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Abstract

Impaired lung function in early life is associated with the subsequent development of chronic

respiratory disease. Most genetic associations with lung function have been identified in

adults of European descent and therefore may not represent those most relevant to pediat-

ric populations and populations of different ancestries. In this study, we performed genome-

wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) liv-

ing in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene

in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one
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second (FEV1) (p = 2.4x10-9; βz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization

and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by

DNA methylation levels at this locus in airway epithelial cells, which were also associated

with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in

airway epithelial cells revealed chromatin interaction loops between FEV1-associated vari-

ants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-medi-

ated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly

associated the FEV1 risk alleles (p = 1.3x10-5; β = 0.12, 95% CI = 0.06–0.17). These com-

bined results highlight a potential novel mechanism for reduced lung function in urban youth

resulting from both genetics and smoking exposure.

Author summary

Lung function is determined by both genetic and environmental factors. Impairment of

lung function can result from harmful environmental exposures in early life, which dis-

proportionally affect children living in low-income, urban communities. However, most

genetic association studies of lung function have been performed in adults and without

regard for socioeconomic status. Therefore, genetic risk factors discovered to date may

not reflect those most relevant to high-risk populations. In this study, we sought to iden-

tify genetic variants correlated with lung function in a multiethnic cohort of children liv-

ing in low-income, urban neighborhoods and analyze how tobacco smoke exposure may

influence any genetic effects. We discovered a common genetic variant associated with

lower lung function in this population, and we found that the association was mediated by

nearby epigenetic changes in DNA methylation, which were in turn correlated with smok-

ing exposure. We then identified a nearby gene, PPP1R13B, which is known to aid in the

deactivation of damaged cells, whose expression in airway cells aligned with these genetic

and epigenetic effects. This study reveals a potential mechanism through which genetic

risk and environmental exposures can affect airway development, perhaps leading to

interventions that can help reduce the burden of asthma in socioeconomically disadvan-

taged children.

Introduction

Reduced lung function is a hallmark of asthma and chronic obstructive pulmonary disease

(COPD). Lung function measures, such as forced expiratory volume in one second (FEV1) and

forced vital capacity (FVC), are strong predictors of future all-cause mortality [1–6]. Airway

obstruction often begins in early life [7–10], with lower lung function in infancy being a risk

factor for the development of asthma in childhood [11] and COPD in late adulthood [12].

Genetic factors contribute to differences in lung function among individuals, with heritabil-

ity estimates ranging from 0.50 for FEV1 to 0.66 for FEV1/FVC ratio [13]. The many genome-

wide association studies (GWAS) of lung function measures [14–25] have implicated pathways

related to lung development [20,26–28], inflammation [26], and tissue repair [29], among oth-

ers [29]. Lung function is also affected by environmental exposures, such as smoking [30–32]

and air pollution [33], which can disrupt airway development in early life, increasing the risk

of childhood asthma and perhaps other chronic obstructive diseases [8–12,34,35]. For
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example, exposure to second hand smoke in utero and through childhood is associated with

increased risk of childhood asthma [36], lower lung function in adolescence [37], and larger

declines in lung function later in life [38,39]. Such adverse exposures are known to alter the

epigenetic landscape in exposed individuals [40,41], potentially mediating downstream biolog-

ical effects [42–44] and modifying genetic associations with lung function [45,46].

Environmental risk factors disproportionally affect socioeconomically disadvantaged chil-

dren, particularly those living in urban environments [47,48]. In fact, socioeconomic effects

contribute to disparities in lung health [49], including the higher burden of chronic respiratory

disease among Black and Hispanic children compared to non-Hispanic white children [49–

52]. Most genetic association studies of lung function, however, have been limited to adults of

European descent. Therefore, genetic risk factors discovered to date may not reflect those

most relevant to high-risk populations, which can further exacerbate health disparities [53,54].

Identifying genetic variants and epigenetic variation associated with lung function in high-

risk, multiethnic, pediatric populations may provide more direct insights into the early devel-

opment of impaired lung function.

In this study, we analyzed measures of lung function from the Asthma Phenotypes in the

Inner City (APIC) [55,56] and Urban Environment and Childhood Asthma (URECA)

cohorts [57], which consist of children living in low-income neighborhoods in 10 U.S. cities.

We performed whole-genome sequencing (WGS) on 1,035 participants from APIC and

URECA (ages 5–17 years; 67% non-Hispanic Black, 25% Hispanic; 66% with doctor-diag-

nosed asthma) and performed a GWAS with FEV1 and the FEV1/FVC ratio. We then per-

formed expression quantitative trait locus (eQTL) and methylation quantitative trait locus

(meQTL) mapping in airway epithelial cells and peripheral blood mononuclear cells

(PBMCs) from a subset of the URECA children. We further tested for genotype and DNA

methylation interactions with smoking exposure. We aimed to identify methylation-medi-

ated genetic and smoking exposure associations with lung function, linking environmental

effects, epigenetic modifications, and specific genetic risk alleles to reduced pulmonary

health in urban youth.

Results

Genetic variants at the TDRD9 locus are associated with lung function

We completed WGS and variant calling on 1,035 participants from the APIC and URECA

studies (APIC = 508, URECA = 527; Table 1). The mean sequencing depth was 31.6x per sam-

ple (S1A Fig). On average, 95.3%, 90.3% and 62.6% of each genome was mapped with at least

10x, 20x and 30x sequencing read depth, respectively (S1B Fig). Approximately 3.8 million

high-confidence autosomal variants were called per sample. Variant call concordance between

replicate sample pairs (n = 3) was >99.9% for single nucleotide polymorphisms (SNPs) and

was 98.9% for insertions and deletions (InDels; S1 Table).

The sequenced cohort included 696 (67%) participants who self-identified as non-Hispanic

Black and 258 (25%) who self-identified as Hispanic (Table 1). Principal component and

admixture analyses using genotypes were conducted to characterize the ancestry of the partici-

pants (Fig 1). This revealed that the genetic ancestry of our sample was 66% African, 26%

European, 7% Native American, and 1% East Asian. The cohort was 54% male and included

681 (66%) children diagnosed with asthma (Table 1).

Using the WGS variant calls for 14.1 million variants with minor allele frequency (MAF)

�0.01, we performed a GWAS of two lung function traits: FEV1 (% predicted) and FEV1/FVC

(Z-scores), measured between ages 5–17 (Table 1, S2 Fig), adjusting for age, sex, asthma diag-

nosis, the first 10 principal components (PCs) of ancestry, and sample relatedness using a
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linear mixed model [58]. The FEV1 GWAS included 896 participants from APIC (n = 504)

and URECA (n = 392), and the FEV1/FVC GWAS included 886 participants from APIC

(n = 497) and URECA (n = 389). The genomic control factor, λGC, for both GWAS results was

1.02 (S3 Fig), indicating adequate control for population stratification. We identified one locus

on chromosome 14q32.33 that was associated with FEV1 at genome-wide significance

(p<2.5x10-8); no other variants were associated with FEV1 and no variants were associated

with FEV1/FVC at genome-wide levels of significance (Fig 2). The FEV1 locus on chromosome

14 consisted of a 200 kb region of associated variants in high linkage disequilibrium (LD)

across the TDRD9 (Tudor Domain Containing 9) gene (Fig 3, S2 Table). The minor allele at

the lead SNP (rs10220464; MAF = 0.30) was significantly associated with lower FEV1

(p = 2.4x10-9; βz = -0.31, 95% confidence interval (CI) = -0.41- -0.21) and nominally associated

Table 1. Demographic characteristics of sequenced APIC and URECA participants.

