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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Bloodstains can be identified indepen-
dently of the substrate they are on. 

• Bloodstains can be differentiated from 
three interferents. 

• ATR FTIR spectroscopy and chemo-
metrics show a high potential in 
forensics.  

A R T I C L E  I N F O   

Keywords: 
Blood 
Interferent 
Substrate 
Vibrational spectroscopy 
ATR FTIR 
OPLS-DA 

A B S T R A C T   

Blood is the most common and relevant bodily fluid that can be found in crime scenes. It is critical to correctly 
identify it, and to be able to differentiate it from other substances that may also appear at the crime scene. In this 
work, several stains of blood, chocolate, ketchup, and tomato sauce on five different substrates (plywood, metal, 
gauze, denim, and glass) were analysed by ATR FTIR spectroscopy assisted with orthogonal partial least square- 
discriminant analysis (OPLS-DA) models. It was possible to differentiate blood from the environmental inter-
fering substances independently of the substrate they were on, and to differentiate bloodstains according to the 
substrate they were deposited on. These results represent a proof-of-concept that open new horizons to differ-
entiate bloodstains from other interfering substances on common substrates present in crime scenes.   

Abbreviations: ATR, attenuated total reflectance; AUC, area under the curve; FPR, false positive classification rate; LDA, linear discriminant analysis; OPLS-DA, 
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square discriminant analysis; PLSR, partial least square regression; ROC, receiver operating characteristic; SIMCA, soft independent modelling of class analogy; SNV, 
standard normal variate; TPR, true positive classification rate; VIP, variable of importance for the model. 
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1. Introduction 

When a crime is committed, different traces can be found at the 
crime scene. Bodily fluids are of extremely relevance due to the amount 
of information they can provide to criminal investigators. Within the 
bodily fluids, blood is the most important one. Bloodstains are usually 
found in violent crimes, such as murder, robbery, battery, sexual as-
saults, etc. Analysing the bloodstains allow the investigators to deter-
mine what kind of crime was committed, which weapon was used, if the 
blood is human or from an animal, if it is relevant to the case or not, if 
blood is mixed with other bodily fluids, etc [1,2]. There may also be 
substances that resemble bloodstains or that could give false positives on 
a detection test at the crime scene. These are called environmental in-
terferences [3]. 

For all of this, the identification of the stains like blood and its dif-
ferentiation from other bodily fluids or artificial substances is impera-
tive. Bloodstains have been traditionally analysed by presumptive tests, 
like luminol or leucomalachite green, and confirmatory techniques such 
as immunochromatographic techniques, which are destructive to the 
sample [3], time-consuming [2], and not so simple. For crime scene 
investigations, it is paramount that the samples are identified as soon as 
possible and preserved for further analysis in the laboratory. The 
amount of blood found at the scene may be very small and necessary for 
subsequent DNA extraction, so destruction of the sample in the identi-
fication process should be avoided. Moreover, traditional tests are not 
able to detect mixed stains [4]. 

These reasons explain why the scientific community is looking for 
non-destructive, simple, selective, and fast techniques to analyse 
bloodstains, such as attenuated total reflectance Fourier transform 
infrared spectroscopy (ATR FTIR). This technique is based on the mea-
surement of the changes that occur in the dipole moment of bonds after 
an excitation with electromagnetic radiation [2]. The FTIR spectrum 
depends on the chemical composition [5]. When two substances have a 
different chemical composition, their spectra will also be different. 
Hence, when the same substance changes its composition (for example, 
during blood ageing), so does its spectrum. Therefore, the technique can 
be used to differentiate substances from each other [5–12], as well as to 
monitor changes in a substance over time [4,10]. The first portable ATR 
FTIR was developed by Agilent Technologies in 2008. Since then, the 
spectrometer has been used to analyse composites, polymers, coatings, 
and contaminants in the automobile, metal, biomedical, electronics in-
dustry [13], etc. With them, ATR FTIR could also be used in situ at the 
crime scene [5,12,13]. 

The data obtained from ATR FTIR is large and complex and must be 
processed (cleansed and filtered) mathematically using chemometrics. 
The literature collects interesting studies regarding ATR FTIR’s appli-
cation on different biological fluids. Zapata et al. used ATR FTIR with 
principal component analysis (PCA) and soft independent modelling of 
class analogy (SIMCA) to distinguish semen, vaginal fluid, and urine 
from each other and non-bodily fluid substances on different substrates. 
They also successfully studied semen-vaginal fluid mixtures [7]. 

Fig. 1. Photographs of the dried stains of blood, chocolate, ketchup, and to-
mato sauce on the five different substrates employed: plywood, metal, gauze, 
denim, and glass. Photographs of the substrates without stains are 
also included. 

