LINE COZERO-DIVISOR GRAPHS

S. KHOJASTEH

Let R be a commutative ring. The cozero-divisor graph of R denoted by $\Gamma^{\prime}(R)$ is a graph with the vertex set $W^{*}(R)$, where $W^{*}(R)$ is the set of all non-zero and non-unit elements of R, and two distinct vertices x and y are adjacent if and only if $x \notin R y$ and $y \notin R x$. In this paper, we investigate when the cozero-divisor graph is a line graph. We completely present all commutative rings which their cozero-divisor graphs are line graphs. Also, we study when the cozero-divisor graph is the complement of a line graph.

1. Introduction

In 1988, Beck [12] introduced the concept of the zero-divisor graph. The zero-divisor graphs of commutative rings has been studied by several authors. We refer to the reader the papers [7, 8] and [9] for the properties of zero-divisor graphs. Also, the line zero divisor graphs was studied in [11]. For an arbitrary commutative ring R, the cozero-divisor graph $\Gamma^{\prime}(R)$, as the dual notion of zerodivisor graphs, was introduced in [2]. Let $W^{*}(R)$ be the set of all non-zero and non-unit elements of R. The vertex set of $\Gamma^{\prime}(R)$ is $W^{*}(R)$, and two distinct vertices x and y in $W^{*}(R)$ are adjacent if and only if $x \notin R y$ and $y \notin R x$, where $R z$ is the ideal generated by the element z in R. Many papers have been devoted to the study of cozero-divisor graphs, for instance see $[1-6]$. Motivated by

[^0]the previous works on the zero divisor graph and cozero-divisor graph, in this paper we study line cozero-divisor graphs. Throughout this paper, all graphs are simple with no loops and multiple edges and R is a commutative ring with nonzero identity. We denote the set of all zero-divisor elements and the set of all unit elements of R by $\mathrm{Z}(R)$ and $U(R)$, respectively. If R has a unique maximal ideal \mathfrak{m}, then R is said to be a local ring and it is denoted by (R, \mathfrak{m}). Also, \mathbb{F}_{q} denotes a finite field with q elements, for some positive integer q.

For basic definitions on graphs, one may refer to [14]. Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. If x is adjacent to y, then we write $x-y$ or $\{x, y\} \in E(G)$. A graph G is complete if each pair of distinct vertices is joined by an edge. For a positive integer n, we use K_{n} to denote the complete graph with n vertices. Also, we say that G is totally disconnected if no two vertices of G are adjacent. Note that a graph whose vertex set is empty is an empty graph. The complement of G, denoted by \bar{G} is a graph on the same vertices such that two distinct vertices of \bar{G} are adjacent if and only if they are not adjacent in G. If $|V(G)| \geq 2$, then a path from x to y is a series of adjacent vertices $x-x_{1}-x_{2}-\cdots-x_{n}-y$. A cycle is a path that begins and ends at the same vertex in which no edge is repeated and all vertices other than the starting and ending vertex are distinct. We use P_{n} and C_{n} to denote the path and the cycle with n vertices, respectively. Suppose that H is a non-empty subset of $V(G)$. The subgraph of G whose vertex set is H and whose edge set is the set of those edges of G with both ends in H is called the subgraph of G induced by H. For every positive integer r, an r-partite graph is one whose vertex set can be partitioned into r subsets, or parts, in such a way that no edge has both ends in the same part. An r-partite graph is complete r-partite if any two vertices in different parts are adjacent. We denote the complete r-partite graph, with part sizes n_{1}, \ldots, n_{r} by $K_{n_{1}, \ldots, n_{r}}$. For every $n \geq 2$, the star graph with n vertices is the complete bipartite graph with part sizes 1 and $n-1$. The line graph $L(G)$ is a graph such that each vertex of $L(G)$ represents an edge of G, and two vertices of $L(G)$ are adjacent if and only if their corresponding edges are incident in G.

Here is a brief summary of the present paper. In this paper, we investigate when the cozero-divisor graph is a line graph. Also, we study when the cozerodivisor graph is the complement of a line graph. In Sec. 2, we characterize all finite rings whose cozero-divisor graphs are line graphs. In Sec. 3, we characterize all finite non-local rings whose cozero-divisor graphs are complements of line graphs. Also, we prove that if (R, \mathfrak{m}) is a local ring with $\mathfrak{m} \neq 0, \Gamma^{\prime}(R)$ is the complement of a line graph and $\{x, y\} \in E\left(\Gamma^{\prime}(R)\right)$, then $|R x \cap R y| \leq 2$. Finally, we determine a family of graphs can be occurred as the complement of line cozero-divisor graph of finite local rings.

2. When the Cozero-Divisor Graph is a Line Graph

In this section, we study when the graph $\Gamma^{\prime}(R)$ is a line graph. We determine all finite commutative rings whose cozero-divisor graphs are line graphs. We will use one of the characterizations of line graphs which was proved in [13].

Theorem 2.1. Let G be a graph. Then G is the line graph of some graph if and only if none of the nine graphs in Fig. 1 is an induced subgraph of G.

Throughout the paper R is a finite commutative ring. By the structure theorem of Artinian rings [10, Theorem 8.7], there exists positive integer n such that $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ and $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring for all $1 \leq i \leq n$. We use this theorem in the rest of the paper. Also, let e_{i} be the $1 \times n$ vector whose i th component is 1 and the other components are 0 .