Characteristic All APIC URECA

Number 1035 508 527

Age, years, mean (SD) 10.3 (2.5) 10.9 (3.1) 9.6 (1.1)

Female sex 477 (46%) 216 (43%) 261 (50%)

Race/Ethnicity
Black (non-Hispanic) 696 (67%) 319 (63%) 377 (72%)

White (non-Hispanic) 14 (1%) 7 (1%) 7 (1%)

Hispanic 258 (25%) 153 (30%) 105 (20%)

Other/mixed 64 (6%) 26 (5%) 38 (7%)

Unknown 3 (<1%) 2 (<1%) 1 (<1%)

Site
Baltimore 234 (23%) 85 (17%) 149 (28%)

Boston 189 (18%) 65 (13%) 124 (23%)

Chicago 62 (6%) 62 (12%) -

Cincinnati 45 (4%) 45 (9%) -

Dallas 38 (4%) 38 (9%) -

Denver 59 (6%) 59 (12%) -

Detroit 50 (5%) 50 (10%) -

New York 164 (16%) 64 (13%) 100 (19%)

St. Louis 155 (15%) - 155 (29%)

Washington, D.C. 39 (4%) 39 (8%) -

Household income < $15k 550 (54%) 273 (54%) 277 (54%)

Caretaker completed HS 756 (73%) 364 (72%) 392 (74%)

Caretaker smokes� 315 (33%) 123 (27%) 192 (39%)

Asthma 681 (75%) 508 (100%) 173 (43%)

BMI, Z-score, mean (SD) 0.9 (1.2) 1.0 (1.2) 0.8 (1.1)

FEV1, % predicted, mean (SD) 94.9 (16.3) 91.9 (17.6) 98.5 (14.5)

FEV/FVC, mean (SD) 0.80 (0.09) 0.78 (0.10) 0.83 (0.07)

Results are presented as counts and percentages or as means with standard deviations. Missing data were not

included in percentage calculations. Ages for URECA correspond to the year the genome-wide association study lung

function data were collected.

�Caretaker smoking status in URECA was collected at age 10. APIC: Asthma Phenotypes in the Inner City; BMI:

body mass index; FEV1: forced expiratory volume in one second; FEV1/FVC: ratio of FEV1 to forced vital capacity;

HS: high school; URECA: Urban Environment and Childhood Asthma.

https://doi.org/10.1371/journal.pgen.1010594.t001
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Fig 1. Ancestry composition of sequenced APIC & URECA participants. A) The top two principal components (PCs) of ancestry are plotted for sequenced

APIC & URECA participants, colored by self-identified race/ethnicity, along with the four ancestry reference populations used for determining ancestry.

NS = not specified. B) The proportion of genetic variance explained by each of the top 10 PCs. C) The relative values of the top 10 PCs are plotted for each

sample, colored by reference population. D) The estimated proportion of admixture from each ancestral population is shown for each sequenced APIC &

URECA participant. Each vertical line corresponds to one sample. 1KG, 1000 Genomes project; HGDP, Human Genome Diversity Project; YRI, Yoruba in

Ibadan, Nigeria; CEU, Utah residents with Northern and Western European ancestry; CHB, Han Chinese in Beijing, China; JPT, Japanese in Tokyo, Japan;

NAT, Native Americans from HGDP; EAS, East Asian ancestry; AFR, African ancestry; EUR, European ancestry.

https://doi.org/10.1371/journal.pgen.1010594.g001
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with lower FEV1/FVC (p = 1.1x10-3; βz = -0.17, 95% CI = -0.28- -0.07). Fine-mapping analysis

at this locus (chr14:103.7–104.3Mb) revealed one 95% credible set of effect variables consisting

of 59 SNPs, with rs10220464 having the highest individual posterior inclusion probability

among them (S4 Fig). We did not detect any significant differences in rs10220464 association

effect size by ancestry or asthma status or study for FEV1 (Fig 4). Furthermore, the TDRD9
locus remained the only genome-wide significant association when the two GWAS were per-

formed without adjustment for asthma status (S5 Fig). The overall effect size correlations

between asthma-adjusted and unadjusted GWAS results were r = 0.981 for FEV1 and r = 0.954

for FEV1/FVC.

We examined association results for the previously identified FEV1 and FEV1/FVC loci

reported in the meta-analysis of the UK Biobank and SpiroMeta Consortium by Shrine and

colleagues (n = 400,102) [23], which included 70 loci for FEV1 and 117 for FEV1/FVC. Of

these, 64 of the lead SNPs for FEV1 and 112 for FEV1/FVC were genotyped in the APIC and

URECA sample. Only one SNP, for FEV1, replicated with false discovery rate (FDR) q<0.05

(rs9610955; p = 1.0x10-4; βz = -0.38, 95% CI = -0.58- -0.19; S6 and S7 Figs). Cumulatively, 56%

(n = 36) and 54% (n = 60) of these SNPs demonstrated consistent directions of effect for FEV1

and FEV1/FVC, respectively, with effect size correlations of 0.29 (95% CI = 0.05–0.50;

p = 0.020) for FEV1 and 0.42 (95% CI = 0.25–0.56; p = 4.2x10-6) for FEV1/FVC.

Fig 2. Genome-wide association results. GWAS Manhattan plots for A) FEV1 and B) FEV1/FVC ratio. The horizontal red line indicates genome-wide significance

(p� 2.5x10−8). The dotted horizontal blue line indicates p = 1x10−5. Variants colored in green are in previously identified GWAS loci [23]. FEV1, forced expiratory

volume in one second; FEV1/FVC, ratio of FEV1 to forced vital capacity.

https://doi.org/10.1371/journal.pgen.1010594.g002
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Lung function risk alleles are associated with DNA methylation at the

TDRD9 locus in airway epithelial cells

The majority of complex trait-associated variants exert effects by altering gene regulatory net-

works [60–62]. These changes are often marked by quantitative differences in DNA methylation

levels [63–65]. We therefore investigated correlations between the FEV1-associated allele at

TDRD9 and DNA methylation at the locus in upper airway (nasal) epithelial cells (NECs) from

URECA children at age 11 (n = 286). We tested for associations between the FEV1 genotype, as

tagged by rs10220464, and DNA methylation levels at 796 CpG sites within 10 kb of any TDRD9
locus variants associated with FEV1 at p<1x10-5 (n = 82 variants). The rs10220464 genotype was

an meQTL for 5 CpG sites at an FDR<0.05 (S3 Table). DNA methylation levels at only one of

these CpG sites, cg03306306 (p = 2.3 x10-4; β = 0.07, 95% CI = 0.03–0.10; Fig 5A), was also sig-

nificantly associated with FEV1 at age 10 in URECA (p = 0.011; β = -11.48, 95% CI = -20.27-

-2.69; Fig 5B). The rs10220464 genotype accounted for 4.7% of residual variation in cg03306306

methylation, and cg03306306 methylation explained 2.4% of residual variation in FEV1.

We then analyzed cg03306306 methylation in PBMCs collected at age 7 (n = 169) [66] from

URECA children to evaluate whether the genotype and lung function associations observed in

NECs were shared with blood cells. In PBMCs, we observed no correlation between the

rs10220464 risk allele and cg03306306 methylation (Fig 5C), nor was there an association

between cg03306306 methylation and FEV1 (Fig 5D). These results indicate that cg03306306

methylation dynamics in the airway epithelium are not present in peripheral blood cells.

