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“Si sigues aumentando la velocidad siempre acabas llegando a flutter. El problema aparece si tu avión te
permite alcanzar esa velocidad.”

Carlos Maderuelo.
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Abstract
The integration of new underwing stores in an aircraft modifies the characteristics of mass dis-
tribution (center of gravity) and moment of inertia of the wing. This effect, in addition to to the
contribution of aerodynamic loads, causes the vibration modes and frequencies to vary with the
dynamic pressure (a function of flight speed and altitude). This strongly non-linear phenome-
non implies that, under certain conditions of dynamic pressure, the coupling in frequency (self-
sustaining resonance) of two or more modes of vibration initially orthogonal to each other occurs,
an aeroelastic phenomenon known as "flutter", which will lead to the loss of the aircraft and the
life of the pilot unless the flight conditions change. Thus, the integration of new underwing stores
requires carrying out a series of processes that will lead to a new flight envelope, within which it is
guaranteed that the aircraft can fly safely. This study requires carrying out theoretical calculations
to predict flutter conditions and subsequent validation through flight tests, known as "envelope
expansion". Carrying out this task safely requires highly qualified and specialized means and
personnel, and this implies extraordinarily high costs, which leads to companies specialized in
carrying out these tests to guarding data and results as an industrial secret, and among other
things it is very difficult to find validated methods to process flight data and extract vibration
parameters at different dynamic pressures.

Among the different published methods to identify flutter test flight vibration parameters, the
vast majority have been verified only with theoretical models, with the fact that many of them give
results that are inconsistent with each other or, when validated with real data, yield inconsistent
results. For this reason, the main objective was to develop fast, robust and coherent techniques,
capable of returning repetitive and consistent results in real time. The author had access to a flutter
flight test database, courtesy of the Spanish Air Force, and has authorization from the Air Force
Communications Office to use and publish results derived from his research on those data.

This thesis will present a research dedicated to developing two data processing methods for
flutter flight tests, in particular on data from a "Sine-Dwell" type excitation, one based on a math-
ematical model and optimization techniques, and another based on deep learning techniques.
The development of both techniques, is based on a first verification of different techniques docu-
mented in the bibliography by different authors, as well as on the training of different neural net-
works; Multilayer perceptrons, deep neural networks and convolutional neural networks. Once
a comparison baseline was available, a classical technique was selected (based on a theoretical
model and optimization), according to the bibliographic source validated with real data from flut-
ter flight tests, and one of the trained neural networks. Based on the lessons learned, an innovative
technique was developed based on the classical model of theoretical model and optimization, ver-
ification with synthetic data and comparison of the three previously selected techniques. Finally,
the three techniques were validated with real data from flutter flight tests.

The results obtained are highly satisfactory, reaching the initially planned objectives. The
techniques presented have been verified with synthetic data, compared with previously inde-
pendently validated bibliographic models and validated in this study with real data. The results
are consistent with expectations. The speed of the process allows the analysis of data in real time,
increases the situational awareness of the test director and facilitates decision-making to continue
or stop the test, in dangerous conditions, with greater safety.



Resumen
La integración de nuevas cargas subalares en una aeronave modifica las características de distribu-
ción de masa (centro de gravedad) y momento de inercia del ala. Este efecto, sumado a la con-
tribución de las cargas aerodinámicas, produce que los modos y frecuencias propias de vibración
varíen con la presión dinámica (función de la velocidad de vuelo y altitud). Este fenómeno fuerte-
mente no lineal implica que, bajo determinadas condiciones de presión dinámica, se produzca el
acoplamiento en frecuencia (resonancia autosostenida) de dos o más modos de vibración inicial-
mente ortogonales entre sí. El fenómeno aeroelástico anterior se conoce como "flameo" ("flutter" en
inglés), que salvo cambio de las condiciones de vuelo, llevará a la pérdida de la aeronave y la vida
del piloto. Por otra parte, la integración de nuevas cargas subalares requiere llevar a cabo una serie
de procesos que conducirán a una nueva envolvente de vuelo, dentro de la cual se garantice que
la aeronave puede volar con seguridad. Este estudio requiere llevar a cabo cálculos teóricos para
predecir las condiciones de flameo y una posterior validación mediante ensayos en vuelo, cono-
cido como "expandir la envolvente". Ejecutar esta tarea con seguridad requiere unos medios y
personal altamente cualificados y especializado, cuyos costes derivados son extraordinariamente
elevados. Como consecuencia, las empresas especializadas llevan a cabo estos ensayos y guardan
los resultados como secreto industrial. Todo lo anterior justifica que sea muy complicado encon-
trar métodos validados para procesar datos de vuelos y extraer los parámetros de vibración a
distintas presiones dinámicas.

Entre los distintos métodos publicados para identificar parámetros de vibración de vuelos de
ensayos de flameo, la gran mayoría han sido verificados únicamente con modelos teóricos, dán-
dose el caso de que muchos de ellos dan resultados incongruentes entre sí o que al ser validados
con datos reales arrojan resultados incoherentes. Por este motivo, el objetivo principal era desar-
rollar técnicas robustas, coherentes y repetitivas para procesar datos de vuelo de flameo. El autor
del presente estudio ha tenido acceso a una base de datos de ensayos en vuelo de flameo, cortesía
del Ejército del Aire de España, y cuenta con autorización de la Oficina de Comunicaciones del
Ejército del Aire para publicar resultados de su investigación sobre esos datos.

La presente tesis desarrolla dos métodos de procesado de datos de ensayos en vuelo de flameo
específicos sobre datos procedentes de una excitación tipo "Sine-Dwell". El primero está basado
en un modelo matemático y en técnicas de optimización. El segundo en técnicas de aprendizaje
profundo. El desarrollo de ambas técnicas se inicia con una primera verificación de distintas téc-
nicas documentadas en la literatura científica, seguidos por el entrenamiento de las siguientes
redes neuronales; De perceptrón multicapa, redes neuronales profundas y redes neuronales con-
volucionales. Establecida una línea de base de comparación, se procedió a seleccionar una técnica
clásica (basada en modelo teórico y optimización), de acuerdo con la fuente bibliográfica, validada
con datos reales procedentes de ensayos en vuelo de flameo y una de las redes neuronales entre-
nadas. Partiendo de las lecciones aprendidas se desarrolló una técnica innovadora basada en el
modelo clásico de modelo teórico y optimización, verificación con datos sintéticos y comparación
de las tres técnicas seleccionadas anteriormente. Finalmente, las tres técnicas fueron validadas con
datos reales de ensayos en vuelo de flameo.

Los resultados obtenidos son altamente satisfactorios, alcanzando los objetivos previstos ini-
cialmente. Las técnicas presentadas se han verificado con datos sintéticos, comparadas con mode-
los bibliográficos previamente validados de forma independiente, y validadas en este estudio con
datos reales. Los resultados son coherentes con lo esperado. La velocidad de proceso permite el
análisis de los datos en tiempo real, aumentan la consciencia situacional del director de ensayos
y facilitan la toma de decisiones para continuar o detener el test, en condiciones de peligro, con
mayor seguridad.
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Chapter 1

Introduction, State of the Art and Scope
of the thesis

1.1 Introduction

Aeroelasticity is a branch of aeronautics centered in studying combination of the forces acting on
an aircraft, as will be described thoroughly in section 1.2.

One of the main problems in aeroelasticity is the flutter problem. Flutter involves the inter-
action of inertial, elastic and aerodynamic forces on the aircraft, in particular a resonant coupling
between two different natural modes, entering into a self-exciting situation. In fact, flutter was
one of the main reasons for airplane accidents even up to the between-wars period (1930s-1940s).
According to the excellent historical perspective provided by Garrick and Reed, 1981, the first ac-
curate study on flutter was made by Lanchester, 1916, who clearly determined that the cause for a
"De Havilland" DH-9 accident was self-exited vibrations on the elevator. However, was Bairstow
and Fage, 1916 who first set the equations of motion for the flutter phenomenon. Since then the
phenomenon was known, but the uncertainty on the aerodynamic coefficients made not possible
to accurately implement the lessons learned on prototypes until a decade later.

Nowadays, most of civilian aircraft are developed considering variations of wing structures
based on models already implemented and developed, which proved to be tolerant to aeroelastic
phenomena, enormously minimizing the tests required. However for military designs, where it is
necessary to integrate different stores, it is still necessary to perform a full aeroelastic study.

1.2 Concept of Aeroelasticity

Aeroelasticity is one of the most important areas in aircraft design, since historically has been
one of the main responsible phenomena for accidents during the early (and also current) days of
aviation. As a broad definition it covers the interaction of aerodynamic, inertial and elastic forces,
and nowadays, as a subarea of aeroelasticity, we can talk also about aero-servo-elasticity, which
also includes the effects of servo-mechanic systems and control loops in the cocktail.

Collar, 1946 developed the well known Collar’s triangle in a basic format, and was posteriorly
complemented by Bisplinghoff, Ashley, and Halfman, 1983 as reproduced in figure 1.1.
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FIGURE 1.1: Collar’s triangle

In the figure, the three main forces are represented in black:

• Aerodynamic

• Elastic

• Inertial

And the phenomena associated to these forces:

• Aerodynamic + Inertial:

– Dynamic Stability. This is the classical study of the aircraft stability as a rigid-body. Note
that the dynamic stability may be influenced under certain conditions by the deforma-
tion of the structure, and therefore it may be necessary to introduce this field of study
inside of the triangle. This phenomenon is out of the scope of this thesis.

• Elastic + Inertial:

– Vibrations. This field of study is the study of vibrations at zero (or negligible) airspeed,
i. e. Ground Vibration Tests (GVT), Taxiing Vibration Tests (TVT), etc. The GVTs will
be mentioned in this thesis as they are part of the Flutter Testing paradigm.

• Aerodynamic + Elastic:

– Load Distribution. Represents the effects of loading the aircraft with aerodynamic forces
and analyzing the effects on the deformation of the structure. This phenomenon will
not be directly discussed in this paper, since a deeper analysis (also with a different
scope) will be performed with the inclusion of inertial forces.

– Divergence. The Divergence occurs when the restoring moment of the structure is ex-
ceeded by the aerodynamic torsional moment. The phenomenon of Divergence has
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FIGURE 1.2: Physical depiction of an airfoil under flutter coupling. There is a 90º
offset between torsion and bending motions.

historically been a field of deep study, since it was responsible for an important num-
ber of accidents during the early days of aviation. However it is a relatively simple
phenomenon to calculate (with enough accuracy) and correct, and therefore nowadays
most structures are designed so that the divergence point will not be a factor. In any
case, during the design phase of an aircraft it is necessary to calculate the Divergence
point and confirm that the structure will be free of divergence, either experimentally or
by sufficient simulation, although this analysis is out of the scope of the present thesis.

– Reversal. Control Surfaces Reversal is a phenomenon known since the early days of
aviation. Although the phenomenon is a clear case of aeroelastic behavior, it is out of
the scope of this thesis.

• Aerodynamic + Elastic + Inertial

– Flutter. This is the main topic of the present thesis, and will be discussed thoroughly.
– Buffet. This effect is produced by transient vibration of structural elements. For exam-

ple, boundary layer separation and reattachment close to the aileron. The discussion
on buffeting is out of the scope of this thesis.

– Dynamic Response. This effect is similar to buffet in definition. Transient vibration of
structural elements. However the difference with Buffet is that in this case the loads are
applied suddenly, like gusts or landings. In this case, the Control Reversal considering
the weight of the wing during transient maneuvers would be analyzed here.

1.2.1 Concept of Flutter

Flutter is an aeroelastic phenomenon, and appears as the interaction between aerodynamic, iner-
tial and elastic forces on a lifting surface. A very clear description can be found in the excellent
handbook from J. Norton, 1990. In particular, the interaction is a self excited vibration result of the
interaction of two natural modes of the structure initially orthogonal between them, which pro-
duce an exchange in energy. One of the modes will increase its energy out from the other and also
from the air current, and therefore the interaction will result in one of the modes will get a reduc-
tion in amplitude, while the other will increase it up to a fracture point, on which the structure will
fail with catastrophic consequences. The flutter point will start when one of the modes reaches
a negative damping. At this point the amplitude of the critical mode starts to increase while the
system absorbs energy. In the most simple case of flutter applied to airfoils, the bending-torsion
flutter, there is also a very clear phase coupling between modes as depicted in figure 1.2. There is
a 90º offset between the torsion and bending modes, while the lift is in phase between them.

To understand why two initially orthogonal modes start to get coupled together, it is neces-
sary to see it from a different perspective. Flutter is a self exciting coupling between two aircraft
modes initially at different frequencies, but those frequencies change and get close to a resonant
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FIGURE 1.3: Typical V-G plot. Original plot extracted from Tian et al., 2016 and
modified to match similar parameters to our case. Damping vs. Airspeed plot

frequency as airspeed (more accurately dynamic pressure) increases, approaching to the so called
"flutter airspeed".

This phenomenon is depicted graphically in figures 1.3 and 1.4. Plot 1.3 shows the variation of
damping for each natural mode (described with a descriptive name) with airspeed, while plot 1.4
shows the variation in frequency with airspeed for each natural mode. Please note that since the
dynamic pressure is assumed to be a function dependent on pressure and airspeed, these plots at
different altitudes are representatives of the behavior of the system.

The analysis from figures 1.3 and 1.4 shows several remarkable things. The "chordwise bend-
ing mode" keeps stable at approximately 0 damping, but it is not considered a critical mode ac-
cording to JSSG-2006, 1998, and therefore is not included in the 3% damping rule. In fact it is
descriptive of an LCO mode, an aeroelastic phenomenon similar to flutter as long as the damping
is zero and to the pilot a frightening situation, but the amplitude doesn’t change with increasing
airspeed, and the equations are ruled by the "Van Der Pol oscillator". However, the LCO is beyond
the scope of this paper. Rand, 2005 provides a very good description of the phenomenon. Another
point to notice is the coupling between the "first vertical bending mode" and "first torsion mode",
both shown in figures 1.5 and 1.6. As shown in figure 1.4, both modes change their frequency
as airspeed increases, getting close together as they approach 300Kts. At approximately 270Kts
both modes enter into a self-excited vibrational situation, and figure 1.3 represents the fact with an
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FIGURE 1.4: Typical V-G plot. Original plot extracted from Tian et al., 2016 and
modified to match similar parameters to our case. Frequency vs. Airspeed plot
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FIGURE 1.5: First vertical bending mode

FIGURE 1.6: First torsion mode
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explosive flutter of the "first vertical bending mode" rapidly passing damping above zero, while
the "second vertical bending mode" reduces its damping. Please note the physical meaning of
positive and negative damping. A negative damping implies that the amplitude of the structure’s
vibration will be reduced over time, while a positive damping implies that the amplitude will be
increased over time (and eventually destroying the structure).

1.2.2 Flight Envelope

One of he steps in this study is the envelope definition and expansion involving external loads,
which change the aeroelastic characteristics of the aircraft and could lead to flutter. The envelope
is defined as the locus of the points on which the aircraft can safely fly. Figure 1.7 shows a typical
flight envelope. The straight lines represent constant dynamic pressure lines, while dashed lines
represent constant airspeed lines. The horizontal axis shows the Mach number and the vertical
axis the pressure-altitude. The red lines limit the envelope. Beyond it the aircraft is unable to fly
tor the reasons written in the diagram (typically). The stall speed [at a given altitude] represents
the minimum airspeed the aircraft needs so that the maximum lift produced equals weight. The
flight ceiling represents the maximum altitude the aircraft is able to reach. The maximum power
boundary indicates the maximum airspeed the aircraft can reach with the engines at full power in
straight level flight. At last, the flutter boundary will be the main topic for this thesis. Depending
on the wing stores configuration the flutter dynamic pressure may vary, and therefore it is nec-
essary to know where the new flutter boundary lies in order to define the most restrictive flight
envelope for the pilot.

Please note that not always all the boundaries are reached. For example, in transport air-
craft usually the flutter boundary is not relevant, and the limitation comes by the maximum
power/transonic effects boundary. However in fighter aircraft the flutter boundary is usually
one of the limiting factors.

1.2.3 Flutter and Envelope Expansion Testing paradigm

During an Envelope Expansion study for a given stores configuration, it is necessary to perform
Flutter Flight Tests in order to validate the predicted-by-analysis envelope. The goal of the vali-
dation is to either:

1. Reach the flutter limit (extremely undesired)

2. Compare the expected frequencies and dampings predicted by the analysis with the actual
values

In both cases it is necessary to accurately identify the frequencies and dampings of each natural
mode at different dynamic pressures, in order to compare the analytic model with the parameters
of the modes found during the Flight Tests.

Case 1 above, reaching the flutter limit, is a completely undesired situation. The case happens
when the analytic model fails to predict accurately the modes and parameters, and the only means
of preventing a catastrophic situation is by identifying low dampings on flight before they reach
the flutter limit, preferably in real time.

Case 2 above is the preferred situation. The identification of parameters and comparison to
the analytic model leads to an increase of the trust on the model, and therefore the number of test
points can be reduced and safely reach a desired envelope with safety.

MIL-HDBK-516C, 2014 specifies that each aircraft configuration must be free of flutter and
other undesirable aeroelastic phenomena. In particular for the USAF (the same criterion is fol-
lowed at the Spanish Air Force) the criterion states to follow MIL-A-8870C, 1993 and JSSG-2006,
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1998, which set the limitation for the most critical modes damping ratio in 0.03, defined as the log-
arithmic decrements calculation between two peaks of different amplitude in the vibrational time
series data g = 1

Np Ln
⇣

Ai
Aj

⌘
, where N is the difference between j and i and Ak is the amplitude

in the vibrational time series of the peak number k. In order to demonstrate that it is required
evidence through analysis and testing.

The Expansion Testing Paradigm followed is the one depicted in figure 1.8. We must take into
account that the Flutter (in general all the Envelope Expansion) testing is considered a high risk
test according to MIL-STD-882E, 2012. Even after applying all the possible mitigation procedures,
the risk remains high.

The steps followed during a stores integration campaign are the following:

1. Prediction

(a) Definition. Before integrating a new store in the aircraft it is necessary to define very
clearly the necessity and expectations. This step is defined in the upper green box in
figure 1.8. The most important considerations include (but are not limited to):

i. Kind of store: We need to know the physical characteristics of the store. As a min-
imum for stores that can be considered a rigid solid without aerodynamic proper-
ties it is necessary to know the total mass, center of gravity relative to the holding
lungs/rails and moment of inertia. If the store is slender and might be considered
elastic and aerodynamic, it is also necessary to know the rigidity and aerodynamic
matrices.

ii. Expected envelope: It is necessary to define an "envelope of necessity". For exam-
ple, if the store is intended for ground attack it might not be necessary to reach
supersonic regime, given that supersonic regime would enormously increase drag
and limit the effective range, and the limitation may be artificially set to a maxi-
mum range airspeed, even though the flutter boundary or engine power allow for
a supersonic flight. However this may not be true for all scenarios, and therefore it
is necessary to define an envelope of necessity.

iii. Stores configuration: In this step the position of the stores is defined. Usually air-
craft have different underwing stations, and it is necessary to define the positions
of the stores. It might be possible that stores above certain mass cannot be installed
in the external wing stations. Another thing to consider is if the store is installed
with single or multiple launchers. Other factor is variable mass distribution, for
example in the case of fuel tanks. The combination of different stores. For exam-
ple in case wingtip missiles are transported along the new stores, it is necessary to
consider different combinations of wingtip missiles with the new stores. At last,
when all the different factors have been accounted for, it is necessary to evaluate
all the possible combinations between factors, discarding the non applicable con-
figurations.

(b) Risk Analysis. Once defined the scope of the problem, it is necessary to do a risk analy-
sis as part of the Test Plan in accordance with MIL-STD-882E, 2012. This analysis must
take into account all the risks associated with the test assessing their severity and prob-
ability, and depending on the combination of both, in a first iteration, assign a risk
assessment. After this initial assessment, mitigation procedures must be considered
and described in the Test Plan in order to reduce the risk as much as possible. With
these procedures implemented, a second iteration must be made to assess the residual
risk. The risk category will be the assessment of the higher residual risk, and the conse-
quences of this assessment will impact the level of authorizations required to approve
the test and also the capability to change the test conditions once it is approved.
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(c) Structural analysis. The requirements for this step are to have a previously defined
elastic model of the aircraft. The usual SW package employed for this task is MSC
NASTRAN’s solution 103 (MSC. Software, 1994). In this phase the natural modes will
be calculated. The natural modes are defined as the eigenvalues and eigenvectors of
the homogeneous solution of the second degree differential equation of the structure.
Figures 1.5 and 1.6 show the graphical outcome of this analysis. This analysis must
be made for each flight configuration possible. For example, with full fuel load, 3/4
fuel load, one bomb dispensed...take into account that the combinations must con-
sider the fuel available, the stores available and the mode symmetry (symmetric or
anti-symmetric modes). In the case of the F-18, there are usually hundreds of combina-
tions for a single stores configuration. These modes will define the initial conditions of
the structure, and need to be validated with a Ground Vibration Test (path 1 in figure
1.8). The Ground Vibration Test will also refine the structural model in case there is a
significant mismatch between the analytic and test results. This analysis will allow a
full track of the evolution of these modes with increasing airspeed. A full description
can be found in section 1.2.1.

(d) Flutter analysis. Once the structural analysis has been finished, it is necessary to know
the evolution of these natural modes with building airspeed and also the flutter point.
This analysis has two pre-requisites: The Natural Modes calculated in the previous step
and the aerodynamic model, which includes the aerodynamic forces acting on each
mass element of the structure. Even though there are different SW packages for this
task, like MSC NASTRAN’s solution 145 (MSC. Software, 1994) or ZAERO (Zona Tech-
nology, 2017), different companies usually employ their proprietary SW. It will return
the V-G plots, similar to the ones shown in figures 1.3 and 1.4. In this case, it is neces-
sary to add still more combinations to the previous ones. Depending on the technique
chosen, it may be necessary to add different altitudes to the previous combinations (dy-
namic pressures) or altitudes and also Mach numbers to get "matched" solutions, which
increase the number of combinations and the computational requirements. Paths 2 and
3 in figure 1.8 show this evolution. This topic will be thoroughly discussed in chapter
2.

(e) Critical modes identification. Once the previous analysis has been finished it is neces-
sary to select a reduced number of aircraft configurations to perform the Flight Tests.
Take into account that these tests are extremely costly and long in duration, given that
many flights need to be canceled due to weather conditions, problems with the aircraft,
etc, so it is very unlikely to fly more than two different configurations for the same
loadings requirement. This step is represented as path 4 in figure 1.8. Once the critical
modes have been identified we can proceed with the testing phase. Abou-Kebeh LLano
and Vaquero Gomez, 2016 proposed a procedure to expedite the analysis and critical
modes identification taylored to the tools available at CLAEX for the Spanish Air Force
F-18.

2. Testing

(a) Ground vibration testing. The necessity for this step was described above, and is de-
scribed by step 1 in figure 1.8. The aircraft will be configured with the critical config-
urations, set on jacks (or on the landing gear with the wheels deflated), instrumented
to record the vibration of the aircraft as accurately as possible and connected to vibra-
tional exciters. Then exciters start the vibration and the aircraft response is recorded.
This way, the natural modes of the aircraft are identified experimentally. The mode
shapes (eigenvectors) and frequencies (eigenvalues) are compared to the results from
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the modal analysis. In case the results are assumed to be similar, the model is con-
sidered accurate and the confidence for the V-G plots is considered to be sufficient to
proceed with the Flight Test. If not, the elastic model of the aircraft needs to be tuned
up until there is sufficient convergence in the results. Several papers and algorithms
are used for this task. Peeters and Auweraer, 2005 is a referent in these tests, and very
detailed descriptions are made by Peeters et al., 2009.

(b) Flight Tests. Once the GVT demonstrated that the Natural Modes are trustworthy, it
is necessary to carefully prepare the test points in order to safely approach the flutter
airspeed and altitude (path 5 in figure 1.8). There is no standard requisite on how to ap-
proach those points. MIL-HDBK-516C, 2014, JSSG-2006, 1998 and MIL-A-8870C, 1993
only specify that the aircraft needs to be free of flutter (with a margin in airspeed) in
the Flight Envelope, but doesn’t specify how to approach the flutter point or prepare
the tests. Piazzoli, 1970 and Stoliker, 1995 describe different procedures. But the proce-
dure followed at CLAEX was taylored at USAF TPS. To start at the maximum envelope
altitude and low airspeed (minimum dynamic pressure), and perform test points at dif-
ferent airspeeds, until either the flutter point or the limit of the planned envelope are
reached. Then reduce altitude and start again with different test points and airspeeds
until the whole envelope is cleared. These steps demand a careful and arduous job
during the whole Flight campaign. On one side, the test is directed and monitored in
real time from the Control Room. The vibrational data is sent by telemetry to the Con-
trol Room and the Test Director commands when to start the excitation and when to
stop the test point, usually because the vibration is reaching an unacceptable ampli-
tude level, building up at an unacceptable pace, coupling between modes... in general
indications of a flutter onset. Even if the test has been followed correctly, it is necessary
to analyze the results the same day of the tests in order to validate the previsions of the
V-G plots, and depending on the results of that test day, select the test points for the
next day (path 6 in figure 1.8). For this reason, it is paramount to accurately estimate
and identify the frequencies and dampings from Flight Test Data in a reasonable time.
Ideally in real (or nearly real) time, but if not, at least within a few hours. Paths 7 and
8 in figure 1.8 represent the necessity to compare the results between both results, the
analytic and tests.

3. Validation

(a) Once all the data have been gathered, it is necessary to provide the final envelope and
integration report to the Certification Authority. The comparison between the analytic
and test results can be similar (path 9 in figure 1.8), in which case it is possible to ex-
trapolate the flutter point safely, or dissimilar (path 10 in figure 1.8). This last condition
also has two possible outcomes, to reach the flutter (or expected envelope) point (path
11 in figure 1.8), in which case the envelope is defined and the process is closed, or the
flutter point has not been reached, but discrepancy is big enough as to require a recal-
culation of the analysis (path 12 in figure 1.8). For that reason it is necessary to get a
final result on the frequencies and dampings of the global configuration at different air-
speeds, so that there is a solid demonstration on the "free-of-flutter" requirement on the
critical modes withing the envelope and 15% less airspeed than the 3% damping point,
according to MIL-A-8870C, 1993 and JSSG-2006, 1998. In case that the 3% damping has
not been reached, several predictors for the flutter point can be employed. In particular,
in CLAEX the predictor employed is the "Flutter Margin", based on Zimmerman and
Weissenburger, 1964 studies.
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FIGURE 1.9: Risk Matrix. Extracted from MIL-STD-882E, 2012

1.3 State of the Art

This thesis comprises different areas regarding aeroelasticity. As stated in section 1.4, equation-
wise it will be divided in two main areas, a review of the aeroelastic equations and a review of the
data processing techniques applied to Flutter Flight Test data processing and system identification.
The main sources of documentation will be analyzed in this chapter.

1.3.1 Aeroelastic equations documentary basis

The first area, the theoretical basis of aeroelastic equations, depend upon fluid dynamics, station-
ary aerodynamics, non-stationary aerodynamics and theory of vibrations. These fields have not
changed substantially in the latest years, so the source employed in the present thesis will be based
on classical textbooks.

As for a historical introduction on flutter, different authors are cited. Garrick and Reed, 1981
and Hill, 1951 provided a very good overview of aeroelasticity along history, while Lanchester,
1916 provided the first mathematical description of the flutter problem and Bairstow and Fage,
1916 first described and mathematically analyzed a real flutter mishap.

The basic non-stationary aerodynamics equations were compiled by (Theodorsen, 1935 as the
first thorough source. However the main reference for these developments has been provided by
Bisplinghoff in Bisplinghoff, Ashley, and Goland, 1963 and Bisplinghoff, Ashley, and Halfman,
1983, one of the most comprehensive authors in the area, although complementary descriptions
on the governing equations, mainly in the frequency domain, have been provided by Fung, 2008,
and a very good summary of equations and developments were described by García-fogeda and
Arévalo-Lozano, 2015. In this aspect, we must also cite the sources for numerical analysis of the
flutter model, like MSC. Software, 1994 and Zona Technology, 2017, while García-fogeda and
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Arévalo-Lozano, 2015 and Wright and Cooper, 2008 describe the general procedure to predict and
construct the "V-G" plots via a numerical analysis.

The vibrations description and equations have been documented by Shabana, 1996; Hidalgo
Martinez, 2010; Ewins, 2000; Meirovitch, 2000; Soroka, 1949 and French, 1971. In particular, the
damping models have been documented by the classical sources in flutter cited above, mainly
Bisplinghoff, Ashley, and Halfman, 1983 and García-fogeda and Arévalo-Lozano, 2015, and for
data on experimental sources Coleman, 1940 and Kijewski and Kareem, 2000. It is also worth
mentioning the contribution of Adhikari, 2000 as a review of different sources of damping.

Regarding fluid dynamics, the source for the Navier-Stokes equations development has been
described in this thesis by White, 2016, and the aerodynamics equations, both stationary and non
stationary, have been based on the excellent works from Meseguer Ruiz and Sanz Andrés, 2010
and Anderson, 2007.

The experimental analysis has been based mainly on the own experience of the author, and
citing as a documentary basis the excellent works provided by Peeters et al., 2009; Piazzoli, 1970;
J. Norton, 1990 and Stoliker, 1995. It is also worth mentioning Chajec, 2018 as a source for Ground
Vibration Tests information and Abou-Kebeh LLano and Vaquero Gomez, 2016 for the pre-Flight
Test analysis phase.

1.3.2 Flutter Data Processing Documentary Basis

The aim of this section is focused on the state of the art regarding the data post-processing. It is
necessary to remark that validated sources are hard to find, since the Flutter Tests are extremely
dangerous and costly. For that reason different companies develop their own techniques and keep
their results and procedures secret.

Regarding authors who provided data validated with actual experiments, we can cite Coll,
2016 to have developed the Jflutter software package, which is employed nowadays by Airbus
to identify natural modes in flutter flight test data, along with Peeters et al., 2009; Peeters and
Auweraer, 2005, whose Polymax algorithm is also employed by Airbus and CLAEX for ground
vibration tests on real aircraft. These authors have developed fast, robust and validated tech-
niques. However the data required for these techniques implies a large recording time, around
60 seconds minimum, which by nature is incompatible with the Sine Dwell excitations recording
time for safety reasons.

