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Abstract

Although a lot of crack problems in bi-materials plate were previously treated, few solutions are
available under mechanical loadings, arbitrary crack lengths and material combinations. In this
paper the dimensionless stress intensity factors (SIFs) of two slanted cracks in the upper plate
of bi-materials are considered under mechanical loadings with varying the crack length and
material combinations systematically. In order to calculate the dimensionless SIFs accurately,
the hypersingular integral equations (HSIEs) was formulated by using the modified complex
potentials (MCP) function. The details numerical results of the dimensionless SIFs are given in
tabular form and graphical presentations. Comparisons with the existing exact solutions show
that the numerical results in this paper have high accuracy. Our results are described with clar-
ifying the effect of the mechanical loadings, bi-elastic constant ratio and element size of cracks
on the dimensionless SIFs.

Keywords: bi-materials; hypersingular integral equations; slanted cracks; stress intensity fac-
tors.
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1 Introduction

Bi-materials plate are widely used in mechanical parts and components working in harsh and
special environments, such as mechanical, manufacturing, petrochemical industry, nuclear engi-
neering, automotive industry, aerospace, electronic information and others because of their special
properties. Due to the different materials properties of this plate, the mechanical performance
of the bi-materials will be different from that of the single material under mechanical loadings.
Therefore, it is of great significance to study the fracture mechanics such as crack problems in bi-
materials plate under mechanical loadings because it is one of the main reasons for the failure of
bi-materials structure.

Previously, the analysis of cracks in the bi-materials plate for simple geometries and mechan-
ical loadings has been conducted by Erdogan [4] who discussed straight-line cracks, meanwhile,
Hamoush and Ahmad [5] investigated a mixed-mode interface crack. Chen and Hasebe [2] pre-
sented stress intensity factors (SIFs) for a curved circular crack in bi-materials, whereas Isida and
Noguchi [10] are focused on the cracks subjected to various loading. However all these solutions
are for a specific geometry and mechanical loading and for a more general configuration of load-
ing and geometries, numerical procedures are necessary to find the SIFs. Zhou et al. [20] used
a system of complex Cauchy type singular integral equations to obtain the dimensionless SIFs
for an arbitrary crack problems in bi-materials. Lan et al. [11] analyzed on the effect of material
combinations and relative crack size to the dimensionless SIFs at the crack tip of a bi-materials.
Noda and Lan [16] presented the dimensionless SIFs of an edge interface crack in bi-materials
plate under tension with varying crack length and material combinations systematically. Li et al.
[12] used Fourier transform technique to calculate the nondimensionless SIFs for a crack lying at
the interface of bi-materials subjected to shear and compression stress. Huang et al. [9] developed
a system to evaluate the mixed-mode dynamic SIFs for an interface crack in bi-materials with an
inclusion close to the crack tip under an impact loading. Hamzah et al. [6] calculated the di-
mensionless SIFs for multiple cracks in the upper plate of bi-materials subjected to shear stress by
using hypersingular integral equations (HSIEs) andmodified complex potential (MCP) function.
They expanded their study to analyze the behavior of dimensionless SIFs under various mechan-
ical loadings, however focused on a single crack in the upper plate of bi-materials (Hamzah et
al. [8]). Yang et al. [19] analyzed on Mode III nanocrack at the interface of bi-materials under
antiplane shear loading by reducing Fourier transform problems to a set of hypersingular integro-
differential equations. According to Chai et al. [1], the value ofMode I SIFs is larger than the value
of Mode II SIFs for interface circular crack in bi-materials under axisymmetric loadings.

