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Abstract—As a neurodevelopmental disability, Autism Spectrum Disorder 
(ASD) is classified as a continuum disorder. The availability of an automated 
technology system to classify the ASD trait would have a significant impact on 
paediatricians, as it would assist them in diagnosing ASD in children using a 
quantifiable method. In this paper, we propose a novel autism diagnosis method 
that is based on a hybrid of the deep learning algorithms. This hybrid consists of 
a convolutional neural network (ConVnet) architecture that merges two LSTM 
blocks (BiLSTM) with the other direction of propagation to classify the output 
state on the brain signal data from electroencephalogram (EEG) on individuals; 
typically development (TD) and autism (ASD) obtained from the Simon Foun-
dation Autism Research Initiative (SFARI) database to classify the output state. 
For a 70:30 data distribution, an accuracy of 97.7 percent was achieved. Proposed 
methods outperformed the current state-of-the art in terms of autism classifica-
tion efficiency and have the potential to make a significant contribution to neu-
roscience research, as demonstrated by the results. 

Keywords—state-of-art architecture, autism, classification, brain signal 

1 Introduction 

Developmental disability Autism Spectrum Disorder (ASD), is defined by its 
behavioural symptoms in children. In most cases, the symptoms of an ASD appear in 
the first year of life. The first signs of autism are a lack of social interaction and a lack 
of language development in early childhood. In Malaysia and around the world, the 
number of children with ASD continues to rise. According to a Malaysian survey, one 
in every 625 children has ASD [1]. 

ASD affects one in every 68 children in the United States and one in every 100 
children in the United Kingdom, according to the Centers for Disease Control and 
Prevention (CDC) [2]. A clinical specialist or paediatrician may take a long time to 
confirm an ASD diagnosis. According to a recorded paediatrics study by [3], a two-
year-old autistic child is still unable to produce two meaningful words that do not need 
to be imitated or repeated. Research into this disorder has been extensive, however, we 
have yet to discover what lies beneath it. Autistic Spectrum Disorders are hard to 
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diagnose for the simple reason that the ASD traits are not passed down through the 
generations. The ASD is defined as a pattern of repetitive, unusual, and abnormal 
behaviour. Therefore, early detection prior to the age of three is extremely unlikely [4]. 
ASD can be mistaken for a variety of other neurodevelopmental symptoms. Because of 
the lack of obvious differences in the primary neural conditions, it may be difficult to 
identify this atypical behaviour. 

The Electroencephalogram (EEG), a representation of the state of the brain's 
electromagnetic signals, can be used to measure brain activity. According to prior 
research by [5][6], autistic children's brain waves become less complex and 
synchronised as their frequency increases. The EEG signals of autistic and non-autistic 
brains show a correlation [7]–[11]. Previous research in the field [12], [13] scientists in 
fields such as neuroscience could benefit from the higher temporal resolution, lower 
complexity, lower cost and acceptable technique of EEG recording over functional 
Magnetic Resonance Imaging (fMRI). The EEG dataset is more accessible than the 
Magnetoencephalogram (MEG) dataset because of the greater availability of EEG data 
[14] [15].  

In the last few years, deep learning (DL) models for EEG analysis have become 
increasingly common [16]–[20]. Different from traditional machine learning methods, 
which use a variety of feature extraction and classification techniques, DL takes an 
intelligent and holistic approach to feature extraction and classification [21]–[23]. In 
several applications, it has been demonstrated that ASD classification can be 
significantly improved using deep learning neural networks rather than traditional 
methods of signal processing. To classify ASD, we use four state-of-the-art models 
based on specific brain regions in this work. As a result of our proposed ConVnet 
BiLSTM method's superior performance over other deep learning approaches, 
clinically relevant subgroups of ASD patients were identified using the vectorized 
classification outputs of the ConVnetBiLSTM classifier. 

This paper organizational structure is summarized in the following paragraphs. Au-
tism classification methodology is discussed in Section 2 of this document. Detailed 
explanations of the findings and conclusions appear in Section 3. The final section of 
the report will summarise the findings and make recommendations for future research. 