The data processing source handbooks mainly used in this paper come from Oppenheim and
Schafer, 2009 and Bishop, 2021, and the source for the optimization algorithm, Trust-Region, from
Coleman and Li, 1996 and Yuan, 2000.

The different techniques evaluated are Prony and Prony variant methods, in particular Matrix
Pencil, citing Almunif, Fan, and Miao, 2020; Barros-Rodriguez et al., 2015; Potts and Tasche, 2010
and Kiviaho, Jacobson, and Kennedy, 2019, taking also into consideration the techniques by Patel
et al., 2013 to sort the natural modes returned. The Peak-Amplitude method was described by
Ewins, 2000 and will prove to be extremely useful to estimate the seeds for the optimization algo-
rithms. The techniques described in this paragraph show different advantages and drawbacks. In
general they are all extremely fast compared to other techniques. However the lack of phase infor-
mation in the aforementioned methods produced a bad estimation compared to other techniques.
These techniques will be discussed later in chapter 3.

However, the most important source in this area for the present thesis has been Freudinger,
1989 and Freudinger, Lind, and Brenner, 1997, based on Matching Pursuit techniques. For these,
the works from Goodwin, 1997 and Zhu, 2007 were used as a reference to develop the Matlab
algorithm employed in the simulations. The aforementioned authors describe the Laplace Wavelet
Matching Pursuit technique, which has been used as a source of validation for the present thesis,
as those papers themselves also validate experiments on real Flutter Flight Tests on USAF F-18A/B
aircraft, the same source airplane from which the data for the present thesis have been provided.
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The Laplace Wavelet technique has proved to be a reliable and robust technique to identify Sine
Dwell flutter signals, but has an important drawback in the computational power required, which
makes it unusable for real time data processing unless a cluster is available for the test team.
That considered, this technique will follow extensive discussion in chapter 3 and will be the most
important referent for comparison in this thesis.

At last, the damping model employed will be the viscous damping model. There are many
different damping models, as described by Adhikari, 2000 and Shabana, 1996. However the main
two damping models described in aeroelasticity are the structural damping model and viscous
damping model, as described by the main textbooks in aeroelasticity, like Bisplinghoff, Ashley,
and Goland, 1963, García-fogeda and Arévalo-Lozano, 2015 and Fung, 2008 to cite only a few.
The reason to chose viscous damping over structural damping is because authors like Barros-
Rodriguez et al., 2015; Freudinger, 1989 and Coll, 2016 employ it either implicitly or explicitly
in their calculations, also it can be demonstrated that the viscous damping model has a simple
relationship with structural damping and, as a final argument, the viscous damping model has
returned very good results with the techniques developed in chapter 3.

1.4 Objective, Scope and Limitations

Under the light of the discussion carried out in section 1.3, the scope of the thesis will cover:

• An insight on the concepts of aeroelasticity, flutter and flutter testing paradigm, as described
in the introduction

• A brief review of Aeroelasticity and the main flutter governing equations

• A brief review on data processing and the problems associated with short time and low
frequency signals

• Present a new robust technique for Flutter Flight Test data processing and system identifica-
tion based on identifying short time and low frequency signals associated with aeroelastic
natural modes

Although the Flutter Testing Paradigm involves several steps described in this thesis, the scope
will be limited to the Flight Test Data Postprocessing and System Identification.

1.5 Description of the Problem

The problem described in this thesis is related to the accurate identification of different natural
modes parameters found during Flutter Flight Tests, in particular frequencies and dampings of
each natural mode of interest (participating in the flutter mechanism). The identification of the
frequencies and dampings will allow to assess the risk associated with the next flight and the
necessity to proceed with a given dynamic pressure or not. The techniques employed nowadays
face many issues, since to accurately identify the system it is necessary to gather long duration
datasets, which involves a risk itself, or gather short time datasets, which are usually poor in
quality and repeatability.

The main goal of this thesis is to present a new and robust technique to identify those para-
meters from Flutter Flight Test data, considering short time datasets and allowing for repeatable
results.
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1.6 Work Hypotheses and assumptions

This thesis will be based upon several work hypotheses, from which the main are:

• Exponentially damped sinusoids: The signals follow an exponentially damped sinusoids
model. This hypothesis is concurrent with the general flutter theory, and is well developed
in almost every paper and textbook on aeroelasticity, like Bisplinghoff, Ashley, and Halfman,
1983, Fung, 2008, Wright and Cooper, 2008, García-fogeda and Arévalo-Lozano, 2015, etc.

• Viscous damping: The damping model to be used is based on a viscous damping model.
The main two models accepted for damping in aeroelastic applications are structural and
viscous. However there is a relationship between both models, as will be demonstrated in
section 2.3.2.1. For that reason and given the convenience of the mathematical model, the
viscous damping model will be used.

Also, this thesis is constrained by one main condition. The datasets will be limited to sine
dwell excitations. This condition implies time series signals with a very short duration (2 to 5
seconds) and low frequency (2 to 10 Hz). There are a series of pros and cons with this approach
compared to frequency sweeps, as a reference:

• Cons:

– Sine dwells are a very restrictive condition, considering the effort required to obtain
accurate and repetitive results, since the noise and local minima affect enormously the
results.

– Requires the pilot to get closer to the flutter point than, for example, frequency sweeps,
with the danger involved. Please note that this drawback is not minor.

• Pros:

– The time to stay close to the flutter point is minimum, since the duration of the maneu-
ver is minimum (3 to 5 seconds) compared to, for example, frequency sweeps (around
60 seconds).

– Even though getting accurate numbers in terms of frequency and damping is compli-
cated, during the test, close to the flutter point, is very easy to see qualitatively a near-
flutter trend and coupling between modes, so it allows to get the optimum envelope
boundaries with very limited (or even none at all) computational power.

1.7 Methodology of Investigation

As described in section1.4, we have three main parts in this thesis.

• Review on Flutter equations. The main equation of aeroelasticity particularized for flutter
will be described and its most relevant parts demonstrated. Chapter 2 will demonstrate the
physical principle of flutter. Each section of this chapter will focus on the reconstruction
of the flutter equations by developing each term of the flutter equations, and at last will
demonstrate the physical principle of flutter and the relationship with the different terms.

• Characterization of the flutter signals and parameters. The case described in section 1.5
will be analyzed, considering that the short time and low frequency signals have a series
of implications on the processing of data that will affect the resolution of the problem. The
first part of chapter 3 will describe the particularities associated with different parameters
in the flutter solution and their influence in the identification of the flutter parameters. In
particular:
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– Develop a mathematical framework analyzing the influence of the phase angle in the
flutter equations related to the estimation of frequency and damping.

– Develop a mathematical framework analyzing the influence of the Power Spectrum
bandwidth in the flutter equations related to the estimation of frequency and damping.

• Flutter Flight Test data identification techniques. The second part of the investigation in
chapter 3 will be focused on reviewing state of the art Flutter Flight Test data processing
algorithms and perform a comparison between them:

– Compare different algorithms to identify signals on synthetic datasets. The metrics
employed will take into account the closeness between the generating parameters and
the identified parameters.

– Compare the best two of these techniques to identify signals on real datasets. The met-
ric employed will be a regression curve, between the real data and the reconstruction
of the signals with the identified parameters.
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Chapter 2

Materials and Methods

The equations of flutter, as stated in section 1.2, are based upon elastic, inertial and aerodynamic
forces. In regular textbooks about aeroelasticity there are chapters dedicated to elasticity and
steady and unsteady aerodynamics before describing the flutter equations. The reason to follow
this approach is to construct and solve the flutter differential equations and solutions, based on
the different forces intervening in the mechanism of flutter, and we will refer to this approach
as the "direct problem". The "inverse problem" will be, given a set of signals originated from
an aeroelastic source (in our case from a flutter flight test), identify the modal frequencies and
dampings contributing to the vibration.

Even though the approach in this thesis will not be to solve the direct problem (given a set
of masses, contour conditions and relations between them estimate the flutter frequencies, damp-
ings and airspeeds), but the inverse problem instead (given a vibration signal generated by an
aeroelastic phenomenon at a given dynamic pressure, identify the frequencies and dampings in-
tervening in the mechanism), it is important to demonstrate the relationship between the different
forces participating in the mechanism of flutter and, as a last stance, in the signals received.

As stated above, the first part of the present chapter will be dedicated to demonstrate the
mechanism of flutter. As an advance and brief summary of section 2.6, the flutter equation is
constructed from a forced second degree linear differential equation. The most common means of
constructing this equation is applying the minimum action principle through Lagrange’s equation
to the Lagrangian of the system. García-fogeda and Arévalo-Lozano, 2015; Bisplinghoff, Ashley,
and Goland, 1963 and most authors employs such approach. However applying Newton’s laws
approach will provide a clearer understanding of the mechanism of flutter, and hence will be the
approach followed in this thesis. Note that this decision is not trivial. The present thesis involves
different areas of knowledge, say Signal Processing and Aeroelasticity, which are typically un-
known between them. This fact implies that many readers will require an effort to understand
some developments while others will be trivial, and for other readers the same fact will be true
with the reverse sets of developments. For this reason, one of the biggest effort in this thesis will be
to summarize and simplify the developments as much as possible, and be as didactic as possible
in order to ease the effort from both sets of readers. Also, taking into account that the thesis was
directed and tutored by Authorities in Signal Processing, the notation in the upcoming chapters
and sections will be different from what is usual in Aeroelasticity and related disciplines, to adapt
to a less conventional but easier to understand model for people not accustomed to the classical
notation.

To understand the mechanism of flutter we need to demonstrate the intrinsic dependency of
each term in the main equation of dynamic aeroelasticity. We will demonstrate the derivation of
the terms and the dependency on different parameters.

The main equation describing dynamic aeroelastic phenomena is a forced second degree linear
equation which will be presented in further sections, and the terms are the following:

• Inertial forces: M d2x
dt2 . Where for one degree of freedom M is a mass element constant sub-

jected to vibration and x represents its displacement variable in generalized coordinates.
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This term represents the third Newton’s Law, and will be discussed in more detail in sec-
tion 2.2.

• Damping forces: C dx
dt . Where C represents the damping factor. The form expressed here is

the viscous damping model for 1 degree of freedom, employed by the Author to derive the
conclusions in this thesis. However it is possible to apply different damping models which
don’t depend on the velocity of the mass element. Sections 2.3.1 and 2.3.2 will discuss some
different damping models and solutions.

• Elastic forces: Kx. The one expressed here is the most basic form of Hooke’s Law for 1
degree of freedom. For multiple degrees of freedom, the equation is basically the same, but
instead of a single parameter a elastic matrix will be employed and a displacements vector,
combining the contributions of the displacement of different mass elements of the system
for each equation K · x. These equations will be derived in section 2.4.

• Unsteady aerodynamic forces: qa = f
⇣

a, da
dt , d2a

dt2 , dh
dt , d2h

dt2 , Qp

⌘
, meaning that the unsteady

aerodynamic forces depend upon the angle of attack a and its first
⇣

da
dt

⌘
and second

⇣
d2a
dt2

⌘

time derivatives, and the vertical displacement first
⇣

dh
dt

⌘
and second

⇣
d2h
dt2

⌘
time derivatives

and the dynamic pressure Qp. Section 2.5.1 and 2.5.2 provide the demonstrations for the
stated dependency.

Once the forced second degree linear differential equation terms have been demonstrated,
section 2.6 will demonstrate the relationship between all the terms and the mechanism of flutter.

Then a brief discussion on the characteristics of short time and low frequency signals will be
described in section 2.7, followed by a description of the actual signals found during a flutter test
campaign in section 2.7.1.

2.1 Introduction to the flutter mechanism

The standard equation of motion (Wright and Cooper, 2008, Bisplinghoff, Ashley, and Goland,
1963, MIL-A-8870C, 1993 and others) starts assuming a second degree differential equation with
subcritical damping, in the form described in equation 2.2 as solved by different authors, like Hi-
dalgo Martinez, 2010; Shabana, 1996; Meirovitch, 2000 and others. This example will consider
one single degree of freedom, since the final objective is to reduce to independent variables (de-
grees of freedom) all the matrix equations. The reason for this is that the flutter testing standards,
like MIL-A-8870C, 1993; JSSG-2006, 1998 define a particular model and flutter limit as a damped
sinusoid, and therefore it is necessary to search for a model that matches these standards.

We will start defining several parameters that will be useful later on:

z =
C

Ccr
Damping f actor

Ccr = 2
p

K · M Critical damping

wn =

r
K
M

Natural f requency

wd = wn ·

q
1 � z2 Damped natural f requency

Qd =
1
2

ru2 Dynamic pressure

r = Air density
u = Airspeed

(2.1)
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The starting point will be the following differential equation:

M ·
d2x(t)

dt2 + C ·
dx(t)

dt
+ K · x(t) = qa(x(t),

dx(t)
dt

,
d2x(t)

dt2 , Qd) (2.2)

In this equation the terms x(t) represents the displacement variable in generalized coordinates,
t represents the independent time variable, M represents the mass of the element (constant), C rep-
resents the damping constant, K represents the elastic parameter, qa represents the aerodynamic
forces as a linear dependent function on the displacement variable and its derivatives and Qd,
which represent the dynamic pressure, parameter that accounts for the altitude and airspeed of
the aircraft. Notice that for our purposes we will only consider subcritical vibrations, and there-
fore the damping parameter C will be smaller than the critical damping parameter Ccr (C < Ccr).

The homogeneous version of equation 2.2 describes a vibrational movement with a particular
natural frequency wn,0 and damping z0. However note that the aerodynamic forces qa depend
linearly on the same variables as the left hand side of the equation. Therefore, for each dynamic
pressure Qd,i we can define a quasi-stationary homogeneous equation, transferring the aerody-
namic forces to the left hand side of the equation:

(M � qa,3(Qd,i)) ·
d2x(t)

dt2 + (C � qa,2(Qd,i)) ·
dx(t)

dt
+ (K � qa,1(Qd,i)) · x = 0 ()

() M0(Qd,i) ·
d2x(t)

dt2 + C0(Qd,i) ·
dx(t)

dt
+ K0(Qd,i) · x(t) = 0

(2.3)

Where qa,j indicate the aerodynamic forces term corresponding to the respective derivative
of x and the prima (M0, C0, K0) values represent the modified terms of the equation at different
dynamic pressures Qd,i. Note here that in this case we are considering quasi-stationary evolutions,
and therefore the dynamic pressure will be considered a parameter instead of a variable.

Equation 2.3 will be key to understand the mechanism of flutter in section 2.6 when applied to
several degrees of freedom. This equation describes the evolution of the natural frequencies and
dampings (and also mode shapes when considering multiple degrees of freedom) of each mode
as the dynamic pressure changes.

The solution to equation 2.3 is an exponentially damped sinusoid of the form:

x(t) = Ae�zwnt sin(wd · t + j) (2.4)

Here A represents the amplitude constant and j the phase angle of the sinusoidal movement.
The rest of the parameters are defined above (2.1).

Equation 2.4 will be the equation model that will be employed to identify the signals as a
solution to the problem described in section 1.5, and the main focus of this thesis.

2.2 First term: Inertial forces

The inertial forces constitute the third Newton’s law:

fi = M ·
d2x(t)

dt2 (2.5)

Where fi represents the inertial forces vector, M is the inertia matrix and x(t) is the vector of
displacements in generalized coordinates.

Particularized for two DOF in our problem, an airfoil with pitch (rotation) and plunge (vertical
displacement) movements, the matrix M can be expressed as follows:
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M =


M Sa

Sa Ia

�
(2.6)

Where M is the mass of the airfoil, Sa is the static moment of first order, meaning the contri-
bution of the rotation of the airfoil to the vertical displacement of the center of gravity (note that
the rotation will be produced around the elastic axis, which in general doesn’t coincide with the
center of gravity) and Ia is the moment of inertia of the airfoil.

The demonstration of this Law is out of the scope of this thesis and actually poses no discus-
sion or complexity. Only suffices to say that when considering multiple degrees of freedom, the
inertial matrix constitutes the matrix of a positive definite quadratic form, since represents the
contribution of the kinetic energy, and therefore, the inertial matrix is symmetric (Shabana, 1996).

2.3 Second term: Dissipative forces (damping)

The damping forces will require a deeper discussion. In particular different damping models exist,
and therefore it is necessary to discuss the different alternatives.

The main three damping models applied by authors, like Wright and Cooper, 2008; Adhikari,
2000; Ewins, 2000, in flutter investigations will be used. We will provide a comparison between
the proportional damping model applied to multiple degrees of freedom, the structural damping model,
and the viscous damping model.

For multiple degrees of freedom, depending on the damping model the damping matrix can
or cannot be symmetric. In the case of proportional damping the damping matrix can be defi-
nite positive or semidefinite positive, and therefore not necessarily symmetric. For structural or
viscous damping, we cannot state anything about the nature of the governing matrix.

2.3.1 Undamped vibrations

Even though undamped vibrations don’t constitute a damping model themselves, it is presented
here for comparison reasons. The development of this section is a basic development that can be
found in classical textbooks on vibrations, like Shabana, 1996, Meirovitch, 2000, French, 1971,Hi-
dalgo Martinez, 2010, etc.

We will start with the second degree differential equation in its homogeneous most general
case matrix form, without considering damping. The forced solution will not be developed, since
the upcoming sections modify the system of equations into a homogeneous system.

M ·
d2x(t)

dt2 + K · x(t) = 0 (2.7)

Where M is the mass matrix, K the stiffness matrix, x(t) the displacement vector in generalized
coordinates and d2x(t)

dt2 the accelerations vector.
This equation can be solved by considering a solution of the form:

x(t) = f (t)|w · Y (2.8)

Where f (t)|w needs to be a harmonic function (for non trivial eigenvalues w > 0) or a linear
function in t (for trivial eigenvalues w = 0) and Y is a constant vector of the same dimensions as
our coordinates space (eigenvector).

The demonstration of the solution of this equation is out of the scope of this thesis, but can be
found in Hidalgo Martinez, 2010. The final equation yields:

�
K � w2M

�
Y = 0 () det

��K � w2M
�� = 0 (2.9)
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Where the solution of the determinant for different values of w will represent the different
eigenvalues of the system wj, say the natural frequencies of the system, and eigenvectors Yj,
representing the different mode shapes of the system. From the individual eigenvectors we can
also define the eigenvectors matrix Y.

2.3.1.1 Modal shapes

We will now describe a very useful (and basic) feature related to modal analysis from linear alge-
bra, the modal shapes of the system, meaning the principal directions of vibration defined by the
eigenvectors of the system.

If we pre- and post-multiply the mass M and stiffness K matrices by the eigenvectors matrix
Y:

YTMY = Mr

YTKY = Kr

x(t) = Y · q(t)
(2.10)

Where Mr is the modal mass matrix, Kr is the modal stiffness matrix, the superindex T indi-
cates transposition and q(t) is the modal coordinates vector.

The main property of those two matrices 2.10 are that they are diagonal in the state space de-
fined by the eigenvalues, fact that simplifies enormously the calculations when trying to estimate
the modal shapes and also will be important when considering damping, as will be demonstrated
in section 2.3.2.

Pre-Multiplying equation 2.7 by the modal matrix YT and substituting the coordinates vector
x(t) by the third equation 2.10, equation 2.7 can be written in modal coordinates as (the demon-
stration, even though is trivial, can be found in the references cited in the beginning of the section):

�w2
j Mr · q(t) + Kr · q(t) = 0 (2.11)

Note that we introduced the diagonal eigenvalues matrix wj, resulting from the second deriv-
ative of x in equation 2.7 considering the definitions in 2.1. The particularity of equation 2.11 is
that the matrices are diagonal, and therefore can be solved as independent equations of motion
for each DOF.

The solution for this system of equations is the following:

qj(t) = Aj · sin(wjt + j) (2.12)

Where Aj is a generic constant, wj the natural frequency of that mode and j the phase angle.
Note that this solution is oscillatory without any damping factor.

The eigenvectors matrix Y represents the natural modal shapes of deformation of the struc-
ture, while the eigenvalues diagonal matrix wj represent the natural frequencies of the
system

To understand this important conclusion, the structure will resonate at the frequencies wj, and
the vibrating shape of the structure will be defined by the respective eigenvectors yj.

2.3.2 Damping and damped vibrations

Damping represents the contribution of dissipating forces to the system. Considering the second
degree equation 2.2 in its homogeneous form with a general case damping (represented here one
single DOF for clarity):
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M ·
d2x(t)

dt2 + C ·
dx(t)

dt
+ K · x(t) = 0 (2.13)

the term C indicates the viscous damping contribution to the motion of the system. However
there are other types of damping models. In this thesis we will describe the "proportional damp-
ing" model along with the "viscous damping" model, taking as references Ewins, 2000, García-
fogeda and Arévalo-Lozano, 2015, Shabana, 1996, Hidalgo Martinez, 2010.

However it is necessary to remark one important issue. As stated in section 1.4 the current
thesis is oriented towards the identification of signals derived from aeroelastic vibrations, and the
criterion is based upon JSSG-2006, 1998 and MIL-A-8870C, 1993. Those standards are based on one
single damping factor for the critical modes, and hence it is implied that in multimodal systems
the damping matrix C, either in the original or in modal coordinates, after the base change
described in equation 2.10, must be diagonal. For that reason our damping model must consider
such condition, and the damping solutions described in section 2.3.2 will take into account only
the damping models which fulfill such condition.

2.3.2.1 Proportional damping

The current section follows the development on Proportional Damping by Ewins, 2000. Propor-
tional damping considers the damping of the system, in generalized coordinates, as a linear de-
pendent matrix on the mass matrix and stiffness matrix:

M ·
d2x(t)

dt2 + C ·
dx(t)

dt
+ K · x(t) = M ·

d2x(t)
dt2 + [AM + BK] ·

dx(t)
dt

+ K · x(t) = 0 (2.14)

To solve this system, it is necessary to develop the equations into a more convenient form.
Notice that the characteristic of proportional damping is that the damping matrix is a linear com-
bination of the mass M and stiffness K matrices.

We can introduce modal coordinates in equation 2.14 and reduce the system of equations to
an independent set of equations with diagonal matrices. To facilitate the understanding we will
develop here only the damping term:

[AM + BK] ·
dx(t)

dt
= YT [AM + BK]Y ·

dq(t)
dt

= [AMr + BKr] ·
dq(t)

dt
= Cp ·

dq(t)
dt

(2.15)

Since matrices Mr and Kr are diagonal, we can define Cp as the modal proportional damping
matrix, also diagonal, and therefore the system of equations can be separated as a set of indepen-
dent 1 DOF equations in the form:

Mr ·
d2q(t)

dt2 + Cp ·
dq(t)

dt
+ Kr · q(t) = 0 (2.16)

Note that since equation 2.16 defines a set of uncoupled 1 DOF equations, we can solve the
matrix equation as independent equations (the derivation of the solution can be found in texts
like Shabana, 1996 or Boyce and Diprima, n.d.):

qj(t) = Aj · e�z jwn,j t · sin(wd,jt + jj) (2.17)

Where j represents the phase angle and qj(t) represents the component j of the vector q(t).
Note that these uncoupled set of solutions allows to model the solution of a multiple DOF system
with proportional damping to follow JSSG-2006, 1998 and MIL-A-8870C, 1993, and therefore this
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kind of damping is specially interesting for aeroelastic phenomena. However it is important to
remark that this damping only applies under certain conditions that are not generally fulfilled.

Structural damping The structural damping is a kind of damping that appears under harmonic
movements, it is in phase with the airspeed and offsetted 90 degrees with regards to the movement
of the mass element.

Soroka, 1949 provides a thorough demonstration of the equations of structural damping, in
particular as related to viscous damping, while García-fogeda and Arévalo-Lozano, 2015 provides
a very good summary of the equations and derivation of the solution.

To study the structural damping we will consider only 1 DOF. One particular case of pro-
portional damping appears when in equation 2.14 the constant A equals 0 and the constant B is
expressed as a constant inversely proportional to the natural frequency w (the fact that the "con-
stant" is inversely proportional to a variable will be clearer below). We will also introduce the
parameters D = Cs

w , where Cs represents the structural damping factor and w represents the fre-
quency of the harmonic movement, and Cs = G · K where D is the equivalent viscous damping
factor and G the structural damping ratio:

M ·
d2x(t)

dt2 + D ·
dx(t)

dt
+ K · x(t) = 0

D =
Cs

w
Cs = G · K

(2.18)

Even though equation 2.18 is a homogeneous equation, this doesn’t contradict the statement
that the structural damping occurs under harmonic movements. Note that in our development we
will study the evolution of the system during the transient phase of the movement, meaning that
the natural mode has been previously excited at a frequency w and we are analyzing the behavior
of the system immediately after the excitation stops. Please note that the frequency w above in the
structural damping factor D will be selected conveniently, since it will be useful when coincidental
with the natural frequency of the system wn. Substituting we get:

M ·
d2x(t)

dt2 +
G
w

· K ·
dx(t)

dt
+ K · x(t) = 0 (2.19)

Even though the imaginary factors are incompatible with real movements, as a mathematical
artifact we will introduce the imaginary constant, to account for the offset of 90 degrees between
the velocity of the mass element and its position:

M
d2x(t)

dt2 + K(1 + iG)x(t) = 0 ()
d2x(t)

dt2 + w2
n(1 + iG)x(t) = 0 (2.20)

It can be demonstrated (see Soroka, 1949) that the frequency for a structurally damped struc-
ture is as follows:

wd =
wn

2

q
1 +

p
1 + G2 (2.21)

Where wd is the damped vibration (structurally damped), wn is the undamped natural vibra-
tion as defined by w2

n = K
M and G is the structural damping constant already defined.

In equation 2.18 we introduced the equivalent damping factor D. The importance of this factor
comes because it will allow us to solve equation 2.18 following a viscous damping model, and then
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FIGURE 2.1: Comparison between the viscous damping force and structural damp-
ing force maximum amplitude. Extracted from García-fogeda and Arévalo-Lozano,

2015

use the conversion between structural damping ratio g and viscous damping ratio z. The solution
for the viscous damping model will be described in section 2.3.2.2.

Cs = G · K = D · w (2.22)

Assuming an oscillatory motion where the frequency w coincides with the natural frequency
wn, the frequency w in equation 2.22 becomes wn, and the following equation can be written:

Ccr = 2
p

KM

wn =

r
K
M

D = G · wn · M

z =
D

Ccr
=

G · wn · M
2
p

KM
=

G
2

(2.23)

It is important to notice that equation 2.23 can only be applied on 1 DOF equations, since
assuming that equation 2.3.2.1 was a matrix equation instead of a single degree of freedom equa-
tion, the expression for structural damping ratio G (scalar value) multiplies the stiffness matrix
K as a whole, and therefore it can only be applied to systems where each mode has the same
structural damping ratio, which is not necessarily true. However, if the system can be separated
into independent equations via diagonal matrices, each mode can have its own different structural
damping factor.

Notice that the viscous damping force fv = iwDx is a linear function with frequency w, while
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the structural damping force fs = iGKx is constant in frequency, as depicted in figure 2.1. How-
ever, at the natural frequency wn, the damping force is the same for both mechanisms, and there-
fore it is possible to establish a relationship between both factors as demonstrated in equation
2.23:

z =
G
2

(2.24)

As a side note, we must remark that in aeroelasticity applications it is common to employ the
imaginary constant i as part of the value of real magnitudes. This is done to indicate a 90 degrees
offset between the imaginary magnitude and the reference magnitude, usually the displacement
x. For example, figure 2.1 was replicated from García-fogeda and Arévalo-Lozano, 2015, and
represents the variation of damping force (maximum amplitude) modeled as structural or viscous
damping in imaginary magnitudes. Both result from oscillatory movements and are in phase with
the velocity, which itself is offsetted 90 degrees with the displacement

2.3.2.2 Viscous damping

Another different form of damping is the viscous damping. In this case the damping matrix is
not necessarily diagonal or proportional to the natural modes of the system, and since it depends
on the velocity of each mass element it has a 90 degrees offset with regards to the displacement,
in phase with the velocity, similar to the structural damping. We will follow the demonstrations
provided by Shabana, 1996 to demonstrate the equations in this chapter.

The classical form of viscous damping for a multi-dimensional movement is the following:

M ·
d2x(t)

dt2 + C ·
dx(t)

dt
+ K · x(t) = 0 (2.25)

This equation (assuming one dimension) has the same form as equation 2.18, but instead of
depending on a factor D inversely proportional to the frequency w, the factors of the matrix are
constant.

In this case, assuming the most general for for the damping matrix, the solutions depend on
the size of the matrices. In case of a single degree of freedom, the solution has a dependency
on a single factor, and there is a direct relationship with the structural damping. In case of two
degrees of freedom, the damping matrix can be expressed as a linear combination of the mass
and stiffness matrices, and therefore can still be expressed as a form of proportional damping.
However for more than two degrees of freedom, the general expression for the damping matrix
can not always be decomposed in a linear combination of the damping and stiffness matrices.

Single degree of freedom When considering one single DOF, the solution to equation 2.25 con-
sidering viscous damping yields the same result as equation 2.17 for proportional damping. The
demonstration can be found in Shabana, 1996:

x(t) = B · e�zwnt
· sin(wdt + j) (2.26)

Which is the same equation 2.17 but with viscous damping coefficients.

Two degrees of freedom Shabana, 1996 provides a demonstration of the equations of viscous
damping for two degrees of freedom.

The viscous damping model with 2 DOF can in general, assuming a matrix C negative-definite,
be expressed as a form of proportional damping with complex coefficients as:
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x1(t) = A11 · e�z1wn1t
· sin(wd1t + j11) + A12 · e�z2wn2t

· sin(wd2t + j12)

x2(t) = A21 · e�z1wn1t
· sin(wd1t + j21) + A22 · e�z2wn2t

· sin(wd2t + j22)
(2.27)

Notice that it is not necessary to solve the system for the individual values of Aij, since the
problem described in this thesis only needs the expression of the corresponding equations. The
values will be calculated empirically from the dataset. This result shows that the relationship
between viscous damping and proportional damping (in our case particularized for structural
damping) can always be made with one DOF and with restrictions for two DOF. However this
fact is not generally true for three degrees of freedom or more. The equations for more than 2 DOF
will be developed in section 2.3.2.2 (subsection Multiples degrees of freedom).

