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LINE COZERO-DIVISOR GRAPHS

S. KHOJASTEH

Let R be a commutative ring. The cozero-divisor graph of R denoted
by Γ′(R) is a graph with the vertex set W ∗(R), where W ∗(R) is the set of
all non-zero and non-unit elements of R, and two distinct vertices x and y
are adjacent if and only if x /∈ Ry and y /∈ Rx. In this paper, we investigate
when the cozero-divisor graph is a line graph. We completely present
all commutative rings which their cozero-divisor graphs are line graphs.
Also, we study when the cozero-divisor graph is the complement of a line
graph.

1. Introduction

In 1988, Beck [12] introduced the concept of the zero-divisor graph. The
zero-divisor graphs of commutative rings has been studied by several authors.
We refer to the reader the papers [7, 8] and [9] for the properties of zero-divisor
graphs. Also, the line zero divisor graphs was studied in [11]. For an arbitrary
commutative ring R, the cozero-divisor graph Γ′(R), as the dual notion of zero-
divisor graphs, was introduced in [2]. Let W ∗(R) be the set of all non-zero
and non-unit elements of R. The vertex set of Γ′(R) is W ∗(R), and two distinct
vertices x and y in W ∗(R) are adjacent if and only if x /∈ Ry and y /∈ Rx, where
Rz is the ideal generated by the element z in R. Many papers have been devoted
to the study of cozero-divisor graphs, for instance see [1− 6]. Motivated by
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the previous works on the zero divisor graph and cozero-divisor graph, in this
paper we study line cozero-divisor graphs. Throughout this paper, all graphs are
simple with no loops and multiple edges and R is a commutative ring with non-
zero identity. We denote the set of all zero-divisor elements and the set of all
unit elements of R by Z(R) and U(R), respectively. If R has a unique maximal
ideal m, then R is said to be a local ring and it is denoted by (R,m). Also, Fq

denotes a finite field with q elements, for some positive integer q.

For basic definitions on graphs, one may refer to [14]. Let G be a graph
with the vertex set V (G) and the edge set E(G). If x is adjacent to y, then we
write x—y or {x,y} ∈ E(G). A graph G is complete if each pair of distinct
vertices is joined by an edge. For a positive integer n, we use Kn to denote the
complete graph with n vertices. Also, we say that G is totally disconnected if
no two vertices of G are adjacent. Note that a graph whose vertex set is empty
is an empty graph. The complement of G, denoted by G is a graph on the same
vertices such that two distinct vertices of G are adjacent if and only if they are
not adjacent in G. If |V (G)| ≥ 2, then a path from x to y is a series of adjacent
vertices x — x1 — x2 — · · · — xn — y. A cycle is a path that begins and ends
at the same vertex in which no edge is repeated and all vertices other than the
starting and ending vertex are distinct. We use Pn and Cn to denote the path and
the cycle with n vertices, respectively. Suppose that H is a non-empty subset of
V (G). The subgraph of G whose vertex set is H and whose edge set is the set
of those edges of G with both ends in H is called the subgraph of G induced by
H. For every positive integer r, an r-partite graph is one whose vertex set can
be partitioned into r subsets, or parts, in such a way that no edge has both ends
in the same part. An r-partite graph is complete r-partite if any two vertices in
different parts are adjacent. We denote the complete r-partite graph, with part
sizes n1, . . . ,nr by Kn1,...,nr . For every n ≥ 2, the star graph with n vertices is the
complete bipartite graph with part sizes 1 and n− 1. The line graph L(G) is a
graph such that each vertex of L(G) represents an edge of G, and two vertices
of L(G) are adjacent if and only if their corresponding edges are incident in G.

Here is a brief summary of the present paper. In this paper, we investigate
when the cozero-divisor graph is a line graph. Also, we study when the cozero-
divisor graph is the complement of a line graph. In Sec. 2, we characterize all
finite rings whose cozero-divisor graphs are line graphs. In Sec. 3, we char-
acterize all finite non-local rings whose cozero-divisor graphs are complements
of line graphs. Also, we prove that if (R,m) is a local ring with m ̸= 0, Γ′(R)
is the complement of a line graph and {x,y} ∈ E(Γ′(R)), then |Rx∩Ry| ≤ 2.
Finally, we determine a family of graphs can be occurred as the complement of
line cozero-divisor graph of finite local rings.
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2. When the Cozero-Divisor Graph is a Line Graph

In this section, we study when the graph Γ′(R) is a line graph. We determine
all finite commutative rings whose cozero-divisor graphs are line graphs. We
will use one of the characterizations of line graphs which was proved in [13].

