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Review 

Molecular targets that sensitize cancer to radiation killing: From the bench 
to the bedside 
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A B S T R A C T   

Radiotherapy is a standard cytotoxic therapy against solid cancers. It uses ionizing radiation to kill tumor cells 
through damage to DNA, either directly or indirectly. Radioresistance is often associated with dysregulated DNA 
damage repair processes. Most radiosensitizers enhance radiation-mediated DNA damage and reduce the rate of 
DNA repair ultimately leading to accumulation of DNA damages, cell-cycle arrest, and cell death. Recently, 
agents targeting key signals in DNA damage response such as DNA repair pathways and cell-cycle have been 
developed. This new class of molecularly targeted radiosensitizing agents is being evaluated in preclinical and 
clinical studies to monitor their activity in potentiating radiation cytotoxicity of tumors and reducing normal 
tissue toxicity. The molecular pathways of DNA damage response are reviewed with a focus on the repair 
mechanisms, therapeutic targets under current clinical evaluation including ATM, ATR, CDK1, CDK4/6, CHK1, 
DNA-PKcs, PARP-1, Wee1, & MPS1/TTK and potential new targets (BUB1, and DNA LIG4) for radiation 
sensitization.   

1. Introduction 

Preservation of genomic sequence information in biological systems 
is crucial for the survival of life. On one hand, mutagenesis is critical for 
genetic variation necessary for natural selection, on the other hand it 
could predispose for the development of cancer and other diseases. DNA 
is an innately reactive molecule that is sensitive to chemical alterations 
from both endogenous and exogenous sources [1]. Endogenous DNA 
damage may be caused by cellular factors such as hydrolysis, oxidation, 
alkylation or reactive chemical species (e.g., reactive oxygen species, 
ROS, and reactive nitrogen species, RNS) that are generated during 
physiochemical reactions. Exogenous DNA damage are caused by envi
ronmental (ionizing radiation, UV radiation), physical or chemical 
agents [2]. DNA lesions, such as single- and double-strand breaks, mis
matches, chemical modifications of the bases, and inter- or intra-strand 
cross-links can be caused by ionizing radiation, UV, and chemothera
peutic agents. Fig. 1 shows the most common sources of DNA damage. A 
variety of clinical abnormalities, including dementia, infertility, im
munodeficiencies, and cancer susceptibility, are, at least in part, caused 
by cells’ inability to properly repair DNA damage [3]. Additionally, the 
chance of developing cancer is increased by the development of DNA 

damage in cells upon exposure to carcinogens. Genomic instability and 
mutation, one of the hallmarks of cancer will result if DNA damage is not 
repaired [4]. 

1.1. DNA damage response mechanism 

The DNA damage response (DDR) is an evolutionarily-conserved 
defensive mechanism against various DNA lesions that may recognize, 
signal, and repair the damage through a series of enzymatic activities 
controlled by multiple proteins [3,5]. Proteins that are involved in the 
DDR identify and process different forms of DNA damage [5]. A majority 
of cancer cells have DDR pathway defects that promote malignant 
growth and increase the chance of tumor cell survival through natural 
selection [3]. Cancer cells become more reliant on alternative DDR 
pathways to preserve the integrity of their chromosomes when one or 
more DDR pathways are disrupted [6]. As a result, there is interest in the 
therapeutic development of inhibitors that target a specific subset of 
DDR network components; several are approved while many are un
dergoing clinical trials [7]. 

Nucleus and mitochondria are the two primary organelles that 
contain DNA in mammalian cells. Major pathways for nuclear DNA 
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repair (Fig. 2) include: 
a) Direct reversal which rectifies damage caused by alkylating 

chemicals, 
b) Base excision repair (BER) which targets non-bulky defective DNA 

bases and DNA single strand breaks (SSBs), 
c) Nucleotide excision repair (NER) which reconstitutes large DNA 

damages that deform the DNA helix, 
d) Base-base mismatch repair, insertion or deletion loop repair, and 

mismatch repair (MMR), 
e) Recombination repair which is categorized into homologous 

recombination repair (HR) and non-homologous end joining (NHEJ), 
f) Repair of DSBs is achieved via alternative non-homologous end 

joining (alt-NHEJ), 
g) Translesion synthesis (TLS) which is a DNA damage tolerance 

process. 
In contrast, the mitochondrial DNA (mtDNA) repair pathways that 

repair damaged DNA retain mitochondrial integrity, safeguard mtDNA 
from oxidative damage, and enhance survival are typically those that 
result in direct reversal: MMR, BER, TLS, and DSB repair [8], although 
mutations to the mitochondrial DNA still occur. 

SSBs and minor alterations in DNA are repaired via the BER [9] 
components XRCC1, PARP-1, apurinic apyrimidinic endonuclease 
(APE1), and DNA ligase IIIa. The excision repair cross-complementing 
protein 1 (ERCC1)-dependent NER mechanism [10] handles bulky 
DNA lesions including pyrimidine dimers induced by UV-irradiation. 
MMR pathway can fix base mismatches that occur as a consequence of 
replication errors [11]. 

The MRE11–RAD50–NBS1 (MRN) complex identifies and binds to 
DSB sites. It subsequently autophosphorylates and triggers ataxia tel
angiectasia mutated (ATM) kinase [12,13]. When ATM is activated, it 
phosphorylates many downstream proteins [14]. Phosphorylation of 
CHK2 causes CDC25A, a protein phosphatase, to phosphorylate, causing 
cell cycle arrest. BRCA1 phosphorylation results in DSB repair and S 
phase cell cycle arrest, whereas p53 activation results in G1 phase cell 
cycle arrest or apoptosis. The ataxia telangiectasia and Rad3-related 
(ATR) kinase is triggered and recruited to the DNA damage sites dur
ing the primary response to SSBs/DNA replication fork collapse [15]. 
CHK1 [16], which controls the activation of CDC25 phosphatases and 
consequently plays a role in the S and G2/M cell checkpoints, is phos
phorylated and activated by ATR. To repair several forms of DNA 
damage, the DNA repair processes can function alone or in tandem. 