In section 2.3.2.2 (subsection Single degree of freedom) it was described the relationship be-
tween viscous and structural damping for one single DOF. This conclusion can be extrapolated
to multiple DOF in case the damping matrix is diagonal or linearly dependent with the inertial
and structural matrices, as described in section 2.3.2.1. In this section it has been demonstrated
that when the analysis implies two DOF and the matrices derive from a mechanical system, if the
damping matrix is not diagonal, it can always be expressed as a linear combination of the inertial
and structural matrices, and therefore in this case it can always be found a relationship between
the structural and viscous damping.

Multiple degrees of freedom In the case of more than 2 DOF, the viscous damping vibrational
equations can in general be also expressed as a system of 1 DOF equations. However there is
a caveat. For 2 DOF the number of elements in the characteristic matrix is the square of the
number of DOF, so in 2 DOF the number of elements in the characteristic matrix is 4. However,
for more than 2 DOF the number of elements is the square of double the number of DOF as will
be demonstrated below. So for example, for 3 DOF the number of elements in the characteristic
matrix is (2 · 3)2 = 36 instead of the expected 9. The development below is described by Shabana,
1996.

Starting with equation 2.25 under a generalized system of coordinates (reproduced here for
the sake of clarity):

M ·
d2x(t)

dt2 + C ·
dx(t)

dt
+ K · x(t) = 0 (2.28)

We can define the state vector p(t):

p(t) =

(
x(t)
dx(t)

dt

)
(2.29)

And its derivative dp(t)
dt :

dp(t)
dt

=

(
dx(t)

dt
d2x(t)

dt2

)
(2.30)

Where x(t), dx(t)
dt and d2x(t)

dt2 are the generalized coordinates, velocity and acceleration in a par-
ticular system.

As described above, the demonstration of the solution of this system of differential equations
can be found in Shabana, 1996. Its solution yields:
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dp(t)
dt

=

(
dx(t)

dt
d2x(t)

dt2

)
=


0 I

�M�1K �M�1C

�
·

(
x(t)
dx(t)

dt

)
= B · p(t) (2.31)

Where matrix B is defined as:

B =


0 I

�M�1K �M�1C

�
(2.32)

The solution for this matricial equation dp(t)
dt = B · p(t) will yield solutions in the form ex-

pressed in equation 2.27 particularized for multiple degrees of freedom, with the caveat that the
number of solutions is the one corresponding to displacements and velocities, and hence resulting
in double the square of solutions.

pi(t) =
2n

Â
j=1

Ai,j · e�zi,jwn i,j t · sin(wd i,jt + ji,j)

dp(t)
dt

����
i
=

4n

Â
k=2n+1

Ai,k · e�zi,kwn i,kt
· sin(wd i,kt + ji,k)

(2.33)

Where the subindexes i indicate the component i of the vectors p(t) and dp(t)
dt Note however

that this solution involves a large amount of matrix inversions. This fact usually brings complica-
tions due to ill-conditioned matrices, and even in theoretical systems the errors can lead to wrong
solutions, specially in large systems.

2.4 Third term: Elastic forces

The elastic forces fe(t) are considered as Hooke’s law:

fe(t) = K · x(t) (2.34)

This equation will not be derived or discussed in the present thesis, since the demonstration
would increase enormously and unnecessarily the complexity of the thesis. Bisplinghoff, Ashley,
and Goland, 1963 provides a very thorough demonstration of the elastic equations applied to
aeroelasticity, Fung, 2008 provides a simpler demonstration, although more generalistic and less
oriented to the deformation of an airfoil. The basic equations from elasticity can be found in
textbooks like Gere, 2009.

However it can be mentioned (Shabana, 1996) that the elastic matrix deriving from strain en-
ergy, the aforementioned Hooke’s Law, can be semidefinite positive, accounting the semidefinite
portion from the fact that the system can have rigid body modes. These cases derive from the
eigenvalues of the system equal to zero. In these cases, the existence of a zero eigenvalue means
that there exists one particular direction (associated eigenvector) on which the strain energy of the
system doesn’t increase with the movement, therefore being a rigid body movement.

2.5 Fourth term: Aerodynamic forces

The current section will demonstrate the relationship between the different parameters of move-
ment of the airfoil and the flutter mechanism. To achieve such objective it is necessary to have a
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basic knowledge of the Navier-Stokes equations applied to aerodynamics, including the deriva-
tion based on the theory of potential flow and different hypotheses and theories. This will allow
us to understand the basis of steady aerodynamics, which also will be the foundation stone for
unsteady aerodynamics, the final objective of this section.

2.5.1 Steady Aerodynamics

Steady aerodynamic equations for complete wings are out of the scope of this thesis for reasons
expressed further on, therefore in this section we will limit the expression to the 2-D airfoil steady
incompressible aerodynamic equations as a basis to understand the unsteady aerodynamics in
section 2.5.2.

The demonstrations on this section will be based upon the texts by Meseguer Ruiz and Sanz
Andrés, 2010; Bisplinghoff, Ashley, and Goland, 1963; Anderson, 2007.

Before starting the development of the present section, it is necessary to declare the following
assumptions:

Assumption 1. The air will be considered an incompressible subsonic inviscid flow.

This statement is controversial, considering that one of the main contributors to the lift of
the airfoil is due to the existence of viscosity, which is responsible for the existence of boundary
layer, drag force, wake, etc. To account for the viscosity effects, we will introduce assumption
2. The subsonic condition is coherent with the results and analysis presented in this thesis. All
the datasets analyzed derive from subsonic flight flutter tests, and therefore the assumption poses
no controversy. At last, regarding the "incompressible" condition, many of the datasets analyzed
derive from high subsonic regime (close to the transonic region), and therefore it is incoherent
not to consider compressibility effects. These conditions will not be analyzed. Meseguer Ruiz and
Sanz Andrés, 2010 and Anderson, 2007 provide some analytical basis to start reaching conclusions
on the compressibility effects, based on the incompressible subsonic equations by the modifica-
tion of the pressure coefficient Cp based on the Mach number (the Prandtl-Glauert compressibility
correction), and further more a refinement on the correction based on experimental results. All in
all, the equations for aerodynamic forces and moments eventually depend on he same factors as
the incompressible equations, and therefore dedicating one chapter to describe these results will
needlessly add complexity to the thesis.

Assumption 2. The airfoil will artificially produce a rotational potential, which will account for the effects
of viscosity and boundary layer.

This is common practice for these kind of derivations.

Assumption 3. The control volume will exclude the airfoil itself, the boundary layer and the wake.

This assumption complements assumption 2. The boundary layer and wake are the areas
where the viscosity needs to be taken into account. Leaving those areas out of the control volume
and introducing artificial mechanisms to replicate the effects of viscosity (introduce an artificial
circulation where needed, Kutta’s condition...) will enormously simplify the equations.

Assumption 4. The equations of motion will be considered in a stationary steady state condition, without
changes in altitude, airspeed or angle of attack.

This is necessary to account for the epigraph "Steady Aerodynamics".

Assumption 5. The control volume will extend between minus infinite to plus infinite (aerodynamically
speaking) in the flight direction.

This assumption will account for the necessity to start in undisturbed conditions of the airflow.
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Assumption 6. The air current starts from a reservoir of static irrotational undisturbed air and the stream
lines are parallel and uniform in plus/minus infinite (r⇥ v|�•/+• = 0), where v represents the airspeed
vector.

This assumption comes as a consequence of Bjernes-Kelvin’s theorem. The summation of
wake vorticity and circulation around the airfoil must be zero (Ga + Gw = 0), where G represents
the circulation and the subindexes a, w represent the airfoil and wake respectively. The demon-
stration of this theorem is out the scope of this thesis, but can be found in Anderson, 2007 pages
316 � 319.

Assumption 7. The heat transfer is negligible (adiabatic mechanism), and therefore there is no need to
consider energy dissipation in form of temperature or (assumption 3) viscosity.

The demonstration is beyond of the scope of this thesis, but can be found in Meseguer Ruiz
and Sanz Andrés, 2010, pages 10, 11.

Assumption 8. Internal fluid viscosity forces and buoyancy (floatability) forces can be ignored.

A demonstration for the validity of this assumption can be found in Meseguer Ruiz and Sanz
Andrés, 2010, pages 8, 9.

2.5.1.1 Euler reference system

In fluid mechanics there are classically two main reference systems, the Lagrange reference system
and the Euler reference system.

The Lagrange reference system is usually employed when we are interested in knowing the
evolution of a given fluid particle along a trajectory (space and time evolution). A comparison can
be made with a person sitting on a boat which moves with the water and studying the evolution of
the water along the river. On the other hand, the Euler reference system is used when the interest
is not related to the evolution of the fluid particle but the influence of an obstacle over the fluid.
The comparison here is the observer sat in the riverside while studying the influence of a bridge
pillar over the river fluid particles.

In this thesis we will employ the Euler reference system.

2.5.1.2 Substantial derivative

Along this thesis, the concept of substantial derivative will appear in numerous occassions.
The substantial derivative is represented as D

Dt , and is applicable whenever there is a time
derivative of any variable depending both on time and spatial coordinates, and is defined as (for
a generic scalar magnitude q(x, y, z, t)):

Dq(x, y, z, t)
Dt

=
∂q(x, y, z, t)

∂t
+

∂q(x, y, z, t)
∂x(t)

∂x(t)
∂t

+
∂q(x, y, z, t)

∂y(t)
∂y(t)

∂t
+

∂q(x, y, z, t)
∂z(t)

∂z(t)
∂t

()

()
Dq(x, y, z, t)

Dt
=

∂q(x, y, z, t)
∂t

+ v ·rq(x, y, z, t)

(2.35)

Where v represents the velocity vector.

2.5.1.3 General equations

Under the assumptions stated above, we will present the Navies-Stokes equations, which are the
main equations for modeling fluid dynamics, equivalent to the Maxwell equations for electromag-
netism.
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The equations that will be considered in the present section will be limited to the following set
(the demonstration is out of the scope of this thesis, but can be found in White, 2016):

Dr

Dt
+ rr · v = 0 (2.36)

r
Dv
Dt

= �rp (2.37)

Where r represents the air density and p represents the air static pressure, both as a scalar fields
(r, p = r, p(x, y, z, t)), and v represents the air velocity vector as a vector field (v = v(x, y, z, t)).
These three variables are a function of time t and the three spatial coordinates x, y, z.

Equation 2.36 represents the mass conservation equation, also called "continuity" equation,
and represents the first of the Navier-Stokes equations. The physical meaning of this equation
is that considering a control volume, say a pipe opened through both extremes with its section
changing arbitrarily, the mass of air per time unit flowing into the tube must be the same as the
mass flowing out.

Equation 2.37 represents the momentum conservation equation, and it considers all the factors
that may exert any influence on the system to change its momentum after having been applied
the assumptions stated in section 2.5.1.

The third Navier-Stokes equation, the conservation of energy, as stated in assumption 7 can be
neglected, since there will be no external contribution of sources adding or subtracting energy, and
therefore will be a linear combination of equations 2.36 and 2.37. Of course sources of energy like
radiation or chemical reactions, like for example analyzing reentry of space vehicles, is completely
out of the scope of this thesis and have not even been included in the general energy equations.

At last it may be possible to consider the second principle of Thermodynamics and analyze the
exchange of entropy. For the present effort it will suffice to say that we can assume the entropy of
the system to be constant, the system can be considered isoentropic without demonstration. As a
reference Meseguer Ruiz and Sanz Andrés, 2010 demonstrates the isoentropic assumption. This
case must be considered when analyzing hypersonic flow and reentry of space vessels, like the
Space Shuttle or the X-52. However that range of altitudes and airspeeds are far beyond the scope
of the present thesis.

2.5.1.4 Velocity potential

One important concept to start studying the aerodynamics over an airfoil is the velocity potential.
Being the airspeed field around an airfoil a vector field, we will apply complex potential theory
and try to model each objects in the flowfield as combinations of complex potential singularities.

As a summary of the upcoming section we will define a potential function for the airspeed
F(x, z), and will create the airfoil boundary as a combination of potential perturbations in the air-
flow (sources, sinks, doublets and vortices). These considerations, along with the Navier-Stokes
equations, will return a theory suitable for calculating the lift on an airfoil with reasonable accu-
racy, assuming that the flow is laminar and incompressible and the airfoil has a low angle of attack
(in general the flow remains attached to the airfoil in most of its surface). The demonstrations in
the current and upcoming subsections can be found in Meseguer Ruiz and Sanz Andrés, 2010.

Theorem 2.5.1. The airspeed function v derives from a velocity potential field F

The demonstration is out of the scope of this thesis, but will be reproduced in appendix A.1.
The consequence of this Theorem is equation 2.38:

r⇥ v = 0 () v = rF =) u =
∂F
∂x

, w =
∂F
∂z

(2.38)
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FIGURE 2.2: Velocity circulation around a closed curve

Where F represents the velocity potential, u, w are respectively the horizontal and vertical
local components of the airspeed v and x, z represent the cartesian components, as described in
figure 2.3. Note also that we can consider regular derivatives in x, z (as opposed to partial deriva-
tives) since as we already demonstrated, the variables u and w don’t depend on time t (stationary
aerodynamics hypothesis).

2.5.1.5 Stream function

The next step is to define the stream function Y(x, z). The stream lines are the locus of the velocity
vector tangents.

Mathematically the stream lines s(x, z) can be calculated as follows:

ds =ds(dx, dz)
v =v(u, w)

By definition of cross product, for both vectors being parallel it is sufficient that the cross
product equals zero, and as defined above, if we calculate the cross product of the stream lines
(s(x, z), tangent to the velocity) and the velocity, we end up with a scalar field:

ds ⇥ v = 0 ()
dz
dx

=
w
u

() udz � wdx = 0 (2.39)

And integrating, by definition of Y(x, z):

Y(x, z) = uz � wx = C (2.40)

Where C is an integration constant. The stream function Y has the following properties:

∂Y

∂z
= u

∂Y

∂x
= �w

(2.41)

2.5.1.6 Relationship between F and Y. Complex potential

Notice that the following equations are true from equations 2.38 and 2.40:
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FIGURE 2.4: Different potential flows examples. Upper left a sink example of in-
tensity Q. Upper right a vortex example of intensity G. Lower left an example of
uniform flow with velocity u•. Lower right an example of source with intensity Q

dY = udz � wdx = 0 (2.42)

dF = udx + wdz = 0 (2.43)

Analyzing equations 2.42 and 2.43, it can be inferred that F and Y are both orthogonal func-
tions:

Y ? F (2.44)

And since function Y represents the stream function, F shall represent equipotential curves.
That been said, it is possible to compose a complex function f for the potential:

f (s) = F + iY (2.45)

Where f is the complex potential function and s is the complex variable associated, defined
as s = x + iz. This complex potential allows to define objects in the undisturbed potential air-
flow equation by combination of different singularities, like sources, sinks, doublets and vortices.
Note not to confuse the vector variable s, representing the streamlines function, with the scalar
variable s, representing a generic complex variable.

Complex potential: Uniform flow The definition for the complex potential of a uniform flow is
the following:
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f (s) = u•e�ias (2.46)

Where a is the angle of attack and u• is the airflow current. An example of an uniform current
flow can be seen in figure 2.4.

Complex potential: Source and sink The mathematical definition for a source and sink with
intensity Q centered at a point s0 is as follows:

f (s) = ±
Q
2p

Ln(s � s0) (2.47)

Where the difference between sources and sinks comes from the sign of the intensity, positive
for sources and negative for sinks. An example of sources and sinks can be seen in figure 2.4

Complex potential: Vortices In the case of vortices, the intensity of the vortex is defined by G.
In this case, the definition of a vortice centered at s0 comes by:

f (s) =
iG
2p

Ln(s � s0) (2.48)

The sign criterion is positive clockwise, coincidental with a right handed trihedral for the y
axis. an example can be seen in figure 2.4.

A particular case of the vortices potential is the vortex sheet. The vortices are distributed along
a line uniformly, and instead of having a single intensity G there is a intensity density g per length
unit. In this case the velocity expression for a vortex sheet on an airfoil camber, as defined in figure
2.5, at a point p for a vortex sheet of length L is as follows:

v(s) = �
i

2p

LZ

0

g(l)dl
|l(s)� p(s)|

(2.49)

A particular case of equation 2.49 is when the camber coincides with the x axis, has length L
and the point p is placed on the vertex sheet, is as follows:

w = �
i

2p

LZ

0

g(l)dl
p � l

(2.50)
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2.5.1.7 Euler-Bernouilli’s equation

Once defined the velocity potential F, we can simplify the conservation of momentum equation
2.37. Euler-Bernouilli’s equation is one of the most important equations in aerodynamics, since it
relates the airspeed modulus variation with the pressure variation, which ultimately is responsible
for lift.

The derivation of the current section can be found in Anderson, 2007 and Meseguer Ruiz and
Sanz Andrés, 2010, and will be reproduced here given the relevance of this equation.

From equation 2.37, developing the substantial derivative of the velocity we can derive:

Dv
Dt

=
∂v
∂t

+ v ·rv =
∂v
∂t

+
1
2
r(v · v) = �

1
r
rp = �r

Z dp
r

(2.51)

And introducing the definition of the potential of velocities v = rF into equation 2.51 yields:

r


∂F

∂t
+

1
2
|rF|

2 +
Z dp

r

�
= 0 ()

∂F

∂t
+

1
2
|rF|

2 +
Z dp

r
= C1(t) (2.52)

Since we defined in assumption 1 the fluid as incompressible, the density is independent to the
pressure, and therefore we can define the following relationship from equation 2.52 for unsteady
flow:

∂F

∂t
+

1
2
|rF|

2 +
p
r
= C2(t) (2.53)

And likewise for steady flow:

1
2

r•|rF|
2 + p = C3 =

1
2

r•u2
• + p• (2.54)

Which constitutes the popular form of the Euler-Bernouilli equation.
The importance of the right hand term of equation 2.54 is paramount. It is applicable for
the whole trajectory of streamlines, so known the static pressure and velocity at infinity
(flight speed of the airfoil and static pressure of the air at that altitude) it is possible to
know the constant C3, and from there knowing the airspeed at a given point it is possible
to know the static pressure at that point. Hence, knowing the velocity vector field around
the airfoil it is possible to know the pressure field and from there calculate lift. Now the
problem is reduced to knowing the airspeed field around the airfoil.

2.5.1.8 Lift and non-dimensional coefficients. Kutta - Joukowski Theorem

Bernouilli’s equation describes an equivalence between air static pressure and airspeed. We can
start getting a physical meaning out of equation 2.54. The derivation of this section can be found
in Meseguer Ruiz and Sanz Andrés, 2010.

The term p• represents the stream’s static pressure. The next term has also pressure dimen-
sions, 1

2 r•u2
•, and is dependent upon stream pressure r and airspeed u•. This term is called

dynamic pressure Q•.
Now we must understand that the dynamic pressure can be understood as a reservoir for

energy derived from the static pressure, while the static pressure is the actual contributor to the lift
of the airfoil. Hence, we can define the pressure coefficient Cp(z) for a point z in the x dimension
of the chord and for the upper and lower sides of the airfoil as follows:

Cu,l
p (z) =

pu,l
u (z)� p•

1
2 r•u2

•
= ... = 1 �

✓
|v|
u•

◆2

(2.55)
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FIGURE 2.6: Airfoil definitions. The camber is defined as the distance between the
mean chamber line and the chord, the mean camber line c is the line which separates
equally the upper side of the airfoil and the lower side of the airfoil, depicted in
blue, the chord is the straight line that joins the the leading edge and the trailing
edge, depicted as a red line. The undisturbed airflow speed is u•, the angle of attack
is the angle between the chord and the airflow airspeed vector. Dimension z along

the chord indicates the distance from the leading edge to the chord element dz

Notice that the pressure coefficient is defined for a given point, but it also needs to be calculated
for the upper and lower sides of the airfoil, since in both positions the pressure coefficient may
be different. To calculate the lift coefficient CL, it is necessary to integrate the pressure coefficient
along the chord and consider the upper and lower sides of the airfoil (indicated by the superindex
u and l respectively):

CL =
1
c

Z c

0
Cl

pdz �
Z c

0
Cu

pdz

�
(2.56)

From the lift coefficient we can calculate lift per span unit by definition:

Ls =
1
2

r• S u2
• CL (2.57)

Where S is the surface per span unit of the lifting surface.
Once the lift per span unit is defined, we can introduce another important theorem, the Kutta

- Joukowski’s theorem.

Theorem 2.5.2 (Kutta - Joukowski’s Theorem). The lift over an airfoil can be calculated by calculating
the velocity distribution over a closed curve engulfing the airfoil, and the expression for lift per span unit
over an airfoil with a circulation distribution G is as follows:

Ls = r•u•G (2.58)

The demonstration of the Kutta - Joukowski’s theorem is out of the scope of this thesis. How-
ever Meseguer Ruiz and Sanz Andrés, 2010 provides a very good demonstration in pages 46-49.

The importance of the Kutta - Jukowski’s theorem is that it directly relates the global cir-
culation of the airfoil with the lift, regardless of the angle of attack, thickness, curvature or
lifting surface per span unit. These parameters are embedded into the final solution for the
circulation. Therefore it is possible to know the lift of an airfoil indirectly, by knowing the
density, flight speed and the circulation of the wake.

This conclusion might seem unrealistic, since appears to be much easier to calculate the circu-
lation around an airfoil than the circulation around the wake. However, this conclusion will be
crucial for the upcoming sections.



Chapter 2. Materials and Methods 37

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0.
1

0.
2

0.
3

0.
4

0.
5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

FIGURE 2.7: Airfoil camber mean line defined by a vortex and doublets distributed
over the curve

2.5.1.9 Kutta condition

We can find further information for this section in Anderson, 2007. Although Kutta-Joukowski
theorem 2.5.2 gives a very simple tool to calculate lift, which basically indicates that the total
circulation around the airfoil is directly proportional to the total lift, it is necessary to be able to
accurately estimate (calculate actually) the circulation around a cylinder (or associated airfoil),
which implies to know the field of velocities.

Now we face a problem. Remember that we are working under the assumption that the vis-
cosity is negligible. This means that under a potential flow the stangation points can be anywhere
on the airfoil, since there is no mechanism to model the detachment of the airflow. For example,
we can imagine an airfoil perfectly perpendicular to the airstream (a = p/2). In such situation
there should be two different stagnation points, one approximately in the middle of the chord line
and the other opposite to it in the upper side of the airfoil. This may seem an extreme case, but in
general this is the standard behavior under potential flow. A sharp trailing edge won’t prevent the
airflow to perfectly and smoothly bend around it. Figure 2.7 shows the behavior of such flow, with
two stagnation points, one in the lower and one in the upper side of the airfoil (both streamlines
in black), which is blatantly incorrect.

To prevent this situation, Kutta proposed a condition indicating that:

1. The circulation G must be such that the flow leaves the trailing edge smoothly

2. If the trailing edge is finite, then the trailing edge is a stagnation point, the velocities V1 and
V2 are zero and therefore gt.e. = 0. See figure 2.8

3. If the trailing edge is cusped, then the velocities V1 and V2 must be equal in magnitude and
direction: v1 = v2. See figure 2.9. Since g = V2 � V1, this condition is also reduced to
gt.e. = 0.

The Kutta condition was paramount to the advance of aerodynamics, since currently the po-
tential flow theory is the basis for many finite element algorithms.
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FIGURE 2.9: Trailing edge ending in cusp

2.5.1.10 Thin airfoil theory

The derivation of this section can be found in Anderson, 2007.
Currently we have enough knowledge to calculate lift around an airfoil. First as steady aero-

dynamics (current section), where the airfoil keeps a constant angle of attack and the vertical
displacement of the airfoil is zero, and later (section 2.5.2) during an unstable phase, where the
angle of attack varies due to the rotation and vertical displacement of the airfoil.

The thin airfoil theory will be based in the following constraints to model the airfoil (see figure
2.10 for the definitions):

1. The airfoil seen from afar can be simplified as a vortex sheet over the camber (mean line
between the upper and lower side of the airfoil).

2. The camber is a streamline. To reach this constraint we will define the velocity on the surface
of the camber as tangent to the camber (the normal velocity perpendicular to the camber
equals zero): u•,n + w0 = 0.

3. The thickness of the airfoil will not be directly incorporated. Its influence will be incorpo-
rated into the value of g(l).

4. The kutta condition will be incorporated forcing the trailing edge circulation value to be zero
gt.e. = 0.

5. Although the camber shape will be considered as dz
dx , the distance between the camber and

the chord is small and we can make the approximation w0(l) ⇡ w(x). The velocity normal
to the chord will be zero instead of the velocity normal to the camber.

Figure 2.10 defines the nomenclature used in the thin airfoil theory. b angle is the angle be-
tween the chord line and the x axis: b = atan

⇣
�

dz
dx

⌘
. The velocity u•,n is the free stream velocity
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FIGURE 2.10: Thin airfoil theory nomenclature

normal to the camber, z is the distance over the chord, dz its differential element and w0 is the ve-
locity induced by the vortex sheet normal to the camber, although as said above it will simplified
to the velocity normal to the x axis w.

We will start by modeling the camber as a streamline. To reach that goal, we will apply the
constraints above, model the camber as a vortex sheet and identify the contributors to the velocity
perpendicular to the camber, say the normal contribution from the undisturbed airflow u•,n and
the perpendicular vortex induced velocity w0, and force them to sum zero.

First we will define the velocity normal to the camber w0 from equation 2.50

w0
⇡ �

1
2p

LZ

0

g(z)dz

x � z
(2.59)

And the free stream velocity normal to the camber:

u•,n = u• · sin
✓

a + atan
✓
�

dz
dx

◆◆
⇡ u• ·

✓
a �

dz
dx

◆
(2.60)

With these constraints into account we can calculate the velocity field:

u•,n + w0 = 0 (2.61)

And applying the previous approximations:

1
2p

LZ

0

g(z)dz

x � z
⇡ u• ·

✓
a �

dz
dx

◆
(2.62)
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FIGURE 2.11: Symmetric airfoil sample

Equation 2.62 constitutes the fundamental equation for the thin airfoil theory, and is an inte-
gral equation where the unknown term is the vorticity density g, which is needed to calcu-
late lift applying the Kutta-Joukowski theorem 2.5.2. This equation can be summarized by
a simple statement: The camber is a streamline of the flow.

To solve g we can identify two different cases, corresponding to the two different airfoil models
defined by the kutta condition, the symmetric and the cusped airfoil. Both will have a different
definition of dz

dx , and therefore the solution of the circulation will be different.

Symmetric airfoil The case of a symmetric airfoil (figure 2.11) implies that the term dz
dx = 0 in

equation 2.62:

dz
dx

= 0 ()
1

2p

LZ

0

g(z)dz

x � z
= u• · a (2.63)

To calculate this integral is convenient to transform z into q with the following relation:

z =
L
2
(1 � cos q) () dz =

L
2

sin q dq (2.64)

Where q is a variable that defines the position over the cord, centered in L/2. Notice that the
points z = 0 and z = L correspond to the points q = 0 and q = p. For the point x in equation 2.63
we can establish point q0:

x =
L
2
(1 � cos q0) (2.65)

And equation 2.63 becomes:

1
2p

pZ

0

g(q) sin q dq

cos q � cos q0
= u• · a (2.66)

Equation 2.66 constitutes an inhomogeneous Fredholm integral equation of the first kind,
whose solution demonstration is beyond the scope of this thesis, but can be found in Wazwaz,
2011. Its solution is as follows:

g(q) = 2 a u•
1 + cos q

sin q
(2.67)

Once the solution to g is known, we have the distribution of vortices along the camber. Re-
member that in order to be able to calculate lift we need to calculate first the global circulation
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FIGURE 2.12: Cambered airfoil sample

around a closed line around the airfoil (Kutta - Joukowski’s theorem 2.5.2). Now we can calculate
the global circulation G simply integrating the vortices distribution:

G =
Z L

0
g(z) dz =

L
2

Z p

0
g(q) dq (2.68)

Incorporating the solution of g (equation 2.67):

G = a L u•

Z p

0
(1 + cos q) dq = p a L u• (2.69)

Now substituting equation 2.69 into the Kutta-Joukowski theorem (2.5.2), the lift per span unit
is:

Ls = r• u• G = p a L r• u2
• (2.70)

Note that this result indicates that the lift per span unit for a symmetric airfoil depends linearly
on the angle of attack. This result is coherent with experimental data (Anderson, 2007) under the
restrictions imposed to the thin airfoil model.

We can also calculate the aerodynamic moment per span unit about the leading edge, by inte-
grating the lift contribution along the cord multiplied by the distance along the cord z (the inte-
gration is trivial):

Ms,le = �

Z L

0
zdLs = �

1
4

r•u2
•L2pa (2.71)

As for the lift, the aerodynamic moment about the leading edge is a function linearly depen-
dent on the angle of attack.

Cambered airfoil The cambered airfoil solution is more complicated than the symmetric airfoil.
In this case it is not possible to simplify the integral equation, and will be a second kind inho-
mogeneous Fredholm equation, also demonstrated in Wazwaz, 2011. We will follow the same
reasoning until equation 2.66, but carrying the term dz

dx :

1
2p

pZ

0

g(q) sin q dq

cos q � cos q0
= u• ·

✓
a �

dz
dx

◆
(2.72)

In this case the solution for equation 2.72 is not so simple as in the symmetric airfoil case.
Instead it necessary to expand in power series the solution with coefficients depending on a and
dz
dx :
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g(q) = 2 u•

 
A0

1 + cos q

sin q
+

•

Â
n=1

An sin nq

!
(2.73)

This equation has as unknowns the parameters of the series expansion A0 and An, and it is
necessary to calculate both in order to have a solution for g(q), which will be done in the following
paragraphs.