Fig. 2. Average ATR FTIR spectra of blood, chocolate, ketchup, and tomato sauce measured directly on the diamond crystal, immediately after the deposition. The 
main fluids’ bands are marked in their corresponding spectra. 
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Takamura et al., in 2017, differentiated antemortem and postmortem 
blood on different substrates by ATR FTIR and a partial least square 
discriminant analysis (PLS-DA) [9]. Also, in 2018, they differentiated 
peripheral blood, saliva, semen, urine, and sweat by ATR FTIR spec-
troscopy and chemometrics, and those bodily fluids from non-bodily 
fluid substances. They also studied sample-aging [10]. Kumar et al. 
studied bloodstains aging by ATR FTIR and chemometrics [4]. Mistek- 
Morabito et al. employed ATR FTIR and PLS-DA to differentiate be-
tween human and animal blood [12], while in 2021 they combined ATR 
FTIR with PCA and PLS-DA to discriminate peripheral blood, menstrual 
blood, and vaginal fluid [5]. In 2020, Sharma et al. used ATR FTIR along 
with PCA, linear discriminant analysis (LDA) and partial least square 
regression (PLSR) to differentiate menstrual blood from peripheral 
blood, seminal and vaginal fluid. Although only menstrual blood was 
measured as stains on different substrates, menstrual blood, and the 
other fluids (including the non-bodily fluids) were deposited on glass 
and, once they were dried, they were scraped out and placed on the 
ATR’s diamond crystal [11]. 

Bloodstains can be found on a wide range of different surfaces, both 
porous and non-porous materials. When blood is in a porous substrate, it 
tends to get through the layers of the material until it dries; by contrast, 
when blood is on a non-porous substrate, it accumulates and dries on the 
surface [1]. This is important, because the intensity of the bands in the 
infrared (IR) spectrum can be weaker or overlapping when the fluids are 
in porous substrates [8]. 

The main objective of this investigation is to identify bloodstains on 
five different substrates: plywood, metal, gauze, denim, and glass. Those 
are surfaces usually present in crime scenes. A second objective was the 
differentiation of bloodstains from three environmental interferent 
stains that could be confused with blood: chocolate, ketchup, and to-
mato sauce. To achieve these objectives, ATR FTIR was employed to 
analyse the bloodstains and the interferents stains on the five different 
substrates. The data obtained was used to create orthogonal partial least 
square-discriminant analysis (OPLS-DA) models. 

2. Materials and methods 

2.1. Samples 

Human blood was obtained from one female donor by pricking the 
index finger with a lancet. Interferents may be commonly found as 
environmental interfering stains in a crime scene. In this study, choco-
late, tomato sauce, and ketchup were used as interferents. Chocolate 
(milk chocolate, Mr. Wonderful, Spain) was composed of sugar, cocoa 
butter, cocoa mass, milk powder, emulsifier, and flavourings; ketchup 
(Heinz, Pittsburgh, Pennsylvania, United States), and tomato sauce 
(Solís, Nestlé, Vevey, Switzerland) were bought from a local supermar-
ket. Both fluids were composed by tomato, sugar, salt, and species. The 
ketchup also had alcohol vinegar and celery in its ingredients, which are 
not present in the tomato sauce. The tomato sauce also had sunflower 
oil, corn starch, and onion. 

Five common (everywhere) substrates were used as substrates: wood 
(plywood), metal (galvanised iron), gauze (white polyester), denim 
(100 % cotton blue denim), and glass (glass slide). All the substrates 
were cut in 4x4 cm pieces. They were also analysed to obtain a reference 
background. 

A blood drop (after pricking a finger of the donor) was placed 

Table 1 
Characteristic bands of the fluids analysed by ATR FTIR and their corresponding 
functional groups.  

Substance Wavelength 
(cm¡1) 

Vibrational 
mode 

Main attribution Reference 

Blood 698 Amide IV 
(C–H bending) 

Protein [12] 

1560–1500 Amide II (N–H 
bending and 
C–N 
stretching) 

1600–1700 Amide I (C––O 
stretching) 

3200–3500 O–H 
stretching 

Hydroxyl in water 

Chocolate 720 CH2 rocking Tryacilglycerols [17] 
848 
865 
908 
988 
1067 
1160 C–O stretching Tryacilglycerols 

in liquid state 
1236 CH2 wagging 

CH2 twisting 
Tryacilglycerols 

1363 CH2 wagging 
1460 CH2 scissoring 
1744 C––O stretching Glycerol 

backbone’s 
disordered 
conformational 
state 

2852 C–H 
symmetric 
stretching 

Polymethylene 
segments 

2921 C–H 
asymmetric 
stretching 

Ketchup 1030 C–O–C Carbohydrates 
and acids 

[18] 
1077 
1105 C–C stretching 

C–C–H 
stretching 
C–O–C1 

1Carbohydrates 
and acids 

[18,20]  