Radiation mediated base damages and SSBs are quickly and effi
ciently repaired by cells. Most cytotoxic effects occur due to cells 
inability to repair DSBs. The two most prominent strategies to repair 
DSBs are NHEJ and HR [17]. NHEJ is an error-prone repair process that 
involves directly re-joining two broken ends and it is the most efficient 
DSB repair process. NHEJ is mediated by a group of proteins that in
cludes the Ku70/Ku80 complex, DNA-PK catalytic subunit (DNA-PKcs), 
Artemis nuclease, XRCC4-like factor (XLF), DNA ligase IV, and X-ray 

repair cross complementing 4 (XRCC4). Binding of heterodimer 
Ku70/Ku80 at DSB ends [18] is the initial stage of NHEJ, and it facili
tates the recruitment of catalytic component DNAPKcs to create an 
active holoenzyme complex [19]. H2AX [20], Artemis [21], XRCC4, 
ligase IV complex [22], and XLF [23] are attracted to the DSB site and 
partake in its repair. NHEJ is probably much more precise than previ
ously thought due to the flexibility of the NHEJ components, but if the 
DSB ends are incompatible, NHEJ-mediated repair can cause minor 
deletions, insertions, or indels. Given these factors, NHEJ seems to be a 
reliable repair mechanism that might help a cell increase its chances of 
surviving [24]. It is also the main pathway through which radiation 
damage is repaired and impairing this pathway may lead to 
radiosensitization. 

HR, on the other hand, is an error-free repair strategy that uses a non- 
damaged complementary chromatid as a template [17]. HR is mediated 
by BRCA1 and 2, replication protein A (RPA), MRN complex, 
CtBP-interacting protein (CtIP), RAD51, and PALB2. The DSB site binds 
the MRN complex, DNA2-BLM (Bloom syndrome), CtIP, BRCA1, and 
exonuclease 1 (EXO1), which play a role in DNA reprocessing and the 
production of 3′ single-strand DNA, which is consequently encapsulated 
by RPA protein [25]. The missing sections can be synthesized by DNA 
polymerases. Holliday junctions, branched nucleic acid structure that 
impair function, are eventually resolved by cleaving and ligating 
neighboring ends [26]. Although HR is considered “error-free” repair, 
the process can be error prone when templates are swapped, as in repeat 
sequences [27]. Cell cycle stage, chromatin context, and availability of 
critical players such as Ku complex, RAD51, and 53BP1 may impact the 
selection between NHEJ and HR [28]. 

1.2. Human cancers with aberrations in DDR 

Enhanced autophosphorylation of ATM as well as ATM-dependent 
phosphorylation of CHK2 have been seen in early-stage malignancies, 
implying that the DDR may prevent progression to malignancy [29,30]. 
In radiation-resistant malignancies, DNA-PKcs have been found to be 
increased [31,32]. Upregulation of PARP1, BRCA1, APE1, RAD51, and 
ERCC1 have been observed in a variety of malignancies and have been 
linked to chemotherapy resistance [33]. In human sporadic malig
nancies, p53 is one of the most commonly altered genes. The reported 
frequency of p53 mutations vary by cancer type with more than half of 
all malignancies having inactivated p53 as a result of mutations, de
letions, loss of heterozygosity, or reduced expression [34,35]. While 
BRCA1 and 2, as well as ATM inactivating mutations are less prevalent 
than p53 inactivating mutations [36–40], reduced expression of the 
MRN complex, ATM, BRCA1 and 2, CHK2, RAD51, and ERCC1 is 
widespread in sporadic malignancies, suggesting that DNA damage 
response aberration is common [41–49]. Interestingly, functional inac
tivation BRCA2 was observed in cancer cells that abnormally expressed 
SYCP3 [3] a cancer/testis antigen that is known to regulate strand 

Fig. 1. Most common sources of DNA damage. There are possibly other mechanisms for causing DNA damage but they are omitted here for simplicity.  
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invasion activities of Rad51. 

1.3. Radiation-induced DDR 

DDR is a complex protein network that coordinates cell cycle regu
lation and DNA repair. It disrupts the cell cycle, stopping DNA damage 
from propagating to daughter cells by allowing time for repair. DDR 
signaling is crucial for the initiation of apoptosis [50]. It is estimated 
that 1 Gray (Gy) of radiation results in approximately 10,000 damaged 
bases, 1000 SSBs, and 40 DSBs per cell [51,52]. Most base damages and 
SSBs are promptly repaired [53]. DSBs are the most damaging to cells 
despite their low frequency since even a single unrepaired DSB could 
result in cell death. Radiation therapy causes DSBs directly by ionizing 
molecules on DNA and indirectly by hydrolyzing molecules it encoun
ters, i.e. predominantly water, to produce free radicals such as a hy
droxyl free radical that interacts with and inactivates DNA indirectly. If 
the resultant DNA damage is not repaired (particularly DSBs), it leads to 
cell death during replication [54,55]. 

1.4. Repair of radiation-induced DNA damage 

As described, following exposure to ionizing radiation, multiple 
types of damages can occur to DNA resulting in activation of repair 
processes. The BER repairs damaged bases caused by oxidative stress 
[56–61]. DNA glycosylases excise damaged bases during BER, resulting 
in apurinic (AP) sites. Following that, apurinic endonuclease 1 (APE1) 
cleaves these AP sites, resulting in SSBs. SSB repair is a component of the 
BER pathway that repairs SSBs [62]. Depending on the lesion type and 
cell cycle phase, either short- or long-patch SSB repair is utilized. PARP 
binds to SSB, which stimulates auto-PARylation and causes BER/SSBR 
proteins to be recruited. PARP-1 has been implicated as a DNA repair 
gene regulator in the E2F1 pathway [63]. While most of the 

radiation-mediated oxidative damage is repaired by BER, damage that 
occurs under hypoxic conditions is repaired through NER [64]. ERCC2, a 
DNA helicase and part of the NER system, reconstitutes intrastrand 
crosslinks induced by genotoxins like UV irradiation and cisplatin. 
Mutation of ERCC2 has been linked to the risk of breast cancer caused by 
ionizing radiation [65]. The activation of three important PIKK family 
enzymes, ATM, ATR, and DNA-PK is triggered by the creation of DSBs 
[66] which initiates downstream signaling cascades to access DNA 
damage and trigger DNA repair [67]. Phosphorylation of γ-H2AX in
dicates the existence of DSB and directs proteins to repair 
irradiation-induced foci (IRIF) in initial stages [68]. 