Fig 3. FEV1-associated variants on chromosome 14q32.33. FEV1 association results are shown at the TDRD9 gene

locus. Each variant is plotted according to its position and -log10 p-value, colored by linkage disequilibrium to the lead

variant, rs10220464, within the sample. Candidate cis-Regulatory Elements (cCREs) from ENCODE [59] are also

shown for the region. The inset panel in the upper right shows the distribution of adjusted FEV1 values by rs10220464

genotype. FEV1, forced expiratory volume in one second; MAF, minor allele frequency; EnhD, distal enhancer-like

signature; CTCF, CCCTC-binding factor sites; enhP, proximal enhancer-like signature; prom, promoter-like

signature; K4m3, trimethylation of histone H3 at lysine 4.

https://doi.org/10.1371/journal.pgen.1010594.g003
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Smoking exposure is associated with DNA methylation at the TDRD9 locus

DNA methylation at the TDRD9 locus had previously been associated with maternal smoking

during pregnancy [67,68]. Therefore, we tested for associations between environmental tobacco

smoke exposure (S8 Fig) and DNA methylation at this locus in the URECA children. Methyla-

tion at cg03306306 in NECs was significantly associated with nicotine metabolite (cotinine) lev-

els in urine collected at ages 7–10 years (p = 0.015; β = 0.03, 95% CI = 0.01–0.05; Fig 6).

Methylation at cg03306306 in PBMCs from age 7 was not associated with urine cotinine levels.

To determine if there was an interaction effect between genotype and smoking exposure on

DNA methylation and/or lung function, we repeated the cotinine association tests in URECA

with the addition of an interaction term to assess if the genotype effect differed between indi-

viduals with low and high exposures to smoking. There were no significant genotype-by-

smoking exposure interaction effects on methylation levels in NECs or PBMCs in URECA,

nor were there any significant methylation-by-smoking effects on FEV1 (S9 Fig). There was

modest evidence for a genotype-by-smoking exposure interaction effect on FEV1 in the com-

bined APIC and URECA sample, but this did not reach statistical significance (p = 0.06, S10

Fig). Considering the ages of the participants in APIC and URECA, most tobacco exposures

were likely due to secondhand smoke.

Fig 4. Rs10220464 effect size heterogeneity. A forest plot of the associations between rs10220464 and FEV1 (% predicted) are shown for distinct sub-cohorts

distinguished by self-identified race/ethnicity, study, and asthma status. βz, the association effect size between the rs10220464 allele count and the adjusted and

normalized FEV1 (% predicted) values; FEV1, forced expiratory volume in one second; N, total number of individuals included in the association test; MAF, minor allele

frequency within the sub-cohort; P, the association p-value.

https://doi.org/10.1371/journal.pgen.1010594.g004
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Genetic effects on lung function are mediated by DNA methylation

To determine if DNA methylation at the TDRD9 locus had a causal effect on lung function, we

performed a Mendelian randomization analysis using two-stage least squares (2SLS)

Fig 5. Genotype and FEV1 associations with DNA methylation. DNA methylation levels at cg03306306 are shown by rs10220464 genotype and FEV1 measures are

plotted against cg03306306 methylation levels in NECs at age 11 (A, B), and PBMCs at age 7 (C, D) from URECA. FEV1, forced expiratory volume in one second;

NECs, nasal epithelial cells; PBMCs, peripheral blood mononuclear cells; URECA, Urban Environment and Childhood Asthma study.

https://doi.org/10.1371/journal.pgen.1010594.g005
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regression. In the first stage, cg03306306 methylation levels in NECs were regressed on an

instrument composed of four meQTLs for cg03306306 (rs11160777, rs137961671, rs7143936,

rs11160776; Materials and methods). In the second stage, FEV1 was regressed on the predicted

DNA methylation values generated from the first stage regression, thereby yielding a causal

effect estimate of cg03306306 methylation on FEV1. Urine cotinine levels were included as a

covariate in both stages. The variance explained in the first stage regression was r2 = 0.11. The

causal effect of cg03306306 methylation on FEV1 was statistically significant (p = 0.020). We

also tested a single, unweighted allele score of the instrumental variables and observed a causal

effect association of p = 0.045 (stage-one r2 = 0.10). We further performed a bootstrapped

mediation analysis to test whether the rs10220464 risk allele effect on FEV1 was mediated by

DNA methylation. The indirect effect of rs10220464 on FEV1 via cg03306306 methylation was

significant, both when including asthma as a covariate (βz = -0.04, 95% CI = -0.10- -0.003, per-

cent mediated = 14.4%) and when asthma was not considered (βz = -0.04, 95% CI = -0.10-

-0.002, percent mediated = 15.0%). These results indicate that the effect of the FEV1-associated

genotype at the TDRD9 locus is partially mediated through its impact on nearby DNA methyla-

tion levels.

Gene expression and promoter-enhancer interactions implicate PPP1R13B
Trait-associated variants and DNA methylation often affect the transcriptome by influencing

the expression of one or more neighboring genes [69,70]. Identifying these correlations can

help infer causal mechanisms [71]. Therefore, we next explored the relationship between the

genotype for the lead FEV1 variant rs10220464 and the expression of genes within 1 Mb in

NECs and PBMCs from URECA children. Notably, the rs10220464 genotype was not associ-

ated with TDRD9 expression levels in these cells (NECs: p = 0.60, β = 0.12; PBMCs: p = 0.91, β
= 0.014). Of the 27 genes that were evaluated (S4 Table), rs10220464 was significantly associ-

ated with the expression of only one gene, PPP1R13B (Protein Phosphatase 1 Regulatory Sub-

unit 13B; FDR q = 2.77.x10-4; p = 1.3x10-5; β = 0.12, 95% CI = 0.06–0.17; Fig 7A), in NECs.

PPP1R13B expression levels were also the most strongly associated of the 27 genes with

Fig 6. DNA methylation association with smoking exposure. DNA methylation at cg03306306 in nasal epithelial

cells at age 11 are plotted against urine cotinine levels from URECA at ages 8–10 as measured using the NicAlert assay

(n = 285). URECA, Urban Environment and Childhood Asthma study.

https://doi.org/10.1371/journal.pgen.1010594.g006
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methylation at cg03306306 in NECs (p = 0.018; β = 0.10, 95% CI = 0.02–0.18; Fig 7B).

PPP1R13B expression in NECs, however, was not associated with FEV1 or smoking exposure

(S11 Fig).

The transcription start site of PPP1R13B resides 87 kb from rs10220464 and 152 kb from

cg03306306, suggesting long-range interactions between the FEV1-associated genotype and

the promoter of PPP1R13B. To determine whether any of the FEV1-associated GWAS variants

at the TDRD9 locus resided in regions that physically interacted with the promoters of cis-
genes, we evaluated chromatin interactions in lower airway (bronchial) epithelial cells (BECs)

[72], assessed by promoter-capture Hi-C. Forty-two of the GWAS variants resided in regions

that interacted with the promoters of 9 different genes expressed in NECs (Fig 8; S5 Table).

The gene most frequently mapped to these variants was PPP1R13B, with 15 variants located in

3 different interaction loops. Moreover, the strongest observed interaction was between a

region containing 4 FEV1-associated variants and the PPP1R13B promoter (CHiCAGO

score = 9.38; S5 Table), suggesting that this region is an enhancer for PPP1R13B expression.

This putative enhancer region is located just 2.21 kb from cg03306306.

Summary of study associations

The associations between the TDRD9 risk allele, cg03306306 DNA methylation in NECs,

smoking exposure, PPP1R13B gene expression, and FEV1 (% predicted) reported in this study

are summarized in Fig 9.

Discussion

Using whole-genome sequence variant calls in an asthma-enriched cohort of predominantly

African-American children raised in urban environments, we identified a genotype at the

TDRD9 locus associated with lower FEV1% predicted. This genotype effect was partially medi-

ated by DNA methylation in airway epithelial cells, which were also correlated with smoking

exposure. Data from RNA-sequencing and promoter-capture Hi-C in airway epithelial cells

Fig 7. PPP1R13B gene expression in NECs. PPP1R13B gene expression in NECs at age 11 are plotted against A) rs10220464 genotype (n = 324) and B)

DNA methylation at cg03306306 in NECs at age 11 (n = 254). NECs, nasal epithelial cells; CPM, counts per million.

https://doi.org/10.1371/journal.pgen.1010594.g007
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suggested that these FEV1-associated genetic and epigenetic variations influence the expres-

sion of the PPP1R13B gene through long-range interactions.

