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The Chromatic Index of Ring Graphs

By Lilian Shaffer

Abstract. T he goal of graph edge coloring is to color a graph G with as few colors as
possible such that each edge receives a color and that adjacent edges, that is, different
edges incident to a common vertex, receive different colors. The chromatic index,
denoted χ′(G), is the minimum number of colors required for such a coloring to be
possible. There are two important lower bounds for χ′(G) on every graph: maximum
degree, denoted ∆(G), and density, denoted ω(G). Combining these two lower bounds,
we know that every graph’s chromatic index must be at least ∆(G) or ω(G), whichever is
greater.

In this paper, we prove that the chromatic index of every ring graph is exactly equal
to this lower bound.

1 Introduction

In graph theory, a graph G is a set of vertices, denoted V(G), and a corresponding set of
edges, denoted E(G). Each of these edges in E(G) connects some vertex in V(G) to some
vertex in V(G). Such a graph is undirected if all edges in E(G) edges are bidirectional.
While this paper is concerned with multigraphs, graphs which allow vertices to be
connected by multiple edges, we simply say "graph" for brevity. Coloring graphs by
various parameters has been a long-standing problem in graph theory. An edge coloring
of a graph G is an assignment of colors to the edges of G such that no two edges adjacent
to a common vertex receive the same color. The chromatic index, denoted χ′(G), is the
least number of colors required for an edge coloring of G.

When we talk of a ring graph G, we mean a finite undirected multigraph con-
structed from a single cycle. This is done by replacing each edge with some number of
edges—possibly no edges, possibly one edge, and possibly multiple edges. This means
that there will be no loops, that is, there will be no edges connecting a vertex to itself.

The degree of a vertex v , denoted d(v), is the number of edges incident to v . The
maximum degree of a graph G, denoted ∆(G), is the largest degree of any vertex in G.
The maximum multiplicity of G, denoted µ(G), is the greatest number of edges connect-
ing any two vertices. The density of G, denoted ω(G) and defined max

H⊆G,|V(H)|≥3
{ |E(H)|
b 1

2 |V(H)|c },
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2 The Chromatic Index of Ring Graphs

Figure 1: A ring graph with 5 vertices.

provides a conceptual way of describing how dense a graph is in terms of the sizes of
edges.

It is known that both ∆(G) and dω(G)e are lower bounds for the chromatic index of G.
That is, χ′(G) ≥ max{∆(G),dω(G)e}. A graph G is said to be exact if χ′(G) = max{∆(G),dω(G)e}.

A graph is bipartite if its vertices can be divided into two disjoint sets such that no
edges connect any vertex to another vertex in its set. In 1916, Dénes König [1] proved that,
for every bipartite graph G, χ′(G) =∆(G), making every bipartite graph exact. Because
every ring graph with an even number of vertices is bipartite, every ring graph with an
even number of vertices is exact.

Over time, people developed upper bounds for χ′(G). In 1949, Claude Shannon
[2] proved that χ′(G) ≤ b3

2∆(G)c, and later, in 1964, V. G. Vizing [4] proved that χ′(G) ≤
∆(G)+µ(G). These upper bounds work for all graphs, and are thus very useful, but in
specific cases, we can do better.

We prove in this paper that every ring graph with an odd number of vertices is exact.

Theorem 1.1. Let G be a ring graph on n = 2k+1 vertices. Then χ′(G) = max{∆(G),dω(G)e}.

We will first define our notation and terminology, and we will introduce a few theo-
rems and lemmas we will be using. Then we will prove the main theorem using a proof
by cases.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022
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2 Preliminaries

For notation, we define V(G) = {v1, v2, ..., vn} to be the set of all vertices in G and E(G) to
be the set of all edges in G. Additionally, we will define that ki = |E(vi , vi+1)|, and we will
say that vn+1 = v1. As is standard, we will use ∆(G), d(vi ), ω(G), and χ′(G) to represent
the maximum degree of G, the degree of vertex vi , the density of G, and the chromatic
index of G, respectively. We know that, for every graph G, χ′(G) ≥ max{∆(G),dω(G)e} (see
Stiebitz [3]).

Throughout this paper, we use König’s Line Coloring Theorem, proved by König [1]
in 1916.

Theorem 2.1. The chromatic index of any bipartite graph is equal to its maximum vertex
degree.

Throughout this proof, we will use several different but equivalent representations of
the density of G. By definition, we know that

dω(G)e = max
X⊆V(G),|X|≥2

⌈ |E(G[X])|
b1

2 |X|c
⌉

when |V(G)| ≥ 2. If |V(G)| ≤ 1, ω(G) is defined to be 0. For ring graphs, we will show
that we can take X = V(G).

Lemma 2.2. Let G be a ring graph where ω(G) ≥∆(G). Then dω(G)e =
⌈ |E(G)|
b 1

2 |V(G)|c
⌉

.