1.5. Radiotherapy sensitization targets in cancer 

Cancer cells’ natural ability to repair DNA damage may cause 
cellular resistance and restrict the effectiveness of treatment, despite the 
fact that radiation-induced DNA DSBs are the most efficient molecular 
events for eliminating cancer cells [69]. It is expected that target-based 
radiosensitization approaches would increase the effectiveness of 
radiotherapy by selectively sensitizing tumor tissue to ionizing radiation 
[70]. Recently, a variety of approaches have been used to develop 
radiosensitizers that are highly effective and have low toxicity [71]. 

Targeting DDR signaling pathways has emerged as a promising 
approach to overcome tumor radioresistance, and significant advance
ments and discoveries have already been made in this area in recent 
years. Utilizing DDR to sensitize the cancer cells to ionizing radiation is 
considered as a viable therapeutic alternative for treating cancer pa
tients effectively. Table 1 summarizes the types of DNA damage- 
inducing therapies (cytotoxic chemotherapies, targeted therapies and 
combination approaches for radiation sensitization) employed in cancer 
treatment with few examples. 

Fig. 2. Major pathways for DNA repair (Adapted from “DNA Repair Mechanisms”, by BioRender.com (2022).  
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1.5.1. ATM/ATR 
ATM was found during a clinical case observation when Gotoff et al. 

[98] identified immunodeficiency in a patient with a rare inherited 
autosomal-recessive genetic A–T syndrome in 1967 [99]. Bentley et al. 
[100] discovered in 1996 that ATR could improve esr1–1 radiosensi
tivity in S. cerevisiae. ATM is triggered and attracted to DSB sites by the 
MRN complex, which functions as a DNA damage sensor, whilst ATR is 
triggered and attracted to DSB sites by its binding partner 
ATR-interacting protein [12]. AZD1390, a brain penetrant ATM kinase 
inhibitor is highly potent and exhibits powerful activity in combination 
with radiation. This orally accessible drug is under Phase 1 clinical trial 
in patients with glioblastoma multiforme, brain metastases or lep
tomeningeal metastases. By preventing ATM from repairing tumor DNA, 
AZD1390 increases the likelihood that radiation will be able to kill 
cancer cells (NCT03423628) [101]. XRD-0394, an oral dual kinase in
hibitor of ATM and DNA-PK is also under Phase 1 trial to evaluate in 
combination with palliative radiotherapy for the treatment of solid 
cancers that have spread or that are recurrent or locally progressed. This 
drug may enhance the effectiveness of radiotherapy by increasing the 
sensitivity and responsiveness of cancer tumors by inhibiting proteins 
that allow cells to respond to DNA damage caused by radiation 
(NCT05002140) [102]. AZD6738 (Ceralasertib), Berzosertib, 
BAY1895344, Schisandrin B, NU6027, and NVP-BEZ235 are all reported 
ATR inhibitors. A Phase I trial of AZD6738 was done to assess the bio
logical effects, tolerance, and safety of palliative radiotherapy in cancer 
patients. To examine the impact of a fractionation schedule appropriate 
for radical therapy, the radiation dosage in this experiment was 
increased from 20 to 30 Gy over the course of 2 Gy fractions. If the 
combination treatment is well tolerated, the study is intended to move 

on with a randomised trial that compares the addition of AZD6738 to 
standard-of-care radiotherapy or chemoradiotherapy in a patient group 
receiving treatment with radical intent (status of this trial is still un
known) [103]. Berzosertib, formerly named as (M6620, VX-970), a 
highly potent and selective inhibitor which has an IC50 of 19 nM is used 
in Phase 1 clinical trial to test the combination of M6620 with palliative 
radiotherapy in oesophageal cancer. Since this combination is 
well-tolerated, the combination of M6620 with chemoradiotherapy was 
evaluated to improve the current standard of care and provide a tar
geted, efficient method of treating oesophageal cancer and squamous 
cell carcinoma (NCT03641547) [104]. An oral inhibitor BAY1895344 in 
combination with stereotactic body radiation and pembrolizumab is also 
under Phase 1 clinical trial to study the possible benefits in recurrent and 
unresectable head and neck cancer (NCT04576091) [105]. As of Aug 30, 
2022, there are 12 active clinical studies (clinicaltrials.gov) with 
ATM/ATR inhibitors alone or in combination with RT in malignancies 
such as ovarian and SCLC. 

1.5.2. CDK1 

CDK1 regulates cell cycle progression and the G1/S transition by 
controlling the centrosome cycle and mitotic initiation, regulating G1 
advancement, and boosting the G2/M transition [106]. When ionizing 
radiation causes DNA damage, CDK1 is blocked, which causes the cell 
cycle to stop at G2 checkpoint, allowing DSB repair [107]. A non-specific 
CDK1 inhibitor MEK162, inhibits and dephosphorylates CDK1, CDK2, 
and Wee1 [108], and is shown to delay DDR in glioblastoma cells after 
ionizing radiation. Raghavan et al., [109] investigated AZD5438, a 
new-generation CDK1 inhibitor in lung cancer cell lines in conjunction 
with radiation. Radiation sensitivity of lung cancer cells was signifi
cantly boosted by AZD5438. In lymphoma, JNJ-7706621, a CDK1 and 
AURKA/B dual inhibitor has been demonstrated to reverse radio
immunotherapy resistance [110]. Dinaciclib, a CDK1/2/5/9 inhibitor, 
decreased tumor growth in ten out of ten subcutaneous pancreatic 
ductal adenocarcinoma mice models studied, with considerable growth 
reduction (>40%) in eight of ten [111]. Rohitukine, from which 
P276–00 is generated, is found to be a selective CDK4-D1 and CDK1-B 
inhibitor in preclinical studies. Cell cycle events are prevented at 
initial stage of development when these CDKs are inhibited, which re
sults in cell cycle arrest between the G1-S transition. As a result, it may 
be effective while having fewer negative effects (NCT00408018) [112]. 
EM-1421, (also terameprocol) is used under Phase 1/2 clinical trials for 
patients with refractory solid cancers [113]. This inhibitor is also used in 
combination with survivin (inhibitor of apoptosis protein) in patients 
with hematological malignancies under Phase 1 trials [114]. With IC50 
values ranging from 30 to 200 nM, AG-024322, a potent, multi-targeted 
inhibitor showed strong antiproliferative effect in various human cancer 
cell lines [115]. There are currently 16 clinical trials utilizing CDK1 
inhibitors, with three active and the rest terminated. Although based on 
strong preclinical data, the results from several clinical trials showed 
only weak to moderate benefits. Moreover, no radiotherapy studies 
using this inhibitor are currently in clinical trials [116–118]. 