We first present the following lemma.
Lemma 2.2. Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ and let $\left(R_{i}, \mathfrak{m}_{i}\right)$ be a local ring for all $1 \leq i \leq n$. If $n \geq 4$, then $\Gamma^{\prime}(R)$ is not a line graph.

Proof. It is easy to see that $R\left(\sum_{i=4}^{n} e_{i}\right) \varsubsetneqq R\left(\sum_{i=3}^{n} e_{i}\right) \varsubsetneqq R\left(\sum_{i=2}^{n} e_{i}\right)$ and e_{1} is adjacent to $\sum_{i=2}^{n} e_{i}, \sum_{i=3}^{n} e_{i}$ and $\sum_{i=4}^{n} e_{i}$. Hence the induced subgraph by the set $\left\{e_{1}, \sum_{i=2}^{n} e_{i}, \sum_{i=3}^{n} e_{i}, \sum_{i=4}^{n} e_{i}\right\}$ is isomorphic to $K_{1,3}$. Therefore by Theorem 2.1, $\Gamma^{\prime}(R)$ is not a line graph.

G_{6}

G_{2}

G_{8}

G_{4}

G_{9}

Fig. 1. Forbidden induced subgraphs of line graphs.
Lemma 2.3. Let $R \cong R_{1} \times R_{2} \times R_{3}$ and let $\left(R_{i}, \mathfrak{m}_{i}\right)$ be a local ring for $i=1,2,3$. Then $\Gamma^{\prime}(R)$ is a line graph if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. Let $\Gamma^{\prime}(R)$ be a line graph. If $\left|R_{1}\right| \geq 3$, then the induced subgraph by the set $\left\{e_{2}, e_{3}, e_{1}+e_{3}, x e_{1}+e_{3}\right\}$ is isomorphic to $K_{1,3}$, for every $x \in R_{1} \backslash\{0,1\}$
which is impossible. Hence $\left|R_{1}\right|=2$ and similarly, $\left|R_{2}\right|=\left|R_{3}\right|=2$. Therefore $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. We draw the graph $\Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ in Fig. 2. One can easily see that the graph $\Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ is the line graph of the graph $K_{2,3}$ which is drawn in Fig. 2. The proof of converse is clear.

Fig. 2. $\Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ is the line graph of $K_{2,3}$.
Lemma 2.4. Let $R \cong R_{1} \times R_{2}$ and let $\left(R_{i}, \mathfrak{m}_{i}\right)$ be a local ring for $i=1,2$. Then $\Gamma^{\prime}(R)$ is a line graph if and only if R is isomorphic to one of the rings $\mathbb{Z}_{2} \times$ $\mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{3}$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.

Proof. One side is obvious. For the other side assume that $\Gamma^{\prime}(R)$ is a line graph. We know that $\left|\mathfrak{m}_{i}\right| \leq\left|U\left(R_{i}\right)\right|$, for $i=1$, 2. If $\left|\mathfrak{m}_{1}\right| \geq 2$, then we can put $a \in \mathfrak{m}_{1}^{*}$ and $u, v \in U\left(R_{1}\right)$. Then the induced subgraph on $\left\{a e_{1}, u e_{1}, v e_{1}, e_{2}\right\}$ is isomorphic to $K_{1,3}$, a contradiction. So, R_{1} is a field. Similarly, R_{2} is a field. Then $\Gamma^{\prime}(R)=$ $K_{\left|R_{1}\right|-1,\left|R_{2}\right|-1}$ and hence R is isomorphic to one of the rings $\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{3}$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.

The next theorem, follows immediately from the above lemmas.
Theorem 2.5. Let R be a commutative non-local ring. Then $\Gamma^{\prime}(R)$ is a line graph if and only if R is isomorphic to one of the rings $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times$ $\mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{3}$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.

For the last case of our discussion, we must assume that $n=1$. So, R is a local ring. Let \mathfrak{m} be the only maximal ideal of R. We note that if R is a field, then $W^{*}(R)=\emptyset$ which implies that $\Gamma^{\prime}(R)$ is an empty graph and so it is the line graph of the graph K_{1}. So, we may assume that R is a local ring which is not a field. This implies that $\mathfrak{m} \neq 0$. Also, it is clear that if $\Gamma^{\prime}(R)$ is totally disconnected with t vertices, for some positive integer t, then $\Gamma^{\prime}(R)$ is the line graph of $\bigcup_{i=1}^{t} K_{2}$. In the rest of this section, we study the case that R is a local ring with non-zero maximal ideal and $E\left(\Gamma^{\prime}(R)\right) \neq \emptyset$. Our starting point is the following lemma.

Lemma 2.6. Let (R, \mathfrak{m}) be a local ring with $\mathfrak{m} \neq 0$ and let $\Gamma^{\prime}(R)$ be a line graph. If $\{x, y\} \in E\left(\Gamma^{\prime}(R)\right)$, then $|R x \cap R y| \leq 2$.

Proof. By contradiction, suppose that $0 \neq a, b \in R x \cap R y$. If $a \in U(R) y$, then we have $y \in R a \subseteq R x$, which is impossible. Therefore $a \in \mathfrak{m y}$. Similarly, $b \in \mathfrak{m} y$ and so $R(y+a)=R(y+b)=R y$. Now, the set $\{x, y, y+a, y+b\}$ determines an induced subgraph of the type $K_{1,3}$. Therefore by Theorem $2.1, \Gamma^{\prime}(R)$ is not a line graph, a contradiction. Hence $|R x \cap R y| \leq 2$.

