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Background and objective: T-wave alternans (TWA) is a fluctuation of the ST–T complex of 
the surface electrocardiogram (ECG) on an every–other–beat basis. It has been shown to be 
clinically helpful for sudden cardiac death stratification, though the lack of a gold standard to 
benchmark detection methods limits its application and impairs the development of alternative 
techniques. In this work, a novel approach based on machine learning for TWA detection is 
proposed. Additionally, a complete experimental setup is presented for TWA detection methods 
benchmarking.
Methods: The proposed experimental setup is based on the use of open-source databases to 
enable experiment replication and the use of real ECG signals with added TWA episodes. Also, 
intra-patient overfitting and class imbalance have been carefully avoided. The Spectral Method 
(SM), the Modified Moving Average Method (MMA), and the Time Domain Method (TM) are used 
to obtain input features to the Machine Learning (ML) algorithms, namely, K Nearest Neighbor, 
Decision Trees, Random Forest, Support Vector Machine and Multi-Layer Perceptron.
Results: There were not found large differences in the performance of the different ML algorithms. 
Decision Trees showed the best overall performance (accuracy 0.88 ± 0.04, precision 0.89 ± 0.05, 
Recall 0.90 ±0.05, F1 score 0.89 ±0.03). Compared to the SM (accuracy 0.79, precision 0.93, Recall 
0.64, F1 score 0.76) there was an improvement in every metric except for the precision.
Conclusions: In this work, a realistic database to test the presence of TWA using ML algorithms 
was assembled. The ML algorithms overall outperformed the SM used as a gold standard. Learning 
from data to identify alternans elicits a substantial detection growth at the expense of a small 
increment of the false alarm.

1. Introduction

T–wave alternans (TWA) is a beat-to-beat fluctuation in the repolarization morphology of the electrocardiogram (ECG). It can 
be manifested as a variation in the amplitude, duration, or waveform of the ST–T complex. Several studies relate cardiac risk and 
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increased malignant arrhythmias to the presence of TWA [1,2], hence, TWA has been suggested as a marker of sudden cardiac death 
risk [3–5].

A variety of methods have been proposed for TWA detection and estimation relying on different techniques. In the Spectral 
Method [1] ECG beats are segmented and aligned. Then, the periodogram is obtained for each beat-to-beat series and the averaged 
power spectrum is computed at 0.5 cycles-per-beat (cpb). The resulting value is compared with the spectral noise level to decide if 
TWA is present. The SM has been extensively used for clinical research and it is included in commercial equipment. In the Complex 
Demodulation method [6] the ECG beats are aligned, and TWA is represented in each beat series as a sinusoidal signal of 𝑓 = 0.5 cpb 
with variable amplitude and phase. TWA amplitude is estimated by demodulation of the 0.5 cpb component in each beat series. The 
Correlation Method [7] is a time-domain approach to detect transient TWA episodes by computing, for each consecutive T Wave, an 
alternans correlation index based on a cross-correlation technique. The Modified Moving Average [8] is also a time-domain procedure 
that computes a recursive running average of odd and even beats. Then, a nonlinear term is added to the innovation of every new 
beat to avoid the effect of artifacts. Other approaches have been proposed, making use of different signal processing techniques, 
such as the Laplacian Likelihood Ratio [9,10]; Matched filter [11] and template filter [12]; the Wavelet Transform [13] and adaptive 
time–frequency analysis [14]; or based on significant testing [15]. Also, several different signal processing techniques are used to 
preprocess the signal before TWA detection, such as Principal Component Analysis [16], Empirical Mode Decomposition [17,18], 
and Bootstrap resampling [19]. Despite the number of contributions, the comparison and validation of the proposed algorithms are 
troublesome due to the lack of definition of a clinical gold standard. The difficulty lies on that the fluctuations mostly take on values 
of a few microvolts, which are invisible to the human eye, thereby hampering the assembling of annotated databases.

The lack of annotated databases has resulted in testing frameworks that rely on synthetic signals, usually obtained as the addition 
of an ECG segment, plus an alternant wave, and noise [9,13,10,20,15,14,16,21,22,12,23], enabling TWA identification due to the 
actual knowledge of the alternans features. Within the different approaches, there are more and less realistic results depending, for 
example, on whether the ECG and noise signals are real or simulated. Higher realistic strategies are closer to being able to replicate 
the nonstationary nature of a clinical environment.