1.5.3. CDK4/6 

CDK4 and CDK6, directly regulate cell-cycle transitions and cell di
vision [119]. Cyclin-CDK complexes, which are largely formed by the 
association of CDK4 and CDK6, with D-type cyclins (Cyclin D1, D2, and 
D3), control the course of the cell cycle by phosphorylating the tumor 
suppressor protein retinoblastoma [120]. The G1-S checkpoint, which 
controls genome replication in the cell cycle, is crucial for CDK4/6 
[121]. Fig. 3 depicts where various DDR targeting drugs act in cell cycle. 
Radiosensitivity of multiple cell lines is increased by CDK4/6 inhibitors 
[122]. Three CDK4/6 inhibitors (palbociclib, ribociclib, and abemaci
clib) were approved as combination treatments for HR+ , HER2-, and 
metastatic breast cancers in recent years [123]. Palbociclib, the first 

Table 1 
Types of DNA damage-inducing therapies employed in cancer treatment.  

DNA Damage-Inducing 
Therapies 

Types 

Cytotoxic Chemotherapy  A. Alkylating Agents 
Monofunctional alkylating agents (Temozolomide and 
Dacarbazine) 
Bifunctional agents (Aziridines and Epoxides)  
B. Platinum-Based Compounds 
Cisplatin, Carboplatin, and Oxaliplatin  
C. Antimetabolites 
5-fluorouacil (5-FU), Gemcitabine, 6-mercaptopurine, 
Fludarabine, Cytarabine, Methotrexate, and 
Pemetrexed  
D. Topoisomerase Inhibitors 
Type I topoisomerases (TOPI) poisons (Topotecan and 
Irinotecan) 
Type II topoisomerase (TOPII) (Etoposide)  
E. Antitumor Antibiotics 
Anthracyclines, Dactinomycin, Mitomycin C, and 
Bleomycin 

Targeted Therapies PARP inhibitors (Olaparib, Niraparib, Rucaparib and 
Talazoparib) 
HER2 inhibitors (Trastuzumab [72,73] and Pertuzumab 
[74,75]) 
EGFR inhibitors (Erlotinib [76,77], Osimertinib [78, 
79], Cetuximab [80,81], Panitumumab [82,83], and 
gefitinib [84,85]) 
VEGF and mTOR inhibitors (Sorafenib [86,87], 
Sunitinib [88,89] and Pazopanib [90,91], Bevacizumab 
[92,93], Temsirolimus [94,95] and Everolimus [96, 
97]) 

Combination Approaches Radiotherapy and Chemotherapy Combinations such as   
• Oxaliplatin, Irinotecan and the antimetabolite 5-FU 

(FOLFIRINOX)  
• Combination of Cisplatin with Radiotherapy  
• 5FU-Cisplatin with Radiotherapy  
• 5FU/Capecitabine with Radiotherapy  
• Temozolomide with Radiotherapy  
• Gemcitabine with Radiotherapy  
• Carboplatin with Radiotherapy, and so on.  
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CDK4/6 inhibitor, received approval for women with untreated meta
static HR+ , HER2- breast cancer in 2015 on the basis of the outcomes of 
a randomized Phase 2 research carried out in a front-line setting (PAL
OMA-1 trial) [124]. According to Huang et al., [125] combination of 
radiation and palbociclib significantly suppressed radiation-induced cell 
proliferation and decreased radiation resistance in hepatocellular car
cinoma. As shown by Naz et al., [126] palbociclib and ribociclib did not 
increase radiation sensitivity in non-small cell lung cancer cell lines 
when administered either pre- or post-IR. On the other hand, abemaci
clib, when administered post-IR, it increased radiosensitivity in the 
non-small cell lung cancer cell lines [122]. In vivo studies showed that 
palbociclib with IR improved median survival time in brain cancer xe
nografts [127]. DeWire et al., [128] reported the ribociclib adminis
tration following radiation therapy in diffuse intrinsic pontine gliomas 
and diffuse midline glioma. Increased tumor necrosis was observed as a 
side effect of this therapy (NCT02607124). In children with diffuse 
intrinsic pontine gliomas and high-grade glioma, a combination of 
ribociclib and everolimus following radiation therapy was 
well-tolerated in Phase 1 trials (NCT03355794) [129]. There are now six 
active clinical trials, the majority of which are directed at patients with 
HR+ /HER2- metastatic breast cancer. Beyond those included here, a 
number of ongoing trials continue to investigate these inhibitors in 
various patient populations and with various treatment regimens. 