2 Methodology 

2.1 Dataset 

SFARI, more specifically the Simons Searchlight initiative, which was formerly 
known as the Simons Variation in Individuals Project, provided the data for this analy-
sis (SVIP - Simons VIP consortium, 2012). The Simons Searchlight datasets, which 
include 16p11.2 copy number variant-CNV data, are made available to researchers who 
have passed the data request process and have been approved. A healthy control is one 
who has been identified as having a typically developing (TD) personality and is there-
fore considered to be a normal participant, free of any signs of autism. Detailed descrip-
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tions of the Simons Searchlight study's participant identification, recruitment, and in-
clusion/exclusion criteria have been provided in the study description within [24], [25]. 
Until recently, the CNV region's deletion or duplication was a condition of eligibility. 
Exclusion criteria included the presence of any known genetic syndromes or infective 
CNV. There were no Simon's VIP (SVIP) evaluations performed on any of the study's 
TD subjects. The comparison group was drawn from the Boston Children's Hospital 
participant database on its own [26]. The group was made up of people without any 
kind of neurological or developmental disorder. An ethical review board from UTeM's 
Centre for Research & Innovation Management (CRiM) has approved the request to 
obtain access to SFARI's EEG data. A researcher distribution agreement and all the 
necessary paperwork had been completed, and it was approved. The SFARI gave the 
SVIP its initial ethical green light for operation. An approved researcher was given 
permission to collect and share data from SVIP participants. 

Prior to the previous study [26], SVIP collaborators collected EEG data and 
performed some pre-processing. NetAmps 300 amplifier and NetStation at 0.3-30Hz 
Bandpass filter were used for the 128 channel HydroCel Net (Electrical Geodesics Inc., 
Eugene, OR) at 500 Hz sampling rate. While the EEG was being recorded, participants 
sat back and watched silent videos on a monitor for 2–12 minutes. During the 
experiment, infants were placed on the laps of their primary caregivers. Pre-processing 
was carried out after obtaining the data. Each participant was disqualified from further 
analysis if more than 10% of their data points fell outside of the predefined range of -
150 V to 150 V. There were eleven channels that were not used for analysis or as input 
for interpolation because of this criterion. It was decided to conduct further research on 
the remaining 117 channels. The channel map of the EEG device placed on participant 
scalp as shown in Figure 1. The grey colored indicates the deleted channels electrode 
that were excluded from analysis.  
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Fig. 1. The hydrocel geodesic sensor net-128 channel map 

Initially, there were fifty-seven data points (TD=16, ASD=41) that were collected. 
Two individuals were excluded from the TD and ASD classes because they had not 
participated or had their EEGs recorded, and new data from 53 participants (TD = 14 
controls, ASD = 39) were obtained. Summary of the database is shown in Table 1. Even 
though there is a disparity in the number of participant in these two classes, the 
augmentation of the signal samples is done in order to balance these two classes. 

Table 1.  Summary of the EEG database  

Genotype 
Gender 

Categorical 
Total 

Case Infant Toddler Children 

Typically development (TD) Male-6 
Female-8 

- 
- 

3 
5 

3 
3 14 

Autism 
Male-22 1 12 9 39 

Female-17 - 10 7  

2.2 Data preparation 

It is necessary to segment and enhance the signals that have been gathered. Figure 2 
depicts the data preparation process flow diagram. 

 
Fig. 2. Flow process on preparation of data 
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In this work, the extraction process from a .csv file begins with segmentation [27]. 
It was then saved as a Matlab .mat file. Splitting up data into two or more subsets and 
grouping them based on the parameters that have specified, allows to analyse, and use 
the information gathered more effectively. It's possible to label the data after segmen-
tation, using a similar group that was assigned to the removed channel as discussed 
earlier. Here is the pseudocode for the labelling of the deleted channel, as shown. 

Data labelling <dataset> 
1) Loading the data load SfariData 
2) Assign array b for new b={}  
3) The data taken from initial to max subject for (i = 

1:53)  
4) Assign old signal to all subject a=Signals (i : ) 
5) Delete 11 channels for all subject 

a([1,8,14,17,21,25,32,125,126,127,128], ; ) = [ ]  
6) Update new signal b (i) =a;  
7) end for  
8) Compute new assigned signal b signals = b’  
9) Accomplish saving of removed channels for all 

subjects save. Autismchnldelete Signals Labels 

Segmentation also transmitted the signal along with their assigned labels of TD and 
autism (ASD). Despite the dataset's apparent imbalance, data augmentation can restore 
the sample signal balance for both data training and data testing. It appears that most 
researchers [28][29] use this data distribution of data splitting and this is being tested 
and proven in their research. Figure 3 shows the segmented data being distributed for 
70:30 data distribution. Primary data distribution between typically development (TD 
and autism (ASD) is shown in Table 2. While Figure 4 depicts the allocation of EEG 
data used to train and test the algorithm proposed for further augmentation. 