The enormous development of machine learning (ML) and deep learning (DL) techniques in recent years has led to a number 
of works with applications to the ECG. Among them, classification problems are predominant [24], namely for atrial fibrillation 
detection during normal sinus rhythm [25], for sleep apnea detection [26], or arrhythmia detection [27] among other applications. 
Exhaustive reviews of ECG processing based on DL can be found in [28,29]. Also, from a clinical perspective, a profound review of DL 
in ECG is performed in [30]. These works point to the convenience of processing raw data over traditional feature extraction, but also 
highlight several limitations in the proposals, for instance, the difficulty of comparison among approaches, deficient generalization 
capacity, and lack of interpretability. Regarding patient screening and risk stratification tasks, authors of [31] conclude that ML and 
DL have shown to be powerful tools, though often they do not provide the physiological basis of classification outcomes. Finally, it 
has been recently reported in [29] that risk stratification is scarcely addressed in the field, particularly in TWA-related research.

There are few attempts to address the TWA detection problem employing ML and DL. In [32] different ML classifiers are tested 
using the T-Wave alternans Database from PhysioNet website. However, this database is not labeled but ranked according to the 
level of T–wave alternans present in the ECG, therefore the authors had to set a threshold on this rank in order to have classification 
labels (+ TWA and - TWA). In [33] the same authors extended the previous database modeling synthetic cardiac cycles and alternans 
based on parameters from real signals.

The contribution of this work is twofold. First, to assemble a realistic database appropriate to test the presence of TWA alternans 
using ML algorithms. To that end, real ECG segments from public databases [34] are selected. The selection is performed to collect 
alternans–free ECG segments using the widely accepted Spectral Method (SM) as a gold standard. Afterward, TWA is introduced in 
approximately half of the ECG control segments, adding a real alternant wave [35]. The usage of actual ECGs allows the database 
to better capture the natural cardiac dynamic of the variability. Secondly, this work aims to provide a comprehensive ML approach 
using interpretable input features and a set of ML techniques ranging from the most simple to more advanced methods. From the 
interpretability of 𝐾 Nearest Neighbor (𝐾NN) and Decision Trees to more expressive Random Forest (RF), Support Vector Machine 
(SVM), and Multi–Layer Perceptron (MLP) methods. Special attention has been paid to the training, validation, and test procedures, 
carefully designing a methodology that prevents overfitting.

The remainder of this paper is organized as follows. Section 2 briefly reviews the Signal Processing and Machine Learning methods 
used in this work for TWA detection. Next, the procedure to assemble the database and the signal model are described in Section 3. 
In Section 4 the experimental setting is developed. The results are shown in Section 5 and some strengths and limitations of the work 
are provided in Section 6. Finally, the conclusions are derived in Section 7.

2. Review of signal processing and Machine Learning methods

2.1. TWA detection and estimation methods

Many methods have been proposed for TWA detection and estimation [9]. However, the difficulty in obtaining annotated 
databases complicates the performance validation of the methods. In this work, the intuitive and straightforward Time–domain 
Method [19] (TM), has been used. Also, two methods that have demonstrated their validity in a number of clinical studies are used 
2

[36]: the Spectral Method (SM) [1,2,37] and the Modified Moving Average Method (MMA) [8].
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In TWA analysis, the attention is driven to the ventricular repolarization segments of the ECG with the purpose of characterizing 
a periodic pattern every–other–beat. Let M ∈ ℝ𝑀×𝑁 be a matrix, represented in Eq. (1), that allocates in every row consecutive 
repolarization segments:

𝐌 =
[
𝐦𝑇

0 ,𝐦
𝑇
1 ,⋯ ,𝐦𝑇

𝑀−1
]
=
[
𝐬0, 𝐬1,⋯ , 𝐬𝑁−1

]
(1)

where 𝐦𝑖 stands for the 𝑖–th ST–T segment and 𝐬𝑖 for the 𝑖–th beat series. Parameter 𝑀 stands for the number of heartbeats to 
be processed in a single window and 𝑁 for the number of samples of each ST–T complex. Each ST–T complex 𝐦𝑖 is preprocessed 
accordingly, including the elimination of background ECG by consecutive heartbeat subtraction [9,17]. Each column 𝐬𝑖 of Eq. (1) is 
a beat series that collects the samples at the same latency of consecutive beats belonging to the repolarization segment.