1151 C–C stretching 
C–C–H 
stretching 
C–O stretching 
C–O–C1 

1416 C–H bending  [18] 
1459 CH2 Trans-lycopene [19] 
1636 C––C stretching Olefin [19,20] 
2933 Asymmetrical 

CH2 

Lipids [19] 

3303 O–H 
stretching 

Water bands [18] 

Tomato 1096 C–O–C Carbohydrates 
and acids 

[18] 

1158 C–C stretching 
C–C–H 
stretching 
C–O stretching 
C–O–C1 

1Carbohydrates 
and acids 

[18,20] 

1235 C–C stretching 
C–C–H 
stretching  

1378  [18] 

1460 C–H bending 
CH2 

Trans-lycopene [18–20] 

1638 C––C stretching Olefin [19,20] 
1742  Lipids 

2Lycopene 
[18] 

2852 2Methylene 
C–H 
asymmetric 
stretching 

[18–20] 

2922 2Methylene 
C–H  

Table 1 (continued ) 

Substance Wavelength 
(cm¡1) 

Vibrational 
mode 

Main attribution Reference 

symmetric 
stretching 

3347 O–H 
stretching 

Water bands [18]  
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directly on the substrates, by simple deposition, and left to dry at 
ambient conditions. This procedure was made to mimic the conditions 
that would be found at a crime scene and no bloodstain segregation was 
observed visually. A small amount of the interfering substance, like the 
tip of a spatula, was placed on the same type of substrates as the blood. 
All the fluids (blood and environmental interferents) were also placed 
directly on the diamond crystal of the FTIR to measure their pure 
spectra. 24 stains were measured: Four of them were directly deposited 
on the diamond crystal; and 20 different stains were deposited on sub-
strates (four substances on five different substrates). 

2.2. Instrumentation 

The measurements were made with a Nicolet iS10 FTIR Spectrometer 
(Thermo Fisher Scientific, Waltham, Massachusetts, United States) and 
the Smart Orbit iTR ATR with a diamond crystal component equipped 
with the OMNIC software (Thermo Fisher Scientific, Waltham, Massa-
chusetts, United States). The Smart Orbit ATR accessory works in single- 
reflection. The absorption-mode spectra were recorded in the 500 to 
4000 cm− 1 range with a resolution of 8 cm− 1 with 32 scans. The back-
ground (air) was measured before analysing each sample, approximately 
every 10 min. 

Each sample, placed directly on the diamond crystal of the ATR- 
spectrometer (pure blood and different substances) or on the sub-
strates, was measured ten times. When analysing the stains on the sub-
strates, five spectra were obtained from the outer part and other five 
spectra from the inner part of the studied spots. The spectra showed in 
the figures are the averaged signal of the different spectra collected. The 
diamond crystal of the spectrometer was cleaned with propanol between 
the measurements of the different fluids and substrates. 

2.3. Data treatment 

All the spectra were imported and organised into a Microsoft Excel 
v2008 (Microsoft Corporation, Redmond, Washington, United States) 

matrix. Then, this matrix was imported into The Unscrambler X 10.4 
version (CAMO-Aspen Technology, Houston, United States) for the data 
pre-processing. The pre-processing step is important to further cleanse 
the data, reduce its abnormal variation, scatter effects, and random 
noise [14]. This in-chain mathematical treatment included the typical 
spectral data pre-processing: A baseline offset, standard normal variate 
(SNV) normalisation, and the Savitzky-Golay smoothing (2nd order 
polynomial and 7 smoothing points). The cleaned data was then im-
ported into SIMCA v17.02 (Sartorius, Göttingen, Germany) for 
modelling. 

A Principal Component Analysis (PCA) was carried out to explore the 
data. PCA is a multivariate projection method that reduces the dimen-
sion of the data facilitating the overview of the multivariate data. PCA 
makes it possible to find which data objects (individuals) group together 
and which do not fit the model (outliers) [15]. In addition, orthogonal 
partial least squares-discriminant analysis (OPLS-DA) models were 
created to differentiate bloodstains on the different substrates (plywood, 
metal, gauze, denim, and glass). OPLS-DA was also used to try differ-
entiating among blood and the environmental interfering stains inde-
pendently of the substrate where they were deposited on. OPLS is a 
modification of partial least squares (PLS) in which the variation in the 
X-matrix is divided: one part is related to the Y-matrix and the other part 
is not related to the Y-matrix, which is the orthogonal part [15]. In an 
OPLS-DA model, a component acts as a predictor of a class, while the 
remaining components of the model explain the variability orthogonal 
to the predictor. In this study, the OPLS-DA models were made using 
cross validation with the leave-one-out method. For this purpose, the 
sample set was automatically divided into seven groups. For each vali-
dation, one of the seven groups was taken as a test set and the remaining 
six groups as a whole training set. For the next validation, the group 
previously used as test set was returned to the training set, and the 
second group of samples were excluded and used as a test set. In this 
way, each of the seven groups was tested once, allowing the best per-
forming model to be obtained without reaching under- or over-fitting 
conditions. In OPLS-DA, there are two key terms that allow us to 