 
Fig. 3. Stratified CV method on data distribution of 70:30 

Table 2.  Primary data distribution of signal sample between 2 classes 

 70% Data Train 30% Data Test 

Typically Development (TD) 367 157 
Autism (ASD) 1096 470 
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The stratified of 10-fold cross validation is used for 70% of the original EEG 
segment signal. The type of k-fold cross-validation uses fold selection to ensure that 
the mean response value is approximately the same across all folds; this ensures that 
roughly equal proportions of TD and ASD class labels are present across all folds. As 
a result, the train and validation accuracy have been determined to be accurate. Then, a 
new network with the updated weight will be created for the remaining 30% of data to 
be tested on. The training of the model is the first step. The model was validated and 
the parameters were adjusted. It is only at this point that an unbiased estimate of the 
model's performance can be made. Figure 4 depicts the process of data augmentation 
between these categories; typically developmental disorders (TD) and autism spectrum 
disorders (ASD). 

 
Fig. 4. Data augmention of segmented sampled data 

Increase the amount of data by adding slightly modified copies of previously existing 
information or by creating new synthetic information from previously existing 
information through the process of data augmentation [27]. There were originally 53 
subjects and 128 channels in the original data set. Removed the 11 channels, there were 
117 channels. There were 524 samples of typical development and 1565 samples of 
autism (ASD) after segmentation. TD and ASD data were out of balance, necessitating 
the use of data augmentation. 

2.3 Proposed DL method 

An integrated CNN-BiLSTM model and hyperparameter grid search are shown in 
Figure 5 of this proposed work. Hyperparameters are variables that have the power to 
influence how well a system learns. Similar to machine learning algorithms may have 
different types of learning rates, weights, and constrains for generalizing data patterns. 
These measures are called hyperparameters. It is necessary to tune hyperparameters so 
that the problem can be solved optimally. The process of optimization involves finding 
a tuple that provides an optimal model and minimize loss function. There are several 
approaches to hyperparameter tuning. For this study work relied on the method of grid 
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search, which consists of exhaustive searching through a subset of hyperparameter 
space of the algorithm, followed by a performance metric. 

 
Fig. 5. The proposed method structure diagram 

Image recognition has made extensive use of convolutional neural networks (CNNs), 
but little work has been done on how these networks might be applied to physiological 
signal. The CNN also referred to as covnets [28], are neural networks that may have 
common parameters. A covnet is made up of multiple layers, each of which has a 
differentiable function that allows it to transform one volume into another. A 
convolutional layer, a pooled layer, and an all-connected layer are all part of the 
system's architecture. Filters (kernels) slide across the EEG signal in the convolutional 
layer. Input EEG signals are convolved with a kernel matrix, and stride controls the 
amount of filtering that occurs. The feature map is another term for the convolution's 
output. A down-sampling layer, is another name for this pooling layer. The 
convolutional layer's output neurons are shrunk by the pooling operation, which lowers 
the computational load and prevents overfitting. The fully connected layer, on the other 
hand, has complete access to all the activations in the layer prior to that layer. 

A Long-Short-Term Memory is what the term LSTM refers to. In the context of an 
artificial intelligence (AI), it is from a deep learning family system. Recurrent Neural 
Network (RNN) model issues can be addressed by using LSTM mechanism of gates 
and memory cells to replace the updates of hidden layers. Its networks can acquire 
dependencies of a long-term sequences data between the interval of time [29]. Inside a 
single LSTM block as shown in Figure 6 consists of three gates called input, forget and 
output gates.  
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Fig. 6. LSTM internal block diagram [29] 