Substituting equation 2.73 into equation 2.72:

1
p

Z p

0

A0(1 + cos q)
cos q � cos q0

dq +
1
p

•

Â
n=1

Z p

0

Ansin nq sin q

cos q � cos q0
dq = a �

dz
dx

(2.74)

Again, the solution of equation 2.74 is beyond the scope of this thesis. Instead the solution
already integrated is as follows:

A0 �
•

Â
n=1

An cos nq0 = a �
dz
dx

()
dz
dx

= (a � A0) +
•

Â
n=1

An cos nq0 (2.75)

Notice that dz
dx is known (we know the geometry of our airfoil), a is known and q0 is a substitu-

tion for x through equation 2.64. Also notice that the expression in equation 2.75 for dz
dx is a Fourier

series expansion, with the zero term a � A0 and the rest of the terms Â•
n=1 An cos nq0. Hence, we

can state:

a � A0 =
1
p

Z p

0

dz
dx

dq0 () A0 = a �
1
p

Z p

0

dz
dx

dq0 (2.76)

An =
2
p

Z p

0

dz
dx

cos nq0 dq0 (2.77)

Now we can combine equations 2.73, 2.76 and 2.77 to get the solution for g(q):

g(q) = 2u•

 ✓
a �

1
p

Z p

0

dz
dx

dq0

◆
1 + cos q

sin q
+

•

Â
n=1

✓
2
p

Z p

0

dz
dx

cos nq0 dq0

◆
sin nq

!
(2.78)

For the sake of simplicity, we will express the circulation G as a function of the parameters A0
and An:

G = L u•

"
A0

Z p

0
(1 + cos q) dq +

•

Â
n=1

An

Z p

0
(sin nq · sin q) dq

#
(2.79)

Notice that the term sin nq is orthogonal to the term sin q in equation 2.79, and therefore only
the term for n = 1 is different to zero. Simplifying, we can rewrite equation 2.79 as follows:

G = L u•

h
pA0 +

p

2
A1

i
(2.80)

And applying the Kutta-Joukowski theorem 2.5.2:

Ls = r• u• G = r• u2
• L

⇣
pA0 +

p

2
A1

⌘
(2.81)

In this case the lift is linearly dependent on the angle of attack (recall the definition of A0 in
2.76), but also on the geometry of the airfoil. However note that the geometry of the airfoil is re-
duced to two constant factors A0 and A1, and therefore it is fair to say that in terms of aeroelasticity
the only relevant factor is the angle of attack.
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The aerodynamic moment per span unit about the leading edge is calculated, as in the case of
the symmetric airfoil, by integrating the lift multiplied by the distance along the cord z:

Ms,le = �

Z L

0
zdLs =

1
4

r•u2
•L2p

✓
A0 + A1 �

A2

2

◆
(2.82)

As in the case of the lift, the moment depends on the angle of attack (A0 is a function of the
angle of attack) and the geometry of the airfoil. The same conclusions as in the case of the lift
related to the factors A0, A1 and A2 can be reached. The only factor affecting the lift and moment
related to aeroelasticity is the angle of attack.

2.5.2 Unsteady Aerodynamics

In section 2.5.1 it has been expressed the form of the aerodynamic equations of motion for an
steady movement through the thin airfoil theory. These equations don’t consider the transient
movements of the airfoil, which are basic for the understanding and calculation of the flutter
mechanism. In this section we will calculate the transient equations of motion for airfoils based
on the thin airfoil theory but including terms for transient movement.

The first description of this mechanism was provided by Theodorsen, 1935, although alterna-
tive demonstrations were provided posteriorly by other authors, like Bisplinghoff, Ashley, and
Goland, 1963; Fung, 2008, etc. The demonstration that will be used in this section is the small
perturbatins theory, and comes from García-fogeda and Arévalo-Lozano, 2015, considering both
the 2nd edition from Garceta publisher and the original class notes published by the Universidad
Politecnica de Madrid, ETSI Aeronauticos.

2.5.2.1 Description of the procedure

The study of unsteady aerodynamics adds (obviously) an increased level of complexity to the
previous chapters. For this reason it is necessary to describe the steps that will be followed in the
upcoming subsections.

1. The first thing we will do is to separate the contributions of the airfoil geometry (F(z, x, t))
and the velocity potential (F(x, z, t)). We will consider the stationary (e0z0(x) and e0j0(x, z),
geometry and velocity potential respectively) and non-stationary (e1z1(x, t), e1j1(x, z, t))
contributions separately. The intention is to linearize the solution by adding the station-
ary (calculated in section 2.5.1) plus the non-stationary solutions. Note that we will operate
with the implicit function of the camber. This fact will be relevant in the next bullet.

In section 2.5.1 we defined the airfoil equation (camber line actually) as z = z(x). However
the transient equations have a dependency on time also, so for unsteady aerodynamics
we will define z = za(x, t) instead, and the implicit function for the airfoil camber F(z, x, t),
where the variable t represents time.

F(z, x, t) = z � za(x, t) = 0 = z � e0z0(x)� e1z1(x, t) (2.83)

Where e0z0(x) represents the steady airfoil camber shape considering the contribution of the
mean angle of attack a0, and e1z1(x, t) represents the unsteady contribution of a flat plate.
Take into account that the oscillation around the mean angle of attack a0 is sufficiently small,
so that the order of magnitude of e0 ⇡ e1 << 1. With this approximation into account, we
can assume linearity in the velocity potential, so it can be expressed as follows:

F(x, z, t) = u•x + e0j0(x, z) + e1j1(x, z, t) (2.84)
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2. Next we will impose the same thin airfoil theory constraint to the airfoil camber. The camber
will be a streamline, and to achieve that we will follow a slightly different approach than in
stationary aerodynamics. Instead of setting the normal velocity to zero, we will calculate
the substantial derivative and operate over that function ( DF

Dt = 0, note that the derivative is
zero because we are operating on the implicit function).

The derivative is the tangent to the camber function, and therefore operating with the deriv-
ative of the camber function imposes the condition of the camber being a streamline. This is
possible because the substantial derivative includes an explicit expression for the gradient
of the potential of velocities rF(x, z, t), and therefore we will end up with an equation of
different terms, where the expression of the velocity potential is explicitly expressed and is
one of our unknowns.

Now we will impose the camber line to be a stream line as described in section 2.5.1. In
steady aerodynamics we constrained that the normal velocity to the camber line must be
zero, but we will follow a different approach here. We will state that constraint calculating
the substantial derivative of the airfoil equation (camber line) and operating on that equa-
tion. Remember that v = rF, and the substantial derivative of a fictitious magnitude W is
DW
Dt = ∂W

∂t + vrW.

DF(z, x, t)
Dt

= 0 ()
∂F(z, x, t)

∂t
+rF ·rF(z, x, t) = 0 | z = za(x, t) (2.85)

Introducing equations 2.83 and 2.84 into 2.85 yields:

DF
Dt

= �
∂z1

∂t
e1 + (u• +

∂j0

∂x
e0 +

∂j1

∂x
e1 ,

∂j0

∂z
e0 +

∂j1

∂z
e1) · (�

∂z0

∂x
e0 �

∂z1

∂x
e1 , 1) = 0 ()

() �
∂z1

∂t
e1 � u•

∂z0

∂x
e0 � u•

∂z1

∂x
e1 +

∂j0

∂z
e0 +

∂j1

∂z
e1 + ... +O

2 = 0

(2.86)

We can identify the terms related to z0 and z1 in equation 2.86. Notice that at this stage we
will assume the thickness of the airfoil to be neglected and evaluate the functions at z = 0,
as done in section 2.5.1.

(
∂j0
∂z (x, 0) µ u•

∂z0
∂x (x)

∂j1
∂z (x, 0, t) µ u•

∂z1
∂x (x, t) + ∂z1

∂t (x, t)
(2.87)

Note also that the condition of the airfoil being a streamline, implies that the vertical
velocity of the stream in contact with the airfoil is the same as the airfoil. Otherwise
the current would be detached from the airfoil. This fact will take relevance further in this
section.

3. Now we will follow a slightly different approach than in section 2.5.1. There we applied
the Kutta-Joukowski theorem 2.5.2 to calculate lift around the whole airfoil. However it is
also possible to calculate the lift per span unit Ls by integrating the pressure coefficient Cp,
which was defined in 2.55, around the whole airfoil and projecting on the perpendicular to
the airspeed vector. Notice that in this case the wake is an important part of the control
volume, since the unsteady terms will directly impact the vortices in the wake.
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FIGURE 2.13: Control volume excluding wake. The figure represents in red the vor-
tex sheet and in green the Karman Vortex street into the wake.

The wake will be carefully left out of the control volume (see assumption 3), since we don’t
want to account for the effects of viscosity, but needs to be considered as boundary con-
ditions over the control volume to calculate the circulation of the airfoil at different time
intervals.

In order to calculate the pressure coefficient we have one unknown, the pressure scalar field
around the airfoil. This field cannot be calculated directly, so we need to employ Bernouilli’s
equation in its generalized form (equation 2.52, ∂F

∂t + 1
2 |rF|2 +

R dp
r = C1(t)). Remember

that Bernouilli’s equation related the scalar field of pressures to the velocity potential, and
previously we had an expression for the velocity potential. The only term left is the pressure
and density integral, which will be estimated by thermodynamics relationships.

At last, we reach an expression for the pressure coefficient Cp in terms of the (currently
unknown) unsteady velocity potential.

The demonstration can be found as an annex in section A.2, and the main conclusions are
the following equations:

(
Cp,0 = �

2
u2

•

∂j0
∂x (x, 0)

Cp,1 = �
2

u2
•
[ ∂j1

∂t (x, 0, t) + u•
∂j1
∂x (x, 0, t)]

(2.88)

Where the subindex 0 accounts for the steady aerodynamics terms contribution and 1 for the
unsteady. It is relevant to acknowledge the differentiation between both terms The steady
aerodynamics don’t include a dependency with time t, while the unsteady terms do. Also
we will assume that the curvature is small enough as to be able to calculate the contribution
to the unsteady pressure coefficient as the movement of a flat place, and hence the dimension
z will be zero.

4. The next step is to adimensionalize the values for displacements and velocities, in our case
rotation and vertical displacement. This is necessary because the unsteady motion requires
these values to oscillate around a mean value with a given amplitude, and in this case we
will adimensionalize the vertical position and velocity with the semicord, while the angular
position and velocity will be adimensionalized with the mean angle of attack and the dis-
tance between the elastic axis and the cord midpoint. Also the reduced frequency k will be
introduced. The reduced frequency is also an adimensional parameter, that puts the oscil-
lation frequency relative to the flight airspeed and the semicord dimension, and will take
relevance further on.

Next we will introduce some oscillatory parameters. The oscillating amplitude, airfoil circu-
lation, wake circulation and velocity potential. To solve the unsteady aerodynamics problem
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FIGURE 2.14: Airfoil definitions

we will assume a harmonic motion for the airfoil with oscillating frequency w, and also the
associated parameters, wake and airfoil circulations and velocity potential, will be defined
as harmonic functions oscillating with the same frequency w. Note also that the phase an-
gle of each parameter is unknown, and therefore we will need to define the amplitudes as
complex functions.

The stationary potential has been calculated already in section 2.5.1. To calculate the ve-
locity potential j1(x, z, t) we need to note that the following average values (as amplitudes
for complex functions) apply to the airfoil, since will be useful later to understand the full
problem:

Vertical displacement :

ẑh =
�h0

B

ŵh =
�i k h0

B
= i k ẑh ⇡

∂j1

∂z

����
h

Pitch movement :
ẑa(x) = a0(Ae � x)

ŵa = a0[�1 + i k(Ae � x)] = i k ẑa(x)� a0 ⇡
∂j1

∂z

����
a

(2.89)

Where h0 is the mean vertical displacement, a0 the mean angle of attack, i is the imaginary
unit (included to indicate a 90 degrees offset between the displacement and the velocity),
B = L/2 is the semicord dimension, k = wB

u•
is the reduced frequency, Ae is the position of

the elastic axis relative to the cord mid point, ŵ is the velocity equation of the airfoil and ẑ(x)
is the airfoil equation of the airfoil considering the displacement. The subindexes h and a in-
dicate respectively a vertical displacement or pitching displacement, and the ˆtilde indicates
adimensional variables. These parameters indicate the amplitude value of the movement of
the airfoil in case we consider an isolated vertical or pitching movement, and even though
they will be useful later, the main reason to introduce them here is for better understanding
of the mathematical mechanism.

We can assume that, even in unsteady motion, we can reach a stationary state by the airfoil
oscillating at a given frequency. We can therefore define the movement of the structure as a
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harmonic function, where we can introduce complex notation to model the position of the
airfoil, the vortices distribution and the velocity potential in the following way:

z1(x, w, t) = R[z1(x, w)eiwt]

ga(x, w, t) = R[ga(x, w)eiwt]

gw(x, w, t) = R[gw(x, w)eiwt]

j1(x, z, w, t) = R[j1(x, z, w)eiwt]

(2.90)

Where w is the angular frequency and z1, ga, gw and j1 are the (in general) complex func-
tions defining the amplitudes of the oscillatory airfoil position, airfoil vortices, wake vortices
and velocity potential respectively. The tilde indicates the amplitude (complex if applica-
ble) of the corresponding harmonic function. The demonstration of why we can model such
equations by oscillatory movements of frequency w are out of the scope of this thesis, al-
though Bisplinghoff, Ashley, and Goland, 1963 provides a very good demonstration.

5. Now we need to calculate the expression for the vortices distribution. Recapping up to
this point, we have calculated an expression for the pressure coefficient as a function of the
velocity potential, which is an unknown to us. However we can relate the vertical velocity
(induced by the vortices distribution) to the velocity potential (equation 2.59).

Recall that we defined our control volume excluding the airfoil and wake. however the
values for the circulation in the boundaries between our control volume and the wake, and
our control volume and the airfoil need to be the same, and those are the values that we will
calculate.

Now, we will have two different vortices sheets, one in the airfoil and another in the wake,
and hence when calculating the vertical velocity we will have the contribution from two
different vortices sheets. However those are both related. We need to explain one physical
phenomenon before. The wake receives the circulation from the airfoil in the form of de-
tached vortices. At a given time interval, the airfoil "throws" a vortex from the trailing edge
containing the circulation of the whole airfoil to the surrounding air current. This vortex
is what creates the wake, and the constant flow of vortices from the airfoil to the wake are
what constitute the wake and the wake circulation. In a steady aerodynamics analysis there
is a constant flow, and therefore the global integration is the same. However in unsteady
aerodynamics the solution needs to take into account the contribution from each cycle. As
a summary, it is necessary to equal the increment to the wake circulation with the detached
vortex from the trailing edge. With this into consideration, we have a mechanism to re-
late the airfoil circulation with the wake circulation, and in the integration of the velocity
potential we have two unknowns, the velocity potential derivative with respect to z and
the vortices distribution along the airfoil. However remember. We defined the camber as
a stream line, and therefore the only means of the vertical velocity not being zero on the
camber is if the movement of the airfoil is the same as the induced vertical airspeed, so the
derivative with respect to z of the velocity potential must equal the induced vertical velocity
∂j1
∂z = w, and hence we have a means of calculating the vortices distribution with only one

unknown.

We will introduce some

The demonstration can be found in section A.4, and the main equation that can be derived
from this epigraph is the expression of the circulation of the vertex sheet on the airfoil:
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ĝa(x̂, k) = 2
p

q
1�x̂
1+x̂ VP

R 1
�1

r
1+ẑ
1�ẑ

ˆ∂j1
∂z (ẑ,0,k)

x̂�ẑ
dẑ + i k Ĝei k

2
R •

1
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x̂�ẑ

r
ẑ+1
ẑ�1

dẑ

�

Ĝ =
2VP

R 1
�1

r
1+ẑ
1�ẑ

ˆ∂j1
∂z (ẑ,0,k)dẑ

ikeik p
2 (H(2)

1 (k)+iH(2)
0 (k))

(2.91)

Where VP indicates Cauchy’s principal value, and note that we defined the adimensional
values and mean values in bullet 4, and the expression for the vertical velocity is also known
and defined in equations 2.89. The tildesˆrepresent adimensional variables and the functions
H(2)

0 and H(2)
1 represent Hankel functions as defined by equations A.31.

6. Once calculated the distribution of vortices on the airfoil camber, we need to calculate the
pressure coefficient in order to calculate the forces and moments on the airfoil.

The demonstration of this epigraph can be found in section A.5, and as a summary, we can
indicate that the basic equations for the pressure coefficient are:

DĈp(x̂, k) = 2


ĝa(x̂, k) + ik
Z x̂

�1
ĝa(ẑ, k)dẑ

�
(2.92)

Now, from the calculated value of ga in equation 2.91:

DĈp(x̂, k) =
4
p

VP
Z +1

�1

ˆ∂j1

∂z
(ẑ, k)

"r
1 � x̂
1 + x̂

s
1 + ẑ

1 � ẑ

1
x̂ � ẑ

� ikL(x̂, ẑ)

#
dẑ+

+
4
p
[1 � C(k)]

r
1 � x̂
1 + x̂

Z +1

�1

s
1 + ẑ

1 � ẑ

ˆ∂j1

∂z
(ẑ, k)dẑ (2.93)

Where:

L(x̂, ẑ) =
1
2

Ln

2

4
1 � x̂ẑ +

q
1 � ẑ2

p
1 � x̂2

1 � x̂ẑ �
q

1 � ẑ2
p

1 � x̂2

3

5 (2.94)

And C(k) is known as the Theodorsen function:

C(k) =
H(2)

1 (k)

H(2)
1 (k) + iH(2)

0 (k)
(2.95)

This expression for the pressure coefficient is dependent on the movement of the structure,
since we are still carrying the term ∂j1

∂z , but remember that this term is known.

7. Once calculated the pressure coefficient, it is possible to calculate the aerodynamic interac-
tions of interest in our problem, say aerodynamic forces (meaning vertical movement of the
airfoil) and moments (meaning rotation around the elastic axis) by integration:

(
q̂h(k) = Q•B

R +1
�1 DĈp(x̂, k)(�1)dx̂

q̂a(k) = Q•B2 R +1
�1 DĈp(x̂, k)(Ae � x̂)dx̂

(2.96)
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Where q̂h is the bending aerodynamic force (similar to the static lift in equation 2.81), q̂a

is the torsion aerodynamic moment (similar to the static aerodynamic moment in equa-
tion 2.82), Ae is the distance between the cord mid point and the elastic axis, B = L

2 is
half the cord length, Q• the dynamic pressure at infinity and Ĉp the pressure coefficient in
non-dimensional units. Now, substituting equations 2.93 and 2.89 into 2.96 and integrating,
yields:

8
>>>>>><

>>>>>>:

q̂h(k)
Q•B = �2p


t0

da
dt + t2

0

✓
d2h
dt2
B � Ae

d2a
dt2

◆�
� 4pC(k)

⇢
a + t0


dh
dt
B +

� 1
2 � Ae

� da
dt

��

q̂a(k)
Q•B2 = �2p

⇢
t0
� 1

2 � Ae
� da

dt + t2
0


�Ae

d2h
dt2
B +

� 1
8 + A2

e
� d2a

dt2

��
+

+4p
� 1

2 + Ae
�

C(k)
⇢

a + t0


dh
dt
B +

� 1
2 � Ae

� da
dt

��
(2.97)

Where we introduced a new parameter t0 = B
u•

, which is the characteristic time of the move-
ment. Also recall the variables h, the vertical displacement variable, and a, the torsional
angular variable.

Notice that the derivation of equation 2.97 has been reduced to the case of interest for the
present thesis. Usually in the literature describing this equation there is a third degree of
freedom, the lift produced by the hinge of the aileron. In this case such degree of freedom
has not been included for simplicity, taking into account that the contribution of the aileron
might be of interest for a generic flutter case, but is not relevant for the problem described
in the present thesis.

The most important conclusion of the current section, which justifies this lengthy derivation
of equations, is this:

The aerodynamic forces under unsteady conditions depend upon the following parame-
ters: a, da

dt , d2a
dt2 , dh

dt and d2h
dt2 .

This dependency on those parameters will be the most important condition in section 2.6.

2.6 Flutter on an Airfoil

Once derived the equations for all the forces involved in the flutter mechanism, it is possible to
describe the concept of flutter with a mathematical foundation.

We will start developing the basic second degree linear differential equation as described in
classical vibrations with viscous damping (2.25), in this case excited by aerodynamic forces:


M Sa

Sa Ia

� " d2h
dt2
d2a
dt2

#
�


ch ch,a

ch,a ca

�  dh
dt
da
dt

�
+


kh kh,a

kh,a ka

� 
h
a

�
=

"
qh(

dh
dt , d2h

dt2 , a, da
dt , d2a

dt2 , Q•)

qa( dh
dt , d2h

dt2 , a, da
dt , d2a

dt2 , Q•)

#
(2.98)

Notice that equation 2.98 is a non-homogeneous matrix equation. However as we can see in
equation 2.97, all the terms in the aerodynamic forces depend on any of the parameters dh

dt , d2h
dt2 , a,

da
dt , d2a

dt2 , so we can reorganize equation 2.98 and turn it into a homogeneous system of equations in
matrix form:
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M � qh,1(Q•) Sa � qh,2(Q•)
Sa � qa,1(Q•) Ia � qa,2(Q•)

� " d2h
dt2
d2a
dt2

#
�


ch � qh,3(Q•) ch,a � qh,4(Q•)

ch,a � qa,3(Q•) ca � qa,4(Q•)

�  dh
dt
da
dt

�
+ (2.99)

+


kh kh,a � qh,5(Q•)

kh,a ka � qa,5(Q•)

� 
h
a

�
=


0
0

�
(2.100)

Where the terms qh,i(Q•) and qa,i(Q•) represent the terms of the aerodynamic forces multi-
plied by their respective variable.

Remember that from section 2.3.2.1, when considering two degrees of freedom it is indifferent
to derive the model considering viscous or structural damping, since both have a direct relation-
ship as described in 2.24 once diagonalized. With that information into account, we can solve the
matrix equation and return independent solutions for each degree of freedom and for each dy-
namic pressure, considering cuasi-stationary conditions as described in section 2.3.2.2, equation
2.26 (considering the same nomenclature):

xh = Bh · e�zhwn,ht
· sin(wd,ht + jh)

xa = Ba · e�zawn,at
· sin(wd,at + ja)

(2.101)

Now this is the most important result of this lengthy demonstration.

The vibration of the two different modes in equations 2.101 is not independent, since
both wh and wa, and zh and za are linked by the parameters dh

dt , d2h
dt2 , a, da

dt , d2a
dt2 and q•.

This important conclusion is what drives the flutter phenomenon.

2.7 Flutter signal particularities

In general the importance of the signal quality is considered a secondary factor in flutter data pro-
cessing. This is usually a consequence of the extreme cost, risk and complications associated to
the extraction of data from Flutter Flight Tests. Take into account that each flight is scheduled in
advance, aircraft are not always operationally available and occasionally the planes are not dedi-
cated for Flutter Flight Tests. Sometimes other tests are scheduled and the Flutter instrumentation
is removed. Some others the tests must be aborted due to maintenance, weather, etc. This fact
implies that once the test starts and the atmospheric conditions are suitable for flying, it must
be completed even if the atmospheric conditions are not optimal for data gathering. Also note
that the risk and cost associated to the tests usually imply that in case data are not good, unless
there is a very good reason to, it is not possible to repeat the test points. This poses a problem for
Sine-Dwell signals for the reasons that will be described below.

2.7.1 Wing Flutter Signals

During flutter flight tests the aircraft needs to be excited at given frequencies in order to extract
measurable data. There are several excitation and data extraction techniques. In our case, we
will focus on Sine-Dwell signals. They consist of a frequency sweep at a given frequency and
constant amplitude. The signal is measured after the excitation stops, and the expected value is
an exponentially damped sinusoid representative of a natural mode. The excitations are produced
as a series of close frequency programs, so that the expected mode is close to one of the modes
excited by the FECU. For example, if the expected mode lies at 5.5Hz, the FECU runs a series of
programs at 5.2Hz, 5.3Hz and so on until 5.9Hz, so that the operators are able to see an evolution
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FIGURE 2.15: Sample data. Sine Dwells

on the aircraft responses when excited at each frequency and accurately estimate the natural mode.
Note that the closer the excitation is to the natural mode, the most pure is the response from the
aircraft mechanical system, and hence a better frequency and damping estimation will be able to
be performed.

Figure 2.15 shows an example of the Sine-Dwell excitation series extracted from a real flight.
The upper side of the plot shows the recording from the flaperons (the exciting surface), while the
lower side of the plot shows the response from one of the wing extensometers. With this kind of
excitation, the objective is to start recording and processing data right after each excitation stops,
and stop recording either when 5 seconds have passed or, in case the time between excitations is
lower than 5 seconds, right before the next excitation is started.

Note that it is usual that the excitations take less than 5 seconds, since different events can
occur. The most typical case happens when the signals are far from the flutter point and the
damping is high. In that case the response signal usually disappears before 5 seconds have passed,
and therefore the Test Director commands the pilot to proceed with the next point without further
delay. Another less common situation for shorter signals, but not unexpected either (in fact the
attention of the Test Director in the control room is focused on monitoring this event) is when
the aircraft reaches the flutter point (or close to it). At that time the damping is very low or even
negative, and the response of the extensometers seems to increase with time after the excitation
stopped. In that case the Test Director commands the emergency stop of the test, the Pilot flies
the aircraft into a known safe point of the Flight Envelope (already known safe flight conditions
of airspeed and altitude), the chase aircraft performs an external visual check (searching loose or
broken parts) and they both start the return to base procedure.

2.7.2 Frequency resolution

The signals acquired are very short in time duration, usually 3s to 5s (note that damping is in-
versely proportional to the signal duration), and the frequency associated is also low, usually 2Hz
to 10Hz. Classical textbooks on signal processing, like Oppenheim and Schafer, 2009, describe
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the problem associated to extract good frequency resolution from short time signals when the
frequency associated is low.

In particular the resolution of the Fourier transform depends only on the length (in time) of
the signal to be processed:

8
>>>>>><

>>>>>>:

T = N
f s

Dt = T
N = N

f s
1
N = 1

f s

fmax = f s
2

Resolution = D f = fmax
N/2 = 2 f s

2N = N
N·T = 1

T
D f = 1

T

(2.102)

Where T is the maximum length of the time signal (in units of time), N is the maximum length
of the time signal (in number of samples), f s is the sampling frequency, Dt is the time resolution,
fmax is the maximum frequency obtainable with that sampling frequency for the Fourier Transform
and D f is the frequency resolution in the frequency domain.

Notice that the frequency resolution depends only on the length of the time signal T. In a
typical flutter test the values are the following:

8
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>>>>>>>>>:

T = 5s
f s = 80Hz
fn = 4Hz
Dt = 0.0125s
fmax = 40Hz
D f = 0.2Hz

(2.103)

Where fn is a typical natural frequency.
In our case 0.2Hz is a bad resolution considering that the reference frequency is 4Hz. These

values cannot be improved without increasing the acquisition time, and also in that case, consid-
ering a damped sinusoid, the increase in time will only increase samples with low energy, which
implies that the global contribution will not improve the global resolution, this is equivalent to
calculating a DFT with more samples and interpolating in frequency, but the information in the
system will not be increased. Possible techniques to improve the resolution may include aver-
aging by redundancy with other sensors. However these techniques are out of the scope of the
present thesis and can be subjected to future investigations.

In case of increasing the sampling frequency nothing will change. Notice that the sampling
frequency increase will only increase the maximum frequency in the Fourier Transform, not the
resolution, and on top of that the processing requirements of the computer will be increased.
However notice that the energy leaked through the high energy values in case of reducing the
maximum frequency will be absorbed by the low energy region, and therefore increasing the error
of the estimation by introducing errors in the signal transform.

2.7.3 High damping and relationship with short duration

This epigraph is intended to remark the difficulties to properly identify signals with low fre-
quency, low damping and consequently short time duration.

The damping is the rate at which the signal fades out and falls below the noise level at an
inverse exponential ratio. From this perspective, the damping is directly related with the effective
duration of the signal. The higher the damping the shorter the duration. Even if the acquisition
time is longer, if the damping is low enough there will be not enough samples as to reconstruct
(identify) the signal correctly, specially if the noise level is so high that the signal quickly falls
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FIGURE 2.16: Comparison of different versions of the same signal with different
levels of noise and its power spectrum. Low damping.

below the noise level. In this section we will define a signal representative of flutter vibrations
and will analyze it increasing the noise values. The objective is to check the difficulties resulting
from analyzing these signals given the constraints defined. The analysis of this signal will be made
following the PRESTO technique.

Let’s assume a typical case with the following parameters with and without noise:
8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

f1 = 4.000Hz
z1 = 0.040
f2 = 4.500Hz
z2 = 0.050
t = 5.000s
j1 = j2 = 0.000
A1 = A2 = 1.000
SNR1 = •
SNR2 = 10
SNR3 = 5

(2.104)

Under these conditions the signals are represented in figure 2.16. Each signal is constructed as
the addition of two exponentially damped sinusoid signals, and there are three different solutions
depending of the level of white noise added.

The plots clearly show two modes in the time domain and two distinct peaks in the frequency
domain. While the peaks in the frequency domain remain, the noise added increments the noise
of the tails of the spectrum, increasing with every noise level. However, in the time domain the
results show that most of the signal (the last 4 seconds out of 5) for the 5dB SNR fall under or at
the same level as the noise background. These effect is not so much noticeable for the 10dB SNR,
although the signal is somehow distorted.
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FIGURE 2.17: Comparison of different versions of the same signal with different
levels of noise and its power spectrum. High noise and low damping.

Considering a different construction, with the same parameters but the damping of the second
mode greatly increased:

8
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>>>>>>>>>>>>>>>>>>>:

f1 = 4.000Hz
z1 = 0.040
f2 = 4.500Hz
z2 = 0.1
t = 5.000s
j1 = j2 = 0.000
A1 = A2 = 1.000
SNR1 = •
SNR2 = 10
SNR3 = 5

(2.105)

We can plot the signals in figure 2.17. The noiseless plot shows almost no distortion for the
second mode, both in the time and frequency domains. There is a slight skew in the frequency
domain, indicating the presence of a second mode, but in the time domain it is not possible to
identify the presence of a second mode to the bare eye. The 10dB SNR signal shows a similar result.
The frequency domain shows a peak also indicating the existence of a second mode. Although
the presence of noise may distort the peak, the level of noise is still not so high as to fade the
second mode peak. However, the time signal shows a similar behavior to the noiseless case, easily
identifying one single mode but the second is not evident. The 5dB SNR is a different case. In
the frequency domain it is very clear the existence of a second mode, although the noise level
being of the same magnitude as the signal distorts the signal and leads to confusion. The time
signal reaches the noise level close to the first second, so leaves very small samples for reaching
conclusions.

