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Optimal Monohedral Tilings of
Hyperbolic Surfaces

By Leonardo Di Giosia, Jahangir Habib, Jack Hirsch, Lea Kenigsberg, Kevin Li,
Dylanger Pittman, Jackson Petty, Christopher Xue, and Weitao Zhu

Abstract. The hexagon is the least-perimeter tile in the Euclidean plane for any given area. On hyper-

bolic surfaces, this “isoperimetric” problem differs for every given area, as solutions do not scale. Cox

conjectured that a regular k-gonal tile with 120-degree angles is isoperimetric. For area π/3, the regular

heptagon has 120-degree angles and therefore tiles many hyperbolic surfaces. For other areas, we show

the existence of many tiles but provide no conjectured optima. On closed hyperbolic surfaces, we verify

via a reduction argument using cutting and pasting transformations and convex hulls that the regular

7-gon is the optimal n-gonal tile of area π/3 for 3 ≤ n ≤ 10. However, for n > 10, it is difficult to rule out

non-convex n-gons that tile irregularly.

1 Introduction

In 2001 Hales [11] proved that the regular hexagon is the least-perimeter, unit-area tile of
the plane, and further that no such tiling of a flat torus can do better. Efforts to generalize
this result to hyperbolic surfaces have to date been unsuccessful (see section 5). We
focus on monohedral tilings (by a single prototile) and address the conjecture that a
regular k-gon with 120◦ angles is optimal. Unfortunately, regular polygonal tiles of
the hyperbolic plane H2 cover only a countable set of areas. We prove that equilateral
2n-gonal tiles (n ≥ 2) cover large intervals of areas; for example, there are equilateral
12-gonal tiles for all of the possible areas from 0 to 10π, except possibly the interval
(4π,5π] (see section 4).

The regular polygons of 120◦ angles tile many closed hyperbolic surfaces, where we
address the following conjecture:

Conjecture 1.1. Any non-equivalent tile of area π/3 of a closed hyperbolic surface has
more perimeter than the regular heptagon R7.

Our theorem 8.3 proves by direct casework that the regular 7-gon with 120◦ angles is
optimal in comparison with all n-gons of area π/3 for n ≤ 10. section 9 demonstrates
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2 Optimal Monohedral Tilings of Hyperbolic Surfaces

the initial steps of this approach in comparison with 11-gons, which proves difficult.
Following a general approach, a subsequent paper [12] proves more: for k ≥ 7, the regular
k-gon with 120◦ angles is optimal in comparison with any n-gon of area (k −6)π/3, for
all n. section 10 shows the application of this approach to the classical Euclidean case.

Methods

To obtain equilateral 2n-gonal tiles of H2, it suffices by Margulis and Mozes [14] (Proposi-
tion 4.10) to construct equilateral 2n-gons with angles summing in various combinations
to 2π. Proposition 4.11 actually shows there is an equilateral 2n-gon with any repeated
sequence of angles (so that opposing angles are equal) as long as the exterior angles sum
to less than 2π. The careful induction argument considers the effects as the constant
sidelength ` approaches 0 and ∞.

To prove R7 is the optimal tile of an appropriate closed hyperbolic surface, Propo-
sition 3.5 first verifies that among n-gons of given area, the regular one minimizes
perimeter. It follows easily that R7 has less perimeter than all other n-gonal tiles for
n ≤ 7. For n > 7, we show that in an n-gonal tiling there are on average at least n −7
vertices of degree 2 per tile. In particular for n ≥ 8, an n-gonal tile has a concave angle.
This means that the convex hull of an octogonal tile (see section 6) has at most 7 sides
with generally more area and perimeter than R7. Similarly, if a 9-gonal tile (see section 7)
has two or more concave angles, it has more perimeter than Q7. If it instead has one
concave angle, a flattening argument that fills in the concave angle and truncates the
corresponding convex angle which fits into it preserves area, reduces perimeter, and
yields a heptagon which generally has more perimeter than R7. Finally, for a 10-gonal
tiling (see section 8), there may be many concave angles filled by many different con-
vex angles, perhaps nested inside one another, complicating the flattening procedure.
Proposition 8.2 reduces the analysis to six substantive cases and shows that each may be
flattened without resulting in self-intersecting shapes.

Hales [11] remarks that Fejes Tóth, who proved the honeycomb conjecture for convex
cells [8], predicted that general cells would involve considerable difficulties [7, p. 183]
and said that the conjecture had resisted all attempts at proving it [9]. Removing the
convexity hypothesis is the major advance of Hales’s work and of ours, although we
consider just polygonal cells.

2 Definitions

Definition 2.1 (Tiling). Let M be a closed Riemannian surface. A tiling of M is an embed-
ded multigraph on M with no vertices of degree 0 or 1. A tiling is polygonal if

1. every edge is a geodesic;

2. every face is an open topological disk.
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The oriented boundary of a face of a polygonal tiling is called a polygon. A tiling is
monohedral if all faces are congruent.

Remark 2.1. All polygonal tilings are connected multigraphs. When tiling a closed
surface with a tile Q, one copy Q∗ might be edge-to-edge with itself. An example is tiling
a hyperbolic two-holed torus with a single hyperbolic octagon, which has all eight of its
vertices coinciding at one point, and each edge coinciding with another edge. A second
example is tiling a Euclidean torus by tiling the square fundamental region with thin
vertical rectangles. The rectangle is edge-to-edge with itself at top and bottom, and the
two vertices of a vertical edge coincide. This is consistent because a tiling is defined as a
multigraph.

It is often useful to consider m-gons which “look like” n-gons because of angles of
measure π, such as a rectangle which appears to be a triangle because it has three angles
of measure 2π/3 and one angle of measure π. To clarify this situation, we introduce a
notion of equivalence to polygons.

Definition 2.2 (Equivalent). Two polygons Q and Q′ are equivalent Q ∼ Q′ if they are
equal after the removal of all vertices of measure π.

Remark 2.2. We can’t in general define away vertices of measure π; a vertex in a tiling
could, for example, have angles π,π/2,π/2, so the vertex has to be there because of the
π/2 angles.

Definition 2.3 (Convex Hull). Let R be a polygonal region in a closed hyperbolic surface
M. The convex hull H(R) is taken in the hyperbolic plane (with the minimal number of
vertices). The convex hull of an n-gonal region R is a k-gonal region for some k ≤ n. The
convex hull has no less area and no more perimeter.

Remark 2.3 (Existence). By standard compactness arguments, there is a perimeter-
minimizing tiling for prescribed areas summing to the area of the surface, except that
polygons may bump up against themselves and each other, possibly with angles of
measure 0 and 2π, in the limit. We think that no such bumping occurs, but we have no
proof.

Figure 1: Hales (2001) proved that regular hexagons provide the least-perimeter equal-
area tiling of the plane.
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4 Optimal Monohedral Tilings of Hyperbolic Surfaces

3 Hyperbolic Geometry

We begin with some basic results of hyperbolic geometry. Of particular interest are for-
mulae concerning the area and perimeter of polygons in hyperbolic space. corollary 3.1
proves that the regular heptagon is optimal (Conjecture 1.1) among polygons with seven
or fewer sides.