Theorem 2.1. Let G be a graph. Then G is the line graph of some graph if and
only if none of the nine graphs in Fig. 1 is an induced subgraph of G.

Throughout the paper R is a finite commutative ring. By the structure the-
orem of Artinian rings [10, Theorem 8.7], there exists positive integer n such
that R ∼= R1 ×R2 ×·· ·×Rn and (Ri,mi) is a local ring for all 1 ≤ i ≤ n. We use
this theorem in the rest of the paper. Also, let ei be the 1× n vector whose ith
component is 1 and the other components are 0.

We first present the following lemma.

Lemma 2.2. Let R ∼= R1 ×R2 ×·· ·×Rn and let (Ri,mi) be a local ring for all
1 ≤ i ≤ n. If n ≥ 4, then Γ′(R) is not a line graph.

Proof. It is easy to see that R(∑n
i=4 ei) ⫋ R(∑n

i=3 ei) ⫋ R(∑n
i=2 ei) and e1 is ad-

jacent to ∑
n
i=2 ei,∑

n
i=3 ei and ∑

n
i=4 ei. Hence the induced subgraph by the set

{e1,∑
n
i=2 ei,∑

n
i=3 ei,∑

n
i=4 ei} is isomorphic to K1,3. Therefore by Theorem 2.1,

Γ′(R) is not a line graph.

G1 G2 G3 G4 G5

G6 G7 G8 G9

Fig. 1. Forbidden induced subgraphs of line graphs.
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Fig. 2. Γ′(Z2 × Z2 × Z2) is the line graph of K2,3.
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Fig. 1. Forbidden induced subgraphs of line graphs.

Lemma 2.3. Let R ∼= R1×R2×R3 and let (Ri,mi) be a local ring for i = 1,2,3.
Then Γ′(R) is a line graph if and only if R ∼= Z2 ×Z2 ×Z2.

Proof. Let Γ′(R) be a line graph. If |R1| ≥ 3, then the induced subgraph by
the set {e2,e3,e1 + e3,xe1 + e3} is isomorphic to K1,3, for every x ∈ R1 \{0,1}
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which is impossible. Hence |R1| = 2 and similarly, |R2| = |R3| = 2. Therefore
R ∼= Z2 ×Z2 ×Z2. We draw the graph Γ′(Z2 ×Z2 ×Z2) in Fig. 2. One can
easily see that the graph Γ′(Z2 ×Z2 ×Z2) is the line graph of the graph K2,3
which is drawn in Fig. 2. The proof of converse is clear.

G1 G2 G3 G4 G5

G6 G7 G8 G9

Fig. 1. Forbidden induced subgraphs of line graphs.
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Fig. 2. Γ′(Z2 × Z2 × Z2) is the line graph of K2,3.
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Fig. 2. Γ′(Z2 ×Z2 ×Z2) is the line graph of K2,3.

Lemma 2.4. Let R ∼= R1 ×R2 and let (Ri,mi) be a local ring for i = 1,2. Then
Γ′(R) is a line graph if and only if R is isomorphic to one of the rings Z2 ×
Z2,Z2 ×Z3 and Z3 ×Z3.

Proof. One side is obvious. For the other side assume that Γ′(R) is a line graph.
We know that |mi| ≤ |U(Ri)|, for i= 1,2. If |m1| ≥ 2, then we can put a∈m∗

1 and
u,v ∈U(R1). Then the induced subgraph on {ae1,ue1,ve1,e2} is isomorphic to
K1,3, a contradiction. So, R1 is a field. Similarly, R2 is a field. Then Γ′(R) =
K|R1|−1,|R2|−1 and hence R is isomorphic to one of the rings Z2×Z2,Z2×Z3 and
Z3 ×Z3.

The next theorem, follows immediately from the above lemmas.