The PPP1R13B gene encodes a protein that promotes apoptosis, a form of programmed cell

death, via its interaction with the tumor suppressor p53 and is often referred to by its alias

ASPP1 (apoptosis-stimulating protein of p53 1) [73]. In response to oncogenic stress,

PPP1R13B translocates to the nucleus, where it enhances the transcriptional activity of p53 on

specific target genes relevant to apoptosis [74,75]. Exposure to smoking and fine particulate

matter induces epithelial apoptosis in the lung via p53 [76–78]. PPP1R13B may also promote

apoptosis in a p53-independent manner by inhibiting autophagy in response to upregulation

by EGR-1 (early growth response protein 1) [79]. EGR-1 mediates stress-induced proinflam-

matory responses in the airway epithelium and contributes to the pathogenesis of COPD [80–

85]. Within the lung, PPP1R13B is indeed predominantly expressed in epithelial cells, particu-

larly in alveolar type 2 cells, and less so in immune cells and fibroblasts [86,87]. However,

Cheng and colleagues studied PPP1R13B function in lung fibroblasts and found that it was

upregulated following SiO2 exposure, where it promoted fibroblast proliferation and migration

through endoplasmic reticulum stress and autophagy pathways [88]. Overall, these studies sug-

gest that PPP1R13B plays a key role in maintaining tissue homeostasis by regulating apoptosis

and autophagy in response to environmental stimuli [74,89,90]. The specific function(s) of this

gene in the airway epithelium and its potential impact on the development of airway obstruc-

tion remain to be elucidated. PPP1R13B expression in airway epithelial cells at age 11 was not

associated with lung function or urine cotinine levels in the URECA children, but the cofactors

Fig 8. Promoter-enhancer interactions at TDRD9 locus in nasal epithelial cells. Promoter-to-enhancer chromatin interactions captured by Hi-C in nasal epithelial

cells from URECA at age 11 are displayed as grey arcs. SNPs associated with FEV1 (p<1x10-5) are marked by blue lines in the top row according to their genomic

position on chromosome 14. The lead FEV1 SNP, rs1022464, is highlighted in yellow. CpG sites associated with rs1022464 (FDR<0.05) are displayed as green markers

below the genes, with cg03306306 highlighted in green. Chromatin Interactions containing SNPs associated with FEV1 (p<1x10-5) are highlighted in blue. Magenta arcs

highlight interactions between the PPP1R13B promoter and regions containing FEV1 SNPs and/or rs1022464-associated CpG sites. FEV1, forced expiratory volume in

one second; SNPs, single nucleotide polymorphisms; meQTL, methylation quantitative trait locus; pcHi-C, promoter capture Hi-C.

https://doi.org/10.1371/journal.pgen.1010594.g008
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of this gene [79,91] have been found previously to be upregulated in smokers with COPD

[81,92]. Given its association with lung function alleles in our study, its expression in the air-

way epithelium, and its purported functions in autophagy and apoptosis pathways, additional

study of PPP1R13B in lung and airway development is warranted, particularly in the context of

adverse environmental stimuli, many of which are enriched in low-income urban

environments.

In NECs, PPP1R13B gene expression was significantly associated with DNA methylation

levels at the cg03306306 CpG site in TDRD9. Methylation at the TDRD9 locus was previously

reported to correlate with specific environmental exposures [67,68,93] and with TDRD9
expression in blood [67,94]. TDRD9 is lowly expressed in the lung but is detected in alveolar

macrophages and in monocytes [86,87]. Interestingly, the gene was among the most differen-

tially expressed genes in alveolar macrophages in smokers relative to non-smokers [95], and its

knockdown in TDRD9-expressing lung carcinomas resulted in increased apoptosis [96]. Its

expression was not correlated with the rs10220464 genotype in URECA NECs or PBMCs, but

rs10220464 is an eQTL for TDRD9 expression in whole blood in GTEx data [97], with the

minor allele associated with lower TDRD9 expression. Although evidence from this study

points to PPP1R13B in the airway epithelium, we can’t exclude the possibility that TDRD9 or

other genes could contribute to the locus’ influence on lung function via other tissues.

The FEV1 association signal at the TDRD9 locus included many variants in high LD across

a 200 kb region that could be independently contributing to function. Some of the variants lie

in different long-range enhancers [59]. It is also possible that one or more correlated variants

were not included because they failed quality control standards. In addition, due to the limited

sample size of the WGS cohort, we excluded rare variants (MAF<0.01) from consideration,

Fig 9. Summary of study associations. The TDRD9 locus was significantly associated with FEV1 (% predicted) in the

APIC and URECA cohorts. This association was partially mediated by DNA methylation at the cg03306306 CpG site

in TDRD9 in NECs, which was also significantly associated with environmental tobacco smoke exposure. The TDRD9

risk allele and DNA methylation were both significantly associated with PPP1R13B gene expression, but PPP1R13B
gene expression was not significantly correlated with FEV1 itself. Unidirectional arrows represent inferred causality.

https://doi.org/10.1371/journal.pgen.1010594.g009
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which could contribute to the signal at this locus. Additional functional studies are needed to

identify the causal variant(s) and full mechanism of action.

The correlations of rs10220464, FEV1, and smoking exposure with cg03306306 methylation

in NECs were absent in PBMCs. Although global DNA methylation patterns between tissues

are highly correlated [98], tissue-specific differentially methylated regions are more likely to be

functional, particularly if they are positively correlated with gene expression [99]. The TDRD9
locus has not been identified in epigenome-wide association studies of lung function [44,100–

104], but these measured DNA methylation from blood, which may be an insufficient proxy

for methylation in the lungs [105]. Indeed, previous studies have found that DNA methylation

profiles in NECs are significantly more predictive of pediatric asthma than those in PBMCs

[106,107]. Furthermore, epigenetic biomarkers can change with age. For example, epigenetic

markers for lung function in adults do not replicate in children [101].

We tested for interactions between smoking exposure and rs10220464 genotype effects on

cg03306306 and on FEV1 and between smoking exposure and cg03306306 methylation effects

on FEV1. We did not detect any significant interactions, but our analyses in that regard could

have been underpowered given our observed effects and sample sizes [36]. Furthermore,

because this study was limited to children living in low-income urban neighborhoods, envi-

ronmental risk factors are likely to be more prevalent than in the general population [55–57].

Additionally, such exposures are not necessarily ubiquitous across all the different neighbor-

hoods and communities represented in this sample, and although environmental tobacco

smoke exposure was examined and the socioeconomic range represented in this study is rela-

tively narrow, there could be relevant environmental factors that were not considered.

To infer causality, Mendelian randomization and mediation analyses rely on assumptions

that are often difficult to empirically verify. For the Mendelian randomization analysis, we

identified instrumental variants associated with the intermediate cg03306306 that were not

independently associated with the outcome, FEV1. However, because these variants were

selected from the same dataset that the outcome testing was performed in, they were suscepti-

ble to bias from winner’s curse [108]. To mitigate the potential impact from this effect and

from weak instruments, we performed a secondary analysis in which we combined the instru-

mental variants into a single, unweighted score. For the mediation analysis, unmeasured con-

founding can invalidate direct and indirect effect estimates [109]. To protect against such bias,

we systematically tested for confounding associations with additional environmental measures

available in APIC and URECA (Materials and methods). Nonetheless, there may still exist

unknown confounding factors that were not measured. Ultimately the results of the Mendelian

randomization and mediation analyses indicate that methylation at cg03306306 in NECs

mediated the rs10220464 genotype effect on FEV1, but there was residual correlation between

rs10220464 and FEV1, signifying that the genotype effect was only partially mediated by

cg03306306.