The present study is a novel investigation on two unequal slanted cracks length in the upper
plate of bi-materials under shear and normal stresses for calculating the dimensionless SIFs at
the crack tip. By using MCP method, the problem is formulated into HSIEs. The noticeable im-
pact of stresses, bi-elastic constants ratio and crack geometry conditions on dimensionless SIFs for
bi-materials plate have been depicted bymeans of numerical computations and graphical demon-
strations. Moreover, a comparative analysis is carried out for dimensionless SIFs in bi-materials
under shear and normal stresses to elucidate the unrevealed facts. The present findingsmay assist
the engineers in investigating the stability behavior of the perfectly bonded bi-materials structures
under various mechanical loadings.
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2 Mathematical Formulation

In this section, the two unequal slanted cracks length in the upper plate of bi-materials under
shear and normal stresses is studied. The problem is formulated into the systems of HSIEs using
theMCPmethod, andwith the help of the continuity conditions of the resultant force function and
displacement. The appropriate quadrature formulas are used to solve numerically the unknown
COD function and the traction along the crack as the right hand term of HSIEs.

2.1 Complex Potential Function (CPF)

Muskhelishvili [14] introduced the CPF method which plays an important role in solving the
cracks problems in elasticity plate. In this method, the stress components (σx, σy, σxy), resultant
force function f(X,Y ) and displacements (u, v) are related to two principal parts of the CPF φ1p(z)
and ψ1p(z) in terms of z = x+ iy as follows:

σy − σx + 2iσxy = 2[z̄φ′′1p(z) + ψ′1p(z)], (1)

f = −Y + iX = φ1p(z) + zφ′1p(z) + ψ1p(z), (2)

2G(u+ iv) = κφ1p(z)− zφ′1p(z)− ψ1p(z), (3)

where G is shear modulus of elasticity, κ = (3 − v)/(1 + v) for plane stress, κ = 3 − 4v for plane
strain and v is Poisson’s ratio. Then, the derivative of Equation (2)with respect to z give the results
interms of normal, N(z), and tangential, T (z), components as follows:

d

dz

(
− Y + iX

)
= φ′1p(z) + φ′1p(z) +

(
zφ′′1p(z) + ψ′1p(z)

)
dz̄

dz
= N(z) + iT (z). (4)

Note that the traction N(z) + iT (z) depends on the position of point z and the direction of the
segment dz̄/dz.

Based on studied by Nik Long and Eshkuvatov [15], the CPF for a crack L in an infinite plate
can be expressed by

φ1p(z) =
1

2π

∫
L

g(t)dt

t− z
, (5)

ψ1p(z) =
1

2π

∫
L

g(t)dt̄

t− z
+

1

2π

∫
L

g(t)dt

t− z
− 1

2π

∫
L

t̄g(t)dt

(t− z)2
, (6)

where g(t) is COD function denoted by the displacements at point t of the upper, (u(t) + iv(t))+,
and lower, (u(t) + iv(t))−, crack faces as follows

g(t) =
2G

i(κ+ 1)

(
(u(t) + iv(t))+ − (u(t) + iv(t))−

)
. (7)

Note that at the crack tip Aj , g(t) has the following properties

g(t) = O

(√
t− tAj

)
(8)
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where j = 1, 2.
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Figure 1: Two unequal slanted cracks length in the upper plate of bi-materials under shear and normal stresses. Left) In series; Right) In
parallel.

2.2 Bi-Materials Plate

Consider two unequal slanted cracks length in the upper plate of bi-materials under shear and
normal stresses as shows in Figure 1. The conditions for strain components ε in bi-materials can
be defined by Young’s modulus of elasticity E and stress components σ as follows

εxj
=

1

Ej

(
σ∞xj
− vjσ∞yj

)
, εyj =

1

Ej

(
σ∞yj − vjσ

∞
xj

)
, (9)

where j = 1, 2 are the strain components for the upper and lower plates of bi-materials, respec-
tively, and Ej = 2Gj(1 + vj). By assuming the others mechanical loadings do not exist, then the
shear stress is reduced to

1

E1
σ∞x1

=
1

E2
σ∞x2

. (10)

Similar conditions for normal stress is reduced to
1

E1
σ∞y1 =

1

E2
σ∞y2 . (11)

According to Hamzah et al. [7], if the shear stress σx1
= σx2

= p and normal stress σy1 = σy2 = p
then N(z) + iT (z) are defined as follows

N(z) + iT (z) = −p sin2 α− ip sinα cosα, (12)
N(z) + iT (z) = −p cos2 α+ ip sinα cosα, (13)

where α is an angle of the crack.