Theorem 2.5. Let R be a commutative non-local ring. Then Γ′(R) is a line
graph if and only if R is isomorphic to one of the rings Z2 ×Z2 ×Z2,Z2 ×
Z2,Z2 ×Z3 and Z3 ×Z3.

For the last case of our discussion, we must assume that n = 1. So, R is a
local ring. Let m be the only maximal ideal of R. We note that if R is a field,
then W ∗(R) = /0 which implies that Γ′(R) is an empty graph and so it is the
line graph of the graph K1. So, we may assume that R is a local ring which
is not a field. This implies that m ̸= 0. Also, it is clear that if Γ′(R) is totally
disconnected with t vertices, for some positive integer t, then Γ′(R) is the line
graph of

⋃t
i=1 K2. In the rest of this section, we study the case that R is a local

ring with non-zero maximal ideal and E(Γ′(R)) ̸= /0. Our starting point is the
following lemma.

Lemma 2.6. Let (R,m) be a local ring with m ̸= 0 and let Γ′(R) be a line graph.
If {x,y} ∈ E(Γ′(R)), then |Rx∩Ry| ≤ 2.
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Proof. By contradiction, suppose that 0 ̸= a,b ∈ Rx∩Ry. If a ∈U(R)y, then we
have y ∈ Ra ⊆ Rx, which is impossible. Therefore a ∈ my. Similarly, b ∈ my
and so R(y+a) = R(y+b) = Ry. Now, the set {x,y,y+a,y+b} determines an
induced subgraph of the type K1,3. Therefore by Theorem 2.1, Γ′(R) is not a
line graph, a contradiction. Hence |Rx∩Ry| ≤ 2.

Lemma 2.7. Let (R,m) be a local ring with m ̸= 0, Γ′(R) be a line graph and
let {x,y} ∈ E(Γ′(R)). If Rx∩Ry = {0}, then the following hold:

(i) Rx = {0,x} or Rx = {0,x,−x}.
(ii) Ry = {0,y} or Ry = {0,y,−y}.

Proof. (i) We prove that |Rx| ≤ 3. By contradiction, assume that |Rx| ≥ 4. Let
a,b ∈ Rx\{0,x}. There are three following cases:

Case 1. a,b ∈U(R)x. Then Rx = Ra = Rb and the set {y,x,a,b} determines
an induced subgraph of the type K1,3. This is a contradiction, by Theorem 2.1.

Case 2. a,b∈mx. Then Rx = R(x+a) = R(x+b) and the set {y,x,x+a,x+
b} determines an induced subgraph of the type K1,3, which is a contradiction,
by Theorem 2.1.

Case 3. a ∈U(R)x and b ∈mx. Then Rx = Ra and Rb ⊆ Rx. Since Ra = Rx
and {x,y} ∈ E(Γ′(R)), y is adjacent to a. If y ∈ Rb, then y ∈ Rx, which is im-
possible. On the other hand, if b ∈ Ry, then b ∈ Rx∩Ry = {0}, a contradiction.
Therefore y is adjacent to b. Now, the set {y,x,a,b} determines an induced
subgraph of the type K1,3, a contradiction.
By the above cases, we deduce that |Rx| = 2,3. Clearly, if |Rx| = 2, then Rx =
{0,x}. Also, it is not hard to see that if |Rx| = 3, then Rx = {0,x,−x}. This
completes the proof.

(ii) It is similar to the proof of part (i).

Now, we are in a position to prove one of the main results.

Lemma 2.8. Let (R,m) be a local ring, m ̸= 0, E(Γ′(R)) ̸= /0 and for every
{x,y} ∈ E(Γ′(R)), let Rx∩Ry = {0}. Then Γ′(R) is a line graph if and only if it
is a complete graph.