The TM estimates the TWA amplitude according to Eq. (2):

𝑉 𝑇𝑀
𝑎𝑙𝑡

= 1
2
max(|m𝑜𝑑𝑑 −m𝑒𝑣𝑒𝑛|) (2)

where m𝑜𝑑𝑑 =𝐸𝑖 𝑜𝑑𝑑 (m𝑖) and m𝑒𝑣𝑒𝑛 =𝐸𝑖 𝑒𝑣𝑒𝑛(m𝑖) are the TWA templates for odd and even alternans, respectively, and 𝐸 is the expected 
value, estimated as the sample average.

The SM analyzes TWA by means of the periodogram of each beat series s𝑖, given by P𝑖 =
1
𝑀
|𝐹𝐹𝑇 (s𝑖)|2, and the averaged power 

spectrum is obtained as P = 𝐸𝑖(P𝑖) [2,37]. The K score, also known as TWA ratio, determines the magnitude of the power spectrum 
at the alternans frequency over the noise as follows (Eq. (3)):

𝐾𝑠𝑐𝑜𝑟𝑒 =
𝑃0.5 − 𝜇𝑛𝑜𝑖𝑠𝑒
𝜎𝑛𝑜𝑖𝑠𝑒

(3)

where 𝑃0.5 is the magnitude of P at 0.5 cpb (cycles per beat) frequency bin of the spectrum, and 𝜇𝑛𝑜𝑖𝑠𝑒 (𝜎𝑛𝑜𝑖𝑠𝑒) is the mean (standard 
deviation) of the spectral noise measured in a reference spectral interval. TWA is considered significant if 𝐾𝑠𝑐𝑜𝑟𝑒 > 3.

The MMA relies on nonlinear averaging to estimate an alternant wave amplitude [38]. This method estimates even and odd ST–T 
segments as 𝐦̂𝑖 = 𝐦̂𝑖−2 + 𝐡𝑖−2, where 𝑖 = 2, 3, ⋯ , 𝑀 . Initialization is carried out as 𝐦̂0 =𝐦0 and 𝐦̂1 =𝐦1. The array 𝐡𝑖 is a nonlinear 
correcting factor which is determined as described in [3,8]. The alternant wave is computed as the difference between even and odd 
estimates 𝐯𝑙 = 𝐦̂2𝑙−1 − 𝐦̂2𝑙−2, where 𝑙 = 1, ⋯ , 

⌊
𝑀

2

⌋
, and the TWA amplitude is estimated as the maximum of the absolute value by 

Eq. (4):

𝑉 𝑀𝑀𝐴
𝑎𝑙𝑡

=max ||𝐯𝑙|| (4)

In this work, the 𝑉 𝑇𝑀
𝑎𝑙𝑡

, the 𝐾𝑠𝑐𝑜𝑟𝑒 and the 𝑉 𝑀𝑀𝐴
𝑎𝑙𝑡

have been used as input features for the classification algorithms.

2.2. Machine Learning methods

ML methods are employed in this work to perform TWA detection in a classification frame: an instance can be classified as 0, 
no TWA or 1, TWA. A traditional ML approach is selected in this work on account of being a classification based on characteristics 
extracted from the ECGs, as well as for the sake of interpretability. With this aim and to ensure a representative solution, five popular 
algorithms among similar works with different levels of flexibility are selected: K Nearest Neighbors (KNN), Decision Tree, Support 
Vector Machines (SVM), Random Forest (RF) and Multi-Layer Perceptron (MLP).

𝐾NN is a popular classification algorithm that performs the classification of the test examples based on the 𝐾–nearest instances 
in the dataset [39,40]. Given 𝐾 , a positive integer, and an example 𝑥0 from the test subset, the algorithm identifies the 𝐾 nearest 
train examples to 𝑥0 using some distance metric. Next, 𝑥0 is classified considering the most frequent class. In this work, euclidean 
distance is utilized, furthermore 𝐾 is optimized by employing a grid search scheme.

Tree decision classifier is a nonlinear and nonparametric approach that uses decision rules learned from the train subset to assign 
each example a class [41,40,42]. Accordingly, the optimal hyperparameters minimum leaf size and maximum number of splits are found 
by using grid search, which is used to control the depth of the tree.