Proposition 3.1. By the Gauss-Bonnet Theorem, an n-gon in the hyperbolic plane with
interior angles θ1, . . . ,θn has area (n − 2)π−∑

θi . In particular, a regular n-gon with
interior angle θ has area

A(n,θ) = (n −2)π−nθ. (1)

Proposition 3.2 (Law of Cosines). If l is the length of the side opposing angle θ3 in a
triangle with interior angles θi , then

cosθ3 = sinθ1 sinθ2 cosh l −cosθ1 cosθ2.

In particular, for right triangle 4ABC with legs a,b,

cosh(a) = cos(∠A)/sin(∠B).

Proposition 3.3. A regular n-gon with interior angle θ has perimeter

P(n,θ) = 2n cosh−1
(

cos(π/n)

sin(θ/2)

)
. (2)

Proof. Connect the center of Qn to each of its vertices to form n isosceles triangles.
Bisect the n congruent triangles into 2n right triangles by connecting the center of the
polygon to the bisector of each side of the polygon. Each triangle has interior angles
π/2,π/n, and θ/2. By Proposition 3.2, the length of the leg on the polygonal side of each
of the 2n right triangles is cosh−1(cos(π/n)/sin(θ/2)). ■
Definition 3.4. For k ≥ 7, let Ak = A(k,2π/3) = (k −6)π/3 and Pk = P(k,2π/3) denote the
area and perimeter of the regular k-gon Rk with angles 2π/3.

Regular n-gons are isoperimetric among n-gons.

Proposition 3.5 ([12], Prop. 3.7). In the hyperbolic plane, the regular n-gon Qn has less
perimeter than any other n-gon Q of the same area.

Corollary 3.1. Tile a closed hyperbolic surface by polygons of area π/3 with 7 or fewer
sides. Then each of those tiles has perimeter greater than or equal to that of the regular
heptagon of area π/3.

Proof. This corollary follows immediately from Proposition 3.5. ■

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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Intuitively, the perimeter of regular n-gons of a fixed area should decrease as n
increases to approach the limiting bound of a circle, the most efficient way to enclose
a given area. Instead of performing computations of the perimeter to prove this, we
appeal to the fact that regular n-gons are more efficient than any other n-gons to show
that this is, in fact, the case.

Proposition 3.6. The perimeter of a regular n-gon for a fixed area is decreasing as a
function of n.

Proof. Let Qn and Qn+1 be the regular polygons of a fixed area with n and n+1 sides. Let
Q∗

n+1 be an (n+1)-gon formed by adding a vertex of measure π to Qn . By Proposition 3.5,

P(Qn+1) < P(Q∗
n+1) = P(Qn). ■

Remark 3.2. As expected, the perimeter of a regular n-gon of area A is increasing as a
function of A, for 0 < A < (n −2)π. By Proposition 3.1 and Proposition 3.3, the perimeter
of the n-gon is

2n cosh−1
(

cos(π/n)

sin(((n −2)π−A)/2n)

)
,

and it is increasing because cosh−1 and sin are increasing over (0,∞) and (0,π/2) respec-
tively.

Corollary 3.3. The regular k-gon has less perimeter than any other n-gon of equal or
greater area for 3 ≤ n ≤ k.

Proof. The corollary follows immediately from Proposition 3.5 and Proposition 3.6. ■
The following corollary is an easy step toward Conjecture 1.1.

Proposition 3.7. Consider an n-gon Q of area Ak = (k −6)π/3. If the convex hull H(Q)
has k or fewer vertices, then P(Q) ≥ Pk = P(Rk ), with equality only if Q ∼ H(Q) = Rk .

Proof. Recall H(Q) has no less area and at least as much perimeter as Q. corollary 3.3
finishes the proof. ■
Corollary 3.4. If an n-gon Q of area Ak = (k −6)π/3 has at least n −k concave angles,
then P(Q) ≥ Pk with equality if and only if there are exactly n −k such angles and they are
all exactly π, and hence Q ∼ Rk .

Proof. The corollary is immediate from Proposition 3.7, because if Q has at least n −k
concave angles, then the convex hull H(Q) has k or fewer vertices, with equality as
claimed. ■

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



6 Optimal Monohedral Tilings of Hyperbolic Surfaces

4 Monohedral Tilings of the Hyperbolic Plane

We seek a least-perimeter tile of H2 of given area. For area (n −6)π/3 we conjecture that
the regular n-gon with 120◦ angles is best. For other areas there is no natural candidate.
After Goodman-Strauss [10] and Margulis and Mozes [14] we prove the existence of
equilateral even-gonal tiles for wide ranges of areas.

Conjecture 4.1. In H2, the regular n-gon with 120◦ angles has less perimeter than any
non-equivalent tile of equal area.

The following proposition provides a necessary and sufficient condition for a regular
polygon to tile the hyperbolic plane.

Proposition 4.2. A regular polygon of interior angle θ tiles H2 if and only if θ divides 2π.

Proof. Of course if Q tiles, θ divides 2π. Conversely, as long as θ divides 2π, you can form
a tiling by surrounding one copy of Q with layers of additional copies. Alternatively, this
proposition follows directly from Proposition 4.10. ■
Remark 4.1. Similarly, if each angle of a triangle divides π, then the triangle tiles the
hyperbolic plane.

Corollary 4.2. An isosceles triangle T with angle θ1 dividing 2π and angles θ2 = θ3 divid-
ing π tiles H2.

Proof. For such a T, form a regular polygon Q with interior angle 2θ2 by attaching 2π/θ1

copies of T at the vertex of measure θ1. By Proposition 4.2, Q tiles H2. Thus T tiles H2. ■
Remark 4.3. The preceding propositions suggest several immediate but important
observations.

1. The areas of regular polygonal tiles are discrete except at the integer multiples of π.
This follows from the fact that for bounded area, n is bounded above for a regular
n-gonal tile of that area, and the areas of regular n-gons approach (n −2)π.

2. There are only finitely many regular polygonal tiles of given area.

3. If a polygon tiles the hyperbolic plane, then each angle is included in some positive
integer linear combination that equals 2π.

4. The converse of (3) is false. For instance, if a triangle T has angles θ1,θ2,θ3 satis-
fying a unique equation θ1 +3θ2 +5θ3 = 2π, T does not tile H2. This remark is a
corollary of the following theorem of Goodman-Strauss.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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Theorem 4.3 (Goodman-Strauss [10], Thm. 6.2). Suppose a hyperbolic triangle T with
vertex angles αi satisfies exactly one equation of the form

∑
kiθi = 2π with nonnegative

integral coefficients. Then T tiles H2 if and only if all the coefficients are at least 2 and
congruent to one another modulo 2.

We now relax the “exactly one” hypothesis of theorem 4.3.

Lemma 4.4. For any triangle T with angles α1,α2,α3 satisfying
∑

kiαi = 2π for nonnega-
tive integers ki , there exists a scalene triangle T′ whose angles satisfy this equation and no
other nonnegative linear combination that sums to 2π.