Proof. Suppose that Γ′(R) is a line graph. Let A = {x ∈V (Γ′(R))|Rx = {0,x}},
B = {x ∈V (Γ′(R))|Rx = {0,x,−x}} and let C be the set of all isolated vertices
of Γ′(R). We note that the induced subgraph of Γ′(R) by the set A is a complete
graph. Also, there exists r ≥ 0 such that |B|= 2r. Because we have x,−x ∈ B or
x,−x /∈ B, for every 0 ̸= x ∈m. Moreover, if r > 0, then the induced subgraph of
Γ′(R) by the set B is complete r-partite graph and every part is equal to {x,−x},
for some x ∈ B. Furthermore, by Lemma 2.7, V (Γ′(R)) = A∪B∪C. We use
these facts in the rest of the proof. Since E(Γ′(R)) ̸= /0, A∪B ̸= /0. Consider two
following cases:
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Case 1. A = /0. We note that E(Γ′(R)) ̸= /0. This yields that |B|= 2r > 0 and
B has two elements say b1 and b2 such that b1 ̸=−b2 and {b1,b2} ∈ E(Γ′(R)).
We claim that C = /0. By contradiction, suppose that c ∈ C. If c ∈ Rb1, then
c = b1 or c = −b1. Hence c is not an isolated vertex, which is a contradiction.
Therefore c /∈ Rb1. Similarly, c /∈ Rb2. Since c is an isolated vertex, we find that
b1,b2 ∈Rc. Assume that b1 = r1c and b2 = r2c, for some r1,r2 ∈R. If r1 ∈U(R),
then Rc = Rb1. This implies that c and b2 are adjacent, which is impossible.
Hence r1 ∈ m and similarly, r2 ∈ m. Since b1 and b2 are adjacent, we deduce
that r1 and r2 are adjacent. Therefore r1,r2 ∈B. Moreover, we conclude that r1 ∈
{b1,−b1} and r2 ∈ {b2,−b2}. It follows that c = 0, a contradiction. Therefore
C = /0 and the claim is proved. This implies that Γ′(R) is a complete r-partite
graph, because |B| = 2r. Also, as we mentioned before, every part of Γ′(R) is
equal to {b,−b}, for some b ∈ B. If |B| ≥ 8, then there exists b1,b2,b3,b4 ∈ B
such that bi ̸= −b j, for every i ̸= j. Now, the induced subgraph by the set
{b1,b2,b3,−b3,b4} is isomorphic to G3 (see Fig. 3), a contradiction. Hence
|B|= 4,6 and so Γ′(R) = K2,2 or Γ′(R) = K2,2,2. By [4, Lemma 2], we conclude
that Γ′(R) ̸= K2,2. Therefore Γ′(R) = K2,2,2. It follows that Γ′(R) is a complete
3-partite graph. By [6, Corollary 3], Γ′(R) is a triangle, which is impossible.

Case 2. A ̸= /0. Let a1 ∈ A. First, we prove that C = /0. By contradiction,
suppose that C ̸= /0. We know that Ra1 = {0,a1}. This yields that a1 ∈ Rc, for
every c ∈C. Also, if B ̸= /0, then b ∈ Rc, for every b ∈ B and every c ∈C. Since
m is finite, we find that there exists c0 ∈ C such that m = Rc0. On the other
hand, by [2, Theorem 2.7], we conclude that Γ′(R) is totally disconnected, a
contradiction. Therefore C = /0.

Now, we prove that B = /0. By contradiction, assume that |B| = 2r > 0 and
B= {b1, . . . ,b2r}. Since a1+b1 is a vertex of Γ′(R), a1+b1 ∈V (Γ′(R)) =A∪B.
If a1 + b1 ∈ A, then R(a1 + b1) = {0,a1 + b1} and so a1 + b1 = −(a1 + b1) =
a1−b1. This yields that b1 =−b1, a contradiction. Therefore a1+b1 ∈ B. With
no loss of generality, we may assume that a1 + b1 = b2. Then a1 = b2 − b1.
Since 2b1 ̸= 0,b1, we have 2b1 =−b1. Hence 3b1 = 0. Similarly, 3b2 = 0. This
implies that 3a1 = 3(b2 − b1) = 0. On the other hand, we have 2a1 ∈ Ra1 =
{0,a1} which shows that 2a1 = 0. Hence a1 = 0, a contradiction. Thus B = /0
and V (Γ′(R)) = A. Therefore Γ′(R) is a complete graph.