Using a sequence of inputs, the input gate determines whether or not the block's 
current state is altered. By keeping track of information output and deciding whether 
the current hidden state should be moved to the next restatement, LSTM blocks use 
forget gates to hold or delete previous conditions. In order to determine if a hidden state 
can be restated, the output gate monitors the information output. A sigmoid activation 
function is used by these three gates; it generates values between 'zero' and 'one,' with 
a value of '0' indicating a closed gate that passes no data and a value of '1' indicating 
the opposite. Ct is cell memory, Xt is the input vector while ht is the cell output. During 
the training phase, both bias (b) and weight matrix (w) are updated. The LSTM gates 
equation are expressed as: 

 𝑖! = 𝜎(𝑤"[ℎ!#$, 𝑥!]) + 𝑏" (1) 

 𝑓! = 𝜎/𝑤%[ℎ!#$, 𝑥!]0 + 𝑏% (2) 

 𝑜! = 𝜎(𝑤&[ℎ!#$, 𝑥!]) + 𝑏& (3) 

where it, ft and ot denotes the gate’s input, forget and the output. Only previous data 
is collected by the LSTM network, and no data from the future is used. Instead of only 
transmitting information from front to back, the bidirectional-LSTM (BiLSTM) net-
work also computes the output value and the output value is computed simultaneously 
in two separate blocks. With the pre-and-post dependencies in the EEG data, this deep 
model can achieve excellent results. Figure 7 demonstrates a deep network of bidirec-
tional-LSTM network is designed as in previous work [30]. The (ht→) in the forward 
layer portrays the first LSTM block with front-to-back passed information, while the 
(ht←) represents the backward layer of final LSTM block with back-to-front infor-
mation transferred. There are 117 channels of EEG data in the input layer, and the out-
put layer Yt specifies the last sequence. The LSTM block sequence is shown in the 
rectangular box with a dotted line in both forward and reverse directions. Specifically, 
this BiLSTM network with a hidden layer of 100 was specified, as well as the output 
of the final element in the sequence. 
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Fig. 7. Bidirectional-LSTM network structure 

The proposed CNN-BiLSTM (ConVnet BiLSTM) architecture, which is a combina-
tion of CNN and BiLSTM, includes an initial convolutional layer that is responsible for 
receiving EEG signal input. Given that the brain signal from the dataset indicates that 
each channel is a two-dimensional (2D) array, the input size has been specified as size 
of two. The output of ConVnet should then be passed to the maxpooling layer. The 
number of output neurons is reduced by using the max-pooling operation, which only 
uses the highest value in each feature map. In the next stage, the Dropout stage which 
is a training technique in which neurons selected at random are ignored. On the forward 
pass, the neurons temporarily stop contributing to activating the cells below them by 
dropping-out randomly. There are no more weight updates for the neuron when it goes 
backwards. In order to prevent overfitting, the dropout technique is used. Hidden units' 
outgoing edges are randomly assigned zero values during each training update. Neurons 
are the building blocks of these hidden units. Finally, the bidirectional LSTM layer 
receives an output that has been pooled to a smaller dimension. It is assumed that the 
convolutional later will extract local features, such as that the BiLSTM will order fea-
tures to understand the signal input's order. 

This network's architecture makes it possible to store data for a long period of time. 
It is also capable of processing data in both directions, making full use of data that has 
come before and after it. This proposed network model will map the input data into 100 
features, and then generate output for the fully connected layer. The fully connected 
layer, on the other hand, has complete access to all of the activations from the layer 
before it. Final layer employs softmax activation function to get probabilities of input 
being in a specific class after passing through fully connected layers (classification). 
Finally, a fully connected layer of size 2, connected by a classification and softmax 
layers as its activation function, was used to define two classes labelled as normal and 
autism. Figure 8 show the entire process in action. 
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Fig. 8. The proposed method for autism classification 

Figure 9 represents the flow testing methodology with other state-of-the-art Deep 
Learning models. The first step is data exploration (using the SFARI dataset), followed 
by data transformation, and finally by the division of the data into training and testing 
sets. Five parameter tests are being used to evaluate four state-of-the-art deep learning 
algorithms. Based on its highest degree of accuracy, the classification can finally be 
determined. 