Proof. The constraint
∑

kiθi = 2π determines a plane Π which intersects the region of
possible hyperbolic triangle angles

B =
{ ∑

0<θi

θi <π
}

of the first octant of θ1θ2θ3 space. For integers (k ′
1,k ′

2,k ′
3) 6= (k1,k2,k3), the collection of

affine subspaces
Π∩{∑

k ′
iθi = 2π

}
is a countable set of lines and empty sets in Π. Choose (α′1,α′2,α′3) ∈Π∩B lying on no
such line. The triangle T′ with angles α′i is scalene because

(k1 −1)α′1 + (k2 +1)α′2 +k3α
′
3 6= k1α

′
1 +k2α

′
2 +k3α

′
3

implies α′1 6= α′2. A similar argument shows each α′i is distinct. ■
Remark 4.5. Denote T′/m as the triangle with angles 1/m times those of T′. The state-
ment in lemma 4.4 can be strengthened so that T′ satisfies the given equation and no
other rational combination of its angles sums to 2π. Then, by theorem 4.3, if ki ≥ 1, T′/m
tiles for all even m. If the coefficients are at least 2 and congruent modulo 2, then T′/m
tiles for all positive integers m.

Proposition 4.4 (cf. Thm. 4.5 of [10]). Consider a triangle T and a tile T′. Suppose that
every nonnegative integral linear combination

∑
kiθi = 2π satisfied by the angles of T′ is

also satisfied by the angles of T. Then T tiles in the same way.

Proof. First consider the case where T′ is scalene. Then the triangle T tiles in exactly the
same way as T′. The angles still sum to 2π around every vertex, and the edges match
because a tiling by the scalene triangle T′ always matches an edge to itself.

Now suppose T′ is isosceles with angles α1,α2 = α3. Since T′ tiles, some linear combi-
nation

∑
kiαi = 2πwith k2 6= 0. If k2 = k3, decrease k2 and increase k3 by 1. Then αi must

also satisfy k1α1+k3α2+k2α3 = 2π. Since T must satisfy these two equations and k2 6= k3,
T must be isosceles. Therefore T tiles in exactly the same way as T′. Angles still sum to
2π around every vertex, and the edges match since both triangles are isosceles. ■

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



8 Optimal Monohedral Tilings of Hyperbolic Surfaces

Proposition 4.5. A triangle T tiles with every angle at every vertex if its angles αi satisfy∑
kiαi = 2π for ki ≥ 2 congruent modulo 2.

Proof. Suppose T satisfies
∑

kiθi = 2π with ki ≥ 2 congruent modulo 2. By lemma 4.4,
there exists a scalene triangle T′ that satisfies

∑
kiθi = 2π for those ki and no other

nonnegative integers. By theorem 4.3, T′ tiles with every angle at every vertex because
each ki is positive, and by Proposition 4.4, T tiles in the same way. ■

We can now use Proposition 4.5 to obtain certain tilings in the hyperbolic plane.

Proposition 4.6. A triangle T with angles θi such that 2kθ1+θ2+θ3 =π for some positive
integer k tiles H2.

Proof. This proposition follows immediately from Proposition 4.5. ■
Proposition 4.7. There is a non-equilateral isosceles triangular tile T of H2 for all possible
triangular areas A, i.e., for 0 < A <π.

Proof. Let T be the hyperbolic isosceles triangle with angles

θ1 = A

2k −1
,

θ2 = θ3 =π/2−kθ1,

for some integer k >π/(2π−2A) large enough to make θ1 < θ2 = θ3. By Gauss-Bonnet, T
has area A. By Proposition 4.6, T tiles. ■
Corollary 4.6. There is a n-gonal tile of H2 for any given area 0 < A <π.

Proof. By Proposition 4.7, there exists a non-equilateral triangular tile T of area A.
Choose a side of distinct length, and add n−3 equally spaced vertices to get a degenerate
n-gonal tile of area A. ■
Remark 4.7. Margulis and Mozes [14, Thm. 5] explicitly construct strictly convex n-
gonal tiles of every possible area 0 < A < (n − 2)π for n ≥ 5. The tiling is generically
nonperiodic, although invariant under a discrete group of symmetries. Their Theorem 4
constructs some equilateral tiles for all n ≥ 3 by perturbing the regular n-gon and using
Proposition 4.10 below.

Proposition 4.8. There is a rhombic tile of H2 for all possible quadrilateral areas A, i.e.
for 0 < A < 2π.

Proof. By Proposition 4.7, there exists a non-equilateral isosceles triangular tile of area
A/2. Consider a tiling by this isosceles triangle. Pair tiles connected by the side of distinct
length. Each pair of isosceles triangles forms the same rhombus of area A, and this
rhombus tiles. ■

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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Remark 4.8. Margulis and Mozes [14, Thm. 4] construct some rhombic tiles, but only
for some areas, by perturbing the regular 4-gon.

Conjecture 4.9. A quadrilateral with distinct angles θi tiles if and only if there is some
combination

Σkiθi = 2π,

for integers ki > 1 congruent modulo 2.

The following proposition of Margulis and Mozes [14] gives a sufficient condition
for equilateral n-gonal tiles, n ≥ 4, which Margulis and Mozes use to construct some
aperiodic tiles. Our Proposition 4.11 provides a general construction of equilateral n-
gons, and then our Proposition 4.12 constructs equilateral even-gonal tiles of a wide
range of areas.

Proposition 4.10 (Margulis and Mozes [14], Prop. 2.2). Let Q be a convex equilateral
polygon in H2 with n ≥ 4 vertices and angles θ1, . . . ,θn at most π/2. Assume that any three
angles (allowing repetition) may be complemented by more (allowing repetition) to sum
to 2π. Then Q tiles H2.

To prove the existence of many 2n-gonal tiles in Proposition 4.12, we need Proposi-
tion 4.11 about the existence of equilateral 2n-gons (fig. 2). Note that by Gauss-Bonnet,
as the sum of half the angles approaches (n −1)π, the area goes to 0.

V1

V2

θ2

V3 θ3

Vn+1

· · ·

Qn(ℓ)

θ2

θ3

· · ·

Figure 2: Construction of equilateral 2n-gon with angles θ1, . . . ,θn ,θ1, . . . ,θn .

Proposition 4.11. Consider θ1, . . . ,θn such that 0 < θi ≤π and
∑
θi < (n−1)π. Then there

is a convex equilateral 2n-gon in H2 with angles θ1, . . . ,θn ,θ1, . . . ,θn .

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



10 Optimal Monohedral Tilings of Hyperbolic Surfaces

First we need two lemmas.

Lemma 4.9. Consider θ2, . . . ,θn with 0 < θi <π. Let Qn(`) denote the (n+1)-gon V1 . . .Vn+1

of edge lengths `, with the interior angle of vertex Vi having measure m(Vi ) = θi for
i ∈ {2, . . . ,n}. Then

(1) for large `, Qn(`) is embedded;

(2) m(V1),m(Vn+1) → 0 as `→∞;

(3) d(V1,Vn+1) →∞ as `→∞.