From the above cases, we conclude that if Γ′(R) is a line graph, then it is a
complete graph. Clearly, if Γ′(R) = Kt , for some positive integer t, then it is the
line graph of K1,t . This completes the proof.
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A graph is said to be planar if it can be drawn in the plane so that its edges
intersect only at their ends. A subdivision of a graph is a graph obtained by
replacing edges of this graph with pairwise internally-disjoint paths. A remark-
ably simple characterization of planar graphs was given by Kuratowski in 1930,
that says that a graph is planar if and only if it contains no subdivision of K5 or
K3,3 [14].

Let (R,m) be a local ring with m ̸= 0, |Rx ∩ Ry| = 2, for some {x,y} ∈
E(Γ′(R)) and let Γ′(R) be a line graph. In the following theorem, first we prove
that Γ′(R) is planar. Then by using [1, Proposition 2.7], we characterize all local
rings whose cozero-divisor graphs are line graphs.

Lemma 2.9. Let (R,m) be a local ring with m ̸= 0. If there exists {x,y} ∈
E(Γ′(R)) such that |Rx∩Ry| = 2, then Γ′(R) is a line graph if and only if R is
isomorphic to one of the following rings:

Z2[x,y]/(x2 − y2,xy), Z2[x,y]/(x2,y2), Z4[x,y]/(x2 −2,xy,y2 −2,2x),
Z4[x,y]/(x2,xy−2,y2), Z4[x]/(x2), Z4[x]/(x2 −2x), Z8[x]/(2x,x2 −4).

Proof. First assume that (R,m) is a local ring, Γ′(R) is a line graph, {x,y} ∈
E(Γ′(R)) and Rx∩Ry = {0,a}. We note that every element of the set Rx\{0,a}
is adjacent to every element of the set Ry\{0,a}. Since Γ′(R) is a line graph and
K1,3 is not an induced subgraph of Γ′(R), we find that Rx = {0,a,x,x+ a} and
Ry = {0,a,y,y+a}. Since x /∈ Ry and y /∈ Rx, we conclude that x+y /∈ Rx∪Ry.
If x ∈ R(x+ y), then x = r(x+ y), for some r ∈ m. Hence (1− r)x = ry. This
yields that x = (1− r)−1ry ∈ Ry, which is impossible. Therefore x /∈ R(x+ y).
Similarly, y /∈ R(x+y). Thus x+y is adjacent to both x and y. If x+y is adjacent
to a, then the set {x+ y,x,x+ a,a} implies that Γ′(R) has a K1,3 as an induced
subgraph, a contradiction. Therefore a ∈ R(x+ y). By the same argument as
we saw before, R(x+ y) = {0,a,x+ y,x+ y+a}. If Γ′(R) has other vertex say
z, then with no loss of generality, we may assume that there are the following
cases:

Case 1. z is adjacent to x,y and x+ y. Then the induced subgraph by the set
{x,y,x+ y,x+ y+a,z} is isomorphic to G3 (see Fig. 4), a contradiction.
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Case 2. z is adjacent to x and z is not adjacent to x+ y. Then x+ y ∈ Rz
and Rz = R(x+ y+ z) = R(a+ z). The set {x,z,x+ y+ z,a+ z} determines an
induced subgraph of the type K1,3, which is contradiction.

Case 3. z is adjacent to x+ y and z is not adjacent to x. Then x ∈ Rz and
Rz = R(x+ z) = R(a+ z). The set {x+ y,z,x+ z,a+ z} implies that Γ′(R) has a
K1,3 as an induced subgraph, which is contradiction.

Case 4. z is not adjacent to x,y and x+y. Since x and z are not adjacent and
z ∈ m\ (Rx∪Ry∪R(x+ y)), x ∈ Rz. This yields that x = x1z, for some x1 ∈ m.
Similarly, y = y1z, for some y1 ∈ m. We note that x1 and y1 are adjacent and
Rx1 = R(x+ x1) = R(a+ x1). It follows that the induced subgraph by the set
{y1,x1,x+ x1,a+ x1} is isomorphic to K1,3, a contradiction.
According to the above cases, we find that m = {0,a,x,y,x+ y,x+a,y+a,x+
y+ a} and Γ′(R) = K2,2,2 ∪K1. Since Γ′(R) is isomorphic to K2,2,2 ∪K1, it is
the line graph of K4 ∪K1. It is not hard to see that there exists a prime integer
p and positive integers t, l,k such that Char(R) = pt , |m| = pl , |R| = pk and
Char(R/m) = p. Since |m|= 23, we deduce that p = 2 and so Char(R/m) = 2.
Also, we know that m is not principal and Γ′(R) is planar. In [1], the authors
proved that the local rings of order 2k for which their maximal ideal is not prin-
cipal, their cozero-divisor graph is planar and Γ′(R) is isomorphic to K2,2,2 ∪K1
are the following rings:

Z2[x,y]/(x2 − y2,xy), Z2[x,y]/(x2,y2), Z4[x,y]/(x2 −2,xy,y2 −2,2x),
Z4[x,y]/(x2,xy−2,y2), Z4[x]/(x2), Z4[x]/(x2 −2x), Z8[x]/(2x,x2 −4).

In view of proof of [1, Proposition 2.7], we deduce that R is isomorphic to one
of the above rings (see [1, Figure. 1]). The proof of other side is clear.

The following theorem can be obtained directly from Lemmas 2.8 and 2.9.

Theorem 2.10. Let R be a commutative local ring. Then Γ′(R) is a line graph if
and only if Γ′(R) is totally disconnected, Γ′(R) is complete graph or R is isomor-
phic to one of the rings Fq,Z2[x,y]/(x2−y2,xy), Z2[x,y]/(x2,y2), Z4[x,y]/(x2−
2,xy,y2 −2,2x), Z4[x,y]/(x2,xy−2,y2),

Z4[x]/(x2), Z4[x]/(x2 −2x) and Z8[x]/(2x,x2 −4).

Finally, in the following theorem, we characterize all commutative rings
such that their cozero- divisor graphs are line graphs.

Theorem 2.11. Let R be a commutative ring. Then Γ′(R) is a line graph if and
only if Γ′(R) is totally disconnected, Γ′(R) is complete graph or R is isomorphic
to one of the following rings:

Fq, Z2 ×Z2 ×Z2,Z2 ×Z2,Z2 ×Z3,Z3 ×Z3,Z2[x,y]/(x2 − y2,xy),
Z2[x,y]/(x2,y2), Z4[x,y]/(x2 −2,xy,y2 −2,2x), Z4[x,y]/(x2,xy−2,y2),

Z4[x]/(x2), Z4[x]/(x2 −2x), Z8[x]/(2x,x2 −4).
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3. When the Cozero-Divisor Graph is the Complement of a Line Graph

In this section, we investigate when the graph Γ′(R) is the complement of a
line graph. We use the following version of Theorem 2.1.

Theorem 3.1. A graph G is the complement of a line graph if and only if none
of the nine graphs Gi of Fig. 5 is an induced subgraph of G.

G1 G2 G3 G4 G5

G6 G7 G8 G9

Fig. 5. Forbidden induced subgraphs of complement of line graphs.
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Lemma 3.2. Let R ∼= R1 ×R2 ×·· ·×Rn and let (Ri,mi) be a local ring for all
1 ≤ i ≤ n. If Γ′(R) is the complement of a line graph, then n ≤ 3.

Proof. By contradiction, suppose that n ≥ 4. Then the graph Γ′(R) has an in-
duced subgraph which is isomorphic to G1 (see Fig. 6). This is a contradiction.
Hence n ≤ 3.
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G6 G7 G8 G9

Fig. 5. Forbidden induced subgraphs of complement of line graphs.
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Lemma 3.3. Let R ∼= R1×R2×R3 and let (Ri,mi) be a local ring for i = 1,2,3.
Then Γ′(R) is the complement of a line graph if and only if R ∼= Z2 ×Z2 ×Z2.

Proof. Let Γ′(R) be the complement of a line graph. We prove that |U(R1)| =
1. By contradiction, suppose that 1 ̸= u ∈ U(R1). Then the induced subgraph
by the set {e1,e2,e3,ue1,e1 + e2,e1 + e3} is isomorphic to G4 (see Fig. 7), a
contradiction. Therefore |U(R1)| = 1. This yields that R1 ∼= Z2. Similarly,
R2 ∼= R3 ∼=Z2 and so R ∼=Z2×Z2×Z2. The graph Γ′(Z2×Z2×Z2) was drawn
in Fig. 2. It is not hard to see that Γ′(Z2 ×Z2 ×Z2) = C6, and so Γ′(R) is the
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complement of the line graph of the graph C6 (see Fig. 8). This completes the
proof.