Lemma 2.7. Let (R, \mathfrak{m}) be a local ring with $\mathfrak{m} \neq 0, \Gamma^{\prime}(R)$ be a line graph and let $\{x, y\} \in E\left(\Gamma^{\prime}(R)\right)$. If $R x \cap R y=\{0\}$, then the following hold:
(i) $R x=\{0, x\}$ or $R x=\{0, x,-x\}$.
(ii) $R y=\{0, y\}$ or $R y=\{0, y,-y\}$.

Proof. (i) We prove that $|R x| \leq 3$. By contradiction, assume that $|R x| \geq 4$. Let $a, b \in R x \backslash\{0, x\}$. There are three following cases:

Case 1. $a, b \in U(R) x$. Then $R x=R a=R b$ and the set $\{y, x, a, b\}$ determines an induced subgraph of the type $K_{1,3}$. This is a contradiction, by Theorem 2.1.

Case 2. $a, b \in \mathfrak{m} x$. Then $R x=R(x+a)=R(x+b)$ and the set $\{y, x, x+a, x+$ $b\}$ determines an induced subgraph of the type $K_{1,3}$, which is a contradiction, by Theorem 2.1.

Case 3. $a \in U(R) x$ and $b \in \mathfrak{m} x$. Then $R x=R a$ and $R b \subseteq R x$. Since $R a=R x$ and $\{x, y\} \in E\left(\Gamma^{\prime}(R)\right), y$ is adjacent to a. If $y \in R b$, then $y \in R x$, which is impossible. On the other hand, if $b \in R y$, then $b \in R x \cap R y=\{0\}$, a contradiction. Therefore y is adjacent to b. Now, the set $\{y, x, a, b\}$ determines an induced subgraph of the type $K_{1,3}$, a contradiction.
By the above cases, we deduce that $|R x|=2,3$. Clearly, if $|R x|=2$, then $R x=$ $\{0, x\}$. Also, it is not hard to see that if $|R x|=3$, then $R x=\{0, x,-x\}$. This completes the proof.
(ii) It is similar to the proof of part (i).

Now, we are in a position to prove one of the main results.
Lemma 2.8. Let (R, \mathfrak{m}) be a local ring, $\mathfrak{m} \neq 0, E\left(\Gamma^{\prime}(R)\right) \neq \emptyset$ and for every $\{x, y\} \in E\left(\Gamma^{\prime}(R)\right)$, let $R x \cap R y=\{0\}$. Then $\Gamma^{\prime}(R)$ is a line graph if and only if it is a complete graph.

Proof. Suppose that $\Gamma^{\prime}(R)$ is a line graph. Let $A=\left\{x \in V\left(\Gamma^{\prime}(R)\right) \mid R x=\{0, x\}\right\}$, $B=\left\{x \in V\left(\Gamma^{\prime}(R)\right) \mid R x=\{0, x,-x\}\right\}$ and let C be the set of all isolated vertices of $\Gamma^{\prime}(R)$. We note that the induced subgraph of $\Gamma^{\prime}(R)$ by the set A is a complete graph. Also, there exists $r \geq 0$ such that $|B|=2 r$. Because we have $x,-x \in B$ or $x,-x \notin B$, for every $0 \neq x \in \mathfrak{m}$. Moreover, if $r>0$, then the induced subgraph of $\Gamma^{\prime}(R)$ by the set B is complete r-partite graph and every part is equal to $\{x,-x\}$, for some $x \in B$. Furthermore, by Lemma 2.7, $V\left(\Gamma^{\prime}(R)\right)=A \cup B \cup C$. We use these facts in the rest of the proof. Since $E\left(\Gamma^{\prime}(R)\right) \neq \emptyset, A \cup B \neq \emptyset$. Consider two following cases:

Case 1. $A=\emptyset$. We note that $E\left(\Gamma^{\prime}(R)\right) \neq \emptyset$. This yields that $|B|=2 r>0$ and B has two elements say b_{1} and b_{2} such that $b_{1} \neq-b_{2}$ and $\left\{b_{1}, b_{2}\right\} \in E\left(\Gamma^{\prime}(R)\right)$. We claim that $C=\emptyset$. By contradiction, suppose that $c \in C$. If $c \in R b_{1}$, then $c=b_{1}$ or $c=-b_{1}$. Hence c is not an isolated vertex, which is a contradiction. Therefore $c \notin R b_{1}$. Similarly, $c \notin R b_{2}$. Since c is an isolated vertex, we find that $b_{1}, b_{2} \in R c$. Assume that $b_{1}=r_{1} c$ and $b_{2}=r_{2} c$, for some $r_{1}, r_{2} \in R$. If $r_{1} \in U(R)$, then $R c=R b_{1}$. This implies that c and b_{2} are adjacent, which is impossible. Hence $r_{1} \in \mathfrak{m}$ and similarly, $r_{2} \in \mathfrak{m}$. Since b_{1} and b_{2} are adjacent, we deduce that r_{1} and r_{2} are adjacent. Therefore $r_{1}, r_{2} \in B$. Moreover, we conclude that $r_{1} \in$ $\left\{b_{1},-b_{1}\right\}$ and $r_{2} \in\left\{b_{2},-b_{2}\right\}$. It follows that $c=0$, a contradiction. Therefore $C=\emptyset$ and the claim is proved. This implies that $\Gamma^{\prime}(R)$ is a complete r-partite graph, because $|B|=2 r$. Also, as we mentioned before, every part of $\Gamma^{\prime}(R)$ is equal to $\{b,-b\}$, for some $b \in B$. If $|B| \geq 8$, then there exists $b_{1}, b_{2}, b_{3}, b_{4} \in B$ such that $b_{i} \neq-b_{j}$, for every $i \neq j$. Now, the induced subgraph by the set $\left\{b_{1}, b_{2}, b_{3},-b_{3}, b_{4}\right\}$ is isomorphic to G_{3} (see Fig. 3), a contradiction. Hence $|B|=4,6$ and so $\Gamma^{\prime}(R)=K_{2,2}$ or $\Gamma^{\prime}(R)=K_{2,2,2}$. By [4, Lemma 2], we conclude that $\Gamma^{\prime}(R) \neq K_{2,2}$. Therefore $\Gamma^{\prime}(R)=K_{2,2,2}$. It follows that $\Gamma^{\prime}(R)$ is a complete 3-partite graph. By [6, Corollary 3], $\Gamma^{\prime}(R)$ is a triangle, which is impossible.