Fig. 3. Average ATR FTIR spectra of the pure substrates. The figure shows the main bands of each substrate.  
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interpret the model with a high goodness of fitting: R2X and Q2X. While 
R2X indicates the amount of variation of a variable that is explained by 
the model, Q2X is the cross-validated version of R2X, which determines 
the predictive ability of the model. When both values are greater than 
0.5, the model could be considered as robust and having a good pre-
dictive ability. The confidence level of the parameters and the 

significance level for the Hotelling’s T2 were set to 95 % and 0.05, 
respectively [16]. The Hotelling’s T2 plot represented the distance to the 
centre of the model for each sample, acting as a multivariate equivalent 
of the well-known t-student parameter. In this plot, two confidence 
limits (95 and 99 %) were stablished. If the T2 value of one sample was 
larger than the 99 % limit, that observation was considered an outlier 
that could negatively affect the model. Instead of using the traditional 
loadings plots, less practical when representing hundreds of wave-
lengths, the contribution, or the variable of importance for the model 
(VIP) plots were used to determine which of the variables had the 
greatest influence on the outcome of the model. The receiver operating 
characteristic (ROC) plot showed how good was the performance of the 
classification/discrimination model. In this plot, the true positive clas-
sification rate (TPR) was plotted in the Y-axis, while the false positive 
classification rate (FPR) was represented in the X-axis. How well the 
model classified the samples was quantitatively tested by the area under 
the curve (AUC). If the value was close to 0.5, the model performed bad 
classifications, while values close to 1 indicated nearly a perfect 
classification. 

The same matrix used to build the OPLS-DA models was used to 
create the graphics, which were made with ORIGIN v2021 (OriginLab, 
Northampton, Massachusetts, United States). 

3. Results and discussion 

3.1. IR spectral characterization of blood from environmental interfering 
stains 

There are some common substances that may form part of a stain and 
could act as environmental interferents of bloodstains present at a crime 
scene. Fig. 1 shows blood and some common interfering stains (choco-
late, ketchup, or tomato sauce) on several substrates (plywood, metal, 
gauze, denim, and glass). 

Fig. 2 shows the spectra of blood, chocolate, ketchup, and tomato 
sauce obtained by ATR FTIR measured directly on the diamond crystal, 
immediately after their deposition. The spectra of these four fresh 
samples are different, although some bands are common in all of them. 
Table 1 summarises the characteristic bands of all the studied fluids. In 
the blood spectra, the 3200–3500 cm− 1 region was intense and corre-
sponds mainly to the O–H stretching of the samples’ water [12]. In the 
same region appeared the vibration band of the N–H stretching from 
the amides. By contrast, the 2852 cm− 1 and 2921 cm− 1 bands (which 
correspond to the symmetric and asymmetric CH3 stretching) [5,12] 
were not prominent in the blood spectrum. The 1600–1700 cm− 1 (which 
corresponds to the Amide I C––O stretching vibrations) and the 
1500–1560 cm− 1 (which correspond to Amide II N–H bending vibra-
tions) regions could be used to differentiate blood from the three envi-
ronmental interferents. The bands located at 1390 cm− 1 (CH3 symmetric 
bending), 1239 cm− 1 (Amide III, coupled C–N stretching and N–H 
bend vibrations) and 1082 cm− 1 (glucose) were not seen in this blood 
spectra [5,12]. 

The chocolate spectrum showed two very pronounced bands at 2852 
cm− 1 and 2921 cm− 1, which correlates with the symmetric and anti-
symmetric CH2 stretching modes of the acyl chains. The band at 720 
cm− 1 correspond to the CH2 rocking mode, whilst the band at 1460 cm− 1 

can be attributed to a CH2 scissoring in the polymethylene segments. 
The 1180–1380 cm− 1 region showed different bands that correspond to 
the tryacilglycerols CH2 wagging. The 720–1070 cm− 1 region correlates 
to the CH2 rocking modes, and the 1170–1300 cm− 1 region corresponds 
to the CH2 twisting. The tryacilglycerols C–O stretching mode in liquid 
state could be responsible for the band at 1160 cm− 1. The band at 1744 
cm− 1 is related to the C––O stretching from the glycerol backbone’s 
disordered conformational state [17]. 