G1 G2 G3 G4 G5

G6 G7 G8 G9

Fig. 5. Forbidden induced subgraphs of complement of line graphs.
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Lemma 3.4. Let R ∼= R1 ×R2 and let (Ri,mi) be a local ring for i = 1,2. Then
Γ′(R) is the complement of a line graph if and only if R is isomorphic to one of
the rings Fq1 ×Fq2 ,Z2 ×Z4 and Z2 ×Z2[x]/(x2).

Proof. Let Γ′(R) be the complement of a line graph. First, we claim that Γ′(R1)
is totally disconnected or R1 is a field. If {x1,x2} ∈ E(Γ′(R1)), then the induced
subgraph by the set {e1,x1e1,x2e1,(1+ x1)e1,(1+ x2)e1} is isomorphic to G3
(see Fig. 9), which is a contradiction. Therefore Γ′(R1) has not any edge. This
implies that Γ′(R1) is totally disconnected or R1 is a field and the claim is proved.
Similarly, Γ′(R2) is totally disconnected or R2 is a field. We divide the proof in
to three following cases:

Case 1. R1 and R2 are fields. Let R1 = Fq1 and R2 = Fq2 , for some positive
integers q1 and q2. Let A = {xe1|0 ̸= x ∈ Fq1} and let B = {ye2|0 ̸= y ∈ Fq2}.
Clearly, V (Γ′(R)) = A∪B and Γ′(R) is a complete bipartite graph with parts A
and B. It follows that Γ′(R) = Kq1−1,q2−1 and it is the complement of the line
graph of the union of two stars K1,q1−1 and K1,q2−1.

Case 2. R1 is a field and Γ′(R2) is totally disconnected. We prove that
|m2| = 2. Assume, on the contrary, 0 ̸= y1,y2 ∈ m2. With no loss of gener-
ality, we may assume that y2 ∈ Ry1. Then the induced subgraph by the set
{e1,e2,y1e2,y2e2,e1+y1e2,(1+y1)e2} is isomorphic to G5 (see Fig. 10), which
is a contradiction. Therefore |m2| = 2. Let m2 = {0,y1}. We note that m2 =
Z(R2) and by [7, Remark 1], we find that |R2| ≤ |m2|2 and so R2 ∼= Z4 or R2 ∼=
Z2[x]/(x2). If x∈R1\{0,1}, then the induced subgraph by the set {e1,xe1,e2,y1e2,e1+
y1e2,xe1 + y1e2} is isomorphic to G5 (see Fig. 11), which is a contradiction.
Therefore R1 ∼= Z2 and so R is isomorphic to one of the rings Z2 ×Z4 and Z2 ×
Z2[x]/(x2). Clearly, Γ′(Z2×Z4)∼= Γ′(Z2×Z2[x]/(x2)). The graph Γ′(Z2×Z4)
was drawn in Fig. 13. It is not hard to see that it is the complement of the line
graph of the graph H (see Fig. 13).

Case 3. Γ′(R1) and Γ′(R2) are totally disconnected. Since R1 and R2 are not
fields, |m1|, |m2| ≥ 2. Let 0 ̸= x1 ∈m1 and 0 ̸= y1 ∈m2. The induced subgraph
by the set {e2,x1e1+y1e2,y1e2,x1e1+(1+y1)e2,x1e1+e2} is isomorphic to G3
(see Fig. 12), which is a contradiction.
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From the above cases, we find that if Γ′(R) is the complement of a line graph,
then R is isomorphic to one of the rings Fq1 ×Fq2 ,Z2 ×Z4 and Z2 ×Z2[x]/(x2).
The proof of converse is clear.
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Fig. 13. Γ′(Z2 × Z4) ∼= Γ′(Z2 × Z2[x]/(x2)) = L(H).
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Fig. 13. Γ′(Z2 ×Z4)∼= Γ′(Z2 ×Z2[x]/(x2)) = L(H).

Now, we have the following conclusion which completely characterizes all
finite commutative non-local rings R whose cozero-divisor graphs are the com-
plement of line graphs.