The analysis of these results is depicted in table 2.1. Comparing the results for low damping,
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Low damping High damping
Noiseless SNR 10 SNR 5 Noiseless SNR 10 SNR 5

f1[Hz] 4.000 4.004 3.995 4.000 3.987 4.001
z1[ ] 0.040 0.039 0.035 0.040 0.036 0.072

f2[Hz] 4.500 4.510 4.548 4.500 4.485 0.019
z2[ ] 0.050 0.054 0.074 0.100 0.120 0.581

TABLE 2.1: Summary of signals comparison results

the identification of all noise levels returns almost no difference. The only parameter with error
above the average error is the damping of the second mode. However the value is still within
the order of magnitude of the actual value. When analyzing the high damping modes, the signals
are still the same as in the previous case, but the damping of the second mode (4.5Hz) is greatly
increased, to 0.1. The 10dB SNR signal analysis returned very similar values to the original signals.
However the 5dB SNR signal analysis returned only one mode. The second mode (4.5Hz) is
modeled as 0.019Hz, which is practically a flat signal (52s period), with a damping of 0.581, which
means that the signal is basically reducing its continuous average level at a soft decaying rate.
This value is completely biased related to the actual value of the signal.

This example shows the influence of the high damping as related to the identification of signals
with a short lifetime, which is the case on flutter signals.
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Chapter 3

Investigation

3.1 Introduction to this chapter

In the previous chapters several important points were demonstrated:

1. Flutter solutions represent a subset of non-linear equations of a second degree differential
equation, depending on dynamic pressure, stiffness, aerodynamic, mass and damping ma-
trices.

2. During an envelope expansion campaign it is necessary to identify each frequency and
damping of the modes of interest as soon as possible, preferably in real time.

3. From the different excitation signals possible to employ during the flutter tests, the Sine
Dwell signals have the following characteristics:

• Have short duration, and therefore the frequency resolution is very low.
• Require the pilot and aircraft to stay in flutter conditions for the shortest period of time,

and thus minimizing the risk for the life of the pilot and integrity of the aircraft.

Even though the Sine Dwell excitation techniques have several drawbacks, the minimization
of the risk for the life of the pilot and integrity of the aircraft make it very attractive for flutter
tests, in particular in cases where it is intended to get close to the flutter point and extract the
maximum of the flight envelope. Also this area of investigation is mostly unexplored given the
uncertainties related to the signals identification problems, and therefore leaves a wide room open
for innovations.

The current chapter will follow the path below:

• Demonstrate the importance of the phase angle related to the modal identification of the
flutter signals. Section 3.2.1.

• Develop a relationship between the bandwidth of the signal power spectrum and the damp-
ing of the signal. Section 3.2.2.

• Present different Data Processing techniques. Section 3.3.

– Classical techniques. Sections 3.3.1, 3.3.2, 3.3.3 and 3.3.4.
– Deep Learning techniques. Section 3.3.5.

• Classical Data Processing path.

– Select the most promising classical data processing techniques, performing a compari-
son between the synthetic datasets analysis. Section 3.4.

– Introduce a new robust data processing technique based on the results on the previous
step, the PRESTO technique. Section 3.5.
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– Verify the PRESTO technique with synthetic data and compare to Laplace Wavelet
Matching Pursuit. Section 3.6.

• Deep Learning path.

– Select the most promising Deep Learning techniques, performing a comparison be-
tween the synthetic datasets analysis. Section 3.7.

• Compare the PRESTO, Laplace Wavelet Matching Pursuit and Deep Learning techniques
results on synthetic data. Section 3.8

• Validate the PRESTO, Laplace Wavelet and Deep Learning techniques with real flight test
data. Section 3.9.

3.2 Phase angle and bandwidth in linear second order ordinary differ-
ential equations

In this section we will demonstrate the importance of the phase angle in the identification of a
single mode and further the relationship between the phase angle and the bandwidth to estimate
the signal parameters.

3.2.1 Relationship between the phase angle and the damping ratio

We will start recalling the flutter model equation, based on a linear second order degree ordinary
differential equation 2.101, in the form of a signal sum of both motions:

x(t) =
K

Â
j=1

aj · e�z jwnjt sin (wdjt + jj) + n(t) (3.1)

Where K is the number of modes, aj is a constant representing amplitude, z j is the damping
factor, wnj represents the natural angular frequency of the structure, t is the time variable, wdj =

wnj

q
1 � z2

j is the damped angular frequency, jj represents the phase angle and n(t) accounts for
structural and aerodynamic noise.

Notice that we will limit the number of different modes to K = 2, representing a signal sub-
jected to the interaction between bending and torsion. Under this premise and considering the
results from section 2.3.2.2, it is possible to model the system either with structural or viscous
damping indistinctly. For this reason we have assumed equation 3.1 to be modeled under viscous
damping to simplify the calculations. Another obvious constraint is to assume an underdamped
system, (0 < z < 1), in order to get a vibrational response. The reason to expect a vibrational re-
sponse is because only vibrational responses, indeed very low dampings, are the ones that present
flutter interactions and hence are of interest for the current problem.

Under the aforementioned premises, the Fourier transform of equation (3.1) (multiplied by a
step function to return responses between 0 and •) is:

X(w)|j 6=kp = F{x(t)}|j 6=kp =
b · (a + iw)

(zwn + iw)2 + w2
n(1 � z2)

=
b · (a + iw)

w2
n � w2 + i2zwnw

(3.2)

Where:

a =
wn
p

1 � z2

tan(j)
+ zwn = wn

 p
1 � z2

tan j
+ z

!
= wnb (3.3)
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b =
a

p
2p

sin(j) (3.4)

b =

p
1 � z2

tan j
+ z (3.5)

From equation (3.2) we can calculate the power spectrum:

Sx(w)|j 6=kp = |X(w)|2
��

j 6=kp =
b2 · (w2 + a2)

(w2
n � w2)2 + 4z2w2

nw2 =
b2 · (w2 + a2)

w4
n + w4 + w2

nw2(4z2 � 2)
(3.6)

Where constant b is a function of the phase angle j. This expression is valid 8j 6= kp, 8k 2 Z,
expression representing a classical exponentially damped sinusoidal. In such case we can calculate
the Fourier transform:

X(w)|j=kp = F{x(t)}|j=kp =
b0

(zwn + iw)2 + w2
n(1 � z2)

=
b0

w2
n � w2 + i2zwnw

(3.7)

And the power spectrum:

Sx (w)|j=kp = |X(w)|2
��

j=kp =
b02

(w2
n � w2)2 + 4z2w2

nw2 =
b02

w4
n + w4 + 2w2

nw2(4z2 � 2)
(3.8)

Where:
b0 = b · wn

q
1 � z2 (3.9)

Notice that the model doesn’t include a window filter. This is based on the results from Potts
and Tasche, 2010 and Coll, 2016, and the own experience of the Author. The main argument is the
short length of the signals compared to the frequencies of interest. In this case, the small number of
cycles gathered and the amplitudes of the exponentially damped sinusoids would be considerably
perturbed by a window filter, modifying the results from the identification of the modes.

The next step is to calculate the first derivative of the Power Spectrum (equations 3.6 and 3.8),
with respect to the angular frequency w, searching for the frequencies of maximum amplitude
and particularized for w = w0, where w0 represents the resonance frequency:

∂Sx(w)
∂w

����w=w0
f 6=kp

= b2


2w0(w4
n + w4

0 + w2
nw2

0(4z2 � 2))
(w4

n + w4
0 + w2

nw2
0(4z2 � 2))2 �

(w2
0 + a2)(4w3

0 + 2w0w2
n(4z2 � 2))

(w4
n + w4

0 + w2
nw2

0(4z2 � 2))2

�
= 0

(3.10)

This equation can be simplified by removing the denominator, taking into account that it is a
sum of positive numbers and cannot be zero, unless wn = w0 = 0, which means no vibration and
lies out of our problem constraints.

(w4
n + w4

0 + w2
nw2

0(4z2
� 2))� (w2

0 + a2)(2w2
0 + w2

n(4z2
� 2)) = 0 (3.11)

Notice that the particular case w0 = 0 returns a trivial solution, which in this case can be
demonstrated to be a minimum and therefore can be simplified in equation 3.11. The demonstra-
tion can be found in section A.6.

At this point we can solve for w0:
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w4
0 + 2a2w2

0 + a2w2
n(4z2

� 2)� w4
n = 0 (3.12)

The solution to this equation is the following:

w0 =

r
�a2 +

q
a4 � 4z2a2w2

n + 2w2
na2 + w4

n (3.13)

And replacing a from (3.3):

w0 = wn

r
�b2 +

q
b4 + 2(1 � 2z2 ) b2 + 1 = wn g (3.14)

The factor b from equation 3.5 is a function of the phase angle and the damping factor, and
is defined only if j 6= kp. This implies that the resonance frequency w0 depends on the natural
frequency wn, the damping factor z and the phase angle j.

At this point we can calculate the dependency between the resonance frequency and the phase
angle, as stated in the beginning of the section.

Please note here that b (see Equation (3.5)) depends on both the damping factor and the phase
of the original signal. So, although the resonance frequency is proportional to the natural fre-
quency of the damped signal, it will also depend on both the phase and the damping factor. This
dependency makes difficult to directly estimate the natural frequency from the resonance fre-
quency, as one might originally expect. To better understand the degree of dependency of g with
z and f we will now study its range of variation.

In general, for underdamped signals we have that 0  z  1. Then 0  z2  1 and 1 � 1 �

2z2 � �1. So, considering 1 � 2z2  1 we can deduce that b4 + 2(1 � 2z2)b2 + 1  b4 + 2b2 + 1.
Taking this into consideration we can establish the upper limit to the value of w0:

w0  wn

r
�b2 +

q
b4 + 2 b2 + 1 = wn (3.15)

In this inequation, boundary solution w0 = wn is achieved when b = 0. So, considering the
definition of b given by Equation (3.5), this particular solution will be achieved in the case of
f = f1 = � arctan

p
1 � z2/z. Please, notice that this is true also when z = 0 for any value of f.

Now let us look for the lower limit of w0. We consider that (1 � 2z2)2  1, and thus we
can establish that b4 + 2(1 � 2z2)b2 + 1 � b4 + 2(1 � 2z2)b2 + (1 � 2z2)2. So, taking again into
consideration Equation(3.14) and simplifying we can establish that:

w0 �wn

r
�b2 +

q
b4 + 2(1 � 2z2 ) b2 + (1 � 2z2 )2 = wn

q
1 � 2z2 (3.16)

As a conclusion of this demonstration, in general for underdamped signals the resonance an-
gular frequency w0 � wn

p
1 � 2z2. That is, independently on the phase, the frequency of the max-

imum of the power spectrum will be greater than wn
p

1 � 2z2. This limit case will be achieved
for the particular case of f = f2 = kp, 8k 2 Z which can be deducted from the maximization of
Equation (3.8). In that particular case maximizing the power spectrum implies the minimization
of the denominator, which after simplifying leads to w2

0 + w2
n(1 � 2z2) = 0. From this point it is

easy to see that effectively the value w0 = wn
p

1 � 2z2 is the positive solution of this equation.
From these upper and lower limits of w0 we can deduce that the estimation of the natural

angular frequency wn from the amplitude of the power spectrum is not straightforward as some
might expect, since the value of the resonance frequency will also depend on the damping factor
and on the phase of the signal.
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FIGURE 3.1: Relative resonant frequency (g = w0/wn) of a single underdamped
mode, with respect to the damping factor (z) for different phase values (j).

To better understand these expressions, Fig. 3.1 shows the relationship between the relative
resonant frequency (g = w0/wn) of a single underdamped mode, and the damping factor (z)
for different phase values (f). As we can see, the two extreme values obtained with f1 and f2
represent both extremes of the curves. It’s important to note the strong relationship between the
phase angle and the resonance frequency in the power spectrum. This statement will be relevant
in the upcoming sections.

3.2.2 Relationship of the bandwidth B with the phase angle j

Another factor to consider is the 3dB bandwidth B. Ewins, 2000 proposed one method (Peak-
Amplitude) to estimate frequencies and dampings from the bandwidth of the power spectrum, but
this method doesn’t consider the phase angle, and therefore induces quite an amount of error in
the identification of the signal. However it is important to analyze the equations of the bandwidth
related to the natural frequency, damping ratio and phase angle.

Combining equations 3.6 and 3.14 and simplifying, we reach the following equation for the
amplitude of the power spectrum in the resonance frequency max{|X(w)|2} = |X(w0)|2:

|X(w0)|
2 = b2

·
g2 + b2

w2
n(1 � g2)2 + 4z2w2

ng2 (3.17)

The definition of the 3dB bandwidth is the difference between the frequencies w1 and w2 cor-
responding to both sides of the the spectrum peak where the amplitude of these frequencies cor-
responds to |X(w)|2/|X(w0)|2 = 1/2:

|X(w)|2

|X(w0 )|2
=

w2+w2
nb2

(w2
n�w2)2+4z2w2

nw2

g2+b2

w2
n(1�g2)2+4z2w2

ng2

=
1
2

(3.18)

Which simplifying and solving can be demonstrated to return the following equation:
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FIGURE 3.2: Relative bandwidth (B/wn) of a single underdamped mode, with re-
spect to the damping factor (z) for different phase values (j).

w4/2 + gw2
nw2 + hw4

n/2 = 0 (3.19)

Where:

g = 2z2
� 1 �

(1 � g2)2 + 4z2g2

g2 + b2 (3.20)

h = 1 � b2 2(1 � g2)2 + 8z2g2

g2 + b2 (3.21)

The solution of equation 3.19 returns the following values for w1 and w2:

w1,2 = wn

r
�g ±

q
g2 � h (3.22)

With the corresponding bandwidth B:

B = w1 � w2 = wn

 r
�g +

q
g2 � h �

r
�g �

q
g2 � h

!
(3.23)

That can be simplified as:

B = wn
p

2
q
�g �

p

h (3.24)

To see the relationship between the phase angle and the bandwidth, we will now consider two
particular values for the phase angle:

j = j1 = arctan

 
�

p
1 � z2

z

!
k b = 0 =) g = 1 =) w0 = wn (3.25)
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j = j2 = kp k w0 = wn

q
(1 � 2z2) (3.26)

When introducing j1 into equations 3.20, 3.21 and 3.24 we get the following expression:

B|j1 = wn
p

2
q

1 + 2z2 �
p

1 = 2zwn (3.27)

For j2 the approach is slightly different, since j2 = kp and corresponds to a particular case of
the spectrum. In this case, substituting j2 in equations 3.8, 3.20, 3.21 and 3.24, we can obtain the
following equation:

B|j2 = wn
p

2

r
1 � 2z2 �

q
8z4 � 8z2 + 1 (3.28)

The equations 3.24, 3.27 and 3.28 are plotted in figure 3.2. The figure shows that the bandwidth
estimation is not affected by the phase angle at low damping ratios. However as the damping ratio
increases, the bandwidth is substantially affected by the phase angle values.

3.2.3 Conclusions of the phase angle impact on the signals identification

Before starting to draw conclusions, it is necessary to recall that the analysis has been performed
on one single mode. The close interaction of two modes and the effect of the phase angle on the
equations can disturb the estimations, and therefore the technique developed by Ewins, 2000 can
not be relied upon as a trustworthy technique in a broad sense.

However, in case that the modes are sufficiently separated as to allow for a discrimination
between the 3dB bandwidth of each mode, and the phase angle is small enough, the contribution
of such errors is minimal. Under these conditions it is possible to employ this technique to perform
a quick estimation of the natural frequency and damping ratio, allowing to use these values as
seeds for more complex techniques like the PRESTO algorithm, which will be described in detail
in section 3.5.

3.3 Data processing techniques description

The next step is to compare different data processing techniques to get the best processing tech-
nique. These techniques will be employed to process synthetically generated data by the model
defined by equation 3.1 considering different levels of noise.

It is necessary to stress the importance of the damped sinusoid equation model in this devel-
opment. Notice that even if the sampled data could be fitted by a different model with higher
accuracy (for example an ARMA model), the damped sinusoid 3.1 is the model employed by
airworthiness standards like MIL-A-8870C, 1993 and JSSG-2006, 1998, and hence it is necessary
to adhere to such model in order to get results compatible with any airworthiness process.

3.3.1 Basic processing techniques

The first set of techniques are simple fitting processes. These techniques will compare processing
by three different approximations, Time Series fitting, Complex Spectrum fitting and Power Spec-
trum fitting, and will follow the same algorithm as depicted in figure 3.3. The process is based
upon the acquisition of a set of time series data points. These data can be pre-processed (calculat-
ing their Power Spectrum for example) or used as gathered in the form of a Time Series datasets.
Then a parametric equation data model will be used to feed the optimization algorithm, which
will produce a synthetic dataset. Both datasets, the synthetic and the acquired will feed the fitting
function along with a randomly selected seed, which will return a metric of error between both
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FIGURE 3.3: Data processing algorithm applicable to three different processing tech-
niques, Time Series fitting, Complex Spectrum fitting and Power Spectrum fitting

signals that will also feed the optimization algorithm. The cycle will repeat until any of the stop
criteria are met.

Optimization algorithm The optimization algorithm is responsible for selecting the set of solu-
tions that minimize the fitting function. The optimization algorithm employed will be the Trust
Region Algorithm, thoroughly described by Coleman and Li, 1996 and Yuan, 2000. It is a fast and
robust algorithm that can be applied to ill-conditioned problems, and was selected after a prelim-
inary comparison with other algorithms, say Levenberg-Marquardt and Genetic algorithms.

The Trust Region algorithm is a Quasi-Newton method, based on the assumption that the
model function can be approximated to a local manifold in a region close to the seed. Under this
assumption, we can define a "trust region" around the seed, typically a hypersphere of a given
radius, under which we approximate the model function to a simpler model. Once the model is
simpler in that region, we can employ regular Newton methods to calculate the optimum point
in that region. In case that the optimum is found, the seed moves to that solution and shrinks the
radius of the trust region. Otherwise the radius is expanded.

Fitting function The fitting function is a function that performs an operation on the acquired
data and the signal model and returns a metric of error. The fitting function is necessary to feed
the optimization algorithm, since the optimization algorithm will find the set of parameters that
return the minimum error metric.

In this case the MSE (Minimum Squared Error) metric will be employed. The definition of
MSE is as follows:

MSE =
1
N

N

Â
i=1

(x̂i � xi)
2 (3.29)

Where x̂i is a given signal sample from the acquired data, xi is the respective single point from
the model data and N is the total number of points.

3.3.1.1 Time Processing algorithm

This is the most basic approximation. The basic parametric equation (3.1) feeds the optimization
algorithm, where it generates a synthetic time series. This synthetic time series, along with the
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sampled time series, feed the fitting function and the cycle is repeated until the desired stop
criterion is reached. So, in the time domain, the mean square error is defined as MSEtime =
E{(x(t)� x̂(t))2}.

The main disadvantage of this fitness function is that random seeds sometimes converge to
local minima, so it is necessary to find an accurate estimator.

3.3.1.2 Complex Spectrum algorithm

As an alternative approach one standard possibility is the use of a fitness function defined in the
frequency domain. In this case, the parametric function passed to the optimization algorithm is
also equation (3.1). However, after reconstructing the synthetic time series it numerically calcu-
lates the complex spectrum and separates the real and imaginary parts. On the other hand, the
sampled time series is transformed numerically into a frequency spectrum, also separating real
and imaginary parts. The synthetic and sampled data are fed to the fitting function and the cycle
is repeated until the stop criterion is reached. So, in this case the fitness function is defined as
MSEf req = E{|X(w)� X̂(w)|2}, where X̂(w) is the Fourier transform of the measured signal x̂(t)
in the form stated above.

With this method convergence problems and local minima are still present. Although the use
of frequency responses in which the energy of the signal is concentrated in less samples allows
to reduce the amount of frequency terms, reducing the computational cost of the evaluation of
the fitness function, the more complex process of extracting the Fourier transform of the signal
compensates the increased speed.

3.3.1.3 Power Spectrum algorithm

The power spectrum approximation follows the same approach as the complex frequency approxi-
mation, but in this case the power spectrum is numerically calculated from the complex frequency,
instead of having both real and imaginary parts separated. The fitting function to be optimized
is evaluated from the power spectrum of the signals, MSEspec = E{(|X(w)|2 � |X̂(w)|2)2}. This
choice tends to reduce the convergence problems, but the solutions achieved sometimes imply a
loss in performance with respect to the two first fitness functions.

In this case, as in the Complex Frequency domain estimation, it is possible to reduce the amount
of frequency terms to be taken into consideration in order to reduce the computational cost of
evaluating the fitness function without local minima problems, but the convergence tends to be
very slow and requires multiple (usually more than six) runs to converge.

3.3.2 Peak-Amplitude algorithm

Ewins, 2000 described this technique as an extremely fast means to estimate the amplitude and
frequency of a single damped sinusoid. However the accuracy of this technique is extremely
limited.

It is based on the estimation of the natural frequency as the frequency corresponding to the
maximum amplitude in the frequency domain, and the damping is estimated through the 3dB
bandwidth of the frequency spectrum as described in section 3.2.2. In this thesis, the technique will
be employed mainly to estimate the seeds for different techniques, and the process is as follows:

1. Estimate the natural frequency seed as the peak frequency in the power spectrum

2. Estimate the damping factor, with the 3dB bandwidth and the natural frequency known,
solving from equation 3.27. Notice that the usual range of damping factors in real applica-
tions is not very different from this estimation
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3. Since the phase term f and amplitude a are unknown at this point, they are randomly ini-
tialized.

4. Run the Time based estimation with the seeds obtained from the steps above

The proposed estimation approach is sensibly faster than other methods, both classical and
proposed by the paradigm, and the experimental results on synthetic data are really promising.

3.3.3 Matrix Pencil algorithm

The description of the Matrix Pencil algorithm was extensively described by Kiviaho, Jacobson,
and Kennedy, 2019; Potts and Tasche, 2010; Almunif, Fan, and Miao, 2020 among others, while
Barros-Rodriguez et al., 2015 described a very interesting application of the technique to this same
problem.

In general the principle behind the technique is somehow similar to the Fourier series, consid-
ering that instead of decomposing the signal in sums of sinusoids, the signal is decomposed into
sums of damped sinusoids with zero phase angle.

The algorithm is as follows:

• The signals are diagonalized by SVD (Support Vector Decomposition), which is a very effi-
cient algorithm

• The eigenvalues are sorted from higher to lower

• The eigenvalues below a given threshold are filtered and substituted by zero

• The number of modes is reduced in order to get a signal with the number of modes required
for our purposes, in this case two modes

• The signal is reconstructed, and from the resulting parameters it is possible to identify the
natural frequencies and dampings of each individual mode

The modification introduced by Matrix Pencil over Prony is that instead of decomposing the
signals in as many terms as possible, a given number of terms are selected (number of modes
above), and the energy of the signal is forced to fit the constraint of such signals. This is performed
by calculating the SVD (singular value decomposition) of the data when sorted in matrix form,
and the lower energy terms are eliminated. The main drawback of this technique is that the signal
terms of the damped sinusoids are forced to have zero phase, and as described in section 3.2 the
expectations on this algorithm are limited.

3.3.4 Laplace Wavelet Matching Pursuit algorithm

The Laplace Wavelet Matching Pursuit algorithm has been successfully used by Freudinger, 1989
and Freudinger, Lind, and Brenner, 1997 on F-18 Sine Dwell data. The algorithm is based on a
damped sinusoid wavelet atom without phase angle, although the time shift derived from the
wavelet processing will account for it. In the case of the Laplace Wavelet Matching Pursuit, the
approach followed to calculate the estimation is through Matching Pursuit, as described by Good-
win, 1997; Zhu, 2007. The following elements can be identified in this problem:

• Atom: The atoms are the damped sinusoid signal models, in this case without phase angle:
e�zwn(t�t)sin (wn(t � t)), where t represents the time shift.

• Dictionary: The dictionary is the set of all the possible parameter combinations. Considering
that the dictionary covers all the possible combinations and that a certain degree of accuracy
is necessary, eight parameters as in the case of our problem return an extraordinary number
of elements in the dictionary
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• Error Metric: In the approach followed to produce the comparison of these methods, the
scalar product between the acquired data and the wavelet is considered as the error metric,
and the objective is to minimize the error metric to find the best estimation.

The Laplace Wavelet Matching Pursuit technique, as any based on Matching Pursuit, is a
greedy technique which will undoubtedly find the optimum solution with the degree of accu-
racy desired. However the calculation time and computational memory are important limiting
factors, and need to be taken into account as a major drawback of this technique.

3.3.5 Deep Learning based estimation

PRESTO and Laplace Wavelet are very similar processing techniques. They rely on the model
described in the standards MIL-A-8870C, 1993; JSSG-2006, 1998 and returned a very accurate so-
lution, as shown in the sections above. However the field of Machine Learning has been barely
explored for these applications. To date, no study has looked specifically to the identification of
flutter related parameters on flight test data.

Regarding the latest similar investigations, Wang and Wang, 2021 employs a method based on
DNN to predict the flutter airspeed from the analysis phase (before the flights take place). Zheng
et al., 2021 and Duan, Zheng, and Liu, 2019 take a closer approach to the objective of this thesis.
They apply CNN models to data extracted from flight tests (in the papers they apply their method
to data from wind tunnel tests, but the result is the same). However instead of employing the
procedure to identify the parameters of the system, they employ it as a classifier for flutter/no
flutter conditions during flight. Possibly Li, Kou, and Zhang, 2019 provides the closest approach
to the aim of this thesis with his application of a DNN to flight test data. However again, in his
case he employs the technique to model the global behavior of the structure instead of the actual
identification of the flutter parameters.

The method proposed is focused on the accurate identification of the flutter parameters of the
aeroelastic equations of motion applied to aeroelastic flutter. The main advantages of this method
is that once trained, MLPs, DNNs and CNNs provide an almost immediate result with a low
end personal computer, which would allow for effective real time results. Also, if the training set
includes a range of the parameters broad enough, in theory it would be possible to return accurate
flutter parameters not only for two different modes, but also for one or even three. The drawbacks
of this method are that a good and accurate model is required in order to provide reliable data,
since it is complicated to return accurate values of the parameters for real flight data, the real
flight data are very limited in availability for the reasons described above and models with more
modes or parameters require larger datasets and computational means to train the networks. That
been said, the potential of this technique is colossal, and it is worth exploring in order to develop
accurate trained networks with the advantages described above.

In the upcoming sections, three different kinds of deep learning algorithms will be developed:

• Multi-layer perceptrons

• Deep Neural Networks

• Convolutional Neural Networks

The characteristics of the networks will be described below.

3.3.5.1 Multi-Layer perceptrons

The Multi-layer perceptron networks (MLPs) consist on a set of one input layer, in our case with
140 samples, one hidden layer with a different number of perceptrons (neurons) for each network
and one output layer, with 4 neurons. An example of these networks can be seen in figure 3.4.
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FIGURE 3.4: Multi Layer Perceptron sample network. In this case the MLP with 20
neurons is depicted.

Detailed description of MLPs are out of the scope of this thesis. However, for more information,
the excellent book by Goodfellow, Bengio, and Courville, 2017 can be consulted.

3.3.5.2 Deep Neural Networks

The Deep Neural Networks (DNNs) are an extension of the MLP networks. In this case the net-
work comprises more than one hidden layer, but will follow exactly the same approach as MLP
networks in section 3.7.2 above. Also describing DNNs is out of the scope of this thesis. More in-
formation can be found in Goodfellow, Bengio, and Courville, 2017. An example of the structure
of a DNN can be found in figure 3.5. As in the case of the MLPs, our application will also consider
140 input samples and 4 outputs, with a different number of hidden layers.

3.3.5.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are also similar to DNNs. A thorough description of
CNNs is out of the scope of this thesis, but detailed information can be found in Goodfellow,
Bengio, and Courville, 2017. Nevertheless, suffice to say that the main differences with DNNs are
the way to calculate the output parameters, through a convolution between the input matrices
and the different layer parameters matrices, instead of the composition of linear applications. The
complete block diagram of a CNN with two hidden layers is depicted in figure 3.6. Although
this model is not unique, this is the one that will be used in this thesis. In this example only two
hidden layers are described, each layer including different steps. The complete process applied to
our system is described below:

1. Input layer. The inputs are one matrix for each dataset. The data needs to be presented in
the form of a matrix meaningful of a regular pattern. For example, an image.

2. Convolutional block. The convolutional blocks consist of a convolutional layer followed by
a series of processes to improve the quality of the operation.

(a) Convolutional layer. This layer performs the convolution operation on the input matrix
with the weights matrix.

(b) Normalization process. This step normalizes the outputs in order to control the range
of the outputs and prevent saturation. A bias is added and a multiplier is applied to
the output. These parameters are subjected to training as part of the training process.

(c) Rectification process. The negative values are converted into zero.
(d) Pooling process. The convolution matrices are downsampled by smaller windows.



Chapter 3. Investigation 68

Input
140

Output
4

w

b

+

x40

w

b

+

x40

w

b

+

x40

w

b

+

x4

w

b

+

x4

w

b

+

x4

w

b

+

x40

w

b

+

x40

w

b

+

x40

w

b

+

x40

w

b

+

x40

w

b

+

x40

FIGURE 3.5: Deep Neural Network sample. In this case a DNN with one input layer,
three hidden layers and one output layer is depicted. In this case each hidden layer

has 40 neurons
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FIGURE 3.6: Convolutional Neural Network sample. In this case a CNN with one
input layer, two convolutional layers, one connection layer and one regression layer
is depicted. Each convolutional network has a different number of neurons in their
convolutional layers (in each convolutional process) and a different number of con-

volutional processes.
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3. Connection layer. In this layer, all the outputs from the last convolutional block are con-
nected and reduced to the 4 output parameters described in section 3.7.1. This layer con-
stitutes a classical perceptron layer, employed to gather the outputs from the convolutional
layers and return an output to solve the regression problem.

4. Regression layer. Before returning the raw parameters it is necessary to include a regression
layer.

In this example only two hidden convolutional blocks have been depicted. More (or less)
blocks can be connected. In fact, in this thesis the trained CNNs employ 5 and 6 hidden layers for
different networks.

3.4 Verification and comparison of the classical techniques with syn-
thetic data

The comparison process will take into account separately the classical and the deep learning tech-
niques. Note that the classical techniques have been already studied and analyzed, while the deep
learning techniques are a novel application to this field, and therefore the approach to follow will
be to compare separately the classical techniques and the deep learning processes. In fact, further
on a processing technique will be proposed based, on the fact that the classical techniques allow
some room for improvement. The best techniques will be compared further on among them.