The ketchup and tomato sauce spectra showed some similar bands, 
while there were other bands that allowed for their differentiation. This 
can be explained by their similar composition because both fluids are 

Table 2 
Characteristic bands of the substrates measured by ATR FTIR.  

Surface Wavelength 
(cm¡1) 

Vibrational 
mode 

Main 
attribution 

Reference 

Plywood 898 Glucose ring 
stretching 
C1-H deformation 

Cellulose [21] 

~1026 C–O of primary 
alcohol 
Guaiacyl C–H 

Lignin 

1030 C–O stretching Cellulose 
1052 
1112 Asymmetric 

glucose ring 
stretching 

~1160 C–O–C 
asymmetric 
vibration 

1266 C–O of guaiacyl 
ring 

Lignin 

1372 C–H symmetric 
deformation 

Cellulose 

1510 C––C Lignin 
1740 C––O Cellulose 
2850 C–H stretching Lignin 
2921 
3300–3400 O–H stretching Cellulose 

Lignin 
Metal 950–1250 PO4

3- Phosphates 
from the 
coating 

[23] 

1634 O–H bending Hydration 
water of the 
coating 

3000–3640 O–H stretching  
Gauze 720 C–H bending, 

C–H rocking in 
C-CH2-  

[24] 

871 Aromatic ring 
C–H bending  

1096 C–O stretching  
1246 C–O stretching Ester groups 
1341 C–H bending  
1409  
1471  
1506 Aromatic ring 

C––C stretching  
1711 C––O stretching Polyester 
2908 C–H stretching  
2969  

Denim 1000–1200 Cellulose bands Cellulose in 
cotton 

[25] 

1029 C–O stretching Cellulose 
1160 C–O–C 

stretching 
1315 C–H wagging  
1630 O–H bending Absorbed water 
2903–2922 Aliphatic C–H 

stretching 
Waxes 

3000–3600 N–H stretching 
O–H stretching 

Water bands 
Dye molecules 
Glucose 

Glass 750 Si-O- symmetric 
stretching 

Si2O [26] 

905 Si-O- asymmetric 
stretching 

1075 Si-O-Si 
asymmetric 
stretching  
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composed by tomato, sugar, salt, and species. Additional ingredients are 
given in the experimental section. The band at 1636 cm− 1 in the ketchup 
spectra and the band at 1638 cm− 1 in the tomato sauce spectra are 
related to an amide group [18]. They are also related to an overlapping 
by the lycopene C––C stretching band [19]. The lipid-related bands are 
located between 1730 and 1765 cm− 1 and 2800–3000 cm− 1 [18], which 
can be seen in the tomato sauce but not in the ketchup spectra. Specif-
ically, the 2922 cm− 1 and 2852 cm− 1 bands found in the tomato sauce 
spectra are related to the lycopene’s C–H symmetric and asymmetric 
stretching [19]. The 2933 cm− 1 band in the ketchup spectra could be 
due to an asymmetrical CH2 group that is related to a 2929 cm− 1 band 
according to the literature [19]. The C–H bending appeared at 
1400–1477 cm− 1, the C–C and C–C–H stretching at 1100–1400 cm− 1, 
and the C–O stretching at 1115–1170 cm− 1 [18]. The bands from these 
functional groups can be seen both in the ketchup and tomato sauce 
spectra. The bands attributed to the trans-lycopene CH2 at 1458–1465 
cm− 1 can be observed in both spectra [19]. The water bands located at 
3000–3700 cm− 1, and the carbohydrates and acids vibrational modes 
(C–O–C) bands located at 900–1200 cm− 1 can also be seen in both 
spectra [18]. 

3.2. IR spectral characterization of the substrates 

Five different substrates were employed to make the stains: wood 
(plywood), metal (galvanised iron), gauze (white polyester), denim 
(100 % cotton blue denim), and glass (glass slide). These kinds of ma-
terials were selected because they can be easily found at the crime scene. 
Therefore, the stains of biological fluids may be found on these surfaces 
and may represent real-life situations in forensic investigations, allow-
ing its application on real investigations of a crime scene. Fig. 3 shows 
the pure spectra of those substrates, whilst Table 2 shows their charac-
teristic bands as well as their detailed attribution with the corresponding 
vibrational modes and the assignment with the related component. The 
plywood spectrum, as expected, was dominated by the lignin and cel-
lulose bands, since these two polymers are fundamental components of 
wood. The bands at 1030 cm− 1 and 1052 cm− 1, corresponding to a 

cellulose C–O stretching, were the most intense bands in the spectrum. 
The 1200–1740 cm− 1 range showed many bands from the different 
vibrational modes of cellulose and lignin. Another two regions were 
highlighted in the spectrum: The lignin C–H stretching bands at 2921 
and 2850 cm− 1, and the 3300–3400 cm− 1 region related to the cellulose 
and lignin O–H stretching [21]. 