Studied by Chen and Hasebe [2], the MCPs for a crack in the upper plate of bi-materials are
defined as follows

φ1(z) = φ1p(z) + φ1c(z), ψ1(z) = ψ1p(z) + ψ1c(z), (14)
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where φ1c(z) and ψ1c(z) are the complementary parts of the CPF. Then the CPF for the lower plate
of bi-materials are represented by φ2(z) and ψ2(z). By applying continuity conditions between
upper and lower plates of bi-materials, Equations (2) and (3) gives(

φ1(t) + tφ′1(t) + ψ1(t)

)+

=

(
φ2(t) + tφ′2(t) + ψ2(t)

)−
, (15)

G2

(
κ1φ1(t)− tφ′1(t)− ψ1(t)

)+

= G1

(
κ2φ2(t)− tφ′2(t)− ψ2(t)

)−
, (16)

where t ∈ Lj , j = 1, 2, and + and − sign represent the upper and lower plates of bi-materials,
respectively. Substitute Equation (14) into Equations (15) and (16), it will reduces to the following
equations

φ1c(z) = Λ1

(
zφ′1p(z) + ψ1p(z)

)
, z ∈ S1 + Lb, (17)

ψ1c(z) = Λ2φ1p(z)− Λ1

(
zφ′1p(z) + z2φ′′1p(z) + zψ′1p(z)

)
, z ∈ S1 + Lb, (18)

φ2(z) = Λ2φ1p(z) + φ1p(z), z ∈ S2 + Lb, (19)

ψ2(z) = Λ1

(
zφ′1p(z) + ψ1p

)
− Λ2zφ

′
1p(z) + ψ1p, z ∈ S2 + Lb, (20)

where φ1p(z) = φ1p(z̄). Note that Lb is boundary of bi-materials, S1 and S2 are upper and lower
plates of bi-materials, respectively, and Λ1 and Λ2 are bi-elastic constants defined as

Λ1 =
G2 −G1

G1 + κ1G2
, Λ2 =

κ1G2 − κ2G1

G2 + κ2G1
.

2.3 Hypersingular Integral Equations (HSIEs)

TheHSIEs for two unequal slanted cracks length in the upper plate of bi-materials under shear
and normal loadings can be formulated by defining four traction components

(
N(t10)+iT (t10)

)
11
,(

N(t10) + iT (t10)
)
12
,
(
N(t20) + iT (t20)

)
22

and
(
N(t20) + iT (t20)

)
21

which consist of two groups of
N(tj0) + iT (tj0), (j = 1, 2). The first group involve

(
N(t10) + iT (t10)

)
11

and
(
N(t20) + iT (t20)

)
21

that obtained from reaction between g1(t1) at t1 ∈ L1 and the observation point placed at t10 ∈ L1

and t20 ∈ L2. However, the second group involve
(
N(t10)+iT (t10)

)
12

and
(
N(t20)+iT (t20)

)
22

that
obtained from reaction between g2(t2) at t2 ∈ L2 and the observation point is placed at t10 ∈ L1

and t20 ∈ L2. Since both unequal slanted cracks length lie in the upper plate of bi-materials,
we need to combine four traction components which consist of principal,

(
N(tj0) + iT (tj0)

)
jp and

complementary parts,
(
N(tj0) + iT (tj0)

)
jc, then the HSIEs can be obtained as follows:
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(
N(t10) + iT (t10)

)
1

=
(
N(t10) + iT (t10)

)
11

+
(
N(t10) + iT (t10)

)
12

=
1

π
=

∫
L1

g1(t1)dt1
(t1 − t10)2

+
1

2π

∫
L1

D1(t1, t10)g1(t1)dt1

+
1

2π

∫
L1

D2(t1, t10)g1(t1)dt1 +
1

π

∫
L2

g2(t2)dt2
(t2 − t10)2

+
1

2π

∫
L2

D1(t2, t10)g2(t2)dt2 +
1

2π

∫
L2

D2(t2, t10)g2(t2)dt2, (21)

(
N(t20) + iT (t20)

)
2

=
(
N(t20) + iT (t20)

)
22

+
(
N(t20) + iT (t20)