1.5.4. CHK1 

CHK1 is essential for DNA repair activation and checkpoint-mediated 
cell-cycle arrest in response to DNA damage [130]. As cellular prolif
eration and survival are greatly controlled by CHK1, increasing evidence 
suggests that targeting them as prospective techniques for sensitizing 
cancer cells to radiation is a viable option [131]. The first selective 
CHK1 inhibitor identified was LY2606368 (Prexasertib). This inhibitor 
is used in Phase 1 clinical trials in combination with anti-cancer drugs 
(Cetuximab and Cisplatin) and radiation therapy for patients with head 
and neck cancer (NCT02555644) [132]. PF-00477736, a selective CHK1 
inhibitor, significantly increased the radiosensitivity of multiple cancer 
cell lines. [133]. This inhibitor entered in Phase 1 clinical trials in 
combination with gemcitabine for advanced solid tumors, but the study 
was terminated due to business reasons (NCT00437203) [134]. 
CCT244747, the first orally accessible CHK1 inhibitor, sensitized head 
and neck cancer and bladder cancer cells to radiation through modu
lating G2/M checkpoint, implying that CCT244747 could be acceptable 

for oral administration [135,136]. Another inhibitor, SRA737, was 
discovered to have the ability to restrict cell proliferation when com
bined with Niraparib [137]. Several CHK1 inhibitors have entered into 
clinical trials which include AZD7762, GDC-0575, MK-8776, Pre
xasertib, PF-00477736, Rabusertib, and SRA737 [138]. 

1.5.5. DNA-PKcs 

DNA-PKcs was initially linked to repairing DSBs via the NHEJ 
pathway; however, later studies demonstrated that DNAPKcs has addi
tional activities including the choice of NHEJ and HR repair pathways 
[139–142], cell cycle checkpoint regulation [143,144], and telomere 
maintenance [145–147]. DNA end processing is made possible by 
autophosphorylation, which occurs when DNAPKcs autophosphorylates 
at Thr2609, Thr2647, and Ser2056 [148–150]. DNA-PKcs depletion is 
known to increase cancer cells sensitivity to ionizing radiation and 
genotoxic chemotherapy [151,152]. Several DNA-PKCs inhibitors with 
varying selectivity and radiosensitization potential have been described 
including LY294002 [153,154], NU7026 [155], Vanillin, [156], 
IC87102, IC87361, & IC86621 [157], VX-984 [158] and AZD7648 [159] 
among others. Doxycycline was the first FDA approved DNA-PK inhib
itor and is a good radiosensitizer of breast cancer cells [160]. Zenke 
et al., [161] demonstrated the radiosensitizing efficacy of orally 
bioavailable M3814 (Peposertib), a DNAPK inhibitor in preclinical 
models. Currently, M3814 and XRD-0394 (ATM and DNA-PK dual in
hibitor) are under Phase 1 trials in combination with radiotherapy to 
examine the tolerability and safety. 

1.5.6. PARP-1 

PARP-1 is a widely studied DNA DSB repair protein [162]. PARP-1 
can catalyze the heterodimer produced by XPC-RAD23B and free PAR, 
suggesting that PARP-1 is involved in the radiation-induced DNA dam
age [163]. Inhibiting PARP-1 could make cancer cells more sensitive to 
radiation [164]. Several PARP inhibitors with varying degree of speci
ficity and radiosensitization potential have been developed including 
KJ-28d [165], ABT-888 [166], Mk-4827 [167], AZD2281 (Olaparib) 
[168], Niraparib [169,170], Veliparib, Rucaparib, Talazoparib, etc. 
Olaparib was the first PARP inhibitor to receive approval from the FDA 
and the European Union for treating advanced ovarian cancer patients 
with BRCA mutations. Olaparib received Breakthrough Therapy Desig
nation from the FDA in 2016 for patients with metastatic 
castration-resistant prostate cancer who have mutations in BRCA1/2 or 
ATM. There are > 600 clinical trials at clinicaltrial.gov with search term 
“PARP” and > 60 when co-searched with “radiation” (as of Nov 30, 
2022). These results indicate the importance of targeting PARP for 
anti-cancer therapies. There are 19 clinical trials on PARP-1 inhibitors in 
combination with radiation out of which 5 completed, 7 enrolling and 
rest not yet enrolled/withdrawn. Several of these trials will be game 
changer for patient management. For example, Olaparib is currently 
under Phase 1/2a trial combined with intensity modulated radiotherapy 
(IMRT) and temozolomide in first-line treatment of glioblastoma 
(NCT03212742) [171]. Similarly, Niraparib is being evaluated with 
Dostarlimab and radiation in either PD-L1 negative TNBC or in patients 
who failed to respond to prior immunotherapy (NCT04837209) [172]. 
Likewise, Veliparib is undergoing Phase 2 trial in combination with 
temozolomide and radiotherapy to assess its efficacy in treating in
dividuals with malignant glioma (NCT03581292) [173]. 

1.5.7. Wee1 

Wee1 acts as a negative regulator of cell cycle during the G2 to M 
transition [174] and Wee1 inhibition enhances cell death in response to 
chemotherapy and ionizing radiation by affecting both cell cycle pro
gression and DNA damage repair [175]. Several Wee1 inhibitors have 
shown radiosensitization in preclinical models including Wee 1 inhibitor 

Fig. 3. Cell cycle phases and DDR targeting in cancer (G1 = Gap/growth Phase 
1, S = DNA replication phase, G2 = Gap/growth phase 2, M = Cell division 
phase; ATM - Ataxia-Telangiesctasia Mutated, ATR - ataxia telangiectasia and 
Rad3-related, CDK1 - Cyclin-dependent kinase 1, CDK4/6 - Cyclin-dependent 
kinase 4/6, CHK1 - Checkpoint kinase 1, DNA-PK - DNA-dependent protein 
kinase, MPS1 - Monopolar spindle1, PARP - Poly (ADP-ribose) polymerases). 
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II (681641) [176], R1–1 [176], PD0166285 [177], AZD1775 (also 
MK-1775, Adavosertib) [178–180]. Four Wee 1 inhibitors IMP7068, 
AZD1775, Zn-c3, and SY-4835 have moved into the clinical trials. There 
are more than 50 clinical trials for AZD1775 listed on the clinical trial 
website (as of Nov 30, 2022). Majority of these clinical studies have used 
a combination of chemotherapy and radiation to treat different cancers 
and identified that p53 mutation may be a cancer- or 
chemotherapy-specific prognostic biomarker for responsiveness to Wee1 
inhibition. Early results from Wee1 clinical studies have been encour
aging. For example, AZD1775 improved 1-year survival to 90% in head 
and neck cancer when combined with radiation therapy and cisplatin 
[180]. AZD1775 also improved overall survival in locally advanced 
pancreatic adenocarcinoma (Phase 2 trial) when combined with radio
therapy and gemcitabine (NCT02037230) [181]. 