RF algorithm is an ensemble method which constructs a model with multiple tree classifiers [41,40]. The trees are built 
independently by randomly selecting a subset from the dataset for training, building each tree with random features. The selection of 
the class is performed by voting, in which each independent tree provides a vote. In this case, the optimal hyperparameters minimum 
leaf size, maximum number of splits and number of trees are selected by means of grid search.

SVM algorithm classifies data by finding the optimal hyperplane which separates both classes adequately. In the case of 
non-linearly separable data, the algorithm takes advantage of the kernel trick: data is transformed into a higher-dimensional space 
in which classes are linearly-separable [39,40]. In this work Gaussian radial basis function (RBF) kernel is employed. Grid search 
technique is employed to find the optimal hyperparameters 𝛾 and 𝐶 , which controls the distance of influence of a single training 
example and adds penalty to each missclassified instance, respectively.

Recently, the use of Artificial Neural Networks (ANN) has been proven to be a more effective alternative to traditional ML 
approaches. The Multilayer Perceptron [39,40] is one of the most popular algorithms among ANN. It consists of a structure of 
interconnected nodes or neurons which represents a nonlinear mapping between an input and an output vector. The connections 
between two neurons are represented by weights and nonlinear activation functions. The optimization algorithm employed in this 
3

work is RProp [43], a popular gradient descent algorithm which performs a local adaptation of the weight–updates based on the sign 
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of the gradients. Furthermore, the number of layers and neurons in each layer are selected by using grid search. In order to avoid 
overfitting, regularization L2 [44] is applied with 0.5 ratio.

3. Database and signal model

3.1. Selection of ECG signals

The unavailability of annotated databases makes benchmarking TWA methods a challenging task. Thus, to obtain TWA 
parameters, the employment of synthetic ECGs and the introduction of artificial alternans has been generally accepted [9,12,13,
10,20,15,14,16,22]. In order to accomplish a faithful setting able to represent a realistic environment, we only use real signals taken 
from ambulatory recordings. For this purpose, Physionet [34], is employed as the main source of ECGs, since its open source nature 
ensures reproducibility. Hence, as performed in previous works [18], the strategy followed consists of inserting artificially TWA and 
noise, if necessary, to control signals.

The SM method is the most acknowledged tool to detect alternans; this is on account of its generalized use in clinical studies in 
the context of TWA [36] as well as being one of the initial techniques established for this objective [1]. Accordingly, in this work SM 
method is established as a gold standard approach to construct a database free of TWA and for evaluating the classification results.

Control ECGs are selected from candidate signals taken from all leads of the following databases: MIT–BIH Arrhythmia 
Database [45] (mitdb, 𝑓𝑠 = 360 Hz), European ST-T Database [46] (edb, 𝑓𝑠 = 250 Hz), and MIT-BIH Normal Sinus Rhythm Database 
(nsrdb, 𝑓𝑠 = 128 Hz). A signal is considered to be a candidate only if more than 99% of its heartbeats are annotated as “normal”. A 
total of 42 recordings (standing for 84 ECGs, 2 leads per recording) were obtained holding this condition: 9 from mitdb (30 minutes 
per recording), 20 from edb (2 hours per recording), and 13 from nsrdb (around 24 hours per recording).

Candidate signals are eligible as control ECG after passing a test based on the SM to find ECGs without alternans as follows. A 
sliding window of 𝑀 consecutive heartbeats, with the shift latency of one beat per iteration, is passed throughout the signal. Each 
ECG frame is tested with the SM and the absence of alternans is checked in the entire signal with the negative Detection Ratio (𝐷𝑅), 
defined in Eq. (5) as the proportion of 𝐾 score values in a signal below 3 [3]:

𝐷𝑅 =
#
{
𝐾𝑠𝑐𝑜𝑟𝑒 ∶𝐾𝑠𝑐𝑜𝑟𝑒 < 3

}
#𝐾𝑠𝑐𝑜𝑟𝑒

% (5)

where 𝐷𝑅 = 100% stands for alternans lack. As it is well known, the SM method requires quasi–stationary signal conditions, 
performing well on large block sizes of, typically, 128–long heartbeat. Decreasing the size down to 𝑀 = 64 will elicit more TWA 
events, and the chance of spurious alternans increases significantly for 𝑀 = 32 beats. So, to design the database, a trade–off solution 
was adopted and a size window of 𝑀 = 64 was chosen. Testing in these conditions results in only 4 signals without alternans 
(𝐷𝑅 = 100%): 2–nd lead of 𝑚𝑖𝑡𝑑𝑏117, 1–st lead of 𝑚𝑖𝑡𝑑𝑏123, and both leads of 𝑒𝑑𝑏𝑒0302, for a total of 5 hours approximately.