Case 2. $A \neq \emptyset$. Let $a_{1} \in A$. First, we prove that $C=\emptyset$. By contradiction, suppose that $C \neq \emptyset$. We know that $R a_{1}=\left\{0, a_{1}\right\}$. This yields that $a_{1} \in R c$, for every $c \in C$. Also, if $B \neq \emptyset$, then $b \in R c$, for every $b \in B$ and every $c \in C$. Since \mathfrak{m} is finite, we find that there exists $c_{0} \in C$ such that $\mathfrak{m}=R c_{0}$. On the other hand, by [2, Theorem 2.7], we conclude that $\Gamma^{\prime}(R)$ is totally disconnected, a contradiction. Therefore $C=\emptyset$.

Now, we prove that $B=\emptyset$. By contradiction, assume that $|B|=2 r>0$ and $B=\left\{b_{1}, \ldots, b_{2 r}\right\}$. Since $a_{1}+b_{1}$ is a vertex of $\Gamma^{\prime}(R), a_{1}+b_{1} \in V\left(\Gamma^{\prime}(R)\right)=A \cup B$. If $a_{1}+b_{1} \in A$, then $R\left(a_{1}+b_{1}\right)=\left\{0, a_{1}+b_{1}\right\}$ and so $a_{1}+b_{1}=-\left(a_{1}+b_{1}\right)=$ $a_{1}-b_{1}$. This yields that $b_{1}=-b_{1}$, a contradiction. Therefore $a_{1}+b_{1} \in B$. With no loss of generality, we may assume that $a_{1}+b_{1}=b_{2}$. Then $a_{1}=b_{2}-b_{1}$. Since $2 b_{1} \neq 0, b_{1}$, we have $2 b_{1}=-b_{1}$. Hence $3 b_{1}=0$. Similarly, $3 b_{2}=0$. This implies that $3 a_{1}=3\left(b_{2}-b_{1}\right)=0$. On the other hand, we have $2 a_{1} \in R a_{1}=$ $\left\{0, a_{1}\right\}$ which shows that $2 a_{1}=0$. Hence $a_{1}=0$, a contradiction. Thus $B=\emptyset$ and $V\left(\Gamma^{\prime}(R)\right)=A$. Therefore $\Gamma^{\prime}(R)$ is a complete graph.

From the above cases, we conclude that if $\Gamma^{\prime}(R)$ is a line graph, then it is a complete graph. Clearly, if $\Gamma^{\prime}(R)=K_{t}$, for some positive integer t, then it is the line graph of $K_{1, t}$. This completes the proof.

Fig. 3

Fig. 4

A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained by replacing edges of this graph with pairwise internally-disjoint paths. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930, that says that a graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$ [14].

Let (R, \mathfrak{m}) be a local ring with $\mathfrak{m} \neq 0,|R x \cap R y|=2$, for some $\{x, y\} \in$ $E\left(\Gamma^{\prime}(R)\right)$ and let $\Gamma^{\prime}(R)$ be a line graph. In the following theorem, first we prove that $\Gamma^{\prime}(R)$ is planar. Then by using [1, Proposition 2.7], we characterize all local rings whose cozero-divisor graphs are line graphs.

Lemma 2.9. Let (R, \mathfrak{m}) be a local ring with $\mathfrak{m} \neq 0$. If there exists $\{x, y\} \in$ $E\left(\Gamma^{\prime}(R)\right)$ such that $|R x \cap R y|=2$, then $\Gamma^{\prime}(R)$ is a line graph if and only if R is isomorphic to one of the following rings:

$$
\begin{aligned}
& \mathbb{Z}_{2}[x, y] /\left(x^{2}-y^{2}, x y\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}\right), \mathbb{Z}_{4}[x, y] /\left(x^{2}-2, x y, y^{2}-2,2 x\right), \\
& \mathbb{Z}_{4}[x, y] /\left(x^{2}, x y-2, y^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2 x\right), \mathbb{Z}_{8}[x] /\left(2 x, x^{2}-4\right) .
\end{aligned}
$$