1.5.8. MPS1/TTK 

Monopolar spindle 1 (MPS1) is an important spindle assembly 
checkpoint kinase. It is overexpressed in several cancers including 
breast, bronchogenic, lung, and thyroid papillary carcinomas [182]. 
Increased MPS1 levels correlate with a higher histological grade [183]. 
It is implicated in the genotoxic stress response, such as stress produced 
by DNA damage. Inhibition of MPS1 causes cell death by polyploidiza
tion and mitotic collapse [184] and prevents DNA repair after RT, 
allowing DNA damage to accumulate leading to mitotic catastrophe. 
Genetic and pharmacological MPS1/TTK inhibition is shown to radio
sensitize basal-like breast [185] and glioblastoma [186] cell lines. In
hibitors of MPS1 (Mps-BAY2b and MPS-IN-3) have been demonstrated 
in human colon cancer and glioblastoma cells to improve sensitivity to 
microtubule poisons (Paclitaxel and Vincristine) [187]. Currently, there 
are three MPS1 inhibitors (BAY1217389, BAY1161909, and 
BOS172722) in clinical trials. BAY1217389, an oral selective inhibitor 
led to increased toxicity (nausea, fatigue and diarrhea) when given in 
combination with paclitaxel in patients with solid tumors 
(NCT02366949) [188]. BAY1161909 has demonstrated enhanced effi
cacy in xenograft models when combined with paclitaxel and found to 
be well-tolerated with manageable adverse events (Phase 1) in patients 
with advanced malignancies (NCT02138812) [189]. BOS172722, 
another orally bioavailable inhibitor is currently under clinical trials in 
combination with paclitaxel for patients with advanced 
non-hematologic malignancies (NCT03328494) [190]. MPS1 inhibitors 
have not been evaluated in combination with radiation in human pa
tients. The Table 2 below lists molecular targets evaluated in clinical 
trials for radiosensitizing different cancers. 

1.6. Other novel targets 

1.6.1. DNA LIG4 
In radiation-induced NHEJ pathway, the DNA LIG4 is an important 

DNA repair factor [191]. XRCC4, LIG4, and Cernunos-XLF are 
commonly recruited to the break site and form temporary connections 
with the DNA ends to guarantee that the break is ligated [192]. Patients 
with LIG4 syndrome have higher radiation sensitivity, higher chance of 
neurological problems, bone marrow dysfunction, and cancer predis
position [193]. LIG4 mutations have been linked to clinical radio
sensitization in a number of investigations. According to Riballo et al., 
[194] LIG4 mutation impairs synthesis of adenylate complex while also 
lowering rejoining activity. Furthermore, healthy patients with LIG4 
rs1805388 polymorphism were more vulnerable to radiation than 
healthy individuals by H2AX foci analysis [195]. DNA-binding protein-1 
suppresses the production of LIG4 and hence negatively influences DNA 
repair mechanisms. In a screen of 5280 compounds, Tseng et al., [196] 
showed that rabeprazole and U73122 could selectively disrupt adeny
late transfer phase and DNA rejoining to impede radiation-induced DNA 
repair by targeting LIG4. NU7026 affects the radiosensitivity of LIG4 
wild-type mouse embryonic fibroblasts [197]. A specific DNA LIG4 

inhibitor SCR7 blocks NHEJ [198] and enhances HR-mediated gene 
editing in mammalian cells [199]. It is found to effectively inhibit the 
cell proliferation of various breast, lung and cervical cancer cell lines 
with IC50 values ranging from 5 to 50 μM [200]. Treatment with SCR7 in 
vivo prolongs lifespan by four times and lowers breast 
adenocarcinoma-induced tumor. It greatly increases the cytotoxic ef
fects of radiation, etoposide, and 3-Aminobenzamide on tumors gener
ated from Dalton’s lymphoma cells [200]. Further research into LIG4 
activities in the radiation-induced DDR will be useful in characterizing it 
as a molecular target for radiosensitization. 

1.6.2. BUB1 
The spindle assembly checkpoint ensures faithful chromosome 

segregation during cell division [201]. Budding Uninhibited by Benz
imidazole 1 (BUB1) is a key component of spindle assembly checkpoint 
and it also facilitates chromosome alignment and mitotic duration 
[202]. Upregulation of mitotic factors is a significantly more common 
event in human tumors, and increased BUB1 levels have been reported 
in various cancers including breast, gastric, lung, brain and lymphoma 
[203]. Furthermore, BUB1 upregulation is linked to a poor clinical 
outcome in different tumor types [204]. In transgenic mice, BUB1 
overexpression was observed to promote spontaneous carcinogenesis 
and promote the development of Myc-induced lymphoma [205]. 
Reduced BUB1 mRNA levels in colon carcinomas were associated with 
shorter relapse-free survival after surgery [206]. BUB1 has been iden
tified as a possible radio-enhancing target and the lack of mitotic spindle 
checkpoints may actually elicit fatal mitotic events during RT, as BUB1 
suppression was correlated with an increased production of micronuclei 
[207]. A focused human kinome screen identified BUB1 as one of the 
potential radiosensitizing target in breast cancer [208]. BUB1 is known 
to localize near DSB sites where Rad53 and H2AX are also recruited 
[209] and it also co-localizes with 53BP1 suggesting a role in NHEJ 
pathway. Knockdown of BUB1 results in prolonged H2AX foci and comet 
tail formation as well as hypersensitivity in response to ionizing radia
tion [210]. BUB1 expression is known to associate with poor outcome in 
a study analyzing DNA repair gene expression patterns as prognostic and 
predictive factors in breast cancer subtypes [211]. To enhance the effi
cacy of cancer therapies, further research into the underlying mecha
nisms of BUB1 mediated DDR is needed. Our lab is actively seeking to 
decipher the mechanism of BUB1 mediated radioresistance by 
combining genomic (siRNA, CRISPR) and biochemical (BAY1816032) 
ablation of BUB1 with biochemical, molecular, and radio-biological 
techniques. 