Due to the small dimension of this set, and in order to obtain a wider bunch of signals from a variety of patients, a signal 
segmentation procedure is tackled. We look for consistent signals from an alternans viewpoint to obtain control ECGs, i.e., signals 
containing very few and short TWA excerpts, which are prone to be removed. Then, the procedure and criteria for signal partitioning 
was the following: Operate on signals with a 𝐷𝑅 ≥ 96%, remove the TWA excerpts and choose segments lasting more than 5 minutes.

As a result, 576 signal segments from a total of 31 patients were obtained (SM was retested on 925 eligible segmented signals to 
discard blocks with potential TWA excerpts appearing at the borders), distributed as follows: 15 excerpts from 5 patients of 𝑚𝑖𝑡𝑑𝑏, 
81 from 14 patients of 𝑒𝑑𝑏, and 480 from 12 patients of 𝑛𝑠𝑟𝑑𝑏. As can be seen, the database obtained in this way is imbalanced 
because the number of segments per database is different, as well as their duration. In summary, this data collection constitutes a set 
of raw control signals to be used for experiments related to TWA, from which specific datasets can be extracted to fit learning–based 
models.

3.2. Experimental dataset

In this work, we have configured a dataset under the condition to be patient–balanced. Furthermore, the proposed systems are 
devoted to operate on ambulatory recordings, intended to track TWA episodes of short duration, so frames of 32 heartbeats are 
selected as examples of the dataset. In order to obtain a reasonable number of instances, 25 frames per patient were extracted at 
random, resulting in 775 instances, which is the size of our database. Notice that every ECG block has different duration in signal 
samples, though they stand for the same length in heartbeats. Because there are several signal blocks per patient in the original 
selected data, the process was intra–block and inter–block randomized. Finally, all the resulting frame signals were preprocessed as 
follows. The sampling frequency is standardized at 250 Hz. Baseline wander is eliminated by third–order splines interpolation and 
high frequency noise is reduced by lowpass filtering with a Butterworth 6–th order filter with cutoff frequency set at 40 Hz.

3.3. Signal model

This part aims to describe the signal model utilized to obtain frames with alternans. The dataset obtained contains frames 
corresponding to control ECGs defined to be 𝑝(𝑖)

𝑐𝑜𝑛𝑡
(𝑡), 𝑡 = 0, ⋯ , 𝐿𝑖 − 1, where superscript 𝑖 stands for the 𝑖–th instance of the dataset, 

and 𝐿𝑖 for its length. Every instance, corresponding to one ECG frame, can also be expressed in vectorial form as follows: p(𝑖)
𝑐𝑜𝑛𝑡

=

4

[𝑝(𝑖)
𝑐𝑜𝑛𝑡

(0), 𝑝(𝑖)
𝑐𝑜𝑛𝑡

(1), ⋯ , 𝑝(𝑖)
𝑐𝑜𝑛𝑡

(𝐿𝑖 − 1)]𝑇 . To obtain a frame signal with TWA, the operation is carried out as shown in Eq. (6):
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Fig. 1. Flow chart of the database assembling.

𝑝
(𝑖)
𝑎𝑙𝑡
(𝑡) = 𝑝(𝑖)