The metal sample was galvanised steel. The galvanizing process 
protects steel from corrosion by creating a zinc coating [22]. The spec-
trum had a broad band in the 950–1250 cm− 1 region, which could 
probably correspond to the phosphate groups (PO4

3-) from the zinc 
phosphate coating. Usually, this coating is composed by crystalline 
α-hopeite, orthorhombic α-[Zn3(PO4)2⋅4H2O], and crystalline phos-
phophyllite [Zn2Fe(PO4)2⋅4H2O]. The wide 3000 to 3640 cm− 1 region is 
due to the O–H stretching, while the water bending vibrations can be 
observed in the band at 1634 cm− 1 [23]. 

The gauze is mainly composed by polyester. Four bands in the gauze 
spectrum stand out from the others. These bands are the C–H bending at 
720 cm− 1, C–O stretching at 1096 cm− 1, the ester groups C–O 
stretching at 1246 cm− 1, and the polyester C––O stretching at 1711 
cm− 1 [24]. 

The composition of denim is 100 % blue cotton. In the denim spectra, 
the region between 1000 and 1200 cm− 1, which correspond to cellulose 
bands from cotton, is the most intense of the spectrum. Due to the 
presence of cellulose in denim, some similarities exist between the wood 
and the denim in that region of the spectra. The aliphatic C–H 
stretching from waxes located in the 2903–2922 cm− 1 range is also 
highlighted, along the 3000–3600 cm− 1 region, which is known to show 
the dye molecules N–H stretching and the glucose alcohols O–H 
stretching [25]. 

When measuring the glass slide, all the bands were in the 670–1240 
cm− 1 region. The band at 750 cm− 1 can be assigned to the symmetric 
stretching of Si-O-, while the Si-O- asymmetric stretching corresponds to 
the band at 905 cm− 1. The band at 1075 cm− 1 is due to the Si-O-Si 
asymmetric stretching [26]. 

Fig. 4. Average ATR FTIR spectra of bloodstains on different substrates. The figure shows the blood’s and substrates’ characteristic bands.  
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Fig. 5. A) Stack plot of the stains spectra 
created using plywood as a substrate, as 
well as of pure plywood. B) OPLS-DA 3D 
scatter scores plot of the model showing 
the separation of blood and the different 
interfering fluids when they formed 
stains on the plywood. C) Stack plot of 
the stains spectra created using metal as 
a substrate, as well as of pure metal. D) 
OPLS-DA 3D scatter scores plot of the 
model showing the separation of the 
different fluids when they formed stains 
on the metal. E) Stack plot of the stains 
spectra created using glass as a substrate, 
as well as of pure glass. F) OPLS-DA 3D 
scatter scores plot of the model showing 
the separation of the different fluids 
when they formed stains on the glass. G) 
Stack plot of the stains spectra created 
using gauze as a substrate, as well as of 
pure gauze. H) OPLS-DA 3D scatter 
scores plot of the model showing the 
separation of the different fluids when 
they formed stains on the gauze. I) Stack 
plot of the stains spectra created using 
denim as a substrate, as well as of pure 
denim. J) OPLS-DA 3D scatter scores plot 
of the model showing the separation of 
the different fluids when they formed 
stains on the denim. Classes: cho: choc-
olate (blue dots), ket: ketchup (green 
dots), tom: tomato (yellow dots), blo: 
blood (red dots).   
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3.3. Differentiation of bloodstains on different substrates 

Regardless of the substrate on which the bloodstain was analysed, 
the blood’s Amide I (1600–1700 cm− 1) and Amide II (1500–1560 cm− 1) 
bands were always visible [5,12]. Fig. 4 shows the bloodstains spectra 
on different substrates measured by ATR FTIR. The 1000–1450 cm− 1 

region changed depending on the substrate. In the bloodstain’s spectra 
on plywood, apart from the blood bands, some plywood characteristics 
bands can be seen, as described in Table 2 and Fig. 3. 

The bloodstain’s spectra on metal had the same bands and charac-
teristics as the pure blood. This may be because the material is non- 
porous, hence the blood cannot penetrate the substrate. It accumulates 
on the surface, preventing any signal from the substrate from being 
detected. 