)
21

=
1

π
=

∫
L2

g2(t2)dt2
(t2 − t20)2

+
1

2π

∫
L2

D1(t2, t20)g2(t2)dt2

+
1

2π

∫
L2

D2(t2, t20)g2(t2)dt2 +
1

π

∫
L1

g1(t1)dt1
(t1 − t20)2

+
1

2π

∫
L1

D1(t1, t20)g1(t1)dt1 +
1

2π

∫
L1

D2(t1, t20)g1(t1)dt1, (22)

where

D1(ti, tj0) = Λ1

(
1

(ti − t̄j0)2
+

2(t̄j0 − t̄i)
(ti − t̄j0)3

−
dt̄j0

dtj0

(
1

(ti − t̄j0)2
−

2(2tj0 − 3t̄j0 + t̄i)

(ti − t̄j0)3

−
6(t̄j0 − t̄i)(t̄j0 − tj0)

(ti − t̄j0)4

))
− Λ1

(
dt̄j0

dtj0

(
1

(ti − t̄j0)2
+

2(t̄j0 − tj0)
(ti − t̄j0)3

)
− 1

(t̄i − tj0)2
− 1

(ti − t̄j0)2

)
dt̄i
dti

+
1

(ti − tj0)2

(
(ti − tj0)2

(t̄i − t̄j0)2
dt̄i
dti

dt̄j0

dtj0
− 1

)
+ Λ2

dt̄j0

dtj0

1

(ti − t̄j0)2
,

D2(ti, tj0) = Λ1

(
1

(t̄i − tj0)2
+

1

(ti − t̄j0)2
−
dt̄j0

dtj0

(
1

(ti − t̄j0)2
+

2(t̄j0 − tj0)
(ti − t̄j0)3

))
+ Λ1

(
1

(t̄i − tj0)2
+

2(tj0 − ti)
(t̄i − tj0)3

)
dt̄i
dti
−

ti − tj0
(t̄i − t̄j0)3

(
2
dt̄i
dti

dt̄j0

dtj0

−
(t̄i − t̄j0)
(ti − tj0)

(
dt̄i
dti

+
dt̄j0

dtj0

))
,

and i, j = 1, 2. Note that the first integral with the equal sign in Equations (21) and (22) represents
the hypersingular integral and must be defined as a finite part integral. If G2 = 0, then Equations
(21) and (22) reduce to the HSIEs for the two unequal slanted cracks length in a half plate, refer
Chen et al. [3]. Whereas, if G1 = G2, then Equations (21) and (22) reduce to the HSIEs for the
two unequal slanted cracks length in an infinite plate, refer Nik Long and Eshkuvatov [15].
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2.4 Dimensionless Stress Intensity Factors

The curved length coordinatemethod is used to solve theHSIEs for two unequal slanted cracks
length in the upper plate of bi-materials under shear and normal loadings. After that, the quadra-
ture formulas introduced by Mayrhofer and Fischer [13] can be applied. In order to investigate
the behavior of dimensionless SIFs for two unequal slanted cracks length in the upper plate of
bi-materials under shear and normal loadings, we define the SIFs at the crack tips Aj and Bj
(j = 1, 2) as follows

KAj = (K1 − iK2)Aj =
√

2π lim
t→tAj

√
|t− tAj |g′1(t1), (23)

KBj
= (K1 − iK2)Bj

=
√

2π lim
t→tBj

√
|t− tBj

|g′2(t2), (24)

where K1 and K2 are opening and sliding modes, respectively, and g′1(t1) and g′2(t2) are defined
as follows

g′k(tk)|tk=tk(sk) =
−skHk(sk)√
a2k − s2k

e−iθAj , H ′k(sk) = 0, (25)

and k = 1, 2.

Therefore the dimensionless SIFs at crack tips Aj and Bj are defined as follows

KAj
=
√

2π lim
s→sAj

√
|s− sAj

|
(
−s1H1(s1)√
a21 − s21

e−iθAj

)
=
√
a1πFAj

, (26)

KBj
=
√

2π lim
s→sBj

√
|s− sBj

|
(
−s2H2(s2)√
a22 − s22

e−iθBj

)
=
√
a2πFBj

, (27)

where

FAj = H1(−a1)e−iθAj = F1Aj + iF2Aj ,

FBj
= H2(−a2)e−iθBj = F1Bj

+ iF2Bj
.