 
Fig. 9. Methodology flow of the 4 state-of-art models 

86 http://www.i-joe.org



Paper—ConVnet BiLSTM for ASD Classification on EEG Brain Signal 

2.4 Performance measure 

An efficient classification system is one that is highly accurate, sensitive, and precise 
in terms of a few key performance indicators. Classification problems make use of con-
fusion matrices to show the results of a classifier on a set of data that has been identified 
as having the true values. While the Predicted Class serves as a reference for what the 
signal actually is, the Actual Class represents what the network decided it should be. 
These cases are divided into two categories: those considered ‘Typically development’ 
for the normal case, and those considered to have ‘Autism’. The classification perfor-
mance is visualized in confusion matrix.  

To outline the performance of implemented DL algorithms, seven parameters 
namely accuracy (Acc), precision (Pre), sensitivity (Sen), specificity (Spe), F-measure 
(F1-Score), Matthew Correlation Coefficient (MCC) and Area Under Curve (AUC) are 
utilized for classifying ASD. Eq. (4-10) represents the expressions for performance pa-
rameter. 

 𝐴𝑐𝑐 = '()'*
'()'*)+()+*

  (4) 

 𝑃𝑟𝑒 = '(
'()+(

 (5) 

 𝑆𝑒𝑛 = '(
'()+*

	 (6) 

 𝑆𝑝𝑒 = '*
'*)+(

 (7) 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = ,'(
,'()+()+*

 (8) 

 𝑀𝐶𝐶 = '*×'(#+*×+(
.('()+()('()+*)('*)+()('*)+*)

 (9) 

 𝐴𝑈𝐶 =
1$) !"

!"#$%#
$"

$"#!%2

,
 (10) 

3 Result and discussion 

This section discusses the performance of the proposed system that has been simu-
lated. the systems runs on MATLAB 2020b environment on an Intel(R) Core(TM) i7-
7700HQ CPU with 2.8GHz clock speed and 20GB RAM. Figure 10 shows the extracted 
data brain signal of a single person in both the TD and ASD classes after the segmen-
tation and augmentation. For a total of five thousands signal samples, the brain signals 
of autistic people are dispersed irregularly while those signal of TD child are in regular 
pattern.  
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Fig. 10.  The plotted figure represent brain rythms between TD and ASD 

3.1 Fine-tuning hyperparameter 

Grid searching is one of the technique involving parameter tuning and is used 
throughout deep learning to find the best model parameters, and it is not limited to a 
single type of model. This type of searching builds a model based on every possible 
combination of parameters, resulting in multiple iterations of the process. The ten-fold 
of stratified cross-validation and 70:30 data distribution is used for the whole process. 
There were several hyperparameters that needed to be adjusted in the hidden layer to 
get the best results which involved batch size, epochs, optimization algorithm, dropout 
regularization and learning rates neurons in the hidden layer, respectively. Table 3 show 
the best tuned-parameter based on the highest accuracy. Table 3 yielded a list of opti-
mum hyperparameters, and these parameters were used in the development of the deep 
learning model of Convnets BiLSTM involved and listed in table are the best number 
of each parameter based on the highest accuracy obtained. Using a grid search tech-
nique for fine-tuning parameters, we were able to determine the best values for each 
category. As for the data distribution, Table 4 show the accuracy obtained for three 
types of data distribution against train and test data.  

Table 3.  Fine-tuning hyperparameter 

Parameter Number of parameters Accuracy (%) 
Batch size 50 88.6 
Epoch 20 89.3 
Dropout value 0.5 92.58 
Learning rate 0.01 91.6 
Optimization algorithm Adam 89.5 

Table 4.  Number of data distribution 

Data distribution 90:10 80:20 70:30 
Accuracy (%) 98.53 99.15 99.48 

88 http://www.i-joe.org



Paper—ConVnet BiLSTM for ASD Classification on EEG Brain Signal 

3.2 Deep Learning model development 

As the hybrid model of combination CNN and BiLSTM (ConVnet BiLSTM) is the 
first ASD classification using a 117 channel of EEG time series data that employs neu-
ral network model, there are no recognized comparison partners. Thus it can be com-
pared with some widely used single LSTM, single BiLSTM and hybrid CNN combined 
with LSTM (CNNLSTM) classification methods. LSTM is an artificial RNN used in 
the field of deep learning that has feedback connection which can process not only 
single data point but also the entire sequences of data.  