The gauze piece is composed by polyester. The band at 1711 cm− 1 

from C––O stretching can be seen in the spectra. The band at 1241 cm− 1 

corresponds to the C–O stretching of ester groups. The one at 1093 
cm− 1 corresponds to C–O stretching [24]. Other small bands can be 
seen, and those are related to the substrate as can be seen in Fig. 3. 

Some denim characteristic bands can be seen in the spectra. Some 
cellulose bands appeared in the 1000–1200 cm− 1 region, especially the 
C–O stretching band at 1029 cm− 1 and the C–O–C stretching band at 
1160 cm− 1 (Table 2). Although the 3000–3600 cm− 1 region was 
dominated by the water in blood, the bands from the dye molecules 
N–H stretching may be located at that region too, along with the O–H 
stretching from the glucose alcohol groups [25]. 

The blood also accumulates on the glass surface because it is a non- 
porous material too, hence it dominates the spectrum. 

Although the bloodstains spectrum is distinguishable from most of 
the substrates’ spectra (Fig. 4), chemometrics was used to show the IR 
spectral differentiation in a clearer way. Therefore, an OPLS-DA model 
was created to discriminate the blood samples by the substrate. The 
blood samples on the substrates were measured fresh and then along the 
28 days ageing process. All those spectra were included in the model, 
which had an R2X = 98 % and a Q2 = 80 %. Most of the bloodstains 
separated according to the substrate, but some samples clustered at the 
centre of the model. The entangled (not well discriminated) samples 
were measured while still fresh, whilst the samples that were separated 
(clustered away from the centre of the model) were measured as dry 
samples. Therefore, the hypothesis is that, because the blood signal is 
stronger in the fresh samples, they clustered according to the blood 
characteristics, independently of the substrate on which they were 

deposited. The dry samples gave a spectrum that showed both blood’s 
and substrate’s characteristics, allowing the samples to be separated 
according to the characteristics of the substrate they were on. To see 
how bloodstains are discriminated on the five substrates studied without 
the effect of water, a new model was made with the samples measured 
from 1 h up to 28 days (Figure S1). After the elimination of seven out-
liers, the model had an R2X = 98 % and a Q2 = 84 %. Figure S1 shows a 
good discrimination of bloodstains according to the substrate on which 
they are located. 

3.4. Differentiation of blood and environmental interfering stains on 
different substrates 

Many stains can be found at a crime scene, some of which may be 
bodily fluid stains relevant for the investigation, while other stains may 
come from irrelevant (or not) interfering substances that resemble 
bodily fluid stains. Hence, it is crucial for the crime investigation to 
correctly identify the stains, for their preservation and the information 
they can provide. Therefore, various blood, chocolate, ketchup, and 
tomato sauce stains were prepared on five different substrates and 
analysed by ATR FTIR assisted by OPLS-DA models. Fig. 5 shows the 
pure substrates’ spectra together with each fluid stain’s spectra on the 
corresponding substrate. The OPLS-DA models were calculated for 
differentiating the blood stains (Fig. 5). As results, in all these models, 
each fluid clustered separately from the others. This allowed a good 
differentiation of the fluids (blood and the interfering) independently of 
the substrate they were deposited on. 

Metal, glass, and plywood are not porous materials, and therefore 
blood does not penetrate them. Thus, the blood or interfering stains ́ 
spectra are dominant with respect to the substrates’ spectra. As example, 
Fig. 5A shows the spectra of all studied fluids on plywood. Almost all 
characteristic bands of each fluid can be observed when analysed as 
stains on plywood. Some bands decrease in intensity, like 2852 cm− 1 

and 2921 cm− 1 (which correspond to the polymethylene segments C–H 
symmetric and asymmetric stretching [17] in chocolate). However, 
others increase, like the 900–1200 cm− 1 region in ketchup (which 
correspond to the vibrational modes of carbohydrates and acids) [18,20] 
(Fig. 5A). The OPLS-DA model of the fluids on the plywood surface had 
an R2X = 92 % and a Q2 = 91 % (Fig. 5B). 

Fig. 5C and 5E show the fluids’ spectra on metal and on glass. The 
stains of blood and ketchup spectra remained the same as the fluids were 
directly analysed on the diamond crystal. In the chocolate and tomato 

Fig. 6. Contribution plot showing the variables that differ most between the blood stains (upper part of the plot) and the interferents stains (bottom part of the plot) 
deposited on glass. 
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sauce spectra, slight variations could be seen in some bands. The 
following bands were less intense when chocolate was forming a stain on 
metal: 1160 cm− 1 (C–O stretching of tryacilglycerols in the liquid 
state), 1460 cm− 1 (CH2 scissoring of tryacilglycerols), 1744 cm− 1 (C––O 
stretching of glycerol backbone’s disordered conformational state), 
2852 cm− 1 (C–H symmetric stretching of polymethylene segments), 
and 2921 cm− 1 (C–H asymmetric stretching of polymethylene seg-
ments) [17]. Similarly, the following bands from the tomato sauce also 
decreased their intensity when forming a stain on metal: 1742 cm− 1 