Proof. Recall that χ′(G) ≥ max{∆(G),dω(G)e}.
If X = V(G), then G[X] = G[V(G)] = G.
If X á V(G), then G[X] is a bipartite graph. By Theorem 2.1,

χ′(G) =∆(G[X]) ≤∆(G) ≤ dω(G)e
So

dω(G)e =
⌈ |E(G)|
b1

2 |V(G)|c
⌉
= max

X⊆V(G),|X|≥2

⌈ |E(G[X])|
b1

2 |X|c
⌉

When |V(G)| is odd, like in our investigation, this is equivalent to

dω(G)e =
⌈ 2|E(G)|
|V(G)|−1

⌉
We know that |E(G)| =∑n

i=1 ki and |V(G)| = n = 2k +1, so we can write

dω(G)e =
⌈ 2

∑n
i=1 ki

2k +1−1

⌉
=

⌈∑n
i=1 ki

k

⌉
Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022



4 The Chromatic Index of Ring Graphs

3 Proof of Theorem 1.1

We assume that |V(G)| is odd. Otherwise, G is a bipartite graph, and so χ′(G) =∆(G).
Case 1: ki = 0 for some i = 1,2, ...,n.

We assume without loss of generality that kn = 0. For every ring graph with an odd
number of vertices, no even-numbered vertices are connected, and vn and v1 are the
only odd-numbered vertices that may be connected. Since kn = 0, we separate the
vertices of G into two discrete sets, the even-numbered vertices and the odd-numbered
vertices, showing that G is bipartite. By Theorem 2.1, G is exact.
Case 2: There exists a vertex vi such that d(vi ) <∆(G), and ki > 0 for all i = 1,2, ...,n.

Assume χ′(F) = max{∆(F),dω(F)e} for every ring graph F where |V(F)| = |V(G)| and
|E(F)| < |E(G)|.

As in our preliminaries, we assume that n = 2k +1 and vn+1 = v1. Without a loss of
generality, we let vi = v1.

Take a near-perfect matching M = {v2v3, v4v5, ..., v2k v2k+1}. H = G−M is also a ring
graph. Because there is a single edge removed from each vertex other than v1, it must
remove a single edge from whichever vertex has the greatest degree.

∆(H) =∆(G)−1

Note that H has the same number of vertices as G, and it has k fewer edges, so we
can calculate the density of H.

dω(H)e =
⌈∑n

i=1 ki −k

k

⌉
By algebra.

dω(H)e =
⌈∑n

i=1 ki

k
−1

⌉

dω(H)e =
⌈∑n

i=1 ki

k

⌉
−1

The first term is clearly ω(G).

dω(H)e = dω(G)e−1

We can combine these terms for ∆(H) and ω(H).

max{∆(H),dω(H)e} = max{∆(G)−1,dω(G)e−1}

max{∆(H),dω(H)e} = max{∆(G),dω(G)e}−1

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022



Lilian Shaffer 5

Using induction, χ′(H) = max{∆(H),dω(H)e} = max{∆(G),dω(G)e}−1. Add one more
color for M, the near-perfect matching, to get a coloring for G.

max{∆(G),dω(G)e} ≤ χ′(G) ≤ χ′(H)+1 = max{∆(G),dω(G)e}

Thus, χ′(G) = max{∆(G),dω(G)e}.
Case 3: G is r-regular, and ki > 0 for all i = 1,2, ...,n.

Once again assume χ′(F) = max{∆(F),dω(F)e} for every ring graph F where |V(F)| =
|V(G)| and |E(F)| < |E(G)|.

Because G is r-regular, for every vertex vi , d(vi ) = r . So, k1 +k2 = k2 +k3 = k3 +k4 =
... = kn−1 +kn = kn +k1. From this, we can see that k1 = k3 = ... = kn (every odd index
is equivalent) and k2 = k4 = ... = kn−1 (every even index is equivalent). However, we
can also see that kn−1 = k1, showing that every index, even and odd, is equivalent. This

means that every ki = r
2 , ∆(G) = r , and dω(G)e = ⌈ r

2 (2k+1)

b 1
2 (2k+1)c

⌉= ⌈
r 2k+1

2k

⌉≥∆(G)+1.

Let M be a near-perfect matching of G. H = G−M is also a ring graph, where |E(H)| =
|E(G)|−k, ∆(H) =∆(G), and dω(H)e = ⌈ r

2 (2k+1)−k

b 1
2 (2k+1)c

⌉= dω(G)e−1.

We know that dω(H)e = dω(G)e−1 ≥ (∆(G)+1)−1 =∆(G) =∆(H).
Because |E(H)| < |E(G)|, we know χ′(H) = max{∆(H),dω(H)e} = dω(H)e.
Recall that dω(H)e = dω(G)e−1.
Because we can color G by adding a single color to H for the near-perfect matching,

we know that χ′(G) ≤ χ′(H)+1 = dω(G)e.
Thus, χ′(G) = dω(G)e and G is exact.

So, in all cases, G is exact.

4 Conclusion

Now that we have proven the chromatic index of ring graphs on odd vertices, and because
we have known the chromatic index of ring graphs on even vertices, we have the ability
to quickly calculate the chromatic index of any ring graph. It should be investigated if
this result can be used to help refine any edge coloring algorithms for more complex
graphs.
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