In other hand, the Bidirectional LSTM also known as BiLSTM is a sequence pro-
cessing model that consists of two LSTM blocks in both directions (forward and back-
ward) and also effectively increase the amount of information available to network, 
improving the context available to the algorithm. A combination of CNN LSTM is an 
LSTM architecture specifically designed for sequence prediction problem with spatial 
input signal such EEG signal. 

Both single and hybrid form of BiLSTM has stronger ability of generalization in 
comparison with other existing deep learning algorithms. Firstly, data set divided in the 
form of labeled data with 70:30 portion of data splitting, the input to these models were 
two-dimension data (the signal of samples, labelled signal). Then cross validation pa-
rameter search to tune hyper parameter and made feature work. By contrast, the Con-
Vnet BiLSTM model outperformed the other three models as shown in Table 5 and 
Figure 11.  

Table 5.  Result of the deep learning models 

Performance Single model Hybrid Model 
Measure LSTM BiLSTM CNNLSTM ConVnet BiLSTM 

Acc 88.04 94.84 91.01 97.72 
Pre 0.79 0.85 0.81 0.89 
Sen 0.65 0.66 0.59 0.85 
Spe 0.94 0.96 0.95 0.96 
F1-Score 0.71 0.75 0.69 0.87 
MCC 0.63 0.68 0.61 0.83 
AUC 0.92 0.94 0.91 0.97 
Computational Time 134.64 132.70 140.57 136.72 
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Fig. 11.  Accuracy of different classification models 

Based on plotted boxplot in Figure 12, the distribution accuracy on tenfold stratified 
cross validation for the different deep learning models. The middle line indicates the 
distribution between the typical development and autism classes. These plots have been 
made to the same scale. Seems the CNNBiLSTM or so called ConVnet BiLSTM 
achieved highest accuracy among other three state-of-art deep learning models. Table 
6 show the previous work that using the hybrid of CNN bidirectional-LSTM on differ-
ent approaches such classification, detection, recognition, prediction and etc. 

 
Fig. 12.  Boxplot for four different models versus accuracy 

Table 6.  CNNBiLSTM based on past research works 

Authors Case Study Highest  
accuracy 

Sakirin Tam et al., 2021 Twitter sentiment classification 91% 
W-L Mao et al., 2020 Seizure detection 92.6% 
Amit Rai, 2020 Solar radiation prediction 94.23% 
Yimin Hou et al., 2020 Human motor recognition 94.6% 
Hao Zhen et al., 2020 Wind power forecast 95% 
Ji-Hoon Jeong et al., 2020 Brain-controlled robotic arm 96.3% 
Our proposed algorithm Autism Classification on EEG  97.72% 
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4 Conclusions 

Based on a more expensive image FMRI dataset, earlier work by AbdulRazak [36] 
used a convolutional neural network strategy to categorize ASD patients with non-
ASDs. The primary objective of this study is to use the deep learning algorithm to clas-
sify ASD based on the rapid, inexpensive, and non-invasive measurable way. The 
LSTM-based blocks of deep learning model was offered in this study as a novel tech-
nique to diagnosing autism. Segmentation and augmentation of EEG data from the 
SFARI database were used to create a sample signal that was evenly distributed be-
tween the two groups. Nonlinear and non-stationary difficulties in the brain signal data 
were well-suited to this method.  

This study presented a deep learning ConVnet BilSTM algorithm network con-
structed for both EEG classification; autism and normally development (obtained from 
healthy control participants), and the results were spectacular. Over 97.7 percent accu-
racy was achieved for 70:30 stratified cross validation of data distribution, which 
showed that the approach proposed has an efficient classification capability and perfor-
mance improvements over a single model and hybrid CNN LSTM method. This study 
is currently essential and potentially give a significant contribution to neuroscience re-
search. When the highest levels of precision are attained, this will allow pediatricians 
or clinicians to employ a measurable approach to diagnose ASD in children rather than 
relying entirely on behavioral observation of the suspected autistic child (according to 
the standard manual used by pediatricians on DSM-V). A decent rule of thumb is to use 
statistical hypothesis testing with expert analysis as well. To categorize ASD and non-
ASD, deep learning is the preferable method in this study. 
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