Without further ado, we need to verify the different classical techniques presented above. To
do so, we need data that is well identified with reliable parameters. Given that, as stated above,
there is not any validated technique, we will employ synthetic data.

The synthetic datasets were generated from model equation 3.1 limited to two different modes:

x(t) =
K

Â
j=1

aj · e�z jwnjt sin (wdjt + jj) + n(t) (3.30)

And the following constraints:

• Algorithms:

– Time Series algorithm
– Complex Spectrum algorithm
– Power Spectrum algorithm
– Matrix Pencil algorithm
– Laplace Wavelet Matching Pursuit Algorithm
– Peak-Amplitude algorithm

• Metrics:

– Average error (Frequency estimations)
– Root Mean Square Error (Damping estimations)
– Computational cost (processing time)

• Parameters:

– Sampling Frequency: fs = 85Hz
– Signals length: t = 5s
– Natural frequency: 3.0Hz  fn  6.0Hz
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– Damping factor: 0.03  z  0.20
– Phase angle: 0.00  j  2 · p

– Amplitude: 0.01  a  0.50
– White gaussian noise SNR: 0dB, 5dB, 10dB
– Number of signals: 10.000

• Stop criteria for Basic processing techniques (each run):

– MSE  10�20

– Tolerance between consecutive MSE  10�20

– Finish 10 runs with 1000 iterations each run

The generation of signals with simulated data was performed assuming the interaction of two
different modes, and considering different levels of noise, as described in the list above. The stop
criteria for the basic processing techniques were (after 10 runs):

• MSE  10�20

• Tolerance between consecutive MSE  10�20

• Finish 10 runs with 1000 iterations each run

The seeds for the estimations were chosen randomly.
Regarding the Power Spectrum and Complex Frequency algorithms, the data were filtered

removing frequencies above 14Hz
At last, for Matrix Pencil, Peak-Amplitude and Laplace Wavelet Matching Pursuit algorithms,

given the nature of those processing, it was not necessary to perform 10 runs or 1000 iterations or
selecting a stop criterium. Instead one single run was enough to finish the estimation, and for that
reason the plots show one straight line where the other techniques show an evolution for each
run.

Matrix Pencil algorithm was run with a selected order of 200 while the order was reduced by
196, leaving an order of 4 in the final estimation, similar to the calculations made by Almunif, Fan,
and Miao, 2020; Potts and Tasche, 2010; Kiviaho, Jacobson, and Kennedy, 2019. Once obtained the
estimations, in order to select the best match in frequency and damping it was necessary to select
the best 2 modes estimated. One first attempt to filter by energy, as described by Patel et al., 2013,
was attempted with unsatisfactory results. Given the error in the estimations, the closest match in
frequency to the original values were selected from the estimated modes.

The Laplace Wavelet Matching Pursuit algorithm was selected given the extreme interest of
the bibliography. Freudinger, Lind, and Brenner, 1997 developed the technique and validated it
against real F-18 datasets from flutter flight tests.Given the greedy nature of the Matching Pur-
suit process, a reduced dictionary was employed, limiting the values to the range of parameters
employed for the generation of signals. The time delay range was [�5.0 + 5.0] seconds.

The results are reflected in table 3.1

Results and discussion After running the estimation algorithm, the results can be seen in figures
3.7 and 3.8, while the numerical values are included into table 3.1. In these two cases the numerical
results were obtained identifying synthetic datasets. The details of such analysis can be found in
section 3.4 above. The plots show respectively the average relative error in the natural frequency
estimation fn, calculated as the mean of all the absolute errors between the real and estimated
results deducting the worse 10% of the errors, and Root Mean Square Error (RMSE) in the damping
factor z estimation for a SNR of 5dB, calculated as the RMSE between the real and estimated
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FIGURE 3.7: Plot depicting the estimated natural frequency average relative error in
percentage. The data were produced with a SNR of 5dB removing the worst 10%

estimations.

parameters of all the datasets, also deducting the worse 10% errors. The table shows the values of
the errors described above, the processing time and also the number of runs for each estimation.
The calculations were made using a single 2.5GHz CPU with 8 cores.

Analyzing the results from table 3.1 and figures 3.7 and 3.8 we can draw the following conclu-
sions:

• Basic processing techniques: There are three basic processing techniques, say Time Series
estimation, Complex Frequency estimation and Power Spectrum estimation.

– Time Series estimation: This estimation can reach precise estimations after approxi-
mately 6 runs. The drawback is that it is prone to get stuck in local minima, reaching
an asymptote after approximately six runs, and therefore it is necessary to get a precise
estimation of the seeds before the initial kick is run. It is relatively fast, and in total the
final estimation (after 6 runs) took an average of 4.1 seconds for each set of data, the
fifth among seven, but still suitable for real time identification. With the lower levels
of noise (10dB), the error estimation in frequency (4.08%) and damping (0.029 RMSE)
were the second best out of seven estimations. However, as noise level increases up to
0dB the error increases as well, and the ranking reduces from the second position to
the fourth in frequency (10.43%) and third in damping (0.061 RMSE), this last together
with the peak-amplitude estimation. In general this is a fast technique with reasonably
good results, but the estimation is very dependent on the quality of the signal, and the
accuracy of the identification decreases as the noise increases.

– Complex Frequency estimation: This technique is very similar in results to the Time
Series estimation. In fact the estimation curves of error run parallel. It also took 6 runs
to get accurate results with the same drawbacks, affinity for local minima, and the time
employed is slightly higher than the Time Series estimation, 6.2 seconds and sixth in the
ranking. As in the previous case, this entitles the technique for real time identification.
The errors under the lower levels of noise (10dB) score the third position in damping
estimation (0.030 RMSE) and fourth in frequency (4.21%). However, as in the previous
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FIGURE 3.8: Plot depicting the estimated damping factor root mean square error
(RMSE) in logarithmic scale. The data were produced with a SNR of 5dB removing

the worst 10% estimations.

Time Complex Power Matrix Peak Laplace
SNR Series Freq. Spec. Pencil Amp. Wav.

Avg. Err. fn
10dB 4.08 % 4.21 % 4.10 % 14.69 % 10.12 % 8.75 %
5dB 6.41 % 6.78 % 6.16 % 14.69 % 10.17 % 8.78 %
0dB 10.43 % 11.10 % 9.27 % 14.69 % 10.76 % 8.82 %

RMSE z
10dB 0.029 0.030 0.042 0.095 0.049 0.042
5dB 0.042 0.044 0.057 0.098 0.051 0.042
0dB 0.061 0.067 0.078 0.095 0.061 0.043

Time/set
4.1·100 s 6.2·100 s 2.6·101 s 1.0·10�2 s 5.0 · 10�5 s 6.0·10�2 s

Number of runs
6 6 10 1 1 1

TABLE 3.1: Results of running different estimation algorithms over synthetic
datasets. The metrics are: Time required to estimate each set of data, Natural fre-
quency average error (in percentage) and damping factor Root Mean Square Error

deducting the worse 10% errors.
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case the estimation gets worse as the noise level increases. In the higher levels of noise
(0dB) the ranking lowers to the fifth in frequency (11.10%) and damping (0.067 RMSE).
As in the previous case, the estimation is very sensitive to noise, although it is fast and
allows for real time signal identifications.

– Power Spectrum estimation: This estimation is sensibly different to the previous two
estimations. In this case the technique is somehow insensitive to local minima. The
convergence to the global minimum is slow but steady. In this case the simulation was
stopped after 10 runs due to the high amount of time required, 25.6 seconds in average
for each set of data, but the trend showed a slow convergence. Under low noise (a SNR
of 10dB) the results ranked the third best score in frequency estimation (4.10%) and
fourth in damping (0.042 RMSE). These results improved slightly for high levels of
noise (0dB) in the case of the frequency estimation, ranking the third out of seven with
a relative error of 9.27%, but sensibly worse for the damping estimation ranking sixth
out of seven (0.078 RMSE). The only advantage of this technique is the resilience before
local minima, although the long time required bars it from real time identification.

• Matrix Pencil estimation: This estimation returns very bad results both in frequency and
damping identification. In fact is the worse of all the estimations regardless of the levels of
noise. It is necessary to indicate that the technique had to be adjusted several times in order
to get a level of error compatible with the rest of the techniques, but even after multiple at-
tempts the error levels were an outlier compared to the others, reaching the best results with
200 modes and filtering 196 signals (keeping 4 signals for the reconstruction and choosing
the best match among them). The advantages are the fast speed, second best among the
seven estimations with 0.01 seconds and repeatability of results regardless of the level of
noise.

• Peak-Amplitude estimation: This is an extremely fast and basic technique, and surprisingly
the results are very good considering the short time required to reach them. The time re-
quired is 3 orders of magnitude faster than the next fastest technique (5 · 10�5 seconds).
Under high SNR (10dB) the frequency and damping errors are bad compared to the other
techniques. Sixth in frequency (with 10.10% relative error) and damping (with 0.049 RMSE),
but the technique is insensitive to noise, keeping steady values of frequency error under low
SNR (0dB), with a relative error of 10.76% staying in the sixth position, and rising to the third
position in damping estimation (0.061 SNR). These results are bad compared to the others,
but considering the short time required to reach them and the insensitivity to noise factors,
it may be used to seed other more complex techniques.

• Laplace Wavelet Matching Pursuit estimation: This is a very important technique to con-
sider. Freudinger, 1989 validated this technique on real F-18 data, which is the same source
as the data available for this study. Regarding the time required in this case, even though
the results are very good compared to the others with 0.06 seconds, the technique had a very
reduced dictionary matching the exact conditions employed to generate the data, given the
limitations in memory of the computers available to run the simulation, considering all the
atoms in a broad dictionary. Under simulated data and low noise (10dB SNR), the results
ranked the fifth in frequency relative error (8.75%) and fourth in damping (0.042 RMSE).
However, the technique is extremely insensitive to noise, getting almost the same results
for high noise conditions (0dB SNR), and reaching the second best match in frequency esti-
mation (8.82% relative error) and the best match in damping (0.043 RMSE). Even thought
the system has time and computational limitations under unknown conditions, it is possible
to estimate the parameters with other techniques to reduce the dictionary or improve the
means of calculation, if computer clusters are available.
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FIGURE 3.9: PRESTO block diagram

3.5 Proposed Data Processing algorithm. PRESTO algorithm

The PRESTO algorithm has been developed taking into account the strong points and problems
derived from the previous techniques as will be seen in section 3.9. The PRESTO algorithm stands
for Power Spectrum Short Time Optimization.

The Time Series algorithm (and similarly the Complex Spectrum) demonstrates to be very
sensitive to initial conditions, due to the tendency to converge on local minima, although it shows
a very fast pace of convergence. On the other hand, the Power Spectrum algorithm tends to a very
slow convergence, but is more insensitive to local minima.

The algorithm is as follows:

• The Peak-Amplitude algorithm 3.3.2 will be employed to find the seeds of the initial kick

• The Time Processing algorithm 3.3.1.1 will be employed to calculate the actual optimum
values from the seeds in the step below

• In case of considering to use several runs, the results from the previous step will be used to
seed the next run

This algorithm is summarized in the diagram 3.9
The sampled data is processed through the Peak-Amplitude algorithm (as described in section

3.3.2) to get the seeds of the frequencies and amplitudes of interest. This step is paramount for the
analysis that follows, since the tendency of the Time Series estimation to get stuck in local minima
requires a good approach to the final solution. Once the seeds are obtained they feed the Time
Series estimation as described in 3.3.1.1. The signal model employed is 3.1 assuming only two
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different modes, and the optimization algorithm the Trust Region algorithm, described in section
3.3.1. The fitting function employed is the Mean Square Error, as described in section 3.3.1.

The assumption of two different modes is important. The interaction between two different
modes (classically bending-torsion for wing flutter) is what favors the apparition of the flutter
phenomenon. Although in real operations the deformations are not usually so clear as bending-
torsion deformations, flutter in real operations most commonly appears as the interaction of two
orthogonal modes, either in modal or physical coordinates. Another point to consider is that two
modes allow to indistinctly model the system as structural or viscous damping as described in
section 2.3.2.2, and therefore the damping model is not a factor of controversy.

3.5.1 PRESTO vs. Laplace Wavelet Matching Pursuit

When comparing the Laplace Wavelet Matching Pursuit to the PRESTO algorithm it is clear that
both models are equivalent. We can develop the equations with one degree of freedom for sim-
plicity in equation 3.31, but the results can be easily extrapolated to multiple degrees of freedom
(multiple natural modes):

Aewn2p(t�t)sin(wd2p(t � t)) = Aewn2pt�wn2pt)sin(wd2pt � wd2pt) = Bewn2ptsin(wd2pt � j)
(3.31)

The reason why both fitting algorithms are different relies in the way to calculate the estima-
tions. The PRESTO algorithm solves an optimization problem by getting through an optimum
path to the solution. However, the Laplace Wavelet Matching Pursuit algorithm uses Match-
ing Pursuit to reach the solution. This solving technique is a greedy algorithm, meaning that it
evaluates all the possible combinations of parameters to reach the optimum solution. This fact
is important because each mode has a set of 4 different parameters to optimize, and therefore
adding new modes increases the number of combinations as a power of four. So, assuming a very
broad estimation with an average resolution of 10 different points for each parameter, applying
the Laplace Wavelet Matching Pursuit to one single mode results in the evaluation of 104 different
sets of parameters, but two modes imply 108 evaluations, which starts to be close to the edge of
a manageable number of evaluations with a regular computer for real time evaluations. A rea-
sonable estimation would require an average of 100 different points per parameter, meaning that
one mode would require 108 evaluations and two modes 1016 evaluations, this last option being
totally out of reach for a regular computer to provide an assessment in real time.

For this reason the Laplace Wavelet Matching Pursuit evaluates the modes one by one, while
the PRESTO algorithm evaluates several modes at the same time, both requiring a similar amount
of time to process data in real time under those conditions.

The difference of evaluating the modes one by one or both at the same time is important. In
the case of the Laplace Wavelet Matching Pursuit the first mode can be calculated with very good
accuracy, but the residual of the original signal without the first mode includes the contribution of
the second mode plus the proportional contribution of noise from the first mode as demonstrated
by Abou-Kebeh LLano, 2013, and therefore contributing to a worse estimation of the second mode.
However, the PRESTO algorithm reaches the optimum solution considering the contribution of
both modes at the same time, and hence reducing the residual error between the reconstructed
and the original signals.

This fact explains that signals where the contribution of one single mode is larger than the
second get much better accuracy with Laplace Wavelet Matching Pursuit than PRESTO, while
signals where clearly two modes are involved get better accuracy with PRESTO.
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FIGURE 3.10: Plot depicting the estimated natural frequency average relative error in
percentage and the Root Mean Square Error (RMSE), comparing the Laplace Wavelet
and the PRESTO techniques. The data were produced with a SNR of 5dB removing

the worst 10% estimations.

3.6 Verification of the PRESTO algorithm with synthetic data and com-
parison with Laplace Wavelet Matching Pursuit

We will now compare the results from both techniques, PRESTO and Laplace Wavelet on synthetic
datasets. As stated above, the Laplace Wavelet Matching Pursuit is an already validated technique
with the same set of data as the ones available to the Author. This fact alone entitles the technique
for comparison with the proposed technique. Also, from the results of table 3.1, even though
there are techniques that may perform better under 5dB SNR conditions, the great advantage of
the Laplace Wavelet is its stability under different noise conditions.

These results indicate a better accuracy of the PRESTO estimation both in natural frequency
and in damping when data were generated at 5dB SNR. Figures 3.10 left and right show a compar-
ison of both techniques. Note that the PRESTO estimation was running for the full 10 runs, and in
particular the minimum is reached after 2 repetitions for the frequency estimation. Even though
the damping reached a better estimation after 10 runs, the difference between 2 runs and 10 runs
is absolutely minimum (one order of magnitude smaller than the expected damping resolution),
and therefore it is recommended to limit the total number of runs to only 2, since the frequency
estimation can get worse, the damping estimation will not suffer an appreciable improvement and
the computation time will be greatly improved.

Table 3.2 shows a comparison of the results for both techniques at different SNR values. No-
tice that the Laplace Wavelet results show a good resilience and almost no variation at different
SNRs, and this statement is applicable to both frequency and damping estimations. However, the
PRESTO estimation is very sensitive to noise. The results at 10dB SNR show a 4% better accuracy
than at 0dB SNR in the frequency estimation. May seem a small difference anyways, but note that
when estimating at 0dB SNR signals, the estimation has only a 2% difference with the Laplace
Wavelet estimation. The case of the damping is still more interesting. At 5dB and 10dB SNR, the
error in damping for the PRESTO estimation is sensibly better than the Laplace wavelet. How-
ever the estimation at 0dB SNR turns the tides. The PRESTO estimation is worse than the Laplace
Wavelet.

These conclusions from the data processed support the statement above. The Laplace Wavelet
technique is more robust (at least insensitive to noise) than PRESTO, although depending on the
SNR of the signals involved, the estimation in PRESTO may be better.
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Laplace
SNR Wav. PRESTO

Avg. Err. fn
10dB 8.75 % 2.84 %
5dB 8.78 % 4.37 %
0dB 8.82 % 6.82 %

RMSE z
10dB 0.042 0.026
5dB 0.042 0.038
0dB 0.043 0.055

Time/set
0.06 s 0.06 s

Number of runs
1 2

TABLE 3.2: Results of running Laplace Wavelet and PRESTO algorithms over syn-
thetic datasets. The metrics are: Time required to estimate each set of data, Natural
frequency average error (in percentage) and damping factor Root Mean Square Er-

ror.

Regarding the time employed to run both methods, both took a very similar time. However it
is important to remark that the Laplace Wavelet is a greedy algorithm, and therefore it was neces-
sary to limit the search dictionary to the same range of the parameters employed for the training
set, given the memory limitations of the means available for running the algorithm. For this rea-
son, the times are not representatives of the actual workload of the Laplace Wavelet algorithm. In
a real case where it would be necessary to run a broader set of parameters, it is complicate to esti-
mate if the technique would take longer or shorter to run, since the range of parameters undoubt-
edly should have to be increased, but also the computing power should be increased. However it
is safe to say that under the same conditions, range of parameters and computing power available,
the PRESTO algorithm would most likely be substantially faster than the Laplace Wavelet algo-
rithm, since the search subspace would be in the order of N8 (where N is the average number of
points for all the parameters) for the Laplace Wavelet algorithm, while for the PRESTO algorithm,
assuming a pessimistic scenario, the number of steps would probably increase in the order of 103

in absolute number of steps.

3.7 Verification and comparison of the Deep Learning techniques with
synthetic data

The current section will describe the process followed to train the different networks employing
synthetic data.

3.7.1 Design data and feature extraction

The training datasets were based on the following equation 3.1:

x(t) =
K

Â
j=1

aj · e�z jwnjt sin (wdjt + jj) + n(t) (3.32)

For this training set only two different modes have been employed with the following para-
meters:
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• Sampling Frequency: fs = 85Hz

• Signals length: t = 5s

• Natural frequency: 3.0Hz fn  6.0Hz

• Damping factor: 0.03  z  0.20

• Phase angle: 0.00  j  2 · p

• Amplitude: 0.01  a  0.50

• White gaussian noise SNR: 0dB, 5dB, 10dB

• Number of design signals: 300.000 (considering the three levels of noise, 100.000 signals
each)

• Training set: 80% of the total number of design signals

• Validation set: 20% of the total number of design signals

• Cutout samples (frequency domain): 70 samples (14Hz)

• Scale factor for damping: x15

The input parameters will be discussed for each network independently. However the output
parameters are the same for all the networks.

• Mode 1 natural frequency [Hz]

• Mode 2 natural frequency [Hz]

• Mode 1 damping factor [Hz] (scaled x15 to balance with frequencies)

• Mode 2 damping factor [Hz] (scaled x15 to balance with frequencies)

The training was performed with the "Universidad de Alcalá, Teoría de la Señal y Comuni-
caciones" department investigation workstation, a low end workstation but powerful enough to
perform the training of the networks described below in a reasonable amount of time. Given the
limited resources, it was not possible to increase the number of output parameters or the number
of signals to be considered. For example, the range of frequencies is limited to only 6Hz. It would
have be interesting to increase the range of frequencies to at least 10Hz, to cover the actual range
of cases expected with real data, and the dampings to include the value of 1 for the damping fac-
tor, to effectively account for one single signal (although the approximation with damping 0.2 is
probably close enough). The extension of such data ranges can be subject for further investiga-
tions. Also note that the amplitude and phase angle are not calculated in these networks. The
reason is the same as above. Including these two extra parameters would mean to increase from
4 to 8 the number of parameters in the output layer, and this would require a much larger dataset
than reasonably available for the means (computational power) available. This factor can also be
subject for further investigations.

For the error metrics, as in the case of the classical processing techniques, the estimation of the
natural frequency fn was calculated measuring the average absolute error (%) between the real
and returned parameters. The estimation of the damping factor z was performed by calculating
the Root Mean Square Error (RMSE) between the real ans synthetic data. The error was calculated
by removing the worst 10% result on the validation dataset.
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MLP MLP MLP MLP MLP
SNR 20 40 60 80 100

Avg. Err. fn
10dB 5.94 % 5.04 % 4.58 % 4.34 % 4.28 %
5dB 6.17 % 5.34 % 4.93 % 4.71 % 4.71 %
0dB 6.90 % 6.25 % 5.97 % 5.82 % 5.85 %

RMSE z
10dB 0.029 0.026 0.026 0.025 0.024
5dB 0.030 0.027 0.027 0.026 0.026
0dB 0.032 0.030 0.029 0.029 0.029

Time/set
0.011 ms 0.012 ms 0.015 ms 0.018 ms 0.022 ms

TABLE 3.3: Summary table of MLP trained networks. Each column indicates the
type of network (MLP) and the quantity of neurons in the hidden layer.

3.7.2 Multi-layer perceptron training process and results

The 140 samples of the input layer are constructed similarly to the Complex Spectrum processing
algorithm 3.3.1.2 with slight differences:

1. Cut the original time series signal to 5 seconds samples, or zero-pad until 5 seconds of signal
are reached.

2. Calculate the DFT of the time series signal.

3. Separate the real and imaginary parts of the signal spectrum into two different sequences,
SR and SI .

4. Cut each of these sequences for the first 70 samples in the positive part of the spectrum
(Sr = SR[2 : 71], Si = SI [2 : 71], first sample removed to prevent zero frequency outliers).

5. Construct one final signal with the previous sequences (Sf = [Sr, Si]).

6. Process the final signal Sf into the input layer.

The output layer will return 4 different outputs as indicated in section 3.7.1 above:

1. Mode 1 natural frequency

2. Mode 2 natural frequency

3. Mode 1 damping factor

4. Mode 2 damping factor

These outputs will be compared with the true values employed to generate the training dataset,
and trained through back-propagation algorithms with a Levenberg-Marquardt optimization al-
gorithm.

A total of 5 different MLPs have been trained, with 20, 40, 60, 80 and 100 neurons each, with
the results shown in table 3.3 and figure 3.11:

The results indicate that the MLP with 100 neurons in the hidden layer has the lowest error,
although all the MLP networks have a similar level of error. That been said, comparing the 80
and 100 neurons networks errors there is almost no difference between both, and is possible that
the results might be reversed (in terms of errors) with a different training or validation set. It is
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FIGURE 3.11: Plot depicting the estimated natural frequency average relative error
in percentage [%] and the Root Mean Square Error (RMSE) in absolute value, com-
paring MLP networks composed of different number of neurons. The secondary "y"
axis plots the execution time required for each network in [ms]. The networks were
trained with 0dB, 5dB and 10dB SNR data, removing the worst 10% estimations on

the validation dataset.

interesting to note also that the results of the damping error are heavily resilient to noise. Re-
gardless of the SNR level, the results are very similar in terms of error relative to the true training
values. Note that the amplitude or the phase angle have not been calculated. The reason not to is
described in section 3.7.1.

At last, the calculation times for each dataset are extremely fast, as expected for this kind of
processes. However we must return to the comparison between the 80 and 100 neurons networks.
In this case the execution time for both networks is different, being the 80 neurons noticeably
lower than the execution time of the 100 neurons network. From this point of view, it is worth
considering the 80 neurons network as the fittest MLP candidate.

3.7.3 Deep Neural Network training process and results

These networks offer more accuracy than the MLP networks, although they are also more compli-
cated to train (either more computational power or more training time). As described in section
3.7.1 some parameters are left aside, in particular the phase angle and the amplitude.

The input data is generated in the same way as in section 3.7.2, with 140 samples introduced
in the input layer and reproduced here for clarity:

1. Cut the original time series signal to 5 seconds samples, or zero-pad until 5 seconds of signal
are reached.

2. Calculate the DFT of the time series signal.

3. Separate the real and imaginary parts of the signal spectrum into two different sequences,
SR and SI .

4. Cut each of these sequences for the first 70 samples in the positive part of the spectrum
(Sr = SR[2 : 71], Si = SI [2 : 71], first sample removed to prevent zero frequency outliers).

5. Construct one final signal with the previous sequences (Sf = [Sr, Si]).

6. Process the final signal Sf into the input layer.
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DNN DNN DNN DNN DNN
SNR 2x(20) 2x(40) 2x(60) 2x(80) 2x(100)

Avg. Err. fn
10dB 3.92 % 3.17 % 3.00 % 2.96 % 3.08 %
5dB 4.27 % 3.62 % 3.50 % 3.50 % 3.66 %
0dB 5.32 % 4.81 % 4.74 % 4.78 % 4.95 %

RMSE z
10dB 0.025 0.022 0.021 0.021 0.021
5dB 0.026 0.023 0.022 0.023 0.023
0dB 0.028 0.027 0.027 0.027 0.028

Time/set
0.010 ms 0.014 ms 0.015 ms 0.018 ms 0.021 ms

TABLE 3.4: Summary table of DNN trained networks with two hidden layers and
one output layer. Each column indicates the type of network (DNN) and the quantity

of neurons in each hidden layer.

The output layer will return 4 different outputs also, as indicated in section 3.7.1 above:

1. Mode 1 natural frequency

2. Mode 2 natural frequency

3. Mode 1 damping factor

4. Mode 2 damping factor

The system was fed with the validation dataset, and the outputs were be compared to the input
data. Back-propagation algorithms were used to train the networks with a Levenberg-Marquardt
optimization algorithm.

In this case two different sets of networks have been trained, with two hidden layers plus one
output layers, and with three hidden layers plus one output layer. In all the cases the hidden layers
have the same number of neurons, and the results are compiled in tables 3.4 and 3.5, supported
by figures 3.12 and 3.13.

Table 3.4 shows the results for DNNs trained with two hidden layers, each with 20, 40, 60, 80
and 100 neurons. Unlike the MLP networks, the higher number of neurons doesn’t necessarily
correlate with a better fit. In this case (2 hidden layers DNN), under noisy conditions (0dB) the
best fit is reached with a DNN 2x(60). The fact that the 80 and 100 neurons layers perform worse
is most probably due to overfitting during the training process.

Note that there is also an important reduction in the execution time. With more than 60 neu-
rons, the execution time experiences a noticeable increase, which contributes to support the state-
ment of choosing the 60 neurons network as the most suitable candidate.

Comparing the results between MLPs and 80 neurons, and DNNs with 2 hidden layers and
60 neurons per hidden layer, the DNN produces substantially better results than the MLP, both
in frequency and damping estimation. However, the damping estimation is not so critically in-
creased in the estimation accuracy. Also, the processing time is approximately slightly faster in
the MLP than the DNN.

Table 3.5 shows results for DNNs with three hidden layers, like in the previous case each with
20, 40, 60, 80 and 100 neurons. The comparison between them returns similar conclusions as with
the two hidden layers DNNs, there is not a correlation between number of neurons and accuracy
in the results. In this case the network with three layers and 3x(40) neurons each layer shows the
best results and lower error under noisy conditions (0dB). Also, as in the previous case, this is not
conclusive since the results are very similar between the five networks.
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FIGURE 3.12: Plot depicting the estimated natural frequency average relative error
in percentage [%] and the Root Mean Square Error (RMSE) in absolute value, com-
paring DNN networks with 2 layers and composed of different number of neurons
on each layer. The secondary "y" axis plots the execution time required for each
network in [ms]. The networks were trained with 0dB, 5dB and 10dB SNR data, re-

moving the worst 10% estimations on the validation dataset.

DNN DNN DNN DNN DNN
SNR 3x(20) 3x(40) 3x(60) 3x(80) 3x(100)

Avg. Err. fn
10dB 3.38 % 2.94 % 2.84 % 2.74 % 2.78 %
5dB 3.76 % 3.40 % 3.40 % 3.31 % 3.41 %
0dB 4.81 % 4.56 % 4.68 % 4.64 % 4.80 %

RMSE z
10dB 0.022 0.020 0.020 0.020 0.020
5dB 0.024 0.022 0.022 0.022 0.023
0dB 0.027 0.026 0.027 0.027 0.028

Time/set
0.009 ms 0.017 ms 0.022 ms 0.025 ms 0.031 ms

TABLE 3.5: Summary table of DNN trained networks with three hidden layers and
one output layer. Each column indicates the type of network (DNN) and the quantity

of neurons in each hidden layer.
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FIGURE 3.13: Plot depicting the estimated natural frequency average relative error
in percentage [%] and the Root Mean Square Error (RMSE) in absolute value, com-
paring DNN networks with 3 layers and composed of different number of neurons
on each layer. The secondary "y" axis plots the execution time required for each
network in [ms]. The networks were trained with 0dB, 5dB and 10dB SNR data, re-

moving the worst 10% estimations on the validation data.

The analysis and conclusion of the low variability in the results between different networks,
might be a consequence of the training process. Notice that even with 100.000 datasets for each
level of noise, the training population is relatively small, and there is expected to be some variabil-
ity in the training process, which might impact in the results shown here, although it also might
be a consequence of underfitting with the higher neurons networks or overfitting with the lower
number networks. It is complicated to say with such small number of datasets.

Comparing the results between tables 3.4 and 3.5, globally speaking there is a slight improve-
ment in the employment of an extra hidden layer for DNNs. In all the networks explored, the
extension of one extra layer resulted in a clear improvement in all the trained networks. In this
case, comparing the best candidates from both network types, the 3x(40) network performs better
in frequency and damping than the MLP x100 and the DNN 2x(60). However the time is slightly
(2ms) higher in the case of the 3x(40) than the 2x(60).