Another limitation of our study was the relatively small size for a GWAS. This likely con-

tributed to the lack of statistically significant replication for previously identified lung function

loci [23], considering that the observed effects were correlated with results of prior GWAS.

However, the APIC and URECA cohorts represent understudied, high-risk, pediatric popula-

tions that likely harbor distinct genetic and environmental risk factors compared to older, pri-

marily European ancestry cohorts included in previous GWAS of lung function [14–20,23].

The findings of this study have yet to be replicated in an independent cohort, and should

therefore be considered preliminary; however, it is possible that these associations would differ

in populations with dissimilar ancestry, age, exposures, and/or asthma risk.

There are additional caveats to consider when interpreting our findings. First, this study

integrated data from two cohorts with different recruitment criteria, asthma definitions, and
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ancestral compositions. Furthermore, most of the analyses beyond the GWAS were limited to

subsets of the URECA participants. However, we did not observe significant genetic effect het-

erogeneity for rs10220464 by study, asthma status, or ancestry. To control for potential popula-

tion stratification, we used the first ten PCs of ancestry to adjust lung function values and then

included the ancestry PCs as fixed effects in the GWAS models (Materials and methods). The

linear mixed models also included a genetic relatedness matrix as a random effect to account

for residual population structure. Because children with asthma have lower lung function over-

all (Table 1) and their lung function may be more affected by environmental exposures [110–

112], we adjusted for asthma status in the GWAS, as in previous GWAS [113–116]. The likeli-

hood of discovering lung function variants with consistent effects in asthmatics and non-asth-

matics was thereby increased, although genetic determinants of lung function may differ by

asthma status [117]. Furthermore, adjusting for disease status could potentially introduce col-

lider bias [118]. The significant genotype effect at the TDRD9 locus, however, remained the

only genome-wide-significant association when asthma was excluded as a covariate, and

adjustment for asthma did not substantively alter the mediation results. Second, some of the

analyses used data collected at different timepoints. For example, most of the urine cotinine

and spirometry measures were collected at age 10, but the samples used for the NEC DNA

methylation and RNA-seq analyses were collected at age 11. Because DNA methylation and

gene expression can change over time [40,119–121], their values at age 11 may not be fully rep-

resentative of exposures at age 10. Finally, the promoter-capture Hi-C data were from lower

airway (bronchial) epithelial cells, whereas the DNA methylation and RNA-seq data were gen-

erated from upper airway (nasal) epithelial cells. Although there are transcriptomic differences

between epithelial cells from each compartment, their respective profiles are highly correlated

[122–126], and the use of NECs as a proxy for the lower airway epithelium has been validated

for both gene expression and epigenetic studies [124–127].

Our study identified a novel avenue through which genetic risk and environmental expo-

sures could affect the airways of children raised in low-income urban neighborhoods. Further

research into this pathway may yield mechanistic insights into the early development of

impaired lung function, perhaps leading to interventions that can help reduce the high inci-

dence and morbidity of chronic respiratory diseases in socioeconomically disadvantaged

children.

Materials and methods

Ethics statement

The institutional review boards (IRBs) from all participating sites of the URECA (Clinical-

Trials.gov Identifier: NCT00114881) and APIC (ClinicalTrials.gov Identifier: NCT01383941)

studies gave initial ethical approval for this work. These include IRBs from the following insti-

tutions: National Jewish Health, Denver, CO (APIC); Children’s National Medical Center,

Washington, DC (APIC); Children’s Memorial Hospital, Chicago, IL (APIC); Johns Hopkins

University, Baltimore, MD (APIC & URECA); Boston University School of Medicine, Boston,

MA (APIC); Henry Ford Health Center, Detroit, MI (APIC); Columbia University Medical

Center, New York, NY (APIC & URECA); Cincinnati Children’s Hospital, Cincinnati, OH

(APIC); University of Texas Southwestern Medical School, Dallas, TX (APIC); Boston Medical

Center, Boston, MA (URECA); Saint Louis Children’s Hospital, Saint Louis, MO (URECA). In

2014, ethical oversight for these studies transitioned to a single, central IRB managed by WGC

IRB (formerly Western IRB), whereupon WGC IRB gave ethical approval for this work [128].

Written informed consent was obtained from legal guardians of all participating children, who

also assented.
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Study population and phenotypes

We analyzed samples and phenotypes from two National Institutes of Allergy and Infectious

Diseases (NIAID)-funded asthma studies conducted by the Inner-City Asthma Consortium

(ICAC) [129]: the Asthma Phenotypes in the Inner City (APIC) study [55,56] and the Urban

Environment and Childhood Asthma (URECA) birth cohort study [57]. The APIC study was

a 1-year, prospective, epidemiological investigation of children and adolescents with asthma

(ages 6–17) living in low-income areas (�20% of residents below poverty level) in nine U.S.

cities (Baltimore, MD; Boston, MA; Chicago, IL; Cincinnati, OH; Dallas, TX; Denver, CO;

Detroit, MI; New York, NY; Washington, DC). The APIC participants were required to have a

diagnosis of asthma by a physician and to have had at least two episodes requiring bronchodi-

lator administration within the past year [55]. The URECA study enrolled pregnant women

living in low-income areas of four U.S. cities (Baltimore, MD; Boston, MA; New York, NY;

St. Louis, MO) who reported that either or both parents of the index pregnancy had a history

of asthma or allergic diseases [57]. This prospective, longitudinal study followed each child

through adolescence, periodically collecting samples and clinical and environmental exposure

data.

Lung function was assessed using spirometry. Lung function measures used in this study

for APIC participants were taken at the study entry visit (V0). For URECA, measurements

from age 10 were used when available; otherwise, the most recent measurement after age 5 was

used (S6 Table). Asthma status was assigned according to study-specific criteria. For APIC,

asthma was defined by a doctor’s diagnosis of asthma and short-acting beta-agonist use in the

year prior [55]. For URECA, asthma status was determined either by doctor diagnosis, lung

function reversibility, or symptom recurrence [130]. The 2012 Global Lung Initiative reference

equations [131] were applied to generate percent predicted estimates for FEV1 and Z-scores

for FEV1/FVC ratio. Urine cotinine levels were measured using NicAlert immunochromato-

graphic assays, which report results on a scale of 0–6 according to different cotinine concentra-

tion ranges [132]. For URECA, urine cotinine results were available at age 10 for most

participants (n = 391); otherwise, assays from age 8 (n = 29) or age 7 (n = 2) were used. This

study utilized DNA methylation and RNA-seq data generated for other URECA studies; there-

fore, the number of samples included in each analysis varied and was limited by data availabil-

ity (S7 Table, S12 Fig).