F1Aj and F1Bj are the Mode I dimensionless SIFs at crack tips Aj and Bj , respectively, and char-
acterizes the amplitude of normal stress singularity. Whereas F2Aj

and F2Bj
are the Mode II di-

mensionless SIFs at crack tips Aj and Bj , respectively, and describe the amplitude of the shear
stress singularity. According to Petersen [17], the crack propagates if the value of dimensionless
SIFs is greater than or equals to value of critical dimensionless SIFs. Wang [18] pointed out that
the strength of the materials is getting weaker as the value of dimensionless SIFs increases.

3 Numerical Results and Discussion

In this section, numerical computations and graphical demonstrations are carried out to show
the effects of the mechanical loadings, bi-elastic constant ratio and geometry conditions on the
dimensionless SIFs for crack problems in the upper plate of bi-materials.
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The numerical results have been compared with existing results studied by Isida and Noguchi
[10] to illustrate efficiency of this approach for a crack problem in bi-materials plate subjected
to normal stress and G2/G1 = 0.5 as shown in Table 1. The results show negligible difference
between the results of the present study and those obtained by Isida and Noguchi [10]. We ob-
served that F1A1 is equal to F1A2 , however F2A1 is equal to the negative of F2A2 . This is due to the
equivalence of the stress acting at the tips of the cracks.

Table 1: Comparison between the numerical results of the present study and the results of Isida and Noguchi [10].

SIF h/2R
0.1 0.2 0.3 0.4 0.5 0.6

F1A1

∗ 1.1765 1.1522 1.1295 1.1083 1.0899 1.0745
F2A1

∗ -0.0951 -0.0721 -0.0562 -0.0428 -0.0322 -0.0241
F1A2

∗ 1.1765 1.1522 1.1295 1.1083 1.0899 1.0745
F1A2

∗∗ 1.1760 1.1520 1.1300 1.1080 1.0900 1.0750
F2A2

∗ 0.0951 0.0721 0.0562 0.0428 0.0322 0.0241
F2A2

∗∗ 0.0950 0.0720 0.0560 0.0430 0.0320 0.0240
∗Present study, ∗∗Isida and Noguchi[10]

In the following discussion, we evaluate the example with two unequal slanted cracks length
in series in the upper plate of bi-materials under shear and normal stresses as defined in Figure 1
(left).
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Figure 2: Dimensionless SIFs for two unequal slanted cracks length in the upper plate of bi-materials under shear (black line) and normal
(red line) stresses. Top Left: Crack tipA1; Top Right: Crack tipA2; Bottom Left: Crack tipB1; Bottom Right: Crack tipB2.
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Figure 3: Dimensionless SIFs for two unequal slanted cracks length in the upper plate of bi-materials under shear (black line) and normal
(red line) stresses. Top Left: Crack tipA1; Top Right: Crack tipA2; Bottom Left: Crack tipB1; Bottom Right: Crack tipB2.

The bi-materials plate have two slanted cracks with lengthR2 = 3R1,R2/h = 0.9 and α varies.
Figure 2 illustrates the effect of the mechanical loadings which is shear (black line) and normal
(red line) stresses, and bi-elastic constant ratio G2/G1 on the dimensionless SIFs. It is obvious as
α increases the dimensionless SIFs, F1 increases with the loading of shear stress (black line) but
decreases with the loading of normal stress (red line) at all crack tips. However, the increases of
G2/G1 will decrease value of F1 at all crack tips for both mechanical loadings. In other words,
additing the shear modulus of elasticity (G2) in the lower plate is an efficient way to reduce the
dimensionless SIFs at all crack tips. If the length of slanted crack near to the boundary of bi-
materials is shorter then the other crackwhich isR1 = 3R2 andR1/h = 0.9, then the dimensionless
SIFs is depicted in Figure 3. This results reveal that the dimensionless SIFs at all crack tips have
similar trend with the previous example.