Proof. For a proof by induction, first consider the case n = 2. For any `, the triangle Q2(`)
is trivially embedded since θ2 <π. The rest follows by induction and the hyperbolic Law
of Cosines. For the induction step, for ` large, since by induction Qn−1(`) is embedded
and m(Vn) in Qn−1(`) is small, therefore Qn(`) is embedded. Again the rest follows by the
Law of Cosines. ■
Lemma 4.10. Let L be the supremum of ` such that Qn(`) is not embedded. If L > 0, then
for some `0 > L, m(V1)+m(Vn+1) >π in Qn(`0).

Proof. It follows from lemma 4.9 that for large enough ` > L, Vn+1 is outside Qn−1(`)
since m(∠V1VnVn−1) → 0 as `→∞, and symmetrically, V1 is outside polygon V2 . . .Vn+1.
Qn(`) varies continuously with `, and as ` decreases, Qn(`) is embedded as long as Vn+1

is outside Qn−1(`) and V1 is outside polygon V2 . . .Vn+1. Since L > 0, we may assume that
for some `0 > L, Vn+1 is arbitrarily close to Qn−1(`), at which point

Area(V1VnVn+1) < ε/2

and
m(∠V1VnVn+1) < ε/2,

with 0 < ε< m(∠V2V1Vn) on Qn(`′). Note that Qn(`0) is embedded since `0 > `≥ L, and

m(V1)+m(Vn+1) =π−Area(V1VnVn+1)−m(∠V1VnVn+1)+m(∠V2V1Vn) >π.

■
Proof of Proposition 4.11. Consider the polygonal chain V1 · · ·Vn+1 where each edge is
of length ` and each angle Vi has measure θi for 2 ≤ i ≤ n. By lemma 4.9, the (n+1)-gon
Q with vertices V1, . . . ,Vn+1 is embedded for sufficiently large `. Furthermore, m(V1)+
m(Vn+1) continuously approaches 0 as large ` goes to infinity.

Let L be the supremum of ` such that Qn(`) is not embedded. Suppose L > 0.
By lemma 4.10, there exists an `0 > L such that m(V1)+m(Vn+1) > π. Since m(V1)+
m(Vn+1) → 0 as `→ ∞ and θ1 < π, there must exist an ` ∈ (`0,∞) such that m(V1)+

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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m(Vn+1) = θ1 on Qn(`). If L = 0, then Qn(`) is embedded for every ` > 0, so m(V1)+
m(Vn+1) attains every value from 0 to the Euclidean limit (n −1)π−∑n

i=2θi . In either
case, for some `> 0, m(V1)+m(Vn+1) = θ1 on Qn(`). Therefore adjoining two copies of
the chain V1 · · ·Vn+1 with length ` yields the desired 2n-gon. ■
Proposition 4.12. For even n ≥ 6, there is a strictly convex equilateral n-gonal tile Q of
H2 of area A for (n −2)π/2 < A < (n −2)π.

Proof. Note first what turns out to be one exceptional case: the regular 6-gon with π/6
angles tiles by Proposition 4.2. It has area 3π.

Let σ= (n −2)−A/π. By the hypothesis on A, 0 <σ< (n −2)/2. If σ< 2(n −4)/(n −2),
there is an integer m such that

4

(n −2)σ
< m < 2

σ
(3)

because the length of the interval is greater than 1. Otherwise let m = 4/(n−2). Note that

m = 4

n −2
> 4

(n −2)σ

and

m = 4

n −2
< 2

σ
,

so m satisfies the same inequalities as eq. (3) in this case. The sharp inequality in the
lower bound holds because σ≥ 2(n −4)/(n −2) ≥ 1, with equality only for the already
handled case n = 6, A = 3π.

Let θ1 = (π/m(n−4))(2−mσ). Note that 0 < θ1 < 2π/m(n−2) by eq. (3) (and θ1 <π/2).
Finally, let θ be such that

(n −2)(θ1 +θ) = 2π/m. (4)

Note that 0 < θ<π/2. By Proposition 4.11, there exists an equilateral n-gon Q with two
angles of measure θ1 and the rest of measure θ. Since the angles are all less than π/2, Q
is strictly convex. By Proposition 3.1, eq. (4), the definition of θ1, and the definition of σ,

Area(Q) = (n −2)π− (2θ1 + (n −2)θ)

= (n −2)π− (2π/m − (n −4)θ1)

= (n −2)π−πσ
= A.

If m is integral, by eq. (4) and Proposition 4.10, Q tiles. In the case m = 4/(n −2),

4(θ1 +θ) = 2π,

and again by Proposition 4.10, Q tiles. ■

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



12 Optimal Monohedral Tilings of Hyperbolic Surfaces

Remark 4.11. For n = 6, as the area approaches 3π from below, θ approaches 0 and
θ1 approaches π/2, and as the area approaches 3π from above, θ1 approaches 0 and θ
approaches π/4. Fortunately, this exceptional case is covered by a regular 6-gon.

Corollary 4.12. For even n ≥ 4,k ≥ 2, there is a (degenerate) equilateral kn-gonal tile Q
of H2 of area A for any (n −2)π/2 < A < (n −2)π.

Proof. Add k −1 equally-spaced vertices to each edge of the n-gonal tile guaranteed by
Proposition 4.8 and Proposition 4.12. ■
Corollary 4.13. For any n ≡ 2 (mod 4) at least 6 and any k ≥ 1, there is a nondegenerate
equilateral kn-gonal tile Q of H2 of area A for any (n −2)π/2 < A < (n −2)π.

Proof. Consider the tiling by the equilateral n-gon of Proposition 4.12 with angles

θ1,θ2, . . . ,θn/2,θ1,θ2, . . . ,θn/2

and desired area. The case k = 1 is already done, so assume k ≥ 2. Let Q be the kn-gon
constructed by deforming the edges of the n-gon: add, in alternating fashion, an indent
or an outdent to the edges of the n-gon, which evidently preserves area. The indents
and outdents are congruent equilateral polygonal chains of k edges, and can be made
arbitrarily small to guarantee that Q does not intersect itself. We claim that Q tiles. Note
that, as n/2 is odd, the edges between angles θi ,θi+1 and θi+n/2,θi+1+n/2 are dented
differently: one has an outdent, and the other an indent.

Consider the graph for the n-gonal tiling; we use it to generate an analogous tiling
for Q. There are no odd cycles, because a cycle bounds a collection of even-gons and the
unused (interior) edges are paired up. Hence the graph is bipartite, consisting of two
sets C and C′.

For a vertex of C, arrange all the dents clockwise about the vertex; for a vertex of C′,
arrange them counter-clockwise. Since the dentings alternate, every face of this new
graph is congruent to Q. ■
Remark 4.14. Consider 12-gons for example. Proposition 4.12 provides equilateral 12-
gonal tiles from the largest possible area 10π down to 5π (excluding the endpoints).
There are regular 12-gonal tiles for areas of the form (10−24/k)π (Proposition 3.1 and
Proposition 4.2), including for example 2π and 4π. Adding triangular dents to the edges
of equilateral 6-gonal tiles as in corollary 4.13 yields equilateral 12-gonal tiles for areas
from 4π down to 2π. Evenly placing two vertices as in corollary 4.12 on each of the
edges of a rhombic tile (Proposition 4.8) yields (degenerate) tiles for areas from 2π down
to 0. The only missing cases are areas in the interval (4π,5π]. Non-equilateral tiles are
provided for all possible areas by corollary 4.6.