3.7.4 Convolutional Neural Network training process and results

Before describing the structure of the convolutional network employed in this application, we
need to describe the structure of the input matrices.

The data recorded is a time series, and in order to convert it into a 2D matrix we need to
perform the following preprocessing operations:

1. Define a list of projection unitary imaginary vectors. These vectors will be defined by a real
and imaginary part, and will be used to obtain redundant information from each frequency
datapoint. In this application 14 unitary vectors (plus the real part and the imaginary part,
in total 16 vectors) will be defined, equally spread around the 2p circumference.

2. Cut the original time series signal to 5 seconds samples, or zero-pad until 5 seconds of signal
are reached.

3. Calculate the DFT of the time series. A list of vectors (real and imaginary parts for each
point) will be obtained for each time series (now frequency values).
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FIGURE 3.14: Construction of the data matrix to feed the CNN. Once the time series
dataset is transformed into a frequency spectrum (real and imaginary parts), each
dataset of the CNN feed matrix will distribute the frequencies in columns and the

projection of each frequency value on different determined vectors in rows.

4. Select the first 70 datapoints. We need to limit the inputs to only the relevant frequencies. In
this case approximately 14Hz. These 70 datapoints will constitute the columns of the input
matrix.

5. Project each frequency vector on each unitary vector defined in step 1 above. The projection
values will be used as redundant information, and the 18 projection values will constitute
the rows of the input matrix. Figure 3.14 shows a description of the intent of this step.

Even though the information incorporated into the input matrix is redundant (can be inter-
preted as a zero padding to reach more resolution in frequency), it is convenient to obtain a 2D
matrix and hence feed the CNN.

The structure of the CNNs employed in this application is based on a multi-step process for
each convolutional layer, and the architecture is described as follows (and depicted in figure 3.6):

1. Input layer. The inputs are one matrix for each dataset. The dimensions are 70 columns
(each frequency) times 16 rows (each redundant projection value).

2. Convolutional block. The convolutional blocks consist of a convolutional layer followed by
a series of processes to improve the quality of the operation. In this application two kinds
of convolutional networks have been trained, CNNs with 5 hidden convolutional layers
(actually convolutional processes) and CNNs with 6 convolutional layers (processes also).

(a) Convolutional layer. This layer performs the convolution operation on the input ma-
trix. In this application each convolutional layer has the same number of neurons, say
20, 40, 60, 80 and 100 neurons.



Chapter 3. Investigation 85

CNN CNN CNN CNN CNN
SNR 5x(20) 5x(40) 5x(60) 5x(80) 5x(100)

Avg. Err. fn
10dB 2.42 % 2.14 % 2.13 % 2.15 % 2.18 %
5dB 3.02 % 2.83 % 2.89 % 2.95 % 2.98 %
0dB 4.28 % 4.18 % 4.31 % 4.39 % 4.41 %

RMSE z
10dB 0.018 0.016 0.016 0.017 0.017
5dB 0.020 0.020 0.021 0.021 0.021
0dB 0.025 0.025 0.026 0.027 0.027

Time/set
0.822 ms 1.024 ms 1.091 ms 1.126 ms 1.235 ms

TABLE 3.6: Summary table of CNN trained networks with five hidden layers and
one output layer. Each column indicates the type of network (CNN) and the quantity

of neurons in each hidden layer.

(b) Normalization process. This step normalizes the outputs in order to control the range
of the outputs and prevent saturation. A bias is added and a multiplier is applied to
the output. These parameters are subjected to training as part of the training process.

(c) Rectification process. The negative values are converted into zero.
(d) Pooling process. The downsampling is made by windows of 2x2, with a stride also of

2x2, which means that the windows don’t overlap.

3. Connection layer. In this layer, all the outputs from the last convolutional block are con-
nected and reduced to the 4 output parameters described in section 3.7.1. This layer con-
stitutes a classical perceptron layer, employed to gather the outputs from the convolutional
layers and return an output to solve the regression problem.

4. Regression layer. Before returning the raw parameters it is necessary to include a regression
layer.

Regarding the analysis of results in both kinds of networks, the results are depicted in tables
3.6 and 3.7, supported by figures 3.15 and 3.16 respectively.

The analysis comparing 5 and 6 layers, shows that the best results were obtained with a 40
neurons network in both configurations. Like in the previous cases, the increased number of
neurons doesn’t necessarily imply a lower error. However, unlike the DNN case, the difference
between 5 and 6 layers is minimum, and even though the improvement under noisy conditions
(0dB) is noticeable, all the cases analyzed fall under the same order of error, and it is possible
that with a larger training dataset the results are different. Note that the processing time for the
5 hidden layers network is very similar to the 6 hidden layers network. Please take into account
that these values are not exact. There is a large variability in processing time after successive
calculations of the same network and data, starting with a high calculation time (discarding the
first estimation to account for the start up of the cluster processing) and asymptotically oscillating
around a stable value (indicated in the tables). The most reasonable reason for that is that the
workstation employs local cache to calculate the results, and hence the large variability in time
after successive runs.

Table 3.6 compares CNNs with 5 hidden layers networks. These outputs throw very simi-
lar results among them, although the best estimation comes from the 40 neurons network. The
calculation time is very small also compared to the rest of the networks.

Regarding the 6 hidden layers networks, the estimations are also very similar. The times are
slightly higher than in the previous case, but also into the same order of magnitude. The best fit is
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FIGURE 3.15: Plot depicting the estimated natural frequency average relative error
in percentage [%] and the Root Mean Square Error (RMSE) in absolute value, com-
paring CNN networks with 5 layers and composed of different number of neurons
on each layer. The secondary "y" axis plots the execution time required for each
network in [ms]. The networks were trained with 0dB, 5dB and 10dB SNR data, re-

moving the worst 10% estimations on the validation data.

CNN CNN CNN CNN CNN
SNR 6x(20) 6x(40) 6x(60) 6x(80) 6x(100)

Avg. Err. fn
10dB 2.29 % 2.12 % 2.06 % 2.06 % 2.06 %
5dB 2.90 % 2.80 % 2.81 % 2.83 % 2.83 %
0dB 4.17 % 4.14 % 4.19 % 4.23 % 4.27 %

RMSE z
10dB 0.017 0.016 0.016 0.016 0.017
5dB 0.020 0.019 0.020 0.021 0.021
0dB 0.025 0.024 0.025 0.026 0.026

Time/set
0.831 ms 1.035 ms 1.096 ms 1.284 ms 1.489 ms

TABLE 3.7: Summary table of CNN trained networks with six hidden layers and one
output layer. Each column indicates the type of network (CNN) and the quantity of

neurons in eacg hidden layer.
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FIGURE 3.16: Plot depicting the estimated natural frequency average relative error
in percentage [%] and the Root Mean Square Error (RMSE) in absolute value, com-
paring CNN networks with 6 layers and composed of different number of neurons
on each layer. The secondary "y" axis plots the execution time required for each
network in [ms]. The networks were trained with 0dB, 5dB and 10dB SNR data, re-

moving the worst 10% estimations on the validation data.

reached on the 40 neurons network, and also the issue with the 100 neurons network calculation
time is present.

As stated above, the comparison between the 5 and 6 hidden layers networks is very similar,
and the times also fall under the same order of magnitude. Note however that comparing the
CNNs with the DNNs, the processing time is substantially higher in the case of the former. The
CNNs take approximately 2 orders of magnitude more time to compute than the DNNs, although
still within the real time range for experiments, around 1ms each dataset processing. Comparing
the 3x(40) DNN with the CNN with 40 neurons and 6 hidden layers, the results throw a substantial
improvement in the estimation in the CNN considering the range of error of all the networks.
However note that the estimation time is 2 orders of magnitude higher. Nevertheless, this factor
would only need to be considered in case of batch processing a large amount of datasets.

3.8 Comparison of synthetic data analysis results and performance be-
tween PRESTO, Laplace Wavelet and Deep Learning techniques

At this stage there is enough information as to compare the three best processing candidates for
reducing Sine-Dwell aeroelastic data.

• Laplace Wavelet Matching Pursuit. This technique has been validated with real Flight Test
data from the same aircraft that the dataset available for the current thesis. The technique is
very similar to PRESTO, with one important difference. The processing considers only one
mode at a time. Apart from that, the results are very resilient to noise and guarantee a very
good and accurate result when only one mode is participating in the mechanism, disregard-
ing overfitting. The main drawback is that the technique requires a very large dictionary
to provide good results which increment largely the processing time, and under certain cir-
cumstances it is possible that the technique cannot be used for real time applications.

• PRESTO. This technique is very similar to Laplace wavelet. It is reasonably quick, which
may entitle it for real time applications and as said, very similar to Laplace Wavelet, although
in this case the two modes are considered at the same time. The advantages are a quick and
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Laplace CNN
SNR Wav. PRESTO 6x(40)

Avg. Err. fn
10dB 8.75 % 2.84 % 2.12%
5dB 8.78 % 4.37 % 2.80%
0dB 8.82 % 6.82 % 4.14%

RMSE z
10dB 0.042 0.026 0.016
5dB 0.042 0.038 0.019
0dB 0.043 0.055 0.024

Time/set
60 ms 60 ms 1.0 ms

Number of runs
1 2 1

TABLE 3.8: Results of running Laplace Wavelet, PRESTO and CNN 6x(40) algo-
rithms over synthetic datasets. The metrics are: Time required to estimate each set
of data, Natural frequency average error (in percentage) and damping factor Root

Mean Square Error.

accurate estimation, improving the results from Laplace on synthetic data, although when
only one mode is considered the technique will try to fit two, leading to possible spurious
modes or, worst case scenario, to large errors in the estimation due to reaching a solution
with two modes instead of one.

• Convolutional Neural Networks. This technique has thrown impressive results on synthetic
data. The technique has very good estimation errors and a very good processing time, which
entitles it for real time analysis. The only drawback is that it is very dependent on the size
of the training dataset as related to the range that it can eventually match, so increasing the
range of parameters means increasing the number of training datasets, possibly increasing
the size of the network and at last unfailingly increasing the time to train the network or
increasing the hardware resources needed.

Table 3.8 and figure 3.17 show the comparison between the three techniques, Laplace Wavelet,
PRESTO and a CNN with 6 hidden layers and 40 neurons each layer. The data processed was com-
prised of 10.000 synthetic datasets of known parameters in the case of PRESTO and Laplace, and
the validation dataset (20.000 datasets) in the case of the CNN. The results show a substantial dif-
ference between the three techniques, being consistent in the relative ranking between them both
in natural frequency and damping estimation. The Laplace Wavelet returned the highest error. In
this case the estimation returned an error close to 9% in the frequency estimation consistent for
all the SNRs considered and a damping error close to 0.042, also consistent for all the SNRs con-
sidered. This indicates that although the technique throws a high error, the estimation is the most
robust and resilient to noise. The drawback is that even though the time returned is very similar
to the PRESTO estimation, in case of considering a realistic dictionary the time taken would be
much longer, in occasions unfit for real time applications. The PRESTO estimation returned a sub-
stantially better identification than the Laplace wavelet, with the characteristic that the processing
time is accurate under real conditions. In the case of the frequency estimation, the error returned
is very sensitive to the SNR, although even in the case of low SNR, the results are still better than
the Laplace Wavelet estimation. However, in the case of damping error the results differ. The low
SNR case (0dB) returns a substantially worse approximation than the Laplace Wavelet, although
in the rest of SNRs the estimation is substantially better. The analysis show that the most effective



Chapter 3. Investigation 89

2 4 6 8 10

Number of repetitions

2

4

6

8

10

12

A
ve

ra
g
e
  

f n
 r

e
la

tiv
e
 e

rr
o
r 

(%
)

Laplace wavelet

Proposed PRESTO

CNN 6x(40)

2 4 6 8 10

Number of repetitions

0.02

0.03

0.04

0.05

0.06

R
M

S
E

  

Laplace wavelet

Proposed PRESTO

CNN 6x(40)

FIGURE 3.17: Plot depicting the estimated natural frequency average relative error
in percentage [%] and the Root Mean Square Error (RMSE) in absolute value, com-
paring Laplace Wavelet, PRESTO and a 6x(40) CNN network. The data compared
was generated synthetically by known parameters (10.000 datasets), in the case of
the CNN the validation dataset (20.000 datasets) with a SNR of 5dB. In all three

cases the 10% worse estimations were removed.

analysis is returned after running two cycles of the PRESTO estimation, as can be seen in fig-
ure 3.17. At last, the CNN analyzed returned the best identification parameters compared to the
other techniques. The results show a moderate resiliency to noise, better than PRESTO but worse
than Laplace, but in all cases substantially better than the previous techniques, both for frequency
and damping. The technique is also one order of magnitude faster than the previous ones, and
even though the technique has been trained with a reduced dataset (200.000 synthetic signals), the
results are very promising.

3.9 Experimental results

This section will show the results from experiments performed on real datasets.

• The real datasets were acquired from real flutter tests flight data from Spanish Air Force F-
18 aircraft. The datasets will be processed with only two algorithms, and the data has the
following constraints:

– Algorithms:

* Laplace Wavelet Matching Pursuit algorithm

* PRESTO algorithm

* Convolutional Neural Network 40 neurons per hidden layer x 6 hidden layers
– Metrics:

* Linear regression between the real and estimated data (slope and y-intercept)

* R-Squared coefficient

* Computational cost (processing time)
– Conditions:

* Sampling frequency: fs = 85Hz

* Length: t = 5s
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– Range considered:

* Laplace Wavelet:
· Natural frequency: 3.0Hz  fn  6.0Hz
· Damping factor: 0.03  z  0.20
· Phase angle: 0.00  j  2 · p

· Amplitude: 0.01  a  0.50

* CNN:
· Natural frequency: 3.0Hz fn  6.0Hz
· Damping factor: 0.03  z  0.20
· Phase angle: 0.00  j  2 · p

· Amplitude: 0.01  a  0.50

The objective is to compare the three techniques between each other, considering the accuracy
of the fit between the real and estimated signals. Note that the Laplace Wavelet and the CNN have
a limited dictionary (a limited training range in the case of the CNN) due to limitations to the HW
available for reducing data. This will produce a bias in the results, since a larger range or training
boundaries might improve the results, and therefore the comparison here cannot be considered
conclusive.

Section 3.8 provided a means of comparing the accuracy of the different estimation techniques.
From these techniques, it was decided to select three different techniques, Laplace Wavelet Match-
ing Pursuit, PRESTO and a Convolutional Neural Network of 40 neurons per hidden layer and 6
hidden layers to validate against real Flutter Flight Test data.

The reconstruction of the signals for Laplace Wavelet Matching Pursuit and PRESTO were
performed from the estimated parameters. The techniques returned all the parameters required
to reconstruct the signal (but for the noise of course). However in the case of the Convolutional
Neural Network it was not possible to reconstruct the signal from the parameters only, since the
amplitudes and phases were not estimated for the reasons described in section 3.7.1. Instead, the
signals were reconstructed following a Matching Pursuit procedure to estimate the phases and
amplitudes, with the results of natural frequencies and dampings from the CNN results.

3.9.1 Data acquisition

The data were acquired from real Flutter Flight Tests performed on Spanish Air Force F-18A/B.
The aircraft incorporates extensometers in different parts of the wing, say root, hinge (mid cord)
and wingtip, both in left and right hand sides, as described in figure 3.18. The extensometers
appear as red circles on the wing, and in those positions both bending and torsion extensometers
are placed. The disposition of those extensometers is so in order to provide a good measure of the
vibrational data of the wing, in order to replicate the deformation and vibration characteristics.

The excitation was provided through the Flight Control Excitation Unit (FECU). This element
is a Programmable Controller that injects vibrational signals into the flight controls. Once a given
program is selected in the FECU, the flaperons start to vibrate according to the programmed pat-
tern. In our case, the signals of interest were Sine Dwells, short duration (4 seconds) vibrations at
a given frequency, as described in section 2.7.1. The data is extracted immediately after the exci-
tation stops. The decay signal is analyzed in order to estimate the frequency and damping of the
natural modes involved in a given flight condition. The data are sent by telemetry to the Control
Room, where a team of Engineers monitors and directs the flight in real time, commanding the
pilot to proceed to the next test point or stop. In case that a dangerous situation is inferred or
reached, the Test Director commands the pilot to stop the test by pulling the control stick and cut-
ting the engine power, in order to gain altitude and reduce airspeed (reduce the dynamic pressure
on the wing) to reach safe flight conditions.
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FIGURE 3.18: Disposition of extensometers in the Spanish Air Force F-18A/B em-
ployed to perform flutter tests

In case of emergency it is possible to jettison the stores and return to a baseline F-18 con-
figuration, with already known flight envelope. It is necessary to indicate that the inclusion of
underwing stores will never increase the flight envelope of the aircraft relative to the baseline con-
figuration. However at this stage of the integration the jettison of the stores has not been validated
(not even tested) yet, and therefore it is necessary to stress that this is a last failsafe emergency re-
source, since the jettison of the stores into an unknown envelope might result in an impact of the
stores with the own jet. For this reason, this procedure must be only considered when the integrity
of the jet or the life of the pilot is compromised beyond any doubt.

The test was performed with the most critical configurations of the selected stores, and the
stop criterion was selected to match a low damping ratio as estimated by the Test Director. It is
necessary to remark that during the test campaign, the Test Director didn’t have available any real
time estimation capability, and therefore the data were analyzed manually by logarithmic decre-
ments, as described by Ewins, 2000, during postprocessing. During the tests, the Test Director and
Test Conductors had available tables of decay time on the signals for the frequencies of interest.
In particular the Test Team was expecting the signals to reach half of the maximum amplitude in
a given number of seconds. Since the expected natural frequency is known (or at least close to a
known frequency, since the excitation phase would excite that frequency), the damping ratio was
assumed to be 0.03 as defined by JSSG-2006, 1998 and MIL-A-8870C, 1993 and the ratio of ampli-
tudes is defined to be 0.5, it is possible to create a table of expected frequencies from the excitation
frequencies and time of decay. The Test Team would expect the excitation stop signal and count
mentally the number of seconds until the amplitude reaches half of the maximum amplitude. If it
is below the expected value it is safe to continue the test. However, if the decay time is longer (or
even close to) the expected time, it is mandatory to stop the test.

The data were acquired at a sampling frequency of 85Hz, and the data selected for processing
was 4 seconds long. In the case of shorter signals, the remaining data points were zero padded.

There was a total of 640 datasets, considering 10 extensometers and 8 different excitation runs
for each test point (8 test points). Two of the extensometers, the ones located in the right wingtip,
were dead and therefore were dismissed. From this point of view, it is expected that only 1/8 to
3/8 of the signals could return good data, since those are the test runs close to the expected natural
frequencies. This will impact this analysis expecting only as much as between 80 � 240 good data
estimations, since those will be the points that can theoretically match our model pattern. From
those points it is also necessary to remove bad data, like turbulences, pilot involuntary inputs, etc.
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Linear regression equation y = Mx + N
Laplace Wavelet PRESTO CNN 6x(40)

Upper bound 0.7766 0.9426 0.7988
M Nominal value 0.7724 0.9390 0.7944

Lower bound 0.7682 0.9354 0.7900
Upper bound -0.0020 -0.0012 -0.0024

N Nominal value -0.0029 -0.0019 -0.0033
Lower bound -0.0038 -0.0027 -0.0043

R2 0.6860 0.8157 0.6717

TABLE 3.9: Linear regression over sampled data vs. reconstructed data, considering
the Laplace Wavelet Matching Pursuit, PRESTO and a Convolutional Neural Net-

work 6x(40).

3.9.2 Analysis of results

Given that currently there is not any validated method to process data, it is necessary to compare
the three techniques, the Laplace Wavelet Matching Pursuit, the PRESTO estimation and the CNN
6x(40) among them with real data. However not having any reference makes hard to find any even
breaker between all the techniques.

In this case, the original data points were represented against the reconstructed signals from
the results of each technique. Afterwards, a regression fit was applied to the datapoints to compare
numerically the results of each technique against the others. Also the MAE (Mean Absolute Error)
was calculated on the signal reconstructions from both techniques in order to compare them. The
MAE was was chosen to select an error metric independent from all the techniques. Laplace
Wavelet Matching Pursuit used as fitting function the maximum dot product between both signals
(the projection of one signal on the other is maximum), while PRESTO and the CNN employed
the minimization of the MSE as the preferred fitting function.

In all cases, CNN, PRESTO and Laplace, the error signals were processed and normalized by
the following operations (in order):

• Limit to 4 seconds data series.

– Zero pad shorter signals.
– Cut longer signals.

• Normalize the real signals by the maximum amplitude of the signals in absolute value.

• Identify the signals by the appropriate method (PRESTO, Laplace or CNN)

• Reconstruct the synthetic signals.

• Normalize the synthetic signals by the maximum amplitude of the signals in absolute value.

• Where the real signals have an amplitude of exactly zero (forced by zero padding), force the
synthetic signals to be zero also. This way there won�t be an introduction of spurious error
by the differences in the tails of the signals when the signals are shorter than 4 seconds.

• Normalize the error metric by the number of samples different to zero. This way there won�t
be a bias in the error produced by the length of the signals.

Figure 3.19 represents the plots of the real vs. the synthetic data and the regression line. The
fit is representative of a very good match of the data comparing the signals reconstruction and the
original signals. The closest the slope is to 45 deg the better the match. This can be assessed by the
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FIGURE 3.19: Data plot between real and synthetic data processed by Laplace
Wavelet Matching Pursuit, PRESTO and a Convolutional Neural Network of 6 hid-
den layers and 40 neurons per layer. The 150 best matching signals out of a complete
dataset of 640 were employed. The red line represents the linear regression of the

dataplots.

slope of the regression line, described in table 3.9 as M. The closest the slope to 1 the better the fit.
Also the dispersion plays an important role. The smaller the dispersion in the data, the better the
fit. This can be assessed by the R2 value. The closest to 1 the smaller the dispersion. At last, the
Y � intercept also plays a minor role, indicated by N in table 3.9. A Y � intercept diverging from
0 indicates a bias in the data.

The analysis was performed on 600 real flutter flight test datasets, but only the best 150 were
employed for the regression analysis. The amount 150 for the datasets was chosen heuristically
following the Elbow Rule from figure 3.20. The 150 datasets chosen were different for each estima-
tion depending on the error resulting from each process. For example, the best 3 identifications
(lower MSE) for PRESTO were samples 5, 77 and 578, and therefore these three will be the first
of the 150 datasets chosen. However for Laplace Wavelet the best 3 identifications were datasets
number 48, 353 and 467, and therefore in the Laplace Wavelet plots and calculations, the first 150
datasets chosen will be these last, and will be the ones that will contribute to the regression and
final error.

Figure 3.20 shows a comparison of the error between 600 samples from the full dataset. In this
case the MAE error metric was chosen to prevent bias between the different processing techniques,
taking into account that the Laplace Wavelet Matching Pursuit employed the dot product as an
inverse error metric, while PRESTO and the CNN employed MSE. It can be argued that the MAE
might benefit a particular technique before others. The dot product, MSE and MAE error metrics,
were all tested to compare the original data with the synthetic reconstructions from the three
techniques, and the results are coherent among them, following the same pattern as figure 3.20.

Regarding the results, PRESTO returned a very good estimation (the best of all three indeed),
which can be assessed by the slope of the linear fit M = 0.94, very close to unity, and the Y-
intercept N = �0.002, which indicates that the fit is at least symmetric in the fit. On the other
hand, the R-squared coefficient is R2 = 0.82. Note that a perfect fit would return a R-squared
coefficient of 1, and therefore it is indicative of small dispersion in the data, alas a good estimation.

Comparing the results with the Laplace Wavelet Matching Pursuit, figure 3.19 shows a very
good fit also. In this case the results are similar although slightly worse. Notice that in table 3.9,
the slope M = 0.77 is also very close to unity, although slightly worse than PRESTO, and the Y-
intercept N = �0.003 also indicates an unbiased solution. At last, the R-squared coefficient shows
more dispersion than PRESTO, being a value of R2 = 0.69.These results indicate that the fit is
reasonably good, although slightly worse than the PRESTO estimation.
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FIGURE 3.20: Mean Absolute Error (MAE) plot between the PRESTO and Laplace
Wavelet Matching Pursuit analyzed data. 640 signals were employed to get the error

plot.

The last comparison to be performed is the CNN estimation, in this case with 6 hidden layers,
1 input layer and 1 output layer, and 40 neurons on each hidden layer. The results are very similar
to Laplace Wavelet. The slope M = 0.79 is also very close to unity, with also an unbiased approx-
imation with a Y-intercept of N = �0.003. The R-squared value is R2 = 0.67, which indicates
also a very good approximation, very similar to Laplace Wavelet. However the important point
to remark here is that, even though the results might seem to throw the worse approximation, it
is important to remark that the network was not trained to its full capability. Several points to
remark:

• The network was trained with a very limited number of datasets.

• The network didn’t calculate phase angle or amplitude. These values were calculated after-
wards following a Matching Pursuit procedure.

• The network was trained with a very reduced range of frequency and damping parameters,
and according to the Frequency Spectrum of the original data (figure 3.23) many signals fall
out of the training dataset.

Figures 3.21, 3.22 and 3.23 shows the average spectrum of all the real datasets available in the
first figure (duplicated to facilitate the comparison). There are several things to remark:

• There is a strong contribution of low frequency modes (below 2Hz). That contribution will
most likely represents the rigid body modes of the aircraft.

• There are two clear modes between 4 and 6 Hz. Those are the main modes of the system
whose contribution we need to identify, and are within the training range of the CNN and
the Laplace Wavelet.

• There is another mode between 8 and 10Hz. This mode is unaccounted for Laplace Wavelet
and CNN.
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FIGURE 3.21: Average Frequency Spectrum of real data. The first figure shows the
frequency spectrum of all the original datasets, the second shows the histogram of
frequencies estimated by PRESTO on the original datasets. The third shows the his-

togram of the dampings estimated by PRESTO on the original datasets.
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FIGURE 3.22: Average Frequency Spectrum of real data. The first figure shows the
frequency spectrum of all the original datasets, the second shows the histogram of
frequencies estimated by the Laplace Wavelet on the original datasets. The third
shows the histogram of the dampings estimated by the Laplace Wavelet on the orig-

inal datasets.
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FIGURE 3.23: Average Frequency Spectrum of real data. The first figure shows the
frequency spectrum of all the original datasets, the second shows the histogram of
frequencies estimated by a CNN 6x(40) on the original datasets. The third shows the

histogram of the dampings estimated by a CNN 6x(40) on the original datasets.

Figure 3.21 incorporates the histogram estimation from PRESTO on dampings and natural fre-
quencies. These plots show the number of identified datasets with such parameters. Even though
there are modes with a contribution out of the training range of the CNN and the dictionary of
the Laplace Wavelet, note that the histogram of dampings show that more than half of the iden-
tified dampings fall within the training range and dictionary of the aforementioned techniques
(0.03  z  0.20), and the same can be said about frequencies (3.0Hz  fn  6.0Hz). Note that as
indicated in section 3.9.1, only 1/8 to 3/8 of the signals will be useful. In fact, only the best 2/8 of
the original signals have been employed. From this perspective, we can have a reasonable level
of confidence that the best signals identified fall within those 150 datasets. Figure 3.22 show the
histogram of natural frequencies and dampings estimated by the Laplace Wavelet. It is blatant the
deficiencies due to the limited dictionary employed, along with the granularity associated to the
damping resolution. The frequencies show outliers in the boundaries of the frequencies range, and
even though the modes between 4Hz and 5Hz, and between 5Hz and 6Hz seem to have been iden-
tified, the boundary outliers take a preponderant position. Something similar happens with the
dampings. There are also boundary outliers in the edges of the dictionaries, and also even though
the dampings of interest seem to be identified, it is clearly necessary to expand the dictionary
to reach successful results. As a side note, Even though the author was aware of this limitation
and the implications associated, the limitations in the hardware available imposed a necessity to
reduce the dictionary. Also there is a factor to consider in the granularity of the damping identi-
fication. This is also a consequence of the limitations on the dictionary size. However, take into
account that the outlier in the right edge damping is most likely due to the signals where only one
mode is contributing. This can be modeled (and probably the algorithm followed this approach)
by increasing enormously the damping factor. A damping above 0.2 will fade out so quickly as
to model accurately one single mode in the signal (remember that the model always identifies
two different modes). The last plot, figure 3.23, shows the results from a Convolutional Neural
Network with 6 hidden layers and 40 neurons per layer. In this case also the limitations from
the small training range are blatant. No reports appear above 6Hz or 0.2 damping factor, which
obviously implies a necessary failure in the matching of a percentage of the signals. However, as
indicated above, the number of signals employed for these histograms include all the datasets,
while the scatter plots 3.19 only incorporate the best 150 matches. Note that the network identi-
fied a considerable number of signals between 4Hz and 6Hz, with prevalence of the 6Hz modes,
which corresponds to reality, even though the assessment is more qualitative than quantitative.

That been said, it is necessary to caveat the results from the current section. Confidence doesn’t
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mean certainty. Considering the fast processing time for the CNNs and accuracy, it is necessary to
reconsider the potential of a CNN with the characteristics of the ones analyzed in this thesis. Even
though the PRESTO estimation has demonstrated a superior result in terms of accuracy, the lack
of resources to provide a better estimation with the rest of the techniques.
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Chapter 4

Conclusions and future lines of work

4.1 Conclusions of the results

This thesis has intended to present, verify and validate new robust and fast techniques to process
Flutter Flight Test data.

To achieve such objective, it can be decomposed in the following areas:

1. Introduction and overview of Aeroelasticity and envelope expansion testing. This section
provides an overview of the concept of aeroelasticity, flutter, flight envelope and describes
the process to perform an envelope expansion from the technical perspective (1.2).

2. Review of the State of the Art (1.3). This section describes the state of the art related to two
different areas:

• The mathematical basis of aeroelasticity, focusing on the equations modeling the phe-
nomenon and the latest procedures related to testing aeroelastic structures.

• The latest development related to aeroelastic data processing.

3. Ancillary information related to the thesis

• Scope and limitations of the thesis (1.4).
• Description of the challenges of the task (1.5).
• Hypotheses and assumptions that will support the thesis (1.6).
• Methodology of investigation (1.7).

4. Derivation of the Flutter equations, considering the basic flutter equation as a second order
linear differential equation, and the combination of different forces to construct it (2.1).