𝑐𝑜𝑛𝑡
(𝑡) +

𝑁∑
𝑘=1

𝑔𝑘 ⋅ 𝜀(𝑡− 𝑡𝑘 − 𝑡𝐽 ) (6)

where 𝜀(𝑡), 𝑡 = 0, ⋯ , 𝐿𝜀 − 1 is the alternant wave, and 𝐿𝜀 its number of samples, which corresponds to the duration of the ST–T 
complex, much shorter than the signal length 𝐿𝑖. Parameter 𝑁 stands for the number of heartbeats or R waves of 𝑝𝑐𝑜𝑛𝑡(𝑡) (𝑁 = 32 in 
this paper) and 𝑡𝑘 denotes the ST–T onset of the 𝑘–th beat, so index 𝑘 adjusts the alternant wave to each heartbeat. Actual alternant 
waves were provided by J. P. Martínez and his research team, which consists of 15 waveforms estimated during the study reported 
in [35]. To introduce uncertainty, time delay 𝑡𝐽 introduces a jitter effect, which is characterized as a zero mean Gaussian random 
variable with a standard deviation of 20 ms. Function 𝑔𝑘, fomulated in Eq. (7), represents the alternant amplitude, which alternates 
its value between 0 and 𝛼 to represent the every–other–beat TWA fluctuation:

𝑔𝑘 =
{
𝛼, 𝑘 even
0, 𝑘 odd (7)

The result of this model is p(𝑖)
𝑎𝑙𝑡

= [𝑝(𝑖)
𝑎𝑙𝑡
(0), 𝑝(𝑖)

𝑎𝑙𝑡
(1), ⋯ , 𝑝(𝑖)

𝑎𝑙𝑡
(𝐿𝑖 − 1)]𝑇 , i.e., an ECG frame containing alternans. As can be seen, this method 

introduces sustained alternans throughout the entire data segment, also referred to as stationary, and the alternant amplitude can be 
chosen as a free parameter by adjusting the value of 𝛼 in Eq. (7).

For the current ML experiment, we have chosen to include alternans in approximately half of the data frames, particularly, 13 
frames out of the 25 per each patient were defined as with alternans. The parameter 𝛼 has been adjusted to obtain an alternant 
voltage of 35 μV [17]. Thus, a number of 775 examples have been allocated in the dataset, 372 control and 403 alternans. The i–th 
instance can be referred to as the pair 

(
𝐩(𝑖), 𝑦(𝑖)

)
, where 𝑦(𝑖) is the target, which takes on the value 0 or 1 depending on whether 𝐩(𝑖)

is control or alternans. Fig. 1 shows a flow chart of the database assembling.

4. Experimental setting

Although SM method has been generally accepted for benchmarking alternans detection, in the literature there is no clear 
consensus on which method to use as a standard tool for TWA identification. Particularly, SM requires quasi–stationary conditions 
of the signal and it must be conducted under stress test. These conditions are unsuitable to be replicated in ambulatory recordings. 
Likewise, it is difficult to assess methods which provide a TWA amplitude estimation since the exact cutpoint has not been definitely 
defined yet [3]. In this context, the use of Machine Learning in this work aims to combine some of the most acknowledged methods 
to find out whether better predictions can be obtained than by just using one single technique.

In order to estimate the performance of the learning methods proposed in this work, a 𝐾–fold Cross Validation (CV) technique is 
applied to fine tuning the models. The dataset is then split in 𝐾 + 1 groups, i.e., 𝐾 folds for the CV plus and additional set to test. 
5

Also important is to avoid what we refer to as intra–patient overfitting, for which purpose, patients allocated in the train set are not 
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Table 1

Assignment of patients in six groups.

Dataset Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Total

mitdb 1 1 1 1 1 0 5
edb 2 2 2 2 2 4 14
nsrdb 2 2 2 2 2 2 12

# patients 5 5 5 5 5 6 31
# instances 125 125 125 125 125 150 775

Table 2

Feature list, notation and description.

Feature Notation Description

𝑥1 𝐾𝑠𝑐𝑜𝑟𝑒 TWA Ratio
𝑥2 𝑉 𝑀𝑀𝐴

𝑎𝑙𝑡
Alternant voltage (μV)

𝑥3 𝑉 𝑇𝑀
𝑎𝑙𝑡

Alternant voltage (μV)

assigned to the test set. The reason for this is that ECG exhibits huge inter–patient variability, so the characteristics learnt from a 
patient in the train set can overestimate the performance of the system if this patient is used in the test set.

Taking into account these considerations, the 5 folds for CV are carefully chosen to well distribute the 5 individuals coming from 
mitdb. The 31 patients are separated and evenly distributed into the 6 groups, as shown in Table 1, where 5 individuals per group 
are allocated, which stands for a total of 125 data frames per group. Group 6 allocates one additional patient, corresponding to 150 
signal examples, though with no patient from mitdb. This distribution is intended to achieve well training and fine tuning of the 
models by holding the next two conditions: first, patient inter–group parity, and second, balance of databases within each patient 
group.