Whole-genome sequencing and data processing

DNA was extracted from peripheral blood (APIC, URECA) or cord blood (URECA) and

quantified using an Invitrogen Qubit 3 Fluorometer. DNA quality was assessed using the

Thermo Scientific NanoDrop One spectrophotometer and confirmed using an Agilent TapeS-

tation system. DNA was processed in batches of 60 using the Illumina Nextera DNA Flex

library prep kit with unique dual adaptors. Each set of 60 libraries was sequenced over two

NovaSEQ S4 flowcells. Whole-genome sequencing was performed by the University of Chi-

cago Genomics Facility using the Illumina NovaSEQ6000, which generated 150 bp paired-end

reads. Sequencing data processing followed the Broad Institute’s Genome Analysis Toolkit

(GATK) best practices for germline short variant discovery, as implemented in the harmo-

nized pipeline used by the New York Genome Center for TOPMed [133,134]. Reads were

aligned to the GRCh38 human reference genome (including alternate loci and decoy contigs)

using BWA-MEM (Burrows-Wheeler Aligner; v0.7.17). Aligned reads further underwent

duplicate removal (Picard MarkDuplicates; v2.8.1) and base quality score recalibration (GATK

BaseRecalibrator; v3.8) against known sites (dbSNP138, known InDels, and Mills and 1KG

gold standard InDels) provided in the GATK resource bundle. Read alignment metrics were
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calculated using Picard CollectWgsMetrics (v2.8.1) for all aligned reads and for aligned reads

with base quality and mapping quality� 20. DNA contamination levels were estimated using

VerifyBamID2 (v1.0.6) [135]. Samples with estimated DNA contamination >0.05 were

removed from consideration. Samples with poor coverage (<50% of the genome with�20x

depth) were also removed from further consideration. To identify potential sample swaps,

WGS samples were validated using independent genotyping arrays.

QC array for sample validation

To identify potential WGS sample swaps, we independently genotyped the APIC and URECA

participants using the Illumina QC Array-24 BeadChip. SNPs were tested for Hardy-Weinberg

Equilibrium (HWE) within each self-identified ancestry group using the chi-square test and

removed if they deviated from HWE (Bonferroni-adjusted p<0.05) within at least one ances-

try. SNPs with call rates <0.98 were also removed. Samples with total variant call rates<0.95

were not used. Array data with incorrect or indeterminate sex according to X-chromosome

heterozygosity rates (Plink v1.90) were also not used [136]. For fourteen of the sequenced

URECA samples, we used results from the Illumina Infinium CoreExome+Custom array for

sample validation, which were generated and controlled for quality as described by McKennan

and colleagues [137]. WGS and array genotypes were tested for concordance using VerifyBa-

mID (v1.1.3) [138]. WGS samples that were not validated with array data were not included in

genetic analyses (n = 2).

Variant calling and quality control

Variant calls were generated using GATK HaplotypeCaller (v4.1.3.0), accounting for contami-

nation estimates, for single nucleotide variants and short insertions, deletions, and substitu-

tions. Sample genotypes were joined using GATK GenomicsDBImport and GenotypeGVCFs

over the genomic intervals defined in the GATK WGS calling region interval list provided in

the GATK resource bundle. Genotypes with read depth (DP) <10 or quality scores (GQ)<20

were set as missing. Sites with�0.1 missingness were then removed from consideration. Vari-

ants with minor allele frequencies >0.05 were tested for accordance with HWE, accounting

for population structure [139]. Sites with common variants that deviated from structural HWE

(P<1x10-6) were removed from consideration. Sites with quality by depth ratios (QD) <4 or

>34 were also removed, as we observed declines in variant transition/transversion (TS/TV)

ratios beyond these bounds (S13 Fig). Variant site quality was further evaluated using

machine-learning-based Variant Quality Score Recalibration (VQSR). First, SNPs were mod-

eled using GATK VariantRecalibrator (v4.1.3.0) with Hapmap 3 and with Omni 2.5M SNP

chip array as truth resources, 1000G as a training resource, and dbSNP138 as a known sites

resource. InDels were likewise trained with the Mills and 1KG gold standard InDels dataset as

a truth resource and dbSNP138 as a known sites resource. SNPs and InDels with resultant pre-

dicted true positive probabilities below 0.997 and 0.990, respectively, were removed from con-

sideration. Variant call accuracy was assessed by comparing call concordance between three

replicate sequencing samples using VCFtools (v0.1.14) vcf-compare [140]. Variant call file

manipulation was conducted using BCFtools (v1.10.2) [141].

Ancestry estimation

Ancestry principal components (PCs) were calculated on the intersect of high quality single-

nucleotide variants (SNVs) genotyped in the WGS data and several reference panels from the

1000 Genomes Project (1KG; n = 156) [142] and the Human Genome Diversity Project

(HGDP; n = 52) [143]. Native American reference samples consisted of 52 samples from the
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HGDP with<5% non-native ancestry, according to an analysis of roughly 2 million markers

using the program ADMIXTURE (v1.3.0) [144]. These samples were filtered for site quality

(missingness 5%; ExcHet<60; VQSLOD�8.3929), genotype quality (GQ�20) and depth

(DP�10), MAF >0.02, and HWE (p>0.001) [143]. European, West African, and East Asian

reference samples were randomly selected from CEU (n = 52), YRI (n = 52), JPT (n = 26), and

CHB (n = 26) samples in the phase 3 1KG reference panel [142]. The combined genotypes

were pruned for linkage disequilibrium (LD)�0.1 within 1Mb intervals. Ancestry PCs were

calculated, accounting for subject relatedness, using PC-Air [145] and PC-Relate [146]. Initial

kinship estimates were produced using KING [147]. Kinship and PCs were iteratively esti-

mated using PC-Relate and PC-Air, respectively, until estimates for the top 5 PCs stabilized

(n = 3). Reference population admixture estimates were estimated for each WGS sample with

ADMIXTURE (v1.3.0), using the 1KG and HGDP reference samples for supervised analysis

[144]. Because sample relatedness can lead to biased admixture estimates [145,148], admixture

was estimated for each WGS sample separately.

Quantitative trait association testing

Quantitative traits were adjusted for covariates and normalized using a two-stage approach

[149,150]. First, each trait was regressed on age, sex, asthma status, and the first 10 PCs of

ancestry. The residuals were then rank-normalized using an inverse normal transformation.

In the second stage, the normalized residuals were considered outcome variables in the

GWAS, adjusting for the same covariates as in the first stage. Genome-wide association testing

was performed for all high-quality common variant calls (MAF�0.01) using a linear mixed

model, as implemented in GEMMA [58], with subject relatedness included as a random effect.

Individuals who were not evaluated for asthma at ages 7 or 10 (n = 127) were excluded from

trait association testing. The threshold we applied for genome-wide significance was

P�2.5x10-8, based on a 5x10-8 GWAS threshold and further accounting for two tests. To iden-

tify potential collider bias introduced by adjusting for asthma status, we repeated the GWAS

without accounting for asthma status in either covariate-adjustment stage.

Fine-mapping analysis was conducted using SuSiE (SusieR R package v0.12.27) [151].

SuSiE applies a form of Bayesian variable selection in regression using iterative Bayesian step-

wise selection to identify “credible sets” of variables. Each credible set has a 95% probability of

containing at least one causal effect SNP. Prior to running SuSiE, we regressed asthma, age,

sex, and ancestry PCs 1–10 from the genotype matrix and outcome vector (the normalized

FEV1 residuals).

To explore whether there was lead-SNP effect heterogeneity by ancestry, study, or asthma

status, we performed additional single-SNP quantitative trait association tests within several

different sub-cohorts and introduced interaction effects into our models. For ancestry, we per-

formed separate association tests in each of the non-Hispanic Black, Hispanic, and white pop-

ulations, according to self-identified race/ethnicity. We then tested for genotype-by-ancestry

interaction effects across APIC and URECA by using admixture proportions as covariates in

our models, in lieu of ancestry PCs, and including an interaction term with the lead SNP for

each continental ancestry group in turn. We tested these interaction effects using the—gxe

argument in GEMMA in four separate models (one for each ancestry). To determine whether

there was effect heterogeneity by study (APIC vs. URECA), we performed separate association

tests in each study and also tested the association across APIC and URECA with the addition

of a study covariate and a genotype-by-study interaction term. For asthma status, we per-

formed separate association tests in the asthmatics and non-asthmatics and tested a genotype

interaction term with asthma status.
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DNA methylation analysis

DNA from NECs was collected at age 11 from 287 URECA participants and assessed for

genome-wide methylation patterns using the Illumina Infinium Human Methylation EPIC

Beadchip. DNA methylation levels from PBMCs at age 7 in URECA were collected and pro-

cessed as previously described [66]. MeQTL analysis was performed using Matrix eQTL [152].