• Inertial forces (2.2).
• Dissipative forces, focused on damping and different damping models (2.3).
• Elastic forces (2.4).
• Aerodynamic equations 2.5). We will decompose this section in two parts:

– Steady aerodynamics (2.5.1), where a brief introduction to fluid dynamics, and
potential flow theory will be introduced. This section will eventually derive the
forces (lift) and moments (aerodynamic moment) produced by steady aerodynamic
forces, and is necessary to understand the unsteady aerodynamics.

– Unsteady aerodynamics (2.5.2), where the equations of the forces and moments
contributing to the flutter mechanism (unsteady lift for bending and unsteady aero-
dynamic moment for torsion) will be described.

• Development of the flutter mechanism from the interaction between the previous forces
(2.6).
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5. Description of the particularities of the flutter vibration signals (2.7). Here will be discussed
the particular problems that are faced when identifying these kind of signals.

6. Development of the investigation (3). This constitutes the main chapter of this thesis, and
the following tasks will be carried out:

• A theoretical landmark for constraining the different techniques and solutions will be
described (3.2).

• Different data processing techniques will be analyzed and verified against synthetic
data, and then validated against real flutter flight test data.

– Description of different data processing techniques(3.3), including classical tech-
niques and deep learning techniques.

– Verification of those techniques against synthetic data (classical techniques, 3.4, and
deep learning techniques, 3.7).

– Development (3.5) and verification (3.6) of a new robust classical data processing
technique, the PRESTO algorithm, based on the experience from the verification of
different classical data processing techniques.

– Comparison and selection of the best three techniques, one classical technique
(Laplace Wavelet), one deep learning technique (Convolutional Neural Network
with 6 hidden layers and 40 neurons per hidden layer) and the developed tech-
nique (PRESTO) (3.8).

– Validation of the three selected techniques against real flutter flight test data (3.9).

7. Summary, conclusions and future lines of work, the current chapter (4).

The main innovations presented can be listed as follows:

1. Importance of the phase angle in the aeroelastic data identification. It has been demonstrated
the dependency between the phase angle and the estimation of frequency and damping in
a given aeroelastic flutter signal (3.2.1). The importance of this development resides in the
application for the development of the PRESTO technique.

2. Relationship between the Power Spectrum bandwidth and the aeroelastic data identification
considering the phase angle. The equations of the bandwidth as a function of the natural fre-
quency fn, the damping factor z and the phase angle j have been described (3.2.2). Same
as above, the importance of this techniques resides in the development of the PRESTO tech-
nique.

3. Presentation, verification and validation of the PRESTO estimation for processing Flutter
Flight Test data on F-18 legacy aircraft. The PRESTO processing technique has been pre-
sented. It has also been verified against synthetic signals and compared to different data
processing techniques, and lastly it has been validated with real Flutter Flight test data ex-
tracted from the Spanish Air Force F-18A/B aircraft. The PRESTO technique has been also
compared to a mainframe state of the art technique, the Laplace Wavelet Matching Pursuit
technique, and a Deep Learning technique, a Convolutional Neural Network with 6 hidden
layers and 40 neurons per hidden layer (3.5).

4. Training with synthetic aeroelastic data and validation against real Flutter Flight Test data
of a Convolutional Neural Network with 6 hidden layers and 40 neurons per hidden layer
(3.7). It is important to indicate that the use of Deep Learning techniques for Flutter Data
Processing is a novel undocumented procedure. All the studies with Deep Learning ap-
plied to aeroelasticity focus on the prediction or assessment of flutter conditions, but not the
identification of flutter signals parameters.



Chapter 4. Conclusions and future lines of work 100

5. Validation of the PRESTO, Laplace Wavelet Matching Pursuit and a Convolutional Neural
Network with real flutter flight test data and comparison among all three techniques (3.9).

4.2 Conclusions

In this section we will summarize the main conclusions from the thesis, with focus on the com-
parison between the three techniques.

When comparing PRESTO with the other high end validated processing technique, Laplace
Wavelet Matching Pursuit, there are some advantages and disadvantages.

The correlations between real and reconstructed data are very similar in both techniques, al-
though Laplace Wavelet shows a slight higher dispersion, probably due to the causes explained
in section 3.5.1, mainly that the Laplace Wavelet Matching Pursuit calculates one mode at a time
while PRESTO calculates both modes at the same time. Another factor is the performance of both
techniques. Laplace Wavelet Matching Pursuit is described as a greedy technique, and requires
extensive computational power to return results when the granularity of the atoms is low and
the range of the parameters high. In the examples employed for this thesis, the atoms range was
limited to the ones of already known conditions and the granularity was high. This was done
to return results comparable to the ones achieved by PRESTO, but in a real scenario a thinner
granularity would be required, and hence it would be complicated to get results in real time if
such conditions were to be fulfilled. From this perspective, PRESTO allows undoubtedly under
any condition for real time estimations, while Laplace Wavelet Matching Pursuit would require
a mid size cluster in order to get real time results. The Laplace Wavelet technique shows higher
insensitivity to noise than PRESTO and is less prone to overfitting when only one mode is con-
sidered. However PRESTO is mode accurate when clearly two modes participate in the vibration
mechanism.

As a general conclusion, both techniques are suitable for processing real data. Laplace Wavelet
Matching Pursuit is less prone to overfitting when only one mode is considered and also will
estimate better signals with high levels of noise However, PRESTO will process better signals
with two clear modes and allow for real time processing under any condition of sensitivity.

The other technique, Deep Learning, was successfully employed by training different Multi-
Layer perceptrons, Deep Neural Networks and Convolutional Neural Networks. Eventually a
Convolutional Neural Network was chosen as the best fit to identify flutter flight test signals,
with satisfactory results. Even though this network was not trained with the whole range of
frequencies and dampings that comprised the real analysis signals, the results are similar to the
ones reached with the other techniques, which entitles the technique as a perfect candidate for a
future line of investigation.

4.3 Future lines of work

Several open threads were identified during the effort of this PhD process, which entitle for future
lines of work.

• Validation of the PRESTO estimation:

The PRESTO estimation was validated against real F-18A/B flutter flight test data. However
it was not validated against another kind of aircraft data. It will most likely work just as
fine, but the statement cannot be made without a previous effort of validation against other
platforms.

• Overfitting when only one mode is present:
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The PRESTO estimation shows tendency to overfitting when only one mode is present. This
tendency needs to be properly addressed, and therefore it would be necessary to incorporate
steps in the algorithm to prevent overfitting and return a robust solution. For example, by
incorporating a preprocessing algorithm to account for the number of modes present in the
signal.

• Time Series tendency to get stuck in local minima:

The Time Series estimation has a tendency to get stuck in local minima. This tendency has
not been identified in PRESTO with the Peak-Algorithm seeding process, but it may not be
discarded on a different platform or different sets of data. For this reason it is necessary to
improve the robustness of the technique by improving the resilience against local minima
issues.

• Convolutional Neural Networks as candidates for flutter data processing

The CNNs have demonstrated to be a very good candidate for a flutter data processing tech-
nique. On top of that, Deep Learning is an unexplored technique in this area of investigation
with a great potential. It is a procedure robust against noise and one order of magnitude
faster than PRESTO or Laplace Wavelet. There are several areas that can be explored:

– CNN trained with a different number of layers and neurons. Several were explored for
his thesis, but it is possible to expand the investigation to more models.

– CNN trained with a larger number of samples. The number of training datasets em-
ployed was relatively small for the networks trained for this thesis. Also, in case of
expanding the number of neurons or layer it is necessary to expand the training and
validation dataset.

– In section 3.9.2 it was identified a secondary mechanism of identification in the com-
parison of dampings, when comparing the CNN with the PRESTO or Laplace Wavelet
techniques. It was not possible to identify the reason behind this secondary mechanism,
so it is worth investigating.

– Validation of the CNN with a dataset different to F-18A/B flutter flight test data. Fol-
lowing the same reasoning as with the PRESTO technique, the CNN was validated
against real data from a particular aerial platform. However it would be necessary to
validate the technique with different aircraft.

– Overfitting when only one mode is present. Also as in the PRESTO case, the network
needs to be trained with datasets including only one signal. For that task it is possible
to include in the training data samples with damping of the secondary mode equal to
unity or zero amplitude.

– CNN model with more output parameters. The CNN employed in this thesis included
only 4 different output parameters, natural frequencies of modes 1 and 2 and dampings
of modes 1 and 2. As demonstrated in section 3.2, the importance of the phase angle is
paramount, and even though there are techniques to return the accurate values of the
phase angle and amplitude (as described in this thesis), it is worth training a network
that returned all the involved parameters or even more modes, although it is unlikely
to get that kind of network trained without the capabilities of a supercomputer.
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4.4 List of publications

The present thesis yielded two different published works (one journal publication and one inter-
national symposium proceedings) and one unpublished journal paper, under preparation.

The first publication corresponds to an initial heuristic development of the investigation. Dur-
ing that time the effort was focused on the identification of flutter parameters by analyzing the
frequency spectrum, and even though the results were promising, the reconstruction of the signal
was missing one key factor, the influence of the phase angle. The contribution of Dr. Gil Pita was
crucial to unlock the problem and reach satisfactory results.

First publication

Title: Stochastic approach to flutter data processing and application to real F-18 A / B flight test data

Authors:

• Sami Abou-Kebeh LLano

• Roberto Gil Pita

• Manuel Rosa Zurera

Book: Proceedings of the Society of Flight Test Engineers, European Chapter (SFTE-EC)

• Year: 2015

• City: Seville

• Symposium: 26

• Pages: 24

The second publication compiles the core of the PRESTO technique development, verification
with synthetic data, validation with real data and comparison to the Laplace Wavelet Matching
Pursuit, along with the mathematical justification for the development of the technique. This pa-
per represents a landmark for the investigation, since the inclusion of the phase angle in the equa-
tions yielded extraordinary results, considering that the technique was compared to the Laplace
Wavelet Matching Pursuit, technique validated with real sets of data, and generated by F/18A/B
flutter flight tests, the same aircraft that the real data available for the author of the present thesis.

Second publication

Title: Multimodal Estimation of Sine Dwell Vibrational Responses from Aeroelastic Flutter Flight Tests

Authors:

• Sami Abou-Kebeh LLano

• Roberto Gil Pita

• Manuel Rosa Zurera
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Journal: Aerospace

• Year: 2021

• Volume: 8

• Issue: 11

• Pages: 325

• ISSN: 2226-4310

• D.O.I.: 10.3390/AEROSPACE8110325

The third paper (under development) focuses on the use of a Convolutional Neural Network
to process aeroelastic flutter vibrational data. The use of Machine Learning techniques, in partic-
ular Deep Learning, is novel for the described application. Different papers focus on the employ-
ment of such techniques to identify the flutter point in real time or predict the upcoming flutter
conditions, but up to date no published papers exist related to the identification of the flutter
parameters.

It is important to remark the importance of this publication given the potential of the tech-
nique. The Convolutional Neural Network investigated yielded very similar results to the previ-
ous two techniques, with the consideration that the technique can return results in real time (in
the order of tenths of millisecond for each signal analyzed, with a low end workstation), with the
potential to increase enormously the Situational Awareness of the Test Director during tests, and
hence directly impacting the security and the potential rate of survival of the pilot and aircraft
during these tests.

Third publication

Title: Application of Convolutional Neural Networks to identify Flutter Flight Testing signals parameters

Authors:

• Sami Abou-Kebeh LLano

• Roberto Gil Pita

• Manuel Rosa Zurera

Journal: Unpublished work. Under elaboration.
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Appendix A

Generic demonstrations

A.1 Demonstration of the aerodynamic velocity potential

We will start defining the velocity circulation G around a closed curve c in a velocity field v and
applying Green’s theorem:

G =
I

c
v · dl =

Z

s
(r⇥ v) · n ds (A.1)

Where dl is a differential of line element from a closed curve c, ds the differential surface
element of the surface s enclosed by the curve c, and n the normal vector to the surface s, as the as
depicted in figure A.2.

In order for the velocity to derive from a Potential function, it is necessary that the vorticity of
the velocity (circulation) is zero inside the curve c.

According to Meseguer Ruiz and Sanz Andrés, 2010 we can apply Bjerknes-Kelvin’s theorem,
which states that if the fluid has negligible viscosity, the inertial forces derive from a potential function
and the fluid keeps a barotropy relationship (all those premises can be derived from assumptions 4 and 8),
the variation with time of the circulation is zero:

dG
dt

= 0 (A.2)

Also consider that according to assumption 6, the vorticity of the velocity is zero upwaters,
and hence we can fairly assume that the circulation:

G = 0 (A.3)

With these two premises into account, we can infer that equation A.1 equals zero, and hence:

r⇥ v = 0 () v = rF (A.4)

And therefore the velocity field v derives from a velocity potential field F

FIGURE A.1: Sign convention and nomenclature
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FIGURE A.2: Velocity circulation around a closed curve. Figure 2.2 reproduced here
for clarity.

A.2 Calculation of pressure coefficient terms in unsteady aerodynam-
ics from the velocity potential and thermodynamic relationships

In this case we will calculate the pressure coefficient Cp and integrate to know the lift and moment
distributions. The pressure coefficient Cp is defined as equation 2.55 (reproduced here for clarity):

Cp(z) =
p(z)� p•

1
2 r•u2

•
(A.5)

Since the undisturbed velocity u•, density r• and pressure p• are known, the only unknown
is the pressure field p(z), which can be calculated from the generalized Bernouilli equation 2.52:

∂F

∂t
+

1
2
|rF|

2 +
Z dp

r
= C1(t) (A.6)

We need to derive all the terms in Bernouilli’s equation. For that we will define the speed of
sound a as follows (the demonstration can be found in appendix A.3);

a2 = g
p
r

(A.7)

Where a is the local speed of sound, g the adiabatic expansion coefficient (usually 1.4 for dry
air in standard atmosphere) and r the air density. The terms on F can be derived from equation
2.84:

8
>>><

>>>:

∂F

∂t
= e1

∂j1
∂t

rF = (u• + e0
∂j0
∂x + e1

∂j1
∂x , e0

∂j1
∂z + e1

∂j1
∂z )

(rF)2 = u2
• + 2u•

∂j0
∂x e0 + 2u•

∂j1
∂x e1

(A.8)

For the terms related to p and r, we need to recall the equation for adiabatic processes:

p
rg

=
p•

rg
•

(A.9)

Where p indicates the air static pressure of a specific fluid particle, r indicates the air density
of a specific fluid particle, g is the adiabatic expansion coefficient and the • subindexes indicate
undisturbed air conditions.

When combining equations A.7 and A.9 with the term
R dp

r , yields:
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Z dp
r

=
p•

r•

g

g � 1

✓
p

p•

◆ g�1
g

=
a2

•
g � 1

✓
p

p•

◆ g�1
g

(A.10)

Substituting equations A.8, A.10 and A.7 into equation 2.52 (particularizing C1(t) in equation
2.52 to infinite conditions) yields:

p
p•

=

⇢
1 +

g � 1
a2

•
[�u•

∂j0

∂x
e0 � (

∂j1

∂t
+ u•

∂j1

∂x
)e1]

� g
g�1

⇡

1 �
g

a2
•
[u•

∂j0

∂x
e0 + (

∂j1

∂t
+ u•

∂j1

∂x
)e1]

(A.11)

In equation A.11, to make the approximation we expanded the binomial through the Newton’s
generalized binomial theorem and kept the first two terms, disregarding the terms of order 2 and
above.

Now, substituting equation A.11 into the pressure coefficient equation 2.55, yields:

Cp =
p � p•
1
2 r•u2

•
=

p�p•
p•

1
2 r•u2

•
p•

=

p�p•
p•

1
2 g u2

•
a2

•

=)

=) Cp = �
2

u2
•
[u•

∂j0

∂x
e0 + (

∂j1

∂t
+ u•

∂j1

∂x
)e1]

(A.12)

Which itself can be decomposed into two different contributions, the stationary e0 and non
stationary e1:

(
Cp,0 = �

2
u2

•

∂j0
∂x (x, 0)

Cp,1 = �
2

u2
•
[ ∂j1

∂t (x, 0, t) + u•
∂j1
∂x (x, 0, t)]

(A.13)

A.3 Velocity of sound demonstration

In this chapter we will demonstrate the equation for the speed of sound in terms of thermody-
namic properties. This demonstration is extracted from White, 2016.

In figure A.3 the thermodynamic properties are described with the density r, pressure p, tem-
perature T, surface element A and wave speed c. Note that it’s accurate to say that in this case the
wave speed c (on the left) can be considered the airspeed (U), with a change in airspeed Dc behind
the wave.

Now we will apply the continuity equation at both sides of the pressure wave:

rAc = (r + Dr) · A · (c � DU) () DU = c ·
Dr

r + Dr
(A.14)

Note that the change in density in a sound wave is minimum, and therefore the change in
airspeed in equation A.14 is also minimum. However in this equation we have two unknowns,
the density increase Dr and the airspeed in crease DU. We need to calculate the density increase,
and for that we will apply the conservation of momentum equation at both sides of the wave:

pA � (p + Dp)A = (rAc) · (c � DU � c) =) Dp = rcDU (A.15)

Combining equations A.15 and A.14, we get the speed of sound equation:
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FIGURE A.3: Control volume including a static pressure wave. Note that the control
volume is moving with the pressure wave to prevent dependency on time.

c2 =
Dp
Dr

✓
1 +

Dp
r

◆
(A.16)

And in the limit, where the density increase is infinitesimal: Dr ! o

a2 =
∂p
∂r

(A.17)

Where a is the speed of sound.
As a last step, to calculate the derivative it is necessary to model appropriately the thermody-

namic model of the sound wave. Take into account that the sound wave is expected to be very
weak, and therefore we can state the assumption of the thermodynamic evolution to be isentropic
recalling equation A.9 and calculating equation A.17:

a2 = gRT = g
p
r

(A.18)

QED

A.4 Calculation of the circulation of the vortices sheet under unsteady
aerodynamics

In order to calculate the vortices distribution, first of all we need to calculate the velocity field
induced by the vortices on the airfoil sheet and wake models:

∂j1

∂z
(x, 0, t) = �

1
2p

VP
Z B

�B

ga(z, t)
x � z

dz +
Z •

B

gw(z, t)
x � z

dz

�
(A.19)

Where VP indicates the Cauchy’s principal value of the integral, ga represent the contribution
of the vortices in the airfoil position and gw represent the contribution of the vortices in the wake.
Also note that in this case z not only represents a mute integration variable, but also the position
of the differential vortex element whose contribution we want to calculate.

Introducing equations 2.90 into A.19, we can rewrite the potential derivative in terms of the
harmonic functions as defined in 2.90:
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∂j1

∂z
(x, 0, w) = �

1
2p

VP
Z B

�B

ga(z, w)
x � z

dz +
Z •

B

gw(z, w)
x � z

dz

�
(A.20)

Remember from 6 that according to Kelvin’s Theorem the contribution along the time of the
airfoil circulation and wake vorticity along the length of the wake must be the same. Also, from
Kutta condition 2.5.1.9 the vortices created by the circulation are transported to the wake through
the trailing edge detached vortex, meaning that the rate of production of vortices in the trailing
edge is the same as the vortices along the length of the wake per length unit (of course assuming
a stationary regime, the wake is steady):

dG(t)
dt

dt � gw(B, t)dx = 0 ()
dG(t)

dt
� gw(B, t)

dx
dt

= 0 (A.21)

In equation A.21 the term dx
dt represents the velocity at which the vortices are detached from

the trailing edge, meaning the wake velocity. In this case we can assume the wake to be moving at
velocity u• (Even though we will not demnsrtate this fact, this is coherent with observation. From
an external observer the wake remains static in the atmosphere while the aircraft moves. In a first
approximation we will assume that the wake moves with u• relative to the airfoil), therefore we
can rewrite equation A.21 as follows:

gw(B, t) = �
1

u•

dG(t)
dt

(A.22)

Now notice that equation A.22 is particularized to the trailing edge B. If we want to to calculate
the vortex in the wake at a time t and position z, it was detached from the trailing edge at a time
t0:

t0 = t �
z � B

u•
(A.23)

And therefore the equation for a particular time t and position z is:

gw(z, t) = �
1

u•

dG(t)
dt

����
t=t0

(A.24)

We can rewrite this equation considering the harmonic movement as expressed in equations
2.90:

gw(z, w)eiwt = �
1

u•
iwG(w)eiw(t� z�B

u• )
() gw(z, w) = �

iwG(w)
u•

e
iwB
u• e�

iwz
u• (A.25)

Equation 2.89 introduced one non-dimensional variable that needs to be employed here, the
reduced frequency k = wB

u•
(we will omit the tildeˆhere since it is a standard adimensional num-

ber), and we will introduce other new non-dimensional variables:

ĵz(x̂, 0, k) =
jz(x, 0, w)

u•

ĝ(ẑ, k) =
g(z, w)

u•B

Ĝ(k) =
G(w)
u•B2

x̂ =
x
B

, ẑ =
z

B

(A.26)
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The non dimensional potential derivative, vortex distribution, circulation and distances re-
spectively. This way, combining equations A.20 and A.25 can be rewritten in adimensional form
with the defined relations as follows:

ˆ∂j1

∂z
(x̂, 0, k) = �

1
2p

VP

"Z 1

�1

ĝa(ẑ, k)
x̂ � ẑ

dẑ � i k Ĝ(k)eik
Z •

1

e�ikẑ

(x̂ � ẑ)
dẑ

#
(A.27)

Equation A.27 has only one unknown, ĝ(ẑ, k). since Ĝ(k) =
R 1
�1 ĝa(ẑ, k)dẑ and ˆ∂j1

∂z is related to
equations 2.89 by equations 2.87, taking into account that the stream velocity on the airfoil is the
same as the airfoil movement as described above.

Recapping so far, expression A.27 relates the velocity potential derived with respect to z (the
airfoil vertical component of the velocity, known as a harmonic function) to the airfoil vortices
distribution (unknown) in the form of an integral equation.

Now it is necessary to invert equation A.27 to solve ĝw. We will follow Goldstein’s method
(also Sohngen’s method), described by Söhngen, 1939 and applied to this problem by Goldstein
and Ward, 1950 without further demonstration:

ĝa(x̂, k) =
2
p

r
1 � x̂
1 + x̂

VP

2

4
Z 1

�1

s
1 + ẑ

1 � ẑ

ˆ∂j1
∂z (ẑ, 0, k)

x̂ � ẑ
dẑ +

i k Ĝ(k)ei k

2

Z •

1

e�i k ẑ

x̂ � ẑ

s
ẑ + 1
ẑ � 1

dẑ

3

5 (A.28)

In equation A.28 there is an implicit relationship between ĝa and Ĝ. To solve it we will integrate
equation A.28 between �1 and 1, meaning between the trailing and the leading edge of the airfoil,
to get the global circulation produced by the airfoil as a function of the reduced frequency:

Z 1

�1
ĝa(x̂, k)dx̂ = Ĝ(k) =

=
2
p

VP
Z 1

�1

r
1 � x̂
1 + x̂

Z 1

�1

s
1 + ẑ

1 � ẑ

ˆ∂j1
∂z (ẑ, 0, k)

x̂ � ẑ
dẑdx̂+

+
2
p

i k Ĝ(k)ei k

2
VP

Z 1

�1

r
1 � x̂
1 + x̂

Z •

1

e�i k ẑ

x̂ � ẑ

s
ẑ + 1
ẑ � 1

dẑdx̂

(A.29)

Equation A.28 can be partially integrated reordering the integration factors, and eventually it
leads to:

Ĝ(k) = �2VP
Z 1

�1

s
1 + ẑ

1 � ẑ

ˆ∂j1

∂z
(ẑ, 0, k)dẑ � i k Ĝ(k)ei kVP

Z •

1
e�i k ẑ

 s
ẑ + 1
ẑ � 1

� 1

!
dẑ (A.30)

Note that the circulation Ĝ(k) can be expressed in terms of the Hankel functions H(2)
0 and H(2)

1
through the following procedure:

8
<

:

H(2)
0 (k) = 2i

p

R •
1

e�i k z
p

z2�1
dz

H(2)
1 (k) = �2i

pk
R •

1
e�i k z

p
(z2�1)3

dz
(A.31)

We can rewrite the second term of the right hand term of equation A.30 as follows:
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Z •

1
e�i k ẑ

 s
ẑ + 1
ẑ � 1

� 1

!
dẑ = �

p

2
(H(2)

1 (k) + iH(2)
0 (k))�

e�ik

ik
(A.32)

And therefore solving equation A.30 for Ĝ yields:

Ĝ =
2VP

R 1
�1

r
1+ẑ
1�ẑ

ˆ∂j1
∂z (ẑ, 0, k)dẑ

ikeik p
2 (H(2)

1 (k) + iH(2)
0 (k))

(A.33)

Now it is possible to substitute equation A.33 into equation A.28, reaching the solution for the
vortex distribution along the airfoil:

8
>>><

>>>:

ĝa(x̂, k) = 2
p

q
1�x̂
1+x̂ VP

R 1
�1

r
1+ẑ
1�ẑ

ˆ∂j1
∂z (ẑ,0,k)

x̂�ẑ
dẑ + i k Ĝei k

2
R •

1
e�i k ẑ

x̂�ẑ

r
ẑ+1
ẑ�1

dẑ

�

Ĝ =
2VP

R 1
�1

r
1+ẑ
1�ẑ

ˆ∂j1
∂z (ẑ,0,k)dẑ

ikeik p
2 (H(2)

1 (k)+iH(2)
0 (k))

(A.34)

Note that this equation is dependent on the vertical velocity of the airfoil ˆ∂j1
∂z . In equations 2.89

we gave the two characteristic examples of airfoil movement, and hence this parameter is known.

A.5 Calculation of the unsteady pressure coefficient

The pressure coefficient Cp is defined in equation 2.88. We will calculate the difference of pressure
coefficient between the upper and lower sides of the airfoil.

DCp,1(x, 0, t) = CL
p,1(x, 0, t)� CU

p,1(x, 0, t) (A.35)

And from equation 2.88:

Cp,1(x, 0, t) = �
2

u2
•
[
∂j1

∂t
(x, 0, t) + u•

∂j1

∂x
(x, 0, t)] (A.36)

Notice the following relation:

j1 = j1(x, 0, w)eiwt =)
∂j1

∂t
= iwj1(x, 0, w)eiwt (A.37)

Therefore in non-dimensional variables we have:

DĈp(x̂, k) = 2

(
ik
h

ĵ1(x̂, k)U
� ĵ1(x̂, k)L

i
+

∂ĵ1(x̂, k)
∂x

U
�

∂ĵ1(x̂, k)
∂x

L
)

(A.38)

However, by the definition of circulation (limited to the airfoil) we have:

ĝa(x̂, k) =
∂ĵ1(x̂, k)

∂x

U
�

∂ĵ1(x̂, k)
∂x

L
()

Z x̂

�1
ĝa(ẑ, k)dẑ = ĵ1

U(x̂, k)� ĵ1
L(x̂, k)

(A.39)

Therefore we can write the pressure coefficient difference:
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DĈp(x̂, k) = 2


ĝa(x̂, k) + ik
Z x̂

�1
ĝa(ẑ, k)dẑ

�
(A.40)

Now, from the calculated value of ga in equation 2.91:

DĈp(x̂, k) =
4
p

VP
Z +1

�1

ˆ∂j1

∂z
(ẑ, k)

"r
1 � x̂
1 + x̂

s
1 + ẑ

1 � ẑ

1
x̂ � ẑ

� ikL(x̂, ẑ)

#
dẑ+

+
4
p
[1 � C(k)]

r
1 � x̂
1 + x̂

Z +1

�1

s
1 + ẑ

1 � ẑ

ˆ∂j1

∂z
(ẑ, k)dẑ (A.41)

Where:

L(x̂, ẑ) =
1
2

Ln

2

4
1 � x̂ẑ +

q
1 � ẑ2

p
1 � x̂2

1 � x̂ẑ �
q

1 � ẑ2
p

1 � x̂2

3

5 (A.42)

And C(k) is known as the Theodorsen function:

C(k) =
H(2)

1 (k)

H(2)
1 (k) + iH(2)

0 (k)
(A.43)

A.6 Demonstration of the case w0 = 0 in equation 3.11

The derivative 3.10 shows that there is an extremal where w0 = 0.
w0 = 0 happens if and only if:

2(1 � 2z2)b2 + 1 = 0 (A.44)

This means that depending on the phase there will be a damping ratio over which the extremal of
the spectrum is located in zero frequency. To analyze those cases, substituting the definition of b
from equation (3.5) in (A.44), yields:

tan(j) = ±
2(1 � 2z2)

p
1 � z2

±
p

2(1 � 2z2)� z
(A.45)

In this case we must consider two different situations:

1. Denominator = 0 =) j = ±
p
2

z =
q

2(1 � 2z2) => z =

r
2
5
⇡ 0.63 (A.46)

2. Complex roots
This particular case involves two equations,

p
1 � z2 and

p
2 · (1 � 2z2). The first case sim-

ply implies that z  1, which is already covered by the condition of subcritical damping.
The second case however, is derived as:

q
2 · (1 � 2z2) � 0 =) z 

r
1
2
⇡ 0.71 (A.47)
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Up to this point we have set an upper limit for damping z 

q
1
2 , below the required z  1 re-

quired for the subcritical damping condition.
Now we will demonstrate that this limit is incompatible with the maximal condition. To do that
we must calculate the second derivative of the power spectrum expressed in equation (3.6) and
particularize for the case w0 = 0. The intention is to apply a "reductio ad absurdum" demonstra-
tion, on which we will impose ∂2Sx(w)

∂w2

���
w=w0=0

< 0 and try to get to a contradiction:

∂2Sx(w)
∂w2

����
w=w0=0

=

=2w4
n sin2(j)� a2

· 2w2
n(4z2

� 2) < 0
(A.48)

Substituting a from equation (3.3) above and simplifying yields:

(
q

1 � z2 + z tan(j))2
· (4z2

� 2) > tan2(j) (A.49)

In this case we must notice that (
p

1 � z2 + z tan(j))2 and tan2(j) are always positive, so one
condition for this to be true is that 4z2 � 2 > 0

4z2
� 2 > 0 =) z >

r
1
2
⇡ 0.71 (A.50)

According to the condition for the roots to be real expressed in equation (A.47), z 

q
1
2 , but the

condition for the extremal to be a maximum demonstrated in equation (A.50) is z >
q

1
2 , which is

a contradiction and therefore the extremal must be either a minimum or an inflexion point QED.
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