We consider the possibility of curvilinear edges, that is, non-self-intersecting smooth
curves which are not necessarily geodesics.
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Proposition 4.13. An isoperimetric curvilinear triangular tile of the hyperbolic plane
must be convex.

Proof. Assume that there is a non-convex isoperimetric curvilinear triangular tile. If
every edge contains the same area as a geodesic, replacing the edges with geodesics
maintains area and reduces perimeter, contradiction. In the case that one contains more
and another contains less, a similar contradiction is obtained. Hence either two edges
contain more and one contains less, or two contain less and one contains more. Then
around a vertex of the tiling one type must match up against the other type, so that all
outside edges are of the same type, which leads to a contradiction around an outside
vertex. ■
Remark 4.15. Proposition 4.13 is easier in closed hyperbolic surfaces, because the
number of edges bulging out must equal the number bulging in, while in H2 such a
discrepancy might be pushed off to infinity. Even in closed surfaces an extension to
higher curvilinear k-gons remains conjectural, because straightening one edge of a tile
might cause it to intersect another part of the tile.

5 Monohedral Tilings of Closed Hyperbolic Surfaces

In 2005 Cox [2, 3] and subsequently Šešum [15] proposed generalizing Hales’s hexagonal
isoperimetric inequality to prove that a regular k-gons Rk (k ≥ 7) with 120◦ angles
provides a least-perimeter tiling of an appropriate closed hyperbolic surface for given
area. Carroll et al. [1] showed that the proposed polygonal isoperimetric inequality fails
for k > 66. Our theorem 8.3 proves the result for R7 among monohedral tilings by a
polygon of at most 10 sides. Although theorem 8.3 applies even if the regular polygon
does not tile, Proposition 5.1 notes that there are many closed hyperbolic surfaces which
it does tile. It is possible for many-sided polygons to tile, but Proposition 5.3 shows
that as n increases, n-gonal tiles necessarily have many concave angles. corollary 5.3
deduces that the regular polygon has less perimeter than any other convex polygonal
tile.

Remark 5.1. By Gauss-Bonnet, the regular k-gon Rk of area Ak = (k − 6)π/3 (k ≥ 7)
has interior angles of 2π/3 (section 3). It therefore tiles H2. It also tiles many closed
hyperbolic surfaces (Proposition 5.1). Every such Rk is thought to be isoperimetric.
However, for area not a multiple of π/3, there is no conjectured isoperimetric tile.

Proposition 5.1. For k ≥ 7, there exist infinitely many closed hyperbolic surfaces tiled by
the regular k-gon of area (k −6)π/3 and angles 2π/3.

Proof. These surfaces are provided by work of Edmonds, Ewing, and Kulkarni [4, Main
Thm.] on torsion-free subgroups of Fuchsian groups and tessellations (see also [5, 6]).
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14 Optimal Monohedral Tilings of Hyperbolic Surfaces

Their work yields torsion-free subgroups S of arbitrarily large finite index of the triangle
group (2,3,k). This triangle group is the orientation-preserving symmetry group of the
hyperbolic triangle of angles π/2,π/3, and π/k. Each quotient of H2 by such a subgroup
S is a closed hyperbolic surface tiled by these triangles, which can be joined in groups
of 2k to form a tiling by the regular k-gon of area (k −6)π/3 and hence angles 2π/3 (by
Gauss-Bonnet). ■
Example 5.2. The Klein Quartic Curve in CP2 is the set of complex solutions to the
homogeneous equation [13]

u3v + v3w +w 3u = 0.

The curve is a hyperbolic 3-holed torus. It is famously tiled by 24 regular heptagons.

The following results are instrumental in eliminating competing n-gons of large n.

Lemma 5.2. Consider a tiling of a closed hyperbolic surface by curvilinear polygons Qi

of average area Ak = (k −6)π/3. Then each polygon has on average at most k vertices of
degree at least 3, with equality if and only if every vertex has degree two or three.

Proof. A tile with n edges and v vertices of degree at least 3 contributes to the tiling 1
face, n/2 edges, and at most (n−v)/2+v/3 vertices, with equality precisely if no vertices
have degree greater than 3. Therefore its contribution to the Euler characteristic F−E+V
is at most 1− v/6. The Gauss-Bonnet theorem says that∫

G = 2π(F−E+V).

Hence the average contributions per tile satisfy

−Ak =−(k −6)π/3 ≤ 2π(1− v/6).

Therefore v ≤ k, with equality if and only if no vertices have degree more than 3. ■
Proposition 5.3. Let Q be an n-gon of area Ak = (k −6)π/3 with `1 (interior) angles of
measure π and `2 of measure greater than π. If Q tiles M, then `1 +2`2 ≥ n −k. Equality
holds for a tiling (and therefore every tiling) if and only if every vertex is of degree two or
three, and every concave angle has degree two.

Proof. Take any tiling of M by Q. Each vertex of degree two in the tiling has either two
angles of measure π or exactly one angle of measure greater than π. By Lemma 5.2,

`1 +2`2 ≥ n −k,

with equality precisely when every vertex has degree two or three, and every concave
angle has degree 2. ■
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Corollary 5.3. The regular k-gon Rk has less perimeter than any non-equivalent convex
polygonal tile of area Ak = (k −6)π/3.

Proof. Let Q be a convex n-gonal tile of area Ak . By Proposition 5.3, Q contains at least
n −k angles of measure π. Hence Q is equivalent to a polygon with at most k sides.
Unless Q is equivalent to Rk , Q has strictly more perimeter by corollary 3.3. ■

6 Octagonal Tiles

The next step to proving that the regular 7-gon R7 with 120◦ angles is isoperimetric is
to show that no octagonal tile is better. corollary 6.1 proves that the regular heptagon
of area π/3 has less perimeter than any octagonal tile of the same area. Since strictly
convex tiles of this area do not exist for n ≥ 8, we consider octagonal tiles which are not
strictly convex.

Proposition 6.1. The regular heptagon of area π/3 has less perimeter than any non-
equivalent non-strictly-convex octagon of the same area.

Proof. The proposition is immediate from corollary 3.4. ■
Corollary 6.1. Let M be a closed hyperbolic surface that is tiled by the regular heptagon
R7 of area π/3. Then R7 has less perimeter than any non-equivalent octagonal tile of the
same area.

Proof. By Proposition 5.3, the octagon contains an angle of measure at least π. The
corollary follows from Proposition 6.1. ■

7 Nonagonal Tiles

Proving that the regular heptagon has less perimeter than any 9-gonal tile (Proposi-
tion 7.2) is more difficult than the octagonal case because we must consider what hap-
pens when the tile has strictly concave angles. corollary 7.4 first proves that “flattening”
degree-two concave angles and their corresponding convex angles reduces perimeter
while preserving area.