Theorem 3.5. Let R be a commutative non-local ring. Then Γ′(R) is the com-
plement of a line graph if and only if R is isomorphic to one of the rings
Z2 ×Z2 ×Z2,Fq1 ×Fq2 ,Z2 ×Z4 and Z2 ×Z2[x]/(x2).

The only remaining case is that R is a local ring. As we mentioned in the
previous section, if R is a field, then Γ′(R) is an empty graph. It follows that
Γ′(R) is the complement of the line graph of the graph K1. So, we may assume
that R is a local ring with m ̸= 0. In the following results, we characterize
a family of graphs can be occurred as the complement of line cozero-divisor
graph of local rings.
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Lemma 3.6. Let (R,m) be a local ring and m ̸= 0. If Γ′(R) is the complement
of a line graph and {x,y} ∈ E(Γ′(R)), then |Rx∩Ry| ≤ 2.

Proof. By contradiction, assume that 0 ̸= a,b ∈ Rx∩Ry. There are two follow-
ing cases:

Case 1. a and b are adjacent. Then the induced subgraph by the set {a,b,x,y,x+
a} is isomorphic to G2 (see Fig. 14), a contradiction.

Case 2. a and b are not adjacent. Then the induced subgraph by the set
{a,b,x,y,x+a,y+a} is isomorphic to G6 (see Fig. 15), a contradiction.

We close this paper by the following theorem.

Theorem 3.7. Let (R,m) be a local ring with m ̸= 0 and let Γ′(R) be the com-
plement of a line graph. Then Rx∩Ry = {0}, for every {x,y} ∈ E(Γ′(R)) if and
only if Γ′(R) is a complete r-partite graph, for some positive integer r.

Proof. Assume that Γ′(R) is the complement of a line graph and Rx∩Ry = {0},
for every {x,y} ∈ E(Γ′(R)). Since R is finite, A = {Rx|0 ̸= x ∈ m} with the
inclusion relation has maximal element. Let {Rx1, . . . ,Rxr} be the set of all
maximal elements of A, for some positive integer r. We show that Γ′(R) is a
complete r-partite graph with parts Rx1 \{0}, . . . ,Rxr \{0}. We claim that every
two distinct elements of Rx1 are non-adjacent. By contradiction, assume that
0 ̸= a,b ∈ Rx1 and {a,b} ∈ E(Γ′(R)). If a,b ∈ mx1, then the induced subgraph
by the set {a,b,x1,a+x1,b+x1} is isomorphic to G3, a contradiction. If a∈mx1
and b ∈ U(R)x1, then a ∈ Rb, which is a contradiction. Also, Ra = Rb = Rx1,
where a,b ∈ U(R)x1, which is a contradiction. Therefore the claim is proved.
By the same argument, we have that every two distinct elements of Rxi are non-
adjacent, for i = 1, . . . ,r. By the maximality of Rxi and Rx j, we find that xi and
x j are adjacent, for every i, j, 1 ≤ i < j ≤ r. Since {xi,x j} ∈ E(Γ′(R)), by our
assumption we have Rxi ∩Rx j = {0}, for every i, j, 1 ≤ i < j ≤ r. This yields
that every elements of Rxi \{0} and Rx j \{0} are adjacent, where 1 ≤ i < j ≤ r.
Therefore Γ′(R) is a complete r-partite graph with parts Rx1 \{0}, . . . ,Rxr \{0}.
Let |Rxi \{0}|= ni, for i = 1, . . . ,r. Then Γ′(R) = Kn1,...,nr = L(

⋃r
i=1 K1,ni).

Conversely, suppose that Γ′(R) is a complete r-partite graph with parts V1, . . . ,Vr,
for some positive integer r and {x,y} ∈ E(Γ′(R)). We prove that Rx∩Ry = {0}.
By contradiction, suppose that 0 ̸= a ∈ Rx∩Ry. Since {x,y} ∈ E(Γ′(R)), x ∈Vi

and y ∈ Vj, for some i ̸= j. On the other hand, a is adjacent neither x nor y,
because a ∈ Rx∩Ry. This implies that a ∈ Vi ∩Vj, a contradiction. Therefore
Rx∩Ry = {0} and the proof is complete.
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