V )):

Db(LGr(V )) = ⟨OLGr,S(1),OLGr(1),OLGr(2)⟩
= ⟨OLGr,OLGr(1),S(2),OLGr(2)⟩
= ⟨OLGr,OLGr(1),OLGr(2),S(3)⟩
= ⟨S,OLGr,OLGr(1),OLGr(2)⟩.

5.2. Application for finding resolutions

Lemma 12. There exist the following exact sequences on LGr(V )

1. 0→OLGr(−3)→S(−2)⊕4→OLGr(−2)⊕11→OLGr(−1)⊕5→OLGr→
0.

2. 0→OLGr(−2)→OLGr(−1)⊕5→O⊕11
LGr →S(1)⊕4→OLGr(1)→ 0.
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3. 0→OLGr(−1)→O⊕5
LGr→S(1)⊕4→OLGr(1)⊕5→OLGr(2)→ 0.

Proof. Let us consider a full exceptional collection

Db(LGr(V )) = ⟨OLGr(−3),S(−2),OLGr(−2),OY (−1)⟩.

To prove (1), we mutateOLGr(−3) over an exceptional collection S(−2),OLGr(−2),OY (−1).
By Lemma 11 and Lemma 10, there is an isomorphism

RS(−2)(OLGr(−3))≃ LOLGr(−2)LOLGr(−1)(OLGr(−3)⊗ω
−1
LGr)

up to shift. Note that OLGr(−3)⊗ω
−1
LGr ≃OLGr.

First, we have

RHomLGr(V )(OLGr(−3),S(−2))≃ C4

and hence the object RS(−2)(OLGr(−3))[1] lies on an exact triangle

OLGr(−3) ev−→S(−2)⊕4→ RS(−2)(OLGr(−3))[1]→OLGr(−3)[1].

SinceOLGr(−3) and S(−2)⊕4 are vector bundles on LGr(V ), the map ev should
be injective and hence the object RS(−2)(OLGr(−3))[1] is a sheaf on LGr(V ).
Thus, we put

F := RS(−2)(OLGr(−3))[1].

Next, we have RHomLGr(V )(OLGr(−1),OLGr)≃ C5 and hence

LOLGr(−1)(OLGr)[−1]≃Ω
1
P4 |LGr.

Moreover, an easy computation shows that RHomLGr(V )(OLGr(−2),Ω1
P4 |LGr)≃

C11 and hence the object LOLGr(−2)(Ω
1
P4 |LGr) lies on the exact sequence

OLGr(−2)⊕11 ev−→Ω
1
P4 |LGr→ LOLGr(−2)(Ω

1
P4 |LGr)→OLGr(−2)⊕11[1].

From the above computation, the object LOLGr(−2)(Ω
1
P4 |LGr) should be a sheaf

on LGr(V ) (up to shift) whose generic rank is equal to 7. Thus the map ev is
surjective and LOLGr(−2)(Ω

1
P4 |LGr)[−1]≃F .

Summarising the above arguments, we have three exact sequences:

0→OLGr(−3)→S(−2)⊕4→F → 0,

0→F →OLGr(−2)⊕11→Ω
1
P4 |LGr→ 0, and

0→Ω
1
P4 |LGr→OLGr(−1)⊕5→OLGr→ 0.

Combining these three exact sequences gives the exact sequence (1).
To obtain (2), take the dual of (1), and then apply ⊗O(−2).
The sequence (3) is proved using a similar argument as in (1). This ex-

act sequence comes from the right mutation of OLGr(−1) over an exceptional
collection OLGr,S(1),OLGr(1).
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