Definition 7.1 (Flattening). Consider a polygonal chain A1A2 . . . An in H2. To flatten
adjacent vertices A2 . . . An−1, replace A1A2, . . . , An with the geodesic A1An . In a hyperbolic
surface, flattening is done in the cover H2.

Lemma 7.1. Let M be a surface which admits a monohedral tiling by a polygon Q. Suppose
that Q has a degree-2 vertex v with measure m(v). Then Q also has a vertex w of measure
2π−m(v). If Q has no angles of measureπ, then v and w are distinct vertices. Furthermore,
the incident edges of v are equal in length to the incident edges of w.
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16 Optimal Monohedral Tilings of Hyperbolic Surfaces

Proof. In the tiling, vertex v on Q has measure m(v), and since it is degree-2 it is shared
by exactly one other copy of Q in the tiling; on this other tile, v has measure 2π−m(v).
Since the tiling is monohedral, all tiles are congruent, and so there must exist a vertex
of measure 2π−m(v) on Q as well. If Q contains no angles of measure π, then it is not
possible that m(v) = 2π−m(v), and so v and w must be distinct vertices. Since tilings
are edge-to-edge, it must be the case that the edges incident to v coincide with edges
incident to w , and so they are equal in length. ■
Corollary 7.2. Let B,B′ be distinct complementary vertices on a monohedral tile Q. Let
A,C be the vertices adjacent to B and let A′,C′ be those adjacent to B′. Then ABC is
congruent to A′B′C′.

Proof. This follows immediately from lemma 7.1. ■
Corollary 7.3. Let B,B′ be distinct but adjacent complementary vertices on a monohedral
tile Q. Let A be the other vertex adjacent to B and C be the other vertex adjacent to B′. Let
D be the intersection of the segments BB′ and AC. Then 4ABD is congruent to 4DB′C.

Proof. This follows immediately from lemma 7.1. ■
Corollary 7.4. Flattening distinct complementary vertices B,B′ of a tile Q does not change
the area of Q.

Proof. Without loss of generality, let m(B) <π. If B and B′ are adjacent, then flattening
them amounts to removing the area of 4ABD and adding the area of 4DB′C to Q, as
shown in corollary 7.3. Since these triangles are congruent, the area of Q does not
change. If B and B′ are not adjacent, then flattening them amounts to removing the area
of 4ABC and adding the area of 4A′B′C′ to Q, as shown in corollary 7.2. Since these
triangles are congruent, the area of Q does not change. ■
Proposition 7.2. Let M be a closed hyperbolic surface. Then the regular heptagon R7 of
area π/3 has less perimeter than any non-equivalent 9-gonal tile Q of M of the same area.

Proof. Suppose Q has an angle of measure π. If there is only one such angle then by
Proposition 5.3, Q is equivalent to an octagon with at least one strictly concave angle.
By Proposition 6.1, P(Q) > P(R7). If there are two or more angles of measure π, Q is
equivalent to a polygon with seven or fewer sides, and so by corollary 3.3, P(Q) > P(R7).

On the other hand, suppose that Q does not have an angle of measure π. By
lemma 5.2, there exist distinct vertices B,B′ on Q such that m(B) + m(B′) = 2π and
the edges incident to each vertex are equal in length. Let A and C be the vertices adja-
cent to B and let A′ and C′ be those adjacent to B′. Since Q has no angles of measure
π, let m(B) < π without loss of generality. Then there are no vertices in the interior of
4ABC and B is the only vertex in the interior of 4A′B′C′, since otherwise the convex
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hull H(Q) would be a polygon with seven or fewer sides, so P(Q) > P(H(Q)) ≥ P(R7), and
we are done. Let Q′ be the heptagon formed by flattening both B and B′, whether or
not they are adjacent. By corollary 7.4, the area of Q is equal to that of Q′, and the
perimeter is reduced. Since Q′ is a heptagon, it has at least as much perimeter as R7, so
P(Q) > P(Q′) ≥ P(R7). ■

8 Decagonal Tiles

Proving that the regular heptagon has less area than any 10-gonal tile (Proposition 8.2) is
more difficult than the 9-gonal case since there may be multiple concave angles, which
means we need to also worry about the adjacency of the angles on the tile. This in turn
requires case work to address every possible configuration of angles on the 10-gon.

Definition 8.1. Let B be a vertex of a polygon, and consider the adjacent vertices. Let
4B be the triangle with those vertices.

Lemma 8.1 (Angle Nesting). Let Q be a decagon of area π/3 with 2 concave angles A, A′

with corresponding convex angles V,V′. Then P(Q) > P(R7) if either

(1) there exists a vertex in the interior of 4A; or

(2) there exists a vertex in the interior of 4V or 4V′ which is neither A nor A′.

Proof. We show that in either case, the convex hull H(Q) contains at least three vertices
in its interior, and so has at most seven sides.

1. Suppose there exists a vertex in the interior of 4A. If this vertex is A′, notice that
the line connecting AA′ intersects Q at some point M, which is neither A nor A′,
that is inside 4A. If M is a vertex of Q, then M, A, and A′ are in the interior of H(Q);
otherwise, one of the two vertices B of the edge on which M lies must be in the
interior of 4A, and so B, A, and A′ are in the interior of H(Q).

Now, consider when some vertex B 6= A′ is inside 4A. Then B, A, and A′ all are in
the interior of H(Q).

2. Suppose there exists a vertex B in the interior of 4V or 4V′ which is neither A nor
A′. Then B, A, and A′ are all in the interior of H(Q).

Thus H(Q) is a polygon with at most seven sides. If H(Q) = R7, then since Q is not
equivalent to R7, Q must contain a strictly concave angle, and so P(Q) > P(H(Q)) = P(R7).
On the other hand, if H(Q) is an irregular heptagon or is a polygon with fewer than seven
sides, then we know that P(Q) ≥ P(H(Q)) > P(R7). ■
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18 Optimal Monohedral Tilings of Hyperbolic Surfaces

Therefore we may flatten the pairs of concave and convex angles of a decagonal
tile without self-intersections, as otherwise the conditions of lemma 8.1 hold and the
decagon already has more perimeter than R7.

Proposition 8.2. Let M be a closed hyperbolic surface. Then the regular heptagon R7 of
area π/3 has less perimeter than any non-equivalent 10-gonal tile Q of M of the same
area.

Proof. By corollary 3.4, it suffices to consider only decagons with two or fewer concave
angles. These angles cannot both have measure π, since otherwise by Proposition 3.1
(Gauss-Bonnet), the remaining eight angles would have an average measure of 17π/24 >
2π/3, implying they could not meet in threes and Q would have to contain another
concave angle.