NEC DNA methylation levels were adjusted globally for sex, array, plate, collection site, DNA

concentration, percent ciliated epithelial cells, percent squamous cells, and ancestry PCs 1–3.

Principal components analysis was then performed on the residual methylation levels, and the

first three PCs were included as covariates in the meQTL association tests. Additional methyla-

tion PCs were not included in association tests, as they were significantly correlated with

asthma phenotypes. Associations with FDR-adjusted P<0.05 were considered significant.

MeQTL analysis with the PBMC data included sex, collection site, plate, ancestry PCs 1–3, and

eight latent factors [153] (protecting for FEV1 at age 7) as covariates.

To test CpG site methylation associations with lung function in NECs, we performed linear

regressions on the most recent FEV1 measures, with age, sex, ancestry PCs 1–3, and methyla-

tion PCs 1–3 as covariates. For the PBMC analysis, we set FEV1 at age 7 as the dependent vari-

able, with sex, collection site, plate, ancestry PCs 1–3, and latent factors included as covariates.

For association testing with smoking exposures, we ran linear regressions for DNA methyl-

ation and lung function in NECs and PBMCs, as described above, with the addition of cotinine

concentrations as a predictor. We further tested for smoking-by-genotype interaction effects

on DNA methylation and lung function using these models by adding an interaction term

(cotinine concentration: rs10220464 genotype). Proportions of explained variance were calcu-

lated by squaring partial correlation coefficients of regression model predictors [154]. One

sample from one sibling pair was removed from all methylation analyses to prevent confound-

ing due to relatedness.

Mendelian randomization and mediation analysis

To assess the causal effects of DNA methylation on lung function, we performed one-sample

Mendelian randomization analysis. We applied a 2SLS regression to URECA samples with

WGS and DNA methylation data (n = 285) using ivreg [155]. DNA methylation levels in

NECs at the cg03306306 CpG site were first adjusted for methylation PCs 1–3 and used as the

endogenous, exposure variable. The adjusted and normalized FEV1 values from the GWAS

were set as the dependent outcome variable. Urine cotinine levels were included as an exoge-

nous covariate (included in both stages). The instrumental variables were chosen from a set of

candidate SNPs that were at least nominally associated with cg03306306 methylation with

p<0.15. Clustering of pairwise linkage disequilibrium values between these SNPs revealed six

distinct haplotypes (S14 Fig). To ensure instrument exogeneity, each candidate SNP was tested

for association with FEV1 after conditioning on cg03306306 methylation and urine cotinine,

and SNPs associated with p<0.05 were removed from consideration. Of the remaining candi-

date SNPs, one was chosen from each haplotype, resulting in an instrument composed of 4

SNPs (rs11160777, rs137961671, rs7143936, rs11160776). Instrument relevance was validated

using the F test, endogeneity using the Wu-Hausman test, and instrument exogeneity using

the Sargon test. We tested two 2SLS models: one where the instrumental variables were

included as individual predictors, and another featuring an unweighted allele score of the four

instrumental variants to reduce potential bias from weak instruments and/or winner’s curse

[156,157].

Mediation analysis was conducted with ROBMED [158]. The adjusted and normalized FEV1

residuals were set as the dependent variable, adjusted cg03306306 methylation as the mediator,
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and rs10220464 as the independent variable. Age at FEV1 measurement, sex, asthma status,

ancestry PCs 1–3, and urine cotinine levels were included as covariates. We also performed a

secondary mediation analysis without adjusting for asthma status. To identify additional, poten-

tial confounders that could invalidate our mediation model, we systematically tested for associa-

tions with 2 socioeconomic variables and 11 environmental exposures available in APIC and

URECA (S8 Table, S15 Fig). For each environmental exposure, we tested whether the variable

was associated with the mediator (cg03306306) and whether the variable was associated with the

outcome (FEV1) conditional on the mediator. To ensure no exposure-mediator interactions, we

repeated the cg03306306 association test with FEV1 with rs10220464 included as a predictor

with a rs10220464: cg03306306 interaction term. The indirect effect of rs10220464 on FEV1 via

cg03306306 methylation was estimated using 100,000 bootstrap resamples.

Gene expression analysis

We analyzed gene expression in NECs and PBMCs from the URECA birth cohort using RNA-

seq. The NEC data were derived from 323 children (155 females, 168 males) at age 11 years at

the time of sample collection, and the PBMC data were derived from 130 (53 females, 77

males) PBMC children aged 2 years at the time of collection. Sequencing reads were mapped

and quantified using STAR (v2.6.1) [159] and samples underwent trimmed means of M-value

(TMM) normalization and voom transformation [160]. Genes with<1 count per million

mapped reads (CPM) were removed from analysis. For eQTL association testing in NECs we

corrected for sex, the first three ancestry PCs, collection site, epithelial cell proportion,

sequencing batch, and 14 latent factors [153] using limma [161]. In PBMCs, we corrected for

sex, the first three ancestry PCs, collection site, and 19 latent factors.

Chromatin interaction analysis

Chromatin interactions were assessed using promoter capture Hi-C [162,163] in ex vivo

human BECs from 8 adult lung donors, including 4 with asthma. The data were processed and

analyzed as previously described [72,164]. Chromosomal interactions were evaluated using the

CHiCAGO algorithm [165]. Interactions with CHiCAGO scores�5 were considered signifi-

cant [165]. Genetic variants within 1 kb of a given interacting fragment were considered part of

the chromatin loop. Genes that were not expressed in NECs were not included in the analysis.

Supporting information

S1 Fig. Whole-genome sequencing depth and coverage. A) Histogram of 1,035 whole-

genome sequencing (WGS) samples from APIC and URECA by mean depth of coverage. B)

Histogram of WGS samples based on proportion of genome covered at 20x, 25x, and 30x

depth. APIC, Asthma Phenotypes in the Inner City study; URECA, Urban Environment and

Childhood Asthma study.

(PDF)

S2 Fig. Distribution of lung function measures by study. A) Distribution of FEV1 (% pre-

dicted) in APIC and URECA. B) Distribution of FEV1/FVC in APIC and URECA. APIC,

Asthma Phenotypes in the Inner City study; URECA, Urban Environment and Childhood

Asthma study. FEV1, forced expiratory volume in one second; FVC, forced vital capacity.

(PDF)

S3 Fig. P-value distributions of GWAS results. Quantile-quantile plots of the GWAS results

with corresponding genomic control factors (lambda) are shown for A) FEV1 (% predicted)
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and B) FEV1/FVC. FEV1, forced expiratory volume in one second; FVC, forced vital capacity.

(PDF)

S4 Fig. Fine-mapping results for FEV1 (% predicted) at the TDRD9 locus. The X-axis shows

the chromosome position on chromosome 14. The Y-axis is the posterior inclusion probability

(PIP). Variants highlighted in red represent a credible set, in which there is a 95% probability

that at least one of the variants is causal. FEV1, forced expiratory volume in one second.

(PDF)

S5 Fig. Genome-wide association results without adjustment for asthma. GWAS Manhat-

tan plots for A) FEV1 and B) FEV1/FVC ratio, without adjustment for asthma status. The hori-

zontal red line indicates genome-wide significance (p� 2.5x10−8). The dotted horizontal blue

line indicates p = 1x10−5. Variants colored in grey are the GWAS results with asthma adjust-

ment. FEV1, forced expiratory volume in one second; FEV1/FVC, ratio of FEV1 to forced vital

capacity.