Proof. First assume that (R, \mathfrak{m}) is a local ring, $\Gamma^{\prime}(R)$ is a line graph, $\{x, y\} \in$ $E\left(\Gamma^{\prime}(R)\right)$ and $R x \cap R y=\{0, a\}$. We note that every element of the set $R x \backslash\{0, a\}$ is adjacent to every element of the set $R y \backslash\{0, a\}$. Since $\Gamma^{\prime}(R)$ is a line graph and $K_{1,3}$ is not an induced subgraph of $\Gamma^{\prime}(R)$, we find that $R x=\{0, a, x, x+a\}$ and $R y=\{0, a, y, y+a\}$. Since $x \notin R y$ and $y \notin R x$, we conclude that $x+y \notin R x \cup R y$. If $x \in R(x+y)$, then $x=r(x+y)$, for some $r \in \mathfrak{m}$. Hence $(1-r) x=r y$. This yields that $x=(1-r)^{-1} r y \in R y$, which is impossible. Therefore $x \notin R(x+y)$. Similarly, $y \notin R(x+y)$. Thus $x+y$ is adjacent to both x and y. If $x+y$ is adjacent to a, then the set $\{x+y, x, x+a, a\}$ implies that $\Gamma^{\prime}(R)$ has a $K_{1,3}$ as an induced subgraph, a contradiction. Therefore $a \in R(x+y)$. By the same argument as we saw before, $R(x+y)=\{0, a, x+y, x+y+a\}$. If $\Gamma^{\prime}(R)$ has other vertex say z, then with no loss of generality, we may assume that there are the following cases:

Case 1. z is adjacent to x, y and $x+y$. Then the induced subgraph by the set $\{x, y, x+y, x+y+a, z\}$ is isomorphic to G_{3} (see Fig. 4), a contradiction.

Case 2. z is adjacent to x and z is not adjacent to $x+y$. Then $x+y \in R z$ and $R z=R(x+y+z)=R(a+z)$. The set $\{x, z, x+y+z, a+z\}$ determines an induced subgraph of the type $K_{1,3}$, which is contradiction.

Case 3. z is adjacent to $x+y$ and z is not adjacent to x. Then $x \in R z$ and $R z=R(x+z)=R(a+z)$. The set $\{x+y, z, x+z, a+z\}$ implies that $\Gamma^{\prime}(R)$ has a $K_{1,3}$ as an induced subgraph, which is contradiction.

Case 4. z is not adjacent to x, y and $x+y$. Since x and z are not adjacent and $z \in \mathfrak{m} \backslash(R x \cup R y \cup R(x+y)), x \in R z$. This yields that $x=x_{1} z$, for some $x_{1} \in \mathfrak{m}$. Similarly, $y=y_{1} z$, for some $y_{1} \in \mathfrak{m}$. We note that x_{1} and y_{1} are adjacent and $R x_{1}=R\left(x+x_{1}\right)=R\left(a+x_{1}\right)$. It follows that the induced subgraph by the set $\left\{y_{1}, x_{1}, x+x_{1}, a+x_{1}\right\}$ is isomorphic to $K_{1,3}$, a contradiction.
According to the above cases, we find that $\mathfrak{m}=\{0, a, x, y, x+y, x+a, y+a, x+$ $y+a\}$ and $\Gamma^{\prime}(R)=K_{2,2,2} \cup K_{1}$. Since $\Gamma^{\prime}(R)$ is isomorphic to $K_{2,2,2} \cup K_{1}$, it is the line graph of $K_{4} \cup K_{1}$. It is not hard to see that there exists a prime integer p and positive integers t, l, k such that $\operatorname{Char}(R)=p^{t},|\mathfrak{m}|=p^{l},|R|=p^{k}$ and $\operatorname{Char}(R / \mathfrak{m})=p$. Since $|\mathfrak{m}|=2^{3}$, we deduce that $p=2$ and so $\operatorname{Char}(R / \mathfrak{m})=2$. Also, we know that \mathfrak{m} is not principal and $\Gamma^{\prime}(R)$ is planar. In [1], the authors proved that the local rings of order 2^{k} for which their maximal ideal is not principal, their cozero-divisor graph is planar and $\Gamma^{\prime}(R)$ is isomorphic to $K_{2,2,2} \cup K_{1}$ are the following rings:

$$
\begin{aligned}
& \mathbb{Z}_{2}[x, y] /\left(x^{2}-y^{2}, x y\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}\right), \mathbb{Z}_{4}[x, y] /\left(x^{2}-2, x y, y^{2}-2,2 x\right) \\
& \mathbb{Z}_{4}[x, y] /\left(x^{2}, x y-2, y^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2 x\right), \mathbb{Z}_{8}[x] /\left(2 x, x^{2}-4\right)
\end{aligned}
$$

In view of proof of [1, Proposition 2.7], we deduce that R is isomorphic to one of the above rings (see [1, Figure. 1]). The proof of other side is clear.

The following theorem can be obtained directly from Lemmas 2.8 and 2.9.
Theorem 2.10. Let R be a commutative local ring. Then $\Gamma^{\prime}(R)$ is a line graph if and only if $\Gamma^{\prime}(R)$ is totally disconnected, $\Gamma^{\prime}(R)$ is complete graph or R is isomorphic to one of the rings $\mathbb{F}_{q}, \mathbb{Z}_{2}[x, y] /\left(x^{2}-y^{2}, x y\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}\right), \mathbb{Z}_{4}[x, y] /\left(x^{2}-\right.$ $\left.2, x y, y^{2}-2,2 x\right), \mathbb{Z}_{4}[x, y] /\left(x^{2}, x y-2, y^{2}\right)$,
$\mathbb{Z}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2 x\right)$ and $\mathbb{Z}_{8}[x] /\left(2 x, x^{2}-4\right)$.
Finally, in the following theorem, we characterize all commutative rings such that their cozero- divisor graphs are line graphs.