Suppose Q contains a single angle A of measure π. Then there exists an angle A′ of
measure greater than π and a vertex V′ that fits into A′. Further, by lemma 5.2, Q has an
average of at least 3 degree-two vertices per tile, so A, A′, and V′ always meet in twos. First
suppose A and V′ are not adjacent. Let Q′ be the polygon formed by flattening A′ and
V′, and then taking the convex hull of the resulting shape. Then Q′ is a heptagon of area
A ≥π/3 and less perimeter. If instead A and V′ are adjacent, since A must always meet in
twos and therefore at A on another copy of Q, A′ is adjacent to A as well. Flattening all
three of V′, A, A′ forms a heptagon Q′ of area A = π/3 and less perimeter, as in fig. 3. In
either case, by Proposition 3.5, P(Q) < P(Q′) ≤ P(H(Q′)) ≤ P(R7).

A

V

A′

Figure 3: Flattening AA′V reduces perimeter while preserving area.

Finally, we consider the case when Q contains two strictly concave angles A, A′, and
two distinct corresponding strictly convex angles V,V′. If A′ is not adjacent to A or V,
then flattening A′ would turn Q into a 9-gon Q′ with concave angle A and corresponding
angle V that fits into A. By Proposition 7.2, Q′ has more perimeter than R7, so P(Q) >
P(Q′) ≥ P(R7). By symmetry, this also covers the case that A is not adjacent to A′ or
V′. If, however, A′ is adjacent to A or V (or, by symmetry, A is adjacent to A′ or V′), we
enumerate the six possible orientations of the vertices and show that the claim holds for
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each. Cases (1) and (2) cover when A′ is adjacent to A but not V; cases (3) and (4) cover
when A′ is adjacent to V but not A; and cases (5) and (6) cover when A′ is adjacent to
both A and V. In the following proof, “ ” is used to denote vertices that are not V, A,V′,
or A′.

(1) A′A : Flatten A′A as in fig. 4 and flatten V. This reduces perimeter and increases
area, because the triangle removed at V is congruent to the triangle added at A.

A′ A

V

Figure 4: In the A′A case, flattening reduces perimeter and increases area, because
the triangle removed at V is congruent to a triangular portion of the trapezoidal region
added at A′A.

(2) A′AV : Flatten AV as in the dashed line of fig. 5, preserving area and reducing
perimeter. Note that A′ remains concave after flattening AV. Taking the convex hull
(dotted line) yields a polygon with seven or fewer sides, and so P(Q) > P(H(Q′)) ≥
P(R7) Note that V′ may occur anywhere without affecting the argument, including
adjacent to A′.

A′ A

V

Figure 5: In the A′AV case, the dashed-line flattening is followed by taking the convex
hull (dotted line).

(3) V′AA′V : By lemma 5.2, the average number of degree-two vertices per tile is at
least 3, which means that some copy of Q must have both A and A′ degree two.
When V fits into A, A′ cannot fit into itself (recall A′ >π), so A′ must simultaneously
fit into another V′. Thus necessarily the other angle adjacent to V is congruent to
V′, and so this reduces to the following Case (4), as illustrated in fig. 6.

(4) AA′VV′ and AA′V V′ : Flatten A′ and V′ as in fig. 7, preserving area and reducing
perimeter. Note that the angle at A remains concave. Take the convex hull of the
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V ′

A
A′

V

V ′

=⇒
V ′

A
A′

V

Figure 6: The V′AA′V configuration necessarily implies that there is an angle congruent
to V′ adjacent to V, reducing to Case (4).

resulting polygon and the resulting shape has seven or fewer sides with at least as
much area and less perimeter than Q. Therefore P(Q) > P(Q7).

A
A′

V

V ′

Figure 7: In the AA′VV′ case, the dashed-line flattening is followed by taking the convex
hull (dotted line).

(5) VA′ AV′ Note that every concave angle must be part of a degree 2 vertex, so
the polygonal curve consisting of the three edges incident to V and A′ must be
congruent to the polygonal curve with edges incident to A and V′. Therefore
flattening VA′ and AV′ yields a figure with seven or fewer sides with the same area
and less perimeter. Therefore P(Q) > P(R7).

V

A′

A

V ′

Figure 8: The polygonal chain containing V and A′ is congruent to the one containing A
and V′, so we may flatten simultaneously (dashed line) with no net change in area.

(6) A′VAV′ Flatten VA as in fig. 9, which preserves area and reduces perimeter. The
measure of angle A′ will decrease, but the measure of angle V′ will increase by the
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same amount. This guarantees that A′ or V′ will have measure at least π. Taking the
convex hull yields a heptagon or less with at least as much area and less perimeter
than Q. Thus P(Q) > P(R7).

A′

V

A

V ′

Figure 9: In the A′VAV′ case, the dashed-line flattening is followed by taking the convex
hull.

Since these six cases enumerate all possible permutations of the relevant angles, the
proof is complete. ■

The following theorem is our main result.

Theorem 8.3. Let M be a closed hyperbolic surface. Then the regular heptagon R7 of area
π/3 has less perimeter than any non-equivalent n-gonal tile of M of the same area for
n ≤ 10.

Proof. The theorem follows from corollaries 3.3 and 6.1 and Propositions 7.2 and 8.2. ■

9 11-gonal Tiles

Finally our work stalls with partial results on 11-gonal tiles. They are similar to decago-
nal tiles in that they have at least two concave angles. However, they can have more
concave angles, and there are more possible permutations of the concave Ai and the
corresponding convex Vi . We first employed casework based on the number of Ai , and
further subdivided based on the number of angles exactly equal to π. The most difficult
cases are when there are three concave angles, one of which might never meet in twos,
with multiple copies of some Vi , and several subcases of exactly two concave angles. We
resolved all but three of around 20 cases for 11-gonal tiles before discovering a general
proof [12]. We leave the reader with several examples of the 11-gon casework.

Lemma 9.1. An 11-gonal tile Q with exactly two concave angles A1, A2 must have A1, A2

meet in twos for every copy of Q.

Proof. By lemma 5.2, there must be on average at least 11−7 = 4 degree-two vertices
per tile. The result follows. ■
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22 Optimal Monohedral Tilings of Hyperbolic Surfaces

Corollary 9.2. An 11-gonal tile Q with exactly one strictly concave angle A1 and two
angles m(A2) = m(A3) =π must have A1, A2, A3 meeting in twos for every copy of Q.

Proof. The result follows from lemma 5.2. ■
Corollary 9.3 (Angle Measures). Note that an 11-gonal tile Q cannot have exactly one
strictly concave angle and exactly one angle of measure π, as there could not be an average
of 4 degree-two vertices per tile. Similarly, Q cannot have exactly three concave angles all
of which have measure π.

Lemma 9.4 (Four or More Concave Angles). A non-equivalent 11-gonal tile Q of area π/3
with four or more concave angles is worse than R7.

Proof. Suppose Q has four or more concave angles. By corollary 3.4, P(Q) ≥ P(R7), with
equality if and only if Q ∼ R7. ■
Proposition 9.1 (Three Concave Angles). A non-equivalent 11-gonal tile Q of area π/3
with exactly three concave angles is worse than R7.

Proof. Consider such a Q with concave angles A1, A2, A3 and corresponding convex
angles V1,V2,V3. We first consider the cases where some of the Ai have measure π. By
corollary 9.3, we may assume without loss of generality m(A1) >π.