2. Conclusion and future perspectives 

Deficits in the DNA damage repair pathway may sensitize cancer 
cells to cytotoxic agents. Drugs that target the DDR have been clinically 
validated in small groups of patients, and various combination ap
proaches to block multiple pathways that cancer cells rely on for sur
vival are now being investigated. Indeed, better understanding the 
fundamental mechanisms of radiation-induced DDR and specific func
tions of major genes and proteins in DDR pathways, as well as their 
interaction partners, are critical for clinical identification of novel 
intervention targets and the development of efficacious cancer treat
ments. A variety of tumors are being targeted by the therapeutic land
scape of anti-tumor drugs that target the DDR, which has rapidly 
extended to encompass inhibitors of other crucial mediators of DNA 
repair [212]. While increasing the effectiveness of killing tumor cells is 
the main goal of radiation-drug combinations, it is also critical to reduce 
the toxicities to normal tissue because the therapeutic benefit depends 
on the difference between efficacy and toxicity. Recently, MPS1/TTK 
has entered clinical trials but only with Taxols (chemotherapy). It will be 
interesting to see if a combination of TTK inhibitor with radiation pro
vides any clinical benefit. Additionally, novel molecular targets such as 
(BUB1, LIG4 etc.) warrant further clinical exploration for evaluating 
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Table 2 
Molecular targets evaluated in clinical trials in combination with DNA-damaging agents or radiation.  

Target Interventions Conditions Clinical status & 
Identifier 

Status 

ATM  • Drug: AZD1390  
• Radiation: Radiation Therapy  
• Intensity-modulated radiation therapy (IMRT) and 

whole brain radiation therapy (WBRT) 

Brain Cancer Phase 1 
NCT03423628 

Recruiting 

Drug: XRD-0394 
Radiation: Palliative radiotherapy 

Metastasis 
Locally Advanced Solid Tumor 
Recurrent Cancer 

Phase 1 
NCT05002140 

Recruiting 

ATR Drug: M6620 
Drug: Cisplatin 
Drug: Capecitabine 
Radiation: Radiotherapy 

Oesophageal Adenocarcinoma 
Squamous Cell Carcinoma 
Solid Tumor 

Phase 1 
NCT03641547 

Completed 

Drug: AZD6738 
Radiation: Palliative radiotherapy 

Solid Tumour Refractory to Conventional 
Treatment 

Phase 1 
NCT02223923 

Unknown 

Drug: Elimusertib 
Biological: Pembrolizumab 
Other: Quality-of-Life Assessment 
Radiation: Stereotactic Body Radiation Therapy 

Head and Neck Cancer Phase 1 
NCT04576091 

Recruiting 

CDK1* Drug: P276–00 Neoplasm Phase 1 
NCT00408018 

Terminated 

Drug: P276–00 Neoplasm Phase 1 
NCT00407498 

Completed 

Drug: P276–00 Melanoma Phase 2 
NCT00835419 

Completed 

Drug: Terameprocol (EM-1421) Leukemias 
Acute Myeloid Leukemia (AML) 
Acute Lymphocytic Leukemia (ALL) 
Adult T Cell Leukemia (ATL) 
Chronic Myeloid Leukemia (CML-BP) 
Chronic Lymphocytic Leukemia (CLL) 
Myelodysplastic Syndrome (MDS)Chronic 
Myelomonocytic Leukemia (CMML) 

Phase 1 
NCT00664677 

Terminated 

Drug: Terameprocol (EM-1421) Refractory Solid Tumors 
Lymphoma 

Phase 1 
NCT00664586 

Terminated 

Drug: Terameprocol (EM-1421) Cervical Intraepithelial Neoplasia Phase 1 
Phase 2 
NCT00154089 

Completed 

Drug: Terameprocol (EM-1421) 
Other: Pharmacological Study 

High Grade Glioma (III or IV) Phase 1 
NCT02575794 

Active, not recruiting 

Drug: Terameprocol (EM-1421) Cancer Phase 1 
NCT00259818 

Completed 

Drug: Terameprocol (EM-1421) 
Other: Pharmacological Study 

Brain and Central Nervous System Tumors Phase 1 
Phase 2 
NCT00404248 

Completed 

Drug: AG-024322 Neoplasms 
Lymphoma, Non-Hodgkin 

Phase 1 
NCT00147485 

Terminated 

CDK4/6 Drug: Ribociclib (following Radiation therapy) High Grade Glioma 
Diffuse Intrinsic Pontine Glioma 
Bithalamic High Grade Glioma 

Phase 1 
Phase 2 
NCT02607124 

Terminated 

Drug: Ribociclib 
Drug: Everolimus (following Radiation therapy) 

Diffuse Intrinsic Pontine Glioma 
Malignant Glioma of Brain 
High Grade Glioma 
Bithalamic High Grade Glioma 
Brainstem Glioma 
Glioblastoma 
Anaplastic Astrocytoma 

Phase 1 
NCT03355794 

Active, not recruiting 

Drug: Palbociclib 
Drug: Cetuximab 
Radiation: Intensity Modulated Radiation Therapy 

Head and Neck Cancer 
Locally Advanced 

Phase 1 
Phase 2 
NCT03024489 

Active, not recruiting 

Drug: Palbociclib 
Drug: Cetuximab 
Drug: Cisplatin 
Radiation: Intensity-Modulated Radiation Therapy 
Procedure: Tumor biopsy 
Procedure: Peripheral blood draw 

Head and Neck Squamous Cell Carcinoma Phase 2 
NCT03389477 

Active, not recruiting 

Drug: Anastrozole 
Drug: Exemestane 
Drug: Fulvestrant 
Drug: Letrozole 
Drug: Palbociclib 
Radiation: Radiation Therapy 
Drug: Tamoxifen 