(PDF)

S6 Fig. Replication of FEV1 GWAS SNPs. Association statistics for previously identified

FEV1 GWAS SNPs [23]. 64 out of 70 previously identified SNPs were genotyped in APIC &

URECA. GWAS, genome-wide association study; SNP, single nucleotide polymorphism;

APIC, Asthma Phenotypes in the Inner City study; URECA, Urban Environment and Child-

hood Asthma study. FEV1, forced expiratory volume in one second.

(PDF)

S7 Fig. Replication of FEV1/FVC GWAS SNPs. Association statistics for previously identified

FEV1/FVC GWAS SNPs [23]. 112 out of 117 previously identified SNPs were genotyped in

APIC & URECA. GWAS, genome-wide association study; SNP, single nucleotide polymor-

phism; APIC, Asthma Phenotypes in the Inner City study; URECA, Urban Environment and

Childhood Asthma study. FEV1, forced expiratory volume in one second; FVC, forced vital

capacity.

(PDF)

S8 Fig. NicAlert Results by Study. Distribution of urine cotinine levels, as measured using

NicAlert immunochromatographic assays, which report results on a scale of 0–6 according to

the labeled concentration ranges. Proportions were calculated relative to the number of sam-

ples with available NicAlert results. APIC, Asthma Phenotypes in the Inner City study;

URECA, Urban Environment and Childhood Asthma study.

(PDF)

S9 Fig. DNA methylation at cg03306306 by smoking exposure. DNA methylation levels at

cg03306306 are shown by rs10220464 genotype in URECA participants with low and high

smoking exposures in (A) NECs at age 11 and (B) PBMCs at age 7. FEV1 (% predicted) are

also shown by cg03306306 DNA methylation levels in URECA participants with low and high

smoking exposures in (C) NECs at age 11 and (D) PBMCs at age 7. NECs, nasal epithelial cells;

PBMCs, peripheral blood mononuclear cells; FEV1, forced expiratory volume in one second;

URECA, Urban Environment and Childhood Asthma study.

(PDF)

S10 Fig. Genotype associations with FEV1 by smoking exposure. FEV1 (% predicted) are

shown by rs10220464 genotype in APIC & URECA participants with low and high smoking

exposures according to urine cotinine levels. FEV1, forced expiratory volume in one second;

APIC, Asthma Phenotypes in the Inner City study; URECA, Urban Environment and

PLOS GENETICS Multi-omic study of lung function in urban children

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010594 January 13, 2023 21 / 32

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010594.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010594.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010594.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010594.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010594.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010594.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010594.s010
https://doi.org/10.1371/journal.pgen.1010594


Childhood Asthma study.

(PDF)

S11 Fig. PPP1R13B expression in NECs vs. smoking exposure, FEV1. PPP1R13B expression

in NECs at age 11 was not associated with smoking exposure at age 10 (A) nor with FEV1 (%

predicted) at age 10 (B) in URECA. NECs, nasal epithelial cells; FEV1, forced expiratory vol-

ume in one second; URECA, Urban Environment and Childhood Asthma.

(PDF)

S12 Fig. Data availability across APIC and URECA. Data availability for measures used in

this study are shown for all sequenced samples. Each row represents a pattern of available and

missing data, with green squares indicating available data and grey squares indicating missing

data. Total counts of available data points for each variable are listed across the top of the fig-

ure. Total counts for each data availability pattern are listed along the right.

(PDF)

S13 Fig. Transitions/transversions vs. quality/depth in WGS variant calls. The transition/

transversion ratio (TS/TV) is plotted against the variant call quality/depth metric (QD) across

all WGS SNP calls in APIC & URECA. Sites with QD less than 4 or greater than 34 were

removed from consideration in this study. SNPs, single nucleotide polymorphisms; WGS,

whole-genome sequencing; APIC, Asthma Phenotypes in the Inner City study; URECA,

Urban Environment and Childhood Asthma study.

(PDF)

S14 Fig. Intercorrelation of Mendelian randomization candidate instrument SNPs in

URECA. Instrumental variables were chosen from a set of candidate SNPs that were at least

nominally associated with cg03306306 methylation with p<0.15. The correlation values

between these SNPs are shown, clustered using Ward’s method. The four SNPs used for the

instrument are highlighted. URECA, Urban Environment and Childhood Asthma.

(PDF)

S15 Fig. Intercorrelation of phenotypes and environmental variables in APIC & URECA.

The correlations are shown between FEV1 (% predicted), smoking exposure (NicAlert), the

primary the lead FEV1 SNP rs10220464, DNA methylation at cg03306306, 11 environmental

exposures, and 2 socioeconomic indicators, clustered using Ward’s method. APIC, Asthma

Phenotypes in the Inner City study; exp., exposure; URECA, Urban Environment and Child-

hood Asthma.

(PDF)

S1 Table. Post-QC sequencing call concordance between replicates. Variant call concor-

dance between three pairs of replicate samples, by variant type and cohort allele frequency.

SNPs, single nucleotide polymorphisms; MAF, minor allele frequency; InDels, insertions and

deletions.

(PDF)

S2 Table. FEV1-associated variants in chr14q32.33. All variants in chr14q32.33 associated

with FEV1 (% predicted) with p<1x10-5 (n = 82) in GWAS of 896 participants from APIC &

URECA. N, number of genotyped individuals. MAF, minor allele frequency; 95% CI, 95% con-

fidence interval; SE, standard error; P, P-value (Wald); FEV1, forced expiratory volume in one

second; APIC, Asthma Phenotypes in the Inner City study; URECA, Urban Environment and

Childhood Asthma study.

(PDF)
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S3 Table. MeQTL analysis results and associations with FEV1. All CpG sites where DNA

methylation levels in NECs at age 11 in URECA were associated with rs10220464 at

FDR<0.05 are shown with their corresponding associations with FEV1. The FDR-adjusted P-

values (FDR Q) correspond to a 5% false-discovery rate. FDR, false discovery rate; 95% CI,

95% confidence interval; FEV1, forced expiratory volume in one second; URECA, Urban Envi-

ronment and Childhood Asthma study.

(PDF)

S4 Table. rs10220464 eQTL analysis results. Results of eQTL analyses in NECs and PBMCs

with rs10220464 for all genes within 1 Mb in URECA. Gene expression was measured in

counts per million mapped reads. The FDR-adjusted P-values (FDR Q) correspond to a 5%

false-discovery rate. FDR, false discovery rate; 95% CI, 95% confidence interval; NECs, nasal

epithelial cells; PBMCs, peripheral blood mononuclear cells; URECA, Urban Environment

and Childhood Asthma study.

(PDF)

S5 Table. Chromatin interactions with FEV1-associated SNPs. Bait and target fragments

refer to mapped Hi-C restriction fragments on chr14 (hg38) for gene promoters and putative

enhancers, respectively. FEV1 SNPs refer to number of FEV1-associated variants (p<1x10-5)

within 1kb of target fragment. SNPs, single nucleotide polymorphisms; FEV1, forced expira-

tory volume in one second.

(PDF)

S6 Table. Age at used lung function measure in URECA. URECA, Urban Environment and

Childhood Asthma study; FEV1, forced expiratory volume in one second; FVC, forced vital

capacity.

(PDF)

S7 Table. Study samples. APIC, Asthma Phenotypes in the Inner City study; URECA, Urban

Environment and Childhood Asthma study; WGS, whole-genome sequencing; NECs, nasal

epithelial cells; PBMCs, peripheral blood mononuclear cells.

(PDF)

S8 Table. Additional phenotypic, socioeconomic, and environmental data. Additional vari-

ables examined for potential confounding in mediation analyses for APIC & URECA. APIC,

Asthma Phenotypes in the Inner City study; URECA, Urban Environment and Childhood

Asthma study.

(PDF)
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