4.1. Feature extraction

Let us remind that the incoming raw data for the proposed framework is the vector expressed in Eq. (8):

p(𝑖) = [𝑝(𝑖)(0), 𝑝(𝑖)(1),⋯ , 𝑝(𝑖)(𝐿𝑖 − 1)]𝑇 , 𝑖 = 1,⋯ ,𝑚 (8)

corresponding to the i–th instance of the available dataset. All the 𝑚 = 775 examples are ECG blocks containing the same amount of 
heartbeats, i.e., each p(𝑖) has different length 𝐿𝑖, but equal number of beats, set to be 𝑁 = 32 beats in this work.

As the ultimate objective of this experiment is trying to improve the results obtained from doing a simple classification task 
with the SM method isolatedly employed over the same data, we propose an alternative approach based on feature extraction. So, 
a 3–dimensional problem, where ML models are fed by three input features 𝐱 = [𝑥1, 𝑥2, 𝑥3]𝑇 ∈ ℝ3, is addressed. Features are chosen 
to be the output of three different well known TWA detection methods, namely, the SM, MMA, and TM. The list of predictors is 
summarized in Table 2, where 𝑥1 is determined as the 𝐾𝑠𝑐𝑜𝑟𝑒 index, while 𝑥2 and 𝑥3 are estimates of the alternant voltage by different 
approaches. To obtain 𝑥1, SM operates on a single window length covering the entire signal block p(𝑖), providing a single scalar as 
output. Similarly, variables 𝑥2 and 𝑥3, which are estimates of the alternant voltage obtained from different approaches, are computed 
after processing the whole signal block p(𝑖).

Thus, each ECG block p(𝑖) is processed to obtain its corresponding set of features x(𝑖) = [𝑥(𝑖)1 , 𝑥
(𝑖)
2 , 𝑥

(𝑖)
3 ]𝑇 . The resulting dataset 

arranged for the classification task consists of a matrix X ∈ ℝ𝑚×3, which comprises 𝑚 = 775 instances, along with the target vector 
y = [𝑦(1), 𝑦(2), ⋯ 𝑦(𝑚)]𝑇 where the i–th example is given by the pair 

(
x(𝑖), 𝑦(𝑖)

)
. Finally feature scaling is applied by using 𝑧-score 

normalization, determined by Eq. (9):

𝑧
(𝑖)
𝑗

=
𝑥
(𝑖)
𝑗
− 𝜇𝑗
𝜎𝑗

, 𝑗 = 1,2,3 (9)

where 𝜇𝑗 and 𝜎𝑗 stand for the mean and the standard deviation of feature 𝑥𝑗 from the train set.
Fig. 2 shows the 3–dimensional input vectors 𝐱 = [𝑥1, 𝑥2, 𝑥3]𝑇 to feed the ML algorithms. These vectors are composed of the SM, 

MMA, and TM normalized outputs for the 𝑚 = 775 instances. Although two clusters can be distinguished for the two different classes, 
“TWA” and “No TWA”, there are also many instances mixed in each other class. This representation suggests that a nonlinear ML 
algorithm could use the ensemble information from the three methods to improve TWA detection.

4.2. Validation and test procedure

The procedure to evaluate the proposed models is carried out in two–steps. Five–fold CV is first achieved to perform 
hyperparameter tuning, as previously referred, followed by the test of the model on an independent set. Next, and because the 
test set has approximately the same size as that of the 5 folds, a permutation procedure of the test set is applied to analyze the 
6

robustness of the ML algorithms.
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Fig. 2. Input vectors 𝐱 = [𝑥1 , 𝑥2 , 𝑥3]𝑇 for the ML algorithms. The normalized values from the TM, SM and MMA are represented in the Z, Y and X axis respectively.

Fig. 3. Cross Validation scheme of a model, where PG stands for Patient Group, 𝑘𝑗 refers to the hyperparameters tuple of a model, and 𝜙 stands for the metric utilized 
for the optimization problem. Patient group test set (PG6) is fitted with optimum hyperparameters obtained from CV. Notice that each PG corresponds to a disjoint 
group of patients.