1. If m(A2) = m(A3) =π, by corollary 9.2, each Ai always meets in twos. Removing A2

and A3 forms a 9-gonal tile Q′ since both vertices always met in twos and thus were
only ever aligned with each other. Since Q′ is a 9-gonal tile, it reduces to Section 7.

2. If only m(A3) = π, consider its neighbors. If none of Ai ,Vi , i ≤ 2 neighbor A3,
remove A3, resulting in a 10-gon which, while not a tile, satisfies the concave and
convex angle requirements of a 10-gon, and thus, with a little more work, can be
shown to be sub-optimal. ■

The following represents some incomplete results necessary for the 11-gon proof.

Lemma 9.5. Ai neighbors A3 if and only if Vi neighbors A3.

Proof. Without loss of generality, assume A1 neighbors A3. Assume V1 does not. Since
on average Q has four degree-two vertices per tile, A1 must sometimes meet in twos.
When A3 meets in twos—and therefore meets A3 on another copy of Q—both copies of
A1 cannot meet in twos, since the only other neighbor of A3 is not V1. But then A3 adds
two degree-two vertices to the overall sum, but subtracts both potential A1 and V1, a
total of four. Thus the average is too small, and V1 must neighbor A3.

Now without loss of generality assume V1 neighbors A3. Similar to the above, when
A3 meets in twos and meets A3 on another copy of Q, both copies of V1 cannot meet
in twos, which leaves two other copies of A1 unfilled as well. A separate case covers
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when there is more than 1 copy of V1; if so, that’s advantageous, as we can then use
the other V1 instead. Again, this makes the average too small, so A1 also neighbors A3.
Flattening V1, A1 and A3 as in the diagram forms an 8-gon with at least one convex angle
(A2). Taking the convex hull to form Q′ yields a 7-gon with equal or greater area. Hence
P(R7) < P(Q′) < P(Q). ■

More casework would be necessary to fully resolve the case of 11-gons.

10 Euclidean Hexagons

A subsequent paper [12] simultaneously proves Conjecture 1.1 in comparison with
polygons of any number n of sides, generalizes the result from 7 to all k ≥ 7, and remarks
that the same methods yield a relatively simple proof of a weak version (Proposition 10.3)
of Hales’s theorem [11] on Euclidean hexagons. Here we provide the details behind the
extension to Euclidean hexagons. The following propositions and lemmas 10.1–10.2
provide (generally easier) Euclidean versions of the hyperbolic cases presented in [12,
Lemma 4.3, Proposition 5.3, Lemma 5.4, and Lemma 5.5].

Lemma 10.1. Consider a tiling of a flat torus by curvilinear polygons. Then each polygon
has on average at most 6 vertices of degree at least 3, with equality if and only if every
vertex has degree two or three.

Proof. A tile with n edges and v vertices of degree at least 3 contributes to the tiling 1
face, n/2 edges, and at most (n−v)/2+v/3 vertices, with equality precisely if no vertices
have degree greater than 3. Therefore it adds at most 1− v/6 to the Euler characteristic
F−E+V. The Gauss-Bonnet theorem says that∫

G = 2π(F−E+V).

Hence the average contributions per tile satisfy

0 ≤ 2π(1− v/6).

Therefore v ≤ 6, with equality if and only if no vertices have degree more than 3. ■
Proposition 10.1. Let M be a flat torus tiled by curvilinear polygons Qi . Let Q∗

i be the
convex hull of the vertices of degree three or higher of Qi . Then {Q∗

i } covers M and the
average number of sides is less than or equal to 6.

Proof. By the Euclidean restatement of [12, Lemma 5.2], straightening edges and flatten-
ing all degree-2 vertices yields a covering by immersed polygons, each covered by the
corresponding Q∗

i . Hence {Q∗
i } covers M. By lemma 10.1 the average number of sides is

less than or equal to 6. ■
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Proposition 10.2. The area of the regular n-gon with perimeter P is given by

A(n) = P2 cotα

4n
,

where α=π/n. The function A(n) is strictly increasing and strictly concave on [2,∞). We
extend A(n) continuously to be identically 0 on the interval [0,2].

Proof. Let R be the circumradius of the regular n-gon of perimeter P. Its area is

n

2
R2 sin(2α).

But

sinα= P

2Rn
,

and a simple substitution yields the claimed expression for A(n). Its second derivative
with respect to n is

P2

4
· n2[2cotα

(
1+α2 csc2α)

)−4αcsc2α]

n5
.

The numerator can be rewritten as

P2n2

sin3α
· (2cosα · (sin2α+α2)−4αsinα

)
. (?)

The derivative (with respect to α) of the term in parentheses is

−2α2 sinα−6sin3α,

which is negative over 0 < α≤π/2. Since the term in the parentheses is zero at α= 0, it
follows that (?) and hence the second derivative of A(n) are negative for 0 < α≤π/2.

Finally, strict monotonicity of A(n) follows from strict concavity, since A(n) remains
positive for n > 2. ■
Lemma 10.2. Fix P > 0. For all real n ≥ 6,

A(n) < 2A
(n

2

)
.

Proof. The desired inequality simplifies to

cot(π/n) < 4cot(2π/n),

and for n > 4 further rearranges to

2

3
< cos2(π/n),

which is true for n ≥ 6. ■
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Proposition 10.3. Consider a curvilinear polygonal tiling of a flat torus with N tiles of
average area A and no more perimeter than the regular hexagon R6 of area A. Then every
tile is equivalent to R6.

Proof. Let P be the perimeter of the regular hexagon of area A. By Proposition 10.1, the
collection of convex hulls Q∗

i of the vertices with degree at least 3 on each tile covers M,
and of course P(Q∗

i ) ≤ P(Qi ) ≤ P by assumption. Since the Q∗
i cover,

1

N

∑
Area(Q∗

i ) ≥ A. (5)

By Proposition 10.1, the number of sides ni of Q∗
i satisfy

1

N

∑
ni ≤ 6.

The areas can be estimated in terms of A(n) for P as∑
Area(Q∗

i ) ≤∑
A(ni ) ≤ N ·A

(∑
ni

N

)
≤ N ·A(6) = N ·A. (6)

The first inequality follows from the well-known fact that regular (Euclidean) n-gons
maximize area for given perimeter. The second inequality follows from the concavity
of A(n) for n ≥ 2 (Proposition 10.2) and Jensen’s inequality. If any of the ni are 0 or 1,
choose some ni ≥ 6, and use lemma 10.2 first to replace 0+A(ni ) with 2A(ni /2). If you
run out of large enough ni , the next inequality holds already. The third inequality follows
from the fact that A(n) is strictly increasing (again Proposition 10.2). The final equality
holds by the definition of A(n) for P.

By eq. (5), equality must hold in every inequality. By the strict concavity of A(n),
equality in the second inequality implies that every ni = 6. Equality in the first inequality
implies that every Q∗

i has area A. Since regular hexagons uniquely maximize area, Q∗
i is

the regular hexagon R6 of area A. Finally

P(Qi ) ≥ P(Q∗
i ) = P,

and equality implies that Qi ∼ R6. ■
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