Anatomic Stage IV Breast Cancer AJCC v8 
Estrogen Receptor Positive 
HER2/Neu Negative 
Metastatic Breast Carcinoma 
Metastatic Malignant Neoplasm in the Bone 
Progesterone Receptor Positive 
Prognostic Stage IV Breast Cancer AJCC v8 

Phase 2 
NCT03691493 

Active, not recruiting 

Radiation: Stereotactic Body Radiation Therapy 
(SBRT) (50GY in 5 fractions) 

Breast Cancer Phase 2 
NCT04220476 

Withdrawn (Initiating a new 
study with revised statistics) 

(continued on next page) 
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Table 2 (continued ) 

Target Interventions Conditions Clinical status & 
Identifier 

Status 

Drug: Letrozole 2.5Mg Tab 
Drug: Palbociclib 125 mg 

CHK1 Drug: Prexasertib 
Drug: Cisplatin 
Drug: Cetuximab 
Radiation: Intensity Modulated Radiation Therapy 

Head and Neck Neoplasms Phase 1 
NCT02555644 

Completed 

Drug: LY3300054 
Drug: Prexasertib (LY2606368) 

Cancer Phase 1 
NCT03495323 

Completed  

• Drug: Cytarabine  
• Drug: SCH 900776 
Other: Laboratory Biomarker Analysis 

Acute Myeloid Leukemia Phase 2 
NCT01870596 

Completed 

Drug: SRA737 Advanced Solid Tumors or Non-Hodgkin’s 
Lymphoma 

Phase 1 
Phase 2 
NCT02797964 

Completed 

Drug: SRA737, Gemcitabine, Cisplatin 
Drug: SRA737, Gemcitabine 

Advanced Solid Tumors Phase 1 
Phase 2 
NCT02797977 

Completed 

Drug: Prexasertib 
Drug: Olaparib 

Solid Tumor Phase 1 
NCT03057145 

Completed 

Drug: LY2880070 
Drug: Gemcitabine 

Ewing Sarcoma 
Ewing-Like Sarcoma 

Phase 2 
NCT05275426 

Recruiting 

Drug: Prexasertib Advanced Cancers Phase 2 
NCT02873975 

Completed 

Drug: Prexasertib Neoplasm Phase 1 
NCT02514603 

Completed 

Drug: Prexasertib Ovarian Cancer 
Breast Cancer 
Prostate Cancer 

Phase 2 
NCT02203513 

Terminated 

Drug: Prexasertib 
Drug: Cyclophosphamide 
Drug: Gemcitabine 
Biological: Filgrastim 
Biological: Peg-filgrastim 

Brain Tumor Phase 1 
NCT04023669 

Active, not recruiting 

DNA- 
PKcs 

Drug: MSC2490484A (M3814) 
Radiation: Fractionated RT 
Drug: Cisplatin 

Advanced Solid Tumors Phase 1 
NCT02516813 

Completed 

Drug: XRD-0394 
Radiation: Palliative radiotherapy 

Metastasis 
Locally Advanced Solid Tumor 
Recurrent Cancer 

Phase 1 
NCT05002140 

Recruiting 

PARP-1 Drug: Niraparib 
Drug: Dostarlimab 
Radiation: Radiation therapy 

Breast Cancer 
Triple Negative Breast Cancer 

Phase 2 
NCT04837209 

Recruiting 

Drug: Olaparib 
Drug: Temozolomide (TMZ) 
Radiation: IMRT (Intensity Modulated Radiation 
Therapy) 

Malignant Gliomas Phase 1 
Phase 2 
NCT03212742 

Recruiting 

Biological: Pembrolizumab 
Drug: Olaparib 
Drug: Cisplatin 
Radiation: IMRT (intensity modulated radiation 
therapy) 

Squamous Cell Carcinoma of Head and Neck Phase 2 
NCT05366166 

Not yet recruiting 

Drug: Niraparib 
Radiation: Radiation Therapy 

Triple Negative Breast Cancer 
Residual Disease 

Phase 1 
NCT03945721 

Recruiting 

Radiation: Radiotherapy 
Drug: Olaparib 

Laryngeal Cancer Stage II 
Laryngeal Cancer Stage III 
Carcinoma, Squamous Cell 
Head and Neck Neoplasms 

Phase 1 
NCT02229656 

Active, not recruiting 

Radiation: Radiotherapy 
Drug: Olaparib 

Locally Advanced Malignant Neoplasm 
Inflammatory Breast Carcinoma 
Triple-Negative Invasive Breast Carcinoma 

Phase 1 
NCT02227082 

Completed 

Radiation: Radiation Therapy 
Drug: Temozolomide 
Drug: Veliparib 

Anaplastic Astrocytoma 
Glioblastoma 
Malignant Glioma 

Phase 2 
NCT03581292 

Active, not recruiting 

Radiation: Radiation combined with Iniparib (BSI- 
201) 

Brain Metastases Phase 1 
NCT01551680 

Terminated 

Biological: Durvalumab 
Drug: Olaparib 
Radiation: Radiation Therapy 

Pancreatic Cancer Phase 1 
NCT05411094 

Not yet recruiting 

Drug: Veliparib 
Drug: Capecitabine 
Radiation: Radiation Therapy 

Locally Advanced Rectal Cancer Phase 1 
NCT01589419 

Completed 

Drug: Olaparib 
Radiation: Radiation Therapy 

Breast Inflammatory Carcinoma Phase 2 
NCT03598257 

Recruiting 

(continued on next page) 
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their usability in enhancing radiation-induced cell killing and improving 
clinical outcomes. A greater knowledge is needed into how these new 
targets and their inhibitors contribute to radiation-induced DNA damage 
leading to radiation sensitization. We believe that a better knowledge of 
the molecular processes behind the DDR, as well as the genetic in
teractions between distinct DDR pathways and other cellular pathways 
such as epithelial to mesenchymal transition (EMT), cell-cycle regula
tion, cancer stem cells (CSCs) resilience, tumor-immune microenviron
ment will lead to new treatment options for a variety of human diseases 
including cancer. 
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