Theorem 2.11. Let R be a commutative ring. Then $\Gamma^{\prime}(R)$ is a line graph if and only if $\Gamma^{\prime}(R)$ is totally disconnected, $\Gamma^{\prime}(R)$ is complete graph or R is isomorphic to one of the following rings:

$$
\begin{aligned}
& \mathbb{F}_{q}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{2}[x, y] /\left(x^{2}-y^{2}, x y\right) \\
& \mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}\right), \mathbb{Z}_{4}[x, y] /\left(x^{2}-2, x y, y^{2}-2,2 x\right), \mathbb{Z}_{4}[x, y] /\left(x^{2}, x y-2, y^{2}\right) \\
& \mathbb{Z}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2 x\right), \mathbb{Z}_{8}[x] /\left(2 x, x^{2}-4\right)
\end{aligned}
$$

3. When the Cozero-Divisor Graph is the Complement of a Line Graph

In this section, we investigate when the graph $\Gamma^{\prime}(R)$ is the complement of a line graph. We use the following version of Theorem 2.1.

Theorem 3.1. A graph G is the complement of a line graph if and only if none of the nine graphs $\overline{G_{i}}$ of Fig. 5 is an induced subgraph of G.

$\overline{G_{6}}$

$\overline{G_{3}}$

$\overline{G_{4}}$

$\overline{G_{2}}$

$\overline{G_{8}}$

$\overline{G_{5}}$

$\overline{G_{7}}$

$\overline{G_{9}}$

Fig. 5. Forbidden induced subgraphs of complement of line graphs.
Lemma 3.2. Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ and let $\left(R_{i}, \mathfrak{m}_{i}\right)$ be a local ring for all $1 \leq i \leq n$. If $\Gamma^{\prime}(R)$ is the complement of a line graph, then $n \leq 3$.

Proof. By contradiction, suppose that $n \geq 4$. Then the graph $\Gamma^{\prime}(R)$ has an induced subgraph which is isomorphic to $\overline{G_{1}}$ (see Fig. 6). This is a contradiction. Hence $n \leq 3$.

Fig. 6

Fig. 7

Fig. $8 \overline{\Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)}$

Lemma 3.3. Let $R \cong R_{1} \times R_{2} \times R_{3}$ and let $\left(R_{i}, \mathfrak{m}_{i}\right)$ be a local ring for $i=1,2,3$. Then $\Gamma^{\prime}(R)$ is the complement of a line graph if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. Let $\Gamma^{\prime}(R)$ be the complement of a line graph. We prove that $\left|U\left(R_{1}\right)\right|=$ 1. By contradiction, suppose that $1 \neq u \in U\left(R_{1}\right)$. Then the induced subgraph by the set $\left\{e_{1}, e_{2}, e_{3}, u e_{1}, e_{1}+e_{2}, e_{1}+e_{3}\right\}$ is isomorphic to $\overline{G_{4}}$ (see Fig. 7), a contradiction. Therefore $\left|U\left(R_{1}\right)\right|=1$. This yields that $R_{1} \cong \mathbb{Z}_{2}$. Similarly, $R_{2} \cong R_{3} \cong \mathbb{Z}_{2}$ and so $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. The graph $\Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ was drawn in Fig. 2. It is not hard to see that $\overline{\Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)}=C_{6}$, and so $\Gamma^{\prime}(R)$ is the
complement of the line graph of the graph C_{6} (see Fig. 8). This completes the proof.

Fig. 9

Fig. 10

Lemma 3.4. Let $R \cong R_{1} \times R_{2}$ and let $\left(R_{i}, \mathfrak{m}_{i}\right)$ be a local ring for $i=1,2$. Then $\Gamma^{\prime}(R)$ is the complement of a line graph if and only if R is isomorphic to one of the rings $\mathbb{F}_{q_{1}} \times \mathbb{F}_{q_{2}}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)$.

Proof. Let $\Gamma^{\prime}(R)$ be the complement of a line graph. First, we claim that $\Gamma^{\prime}\left(R_{1}\right)$ is totally disconnected or R_{1} is a field. If $\left\{x_{1}, x_{2}\right\} \in E\left(\Gamma^{\prime}\left(R_{1}\right)\right)$, then the induced subgraph by the set $\left\{e_{1}, x_{1} e_{1}, x_{2} e_{1},\left(1+x_{1}\right) e_{1},\left(1+x_{2}\right) e_{1}\right\}$ is isomorphic to $\overline{G_{3}}$ (see Fig. 9), which is a contradiction. Therefore $\Gamma^{\prime}\left(R_{1}\right)$ has not any edge. This implies that $\Gamma^{\prime}\left(R_{1}\right)$ is totally disconnected or R_{1} is a field and the claim is proved. Similarly, $\Gamma^{\prime}\left(R_{2}\right)$ is totally disconnected or R_{2} is a field. We divide the proof in to three following cases:

Case 1. R_{1} and R_{2} are fields. Let $R_{1}=\mathbb{F}_{q_{1}}$ and $R_{2}=\mathbb{F}_{q_{2}}$, for some positive integers q_{1} and q_{2}. Let $A=\left\{x e_{1} \mid 0 \neq x \in \mathbb{F}_{q_{1}}\right\}$ and let $B=\left\{y e_{2} \mid 0 \neq y \in \mathbb{F}_{q_{2}}\right\}$. Clearly, $V\left(\Gamma^{\prime}(R)\right)=A \cup B$ and $\Gamma^{\prime}(R)$ is a complete bipartite graph with parts A and B. It follows that $\Gamma^{\prime}(R)=K_{q_{1}-1, q_{2}-1}$ and it is the complement of the line graph of the union of two stars $K_{1, q_{1}-1}$ and $K_{1, q_{2}-1}$.