(lipids) [18], 2852 cm− 1 (methylene C–H asymmetric stretching of 
lycopene), and 2922 cm− 1 (methylene C–H symmetric stretching of 
lycopene) [18–20]. The OPLS-DA model using metal as a substrate 
(Fig. 5D) had an R2X = 98 % and a Q2 = 93 %. In the case of the stains on 
glass, the fluid’s spectra were dominant, and the OPLS-DA model 
resulted with an R2X = 98 % and a Q2 = 83 % (Fig. 5F). 

However, the spectra of all the fluid stains changed when they were 
analysed on gauze (Fig. 5G). All the peaks decreased their intensity. The 
spectrum that changed the least was that of ketchup, with only small 
changes in the 1636 cm− 1 band (C––C stretching of olefin) [19,20]. 
Another OPLS-DA model was made for gauze (Fig. 5H). The model had 
an R2X = 98 % and a Q2 = 94 %. 

Like the fluids’ spectra on gauze, on denim, they also underwent 
changes with respect to their pure spectrum (Fig. 5I), since both sub-
strates are porous materials. The spectrum that changed the most was 
that of the bloodstains, since new denim bands were detected in the 
analysis: 1029 cm− 1 (C–O stretching of cellulose), 1160 cm -1 (C–O–C 
stretching of cellulose), and 1315 cm− 1 (C–H wagging) [25]. Fig. 5J 
shows the OPLS-DA model for the denim substrate. The model had an 
R2X = 92 % and a Q2 = 92 %. 

In addition, contribution or VIP plots were used to determine which 
of the variables has the greatest influence on the outcome of the model. 
As an example, Fig. 6 shows the contribution plot of the OPLS-DA model 
in which blood and the three interferents are differentiated when they 
are deposited on glass. Each bar in the contribution plot is a variable. 
The larger bars indicate which variables differ most among the selected 
groups. In the upper part of the plot are the variables that differentiate 
blood from the interferents, whose variables are in the bottom part of the 
plot. The variables that contribute most to the differentiation of blood 
against the interferents are in the 650–830 cm− 1 and 1470–1680 cm− 1 

ranges, where the relevant amide bands are located. On the other side, 
the important variables for the interferents are in the 850–1190 cm− 1 

and 1700–1770 cm− 1 ranges, which are related to lipids and carbohy-
drates, and the 2840–2950 cm− 1 range due to the O–H from water. 

The ROC plot (Figure S2) stated that the model was making a good 
discrimination of the four fluid samples deposited on glass. In this study, 
the AUC for the chocolate samples was 0.98; the AUC for the ketchup 
samples was 0.90; the AUC for the tomato sauce samples was 0.87, and 
the AUC for the blood samples was 0.91. Hence, since the AUC values 
were close to 1, it can be stated that the classification was quite good. 

Additionally, a preliminary study of how bloodstains were discrim-
inated by their time-since-deposition (from 1 h to 28 days) indepen-
dently of the substrate, was explored by the research team [27]. An 
OPLS-DA model was created with the measurements of the blood 
stains deposited on the five different substrates (plywood, metal, glass, 
denim, and gauze). Interestingly, the combination of ATR FTIR with 
OPLS-DA showed a great potential to estimate the time-since-deposition 
of blood stains in a forensic context [27]. 

4. Conclusions and future perspectives 

The correct differentiation of blood, chocolate, ketchup, and tomato 
sauce stains on different substrates was accomplished by ATR FTIR in 
the combination with OPLS-DA models. Those allowed the differentia-
tion of the stains independently of the substrate on which they were 
deposited on. Using the same approach, the bloodstains could also be 
separated by the substrate characteristics. 

These results show a proof-of-concept of how the combination of 
ATR FTIR with OPLS-DA differentiate bloodstains from (at least) envi-
ronmental interfering stains such as chocolate, ketchup, or tomato sauce 
without being influenced by the substrate where they were deposited on. 
However, more measurements of blood samples from different donors 
together with varied environmental interferents (i.e., different sorts of 
chocolate, ketchup, and tomato sauce) are needed prior its validation 
and reliable application in a crime scene. Thus, further investigations 
focused on the analysis of other bodily fluid stains and interfering sub-
stances on common substrates at crime scene, along with the analysis of 
bloodstains from a higher number of donors is required prior to the 
implementation of this analytical approach in forensic laboratories. It is 
also important to consider the aging process of the fluids and the anal-
ysis with other spectroscopic techniques. 
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