However, it ismuch clearer to compare the dimensionless SIFs for a slanted crack having longer
length. Figure 4 shows that, for the shear stress, regardless of the position of cracks, a crack with
longer length has the dimensionless SIFs of Mode I, F1, higher than a crack with shorter length.
Whereas, for the normal stress, regardless of the size, the dimensionless SIFs depends on the angle,
α, of the cracks. As α increases the dimensionless SIFs decreases for both cracks, A and B.
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Figure 4: Comparison of the dimensionless SIFs for a slanted crack having longer length at crack A compare to B (black line) and longer
length at crack B compare to A (red line) in the upper plate of bi-materials under shear and normal stresses. Top Left: Crack tip A1; Top
Right: Crack tipA2; Bottom Left: Crack tipB1; Bottom Right: Crack tipB2.

In the following discussion, we evaluate the example with two unequal slanted cracks length
in parallel in the upper plate of bi-materials under shear and normal stresses as defined in Figure
1 (right). The bi-materials plate have two slanted cracks with length R2 = 3R1, R2/h = 0.9
and α varies. Figure 5 illustrates the variation of the peak of dimensionless SIFs versus α for
five different bi-elastic constant ratios under shear (black line) and normal (red line) stresses. It
is worth to mention that the dimensionless SIFs, F1 for each crack tips reduces as the bi-elastic
constant ratio, G2/G1 increases. For shear stress, the value of F1 at all crack tips increases by the
increases of α because of the crack growth opposites to the direction of shear stress. However for
normal stress, the value of F1 at all crack tips decreases by the increases of α because of the crack
growth is similar to the direction of normal stress.

Figure 6 indicates the comparison of dimensionless SIFs for a slanted crack having longer
length. It is found that, for the normal stress, regardless of the position of cracks, a crack with
longer length has the dimensionless SIFs of Mode I, F1, higher than a crack with shorter length.
Whereas, for the shear stress, regardless of the position of cracks, a crack with shorter length has
the dimensionless SIFs of Mode I, F1, higher than a crack with longer length.

194



K. B. Hamzah and N. M. A. Nik Long Malaysian J. Math. Sci. 16(2): 185–197 (2022) 185 - 197

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70 80 90

D
im

e
n

si
o

n
le

ss
 S

IF

α (degree)

F1

F2

F1

F2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70 80 90

D
im

e
n

si
o

n
le

ss
 S

IF

α (degree)

F1

F2

F1

F2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70 80 90

D
im

e
n

si
o

n
le

ss
 S

IF

α (degree)

F1

F2

F1

F2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70 80 90

D
im

e
n

si
o

n
le

ss
 S

IF

α (degree)

F1

F2

F1

F2

Figure 5: Dimensionless SIFs for two unequal slanted cracks length in the upper plate of bi-materials under shear (black line) and normal
(red line) stresses. Top Left: Crack tipA1; Top Right: Crack tipA2; Bottom Left: Crack tipB1; Bottom Right: Crack tipB2.
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Figure 6: Comparison of the dimensionless SIFs for a slanted crack having longer length at crack A compare to B (black line) and longer
length at crack B compare to A (red line) in the upper plate of bi-materials under shear and normal stresses. Top Left: Crack tip A1; Top
Right: Crack tipA2; Bottom Left: Crack tipB1; Bottom Right: Crack tipB2.
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4 Conclusions

In the present study, two unequal slanted cracks length in the upper plate of bi-materials un-
der shear and normal stresses is studied using the MCP method. The continuity conditions of
the resultant force and displacement were derived in terms of the COD function. The problem
was reduced to a set of HSIEs in the domain under consideration, and these equations are solved
numerically using the curved length coordinate method and the appropriate quadrature formu-
las. We can conclude that for the discussed problem, the dimensionless SIFs depends on size,
cracks positions, type of mechanical loadings and bi-elastic constant ratio, and hence influence
the strength of the materials. In continuation of the present study, three-dimensional crack prob-
lems in bi-materials under various mechanical loadings can be analyzed.
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