Case 2. R_{1} is a field and $\Gamma^{\prime}\left(R_{2}\right)$ is totally disconnected. We prove that $\left|\mathfrak{m}_{2}\right|=2$. Assume, on the contrary, $0 \neq y_{1}, y_{2} \in \mathfrak{m}_{2}$. With no loss of generality, we may assume that $y_{2} \in R y_{1}$. Then the induced subgraph by the set $\left\{e_{1}, e_{2}, y_{1} e_{2}, y_{2} e_{2}, e_{1}+y_{1} e_{2},\left(1+y_{1}\right) e_{2}\right\}$ is isomorphic to $\overline{G_{5}}$ (see Fig. 10), which is a contradiction. Therefore $\left|\mathfrak{m}_{2}\right|=2$. Let $\mathfrak{m}_{2}=\left\{0, y_{1}\right\}$. We note that $\mathfrak{m}_{2}=$ $Z\left(R_{2}\right)$ and by [7, Remark 1], we find that $\left|R_{2}\right| \leq\left|\mathfrak{m}_{2}\right|^{2}$ and so $R_{2} \cong \mathbb{Z}_{4}$ or $R_{2} \cong$ $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$. If $x \in R_{1} \backslash\{0,1\}$, then the induced subgraph by the set $\left\{e_{1}, x e_{1}, e_{2}, y_{1} e_{2}, e_{1}+\right.$ $\left.y_{1} e_{2}, x e_{1}+y_{1} e_{2}\right\}$ is isomorphic to $\overline{G_{5}}$ (see Fig. 11), which is a contradiction. Therefore $R_{1} \cong \mathbb{Z}_{2}$ and so R is isomorphic to one of the rings $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and $\mathbb{Z}_{2} \times$ $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$. Clearly, $\Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right) \cong \Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)\right)$. The graph $\Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$ was drawn in Fig. 13. It is not hard to see that it is the complement of the line graph of the graph H (see Fig. 13).

Case 3. $\Gamma^{\prime}\left(R_{1}\right)$ and $\Gamma^{\prime}\left(R_{2}\right)$ are totally disconnected. Since R_{1} and R_{2} are not fields, $\left|\mathfrak{m}_{1}\right|,\left|\mathfrak{m}_{2}\right| \geq 2$. Let $0 \neq x_{1} \in \mathfrak{m}_{1}$ and $0 \neq y_{1} \in \mathfrak{m}_{2}$. The induced subgraph by the set $\left\{e_{2}, x_{1} e_{1}+y_{1} e_{2}, y_{1} e_{2}, x_{1} e_{1}+\left(1+y_{1}\right) e_{2}, x_{1} e_{1}+e_{2}\right\}$ is isomorphic to $\overline{G_{3}}$ (see Fig. 12), which is a contradiction.

From the above cases, we find that if $\Gamma^{\prime}(R)$ is the complement of a line graph, then R is isomorphic to one of the rings $\mathbb{F}_{q_{1}} \times \mathbb{F}_{q_{2}}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)$. The proof of converse is clear.

Fig. 11

Fig. 12

Fig. 13. $\Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right) \cong \Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)\right)=\overline{L(H)}$.
Now, we have the following conclusion which completely characterizes all finite commutative non-local rings R whose cozero-divisor graphs are the complement of line graphs.

Theorem 3.5. Let R be a commutative non-local ring. Then $\Gamma^{\prime}(R)$ is the complement of a line graph if and only if R is isomorphic to one of the rings $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{F}_{q_{1}} \times \mathbb{F}_{q_{2}}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right)$

The only remaining case is that R is a local ring. As we mentioned in the previous section, if R is a field, then $\Gamma^{\prime}(R)$ is an empty graph. It follows that $\Gamma^{\prime}(R)$ is the complement of the line graph of the graph K_{1}. So, we may assume that R is a local ring with $\mathfrak{m} \neq 0$. In the following results, we characterize a family of graphs can be occurred as the complement of line cozero-divisor graph of local rings.

Fig. 14

Fig. 15

Lemma 3.6. Let (R, \mathfrak{m}) be a local ring and $\mathfrak{m} \neq 0$. If $\Gamma^{\prime}(R)$ is the complement of a line graph and $\{x, y\} \in E\left(\Gamma^{\prime}(R)\right)$, then $|R x \cap R y| \leq 2$.

Proof. By contradiction, assume that $0 \neq a, b \in R x \cap R y$. There are two following cases:

Case 1. a and b are adjacent. Then the induced subgraph by the set $\{a, b, x, y, x+$ $a\}$ is isomorphic to $\overline{G_{2}}$ (see Fig. 14), a contradiction.

Case 2. a and b are not adjacent. Then the induced subgraph by the set $\{a, b, x, y, x+a, y+a\}$ is isomorphic to $\overline{G_{6}}$ (see Fig. 15), a contradiction.

We close this paper by the following theorem.

Theorem 3.7. Let (R, \mathfrak{m}) be a local ring with $\mathfrak{m} \neq 0$ and let $\Gamma^{\prime}(R)$ be the complement of a line graph. Then $R x \cap R y=\{0\}$, for every $\{x, y\} \in E\left(\Gamma^{\prime}(R)\right)$ if and only if $\Gamma^{\prime}(R)$ is a complete r-partite graph, for some positive integer r.

Proof. Assume that $\Gamma^{\prime}(R)$ is the complement of a line graph and $R x \cap R y=\{0\}$, for every $\{x, y\} \in E\left(\Gamma^{\prime}(R)\right)$. Since R is finite, $A=\{R x \mid 0 \neq x \in \mathfrak{m}\}$ with the inclusion relation has maximal element. Let $\left\{R x_{1}, \ldots, R x_{r}\right\}$ be the set of all maximal elements of A, for some positive integer r. We show that $\Gamma^{\prime}(R)$ is a complete r-partite graph with parts $R x_{1} \backslash\{0\}, \ldots, R x_{r} \backslash\{0\}$. We claim that every two distinct elements of $R x_{1}$ are non-adjacent. By contradiction, assume that $0 \neq a, b \in R x_{1}$ and $\{a, b\} \in E\left(\Gamma^{\prime}(R)\right)$. If $a, b \in \mathfrak{m} x_{1}$, then the induced subgraph by the set $\left\{a, b, x_{1}, a+x_{1}, b+x_{1}\right\}$ is isomorphic to $\overline{G_{3}}$, a contradiction. If $a \in \mathfrak{m} x_{1}$ and $b \in U(R) x_{1}$, then $a \in R b$, which is a contradiction. Also, $R a=R b=R x_{1}$, where $a, b \in U(R) x_{1}$, which is a contradiction. Therefore the claim is proved. By the same argument, we have that every two distinct elements of $R x_{i}$ are nonadjacent, for $i=1, \ldots, r$. By the maximality of $R x_{i}$ and $R x_{j}$, we find that x_{i} and x_{j} are adjacent, for every $i, j, 1 \leq i<j \leq r$. Since $\left\{x_{i}, x_{j}\right\} \in E\left(\Gamma^{\prime}(R)\right)$, by our assumption we have $R x_{i} \cap R x_{j}=\{0\}$, for every $i, j, 1 \leq i<j \leq r$. This yields that every elements of $R x_{i} \backslash\{0\}$ and $R x_{j} \backslash\{0\}$ are adjacent, where $1 \leq i<j \leq r$. Therefore $\Gamma^{\prime}(R)$ is a complete r-partite graph with parts $R x_{1} \backslash\{0\}, \ldots, R x_{r} \backslash\{0\}$. Let $\left|R x_{i} \backslash\{0\}\right|=n_{i}$, for $i=1, \ldots, r$. Then $\Gamma^{\prime}(R)=K_{n_{1}, \ldots, n_{r}}=\overline{L\left(\bigcup_{i=1}^{r} K_{1, n_{i}}\right)}$.
Conversely, suppose that $\Gamma^{\prime}(R)$ is a complete r-partite graph with parts V_{1}, \ldots, V_{r}, for some positive integer r and $\{x, y\} \in E\left(\Gamma^{\prime}(R)\right)$. We prove that $R x \cap R y=\{0\}$. By contradiction, suppose that $0 \neq a \in R x \cap R y$. Since $\{x, y\} \in E\left(\Gamma^{\prime}(R)\right), x \in V_{i}$ and $y \in V_{j}$, for some $i \neq j$. On the other hand, a is adjacent neither x nor y, because $a \in R x \cap R y$. This implies that $a \in V_{i} \cap V_{j}$, a contradiction. Therefore $R x \cap R y=\{0\}$ and the proof is complete.

Acknowledgements

The author wishes to thank the referee for her/his valuable and fruitful comments.

REFERENCES

[1] M. Afkhami, M. Farrokhi D. G., K. Khashyarmanesh, Planar, outerplanar and ring graph cozero-divisor graphs, Ars Combin. 131 (2017) 397-406.
[2] M. Afkhami, K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. (2011) 35: 753-762.
[3] S. Akbari, F. Alizadeh, S. Khojasteh, Some results on cozero-divisor graph of a commutative ring, Journal of Algebra and Its Applications Vol. 13, No. 3 (2014) 1350113.
[4] S. Akbari, S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, Comm. Algebra, 42, (2014) 1594-1605.
[5] S. Akbari, S. Khojasteh, Some criteria for the finiteness of cozero-divisor graphs, Journal of Algebra and Its Applications Vol. 12, No. 8 (2013) 1350056.
[6] S. Akbari, S. Khojasteh, The coloring of the cozero-divisor graph of a commutative ring, Discrete Mathematics, Algorithms and Applications, Vol. 12, No. 03, (2020) 2050023 .
[7] S. Akbari, A. Mohammadian, Zero-divisor graphs of non-commutative rings, J. Algebra 296 (2006) 462-479.
[8] D.F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217(2) (1999) 434-447.
[9] S. E. Atani, A. Yousefian Darani, Zero-divisor graphs with respect to primal and weakly primal ideals, J. Korean Math. Soc. 46, No. 2 (2009) 313-325.
[10] M.F. Atiyeh, I. G. Macdonald, Introduction to Commutative Algebra, AddisonWesley Publishing Company, Inc, 1969.
[11] Z. Barati, Line zero divisor graphs, Journal of Algebra and Its Applications, Vol. 20, No. 09, (2021) 2150154.
[12] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
[13] L. W. Beineke, Characterizations of derived graphs, J. Comb. Theory 9 (1970) 129-135.
[14] J.A. Bondy, U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics, 244 Springer, New York, 2008.
S. KHOJASTEH

Department of Mathematics,
Lahijan Branch,
Islamic Azad University,
Lahijan, Iran.
e-mail: s_khojasteh@liau.ac.ir

[^0]: Received on March 13, 2022
 AMS 2010 Subject Classification: 05C25, 05C76, 13H.
 Keywords: cozero-divisor graph; line graph; complement of a graph.