Fig. 3 depicts the strategy to perform hyperparameter tuning and to validate the results, relying on the patient group split 
described in Table 1. Model optimization is addressed by hyperparameter search through 5–fold CV, performed over patients from 
groups 1 up to 5 (PG1–PG5), each fold corresponding to a disjoint group of patients. The CV setting evaluates the performance of the 
model for the j–th hyperparameter tuple 𝑘𝑗 = {𝑘𝑗1, 𝑘𝑗2, ⋯ , 𝑘𝑗𝑙}, resulting in the metrics 𝜙𝑘𝑗

𝑖
, 𝑖 = 1, ⋯ , 5, obtained in the validation set 

of every fold, which is subsequently averaged throughout the five folds as follows (Eq. (10)):

𝜙𝑘𝑗 = 𝔼
{
𝜙
𝑘𝑗

𝑖

}
, 𝑖 = 1,⋯ ,5 (10)

The optimal model is obtained by choosing the tuple which optimizes the averaged metric (Eq. (11)):

𝑘 = arg opt
𝑘𝑗

𝜙𝑘𝑗 (11)

The permutation scheme to analyze the robustness of the proposed models is depicted in Fig. 4 and works as follows. The strategy 
explained in Fig. 3 is iterated by choosing different patient groups as test set at each iteration. Thus, each permutation provides a 
different optimal model whose performance in estimated in different test sets. The global performance is given as the mean and the 
7

standard deviation, the latter to inform about the consistency of the trained model on different test sets.
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Fig. 4. Diagram representation of permutation scheme, where PG stands for Patient Group. Notice that each PG corresponds to a disjoint group of patients.

Notice that the design of the ML models relies on an optimization process with regard to an overal metric 𝜙, which can be chosen 
among several ones, such as the cost function. In this work, optimal models have been obtained using the accuracy score (defined in 
Eq. (12)) as the optimization metric.

4.3. Performance evaluation

Performance assessment is evaluated with the well known figures of merit used in the field, namely, Accuracy, Precision, Recall, 
and F1 score. Accuracy, calculated as in Eq. (12), stands for the probability of any ECG block be well classified:

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

(12)

where: TP stands for an alternans ECG block p(𝑖)
𝑎𝑙𝑡

well classified (true positive); TN for a control ECG block p(𝑖)
𝑐𝑜𝑛𝑡

well classified (true 
negative); FN for an alternans block p(𝑖)

𝑎𝑙𝑡
classified as control (false negative); and FP for a control block p(𝑖)

𝑐𝑜𝑛𝑡
classified as with TWA 

(false positive). Precision (Eq. (13)) assesses the probability of a detection being correct (positive predictivity):

𝑃𝑟 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(13)

and Recall (Eq. (14)) informs about the probability of an ECG block p(𝑖)
𝑎𝑙𝑡

containing TWA be well classified (sensitivity):

𝑅𝑒 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(14)

F1 score, determined in Eq. (15), provides a joint measure in a single metric as a balance between the two previous ones:

𝐹1 = 2 ⋅ 𝑅𝑒 ⋅ 𝑃𝑟
𝑅𝑒+ 𝑃𝑟

(15)

Finally, a summary of the procedure followed in this Section is depicted in the flow chart of Fig. 5.

5. Results

The performance results are obtained as the mean and standard deviation of the different permutations represented in Fig. 4, 
where the model resulting from each patient group iteration is trained on the set employed to optimize it, and it is validated on the 
test set assigned to the permutation.

Every graph of Fig. 6 shows the performance of the different ML algorithms for one specific metric (from top to bottom, Accuracy, 
Precision, Recall, and F1 score). Each couple of bars stands for the mean value of the corresponding metric in the train test (bar on 
8

the left) and in the test set (bar on the right). The standard deviation is represented as whiskers around the mean. All the algorithms 
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Fig. 5. Flow chart of ML setup followed in this work.

Fig. 6. Classification performance for different ML algorithms in terms of mean and standard deviation. Every pair of bars stands for the metric value in the train 
9

(left) and test (right) sets.
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Table 3

Mean and standard deviation performance of Decision Tree in the six permutations and comparison with the Spectral 
Method.

Method Set Accuracy Precision Recall F1 score

SM All 0.79 0.93 0.64 0.76

Decision Tree
Train 0.90 ± 0.01 0.89 ± 0.01 0.91 ± 0.01 0.90 ± 0.01

Test 0.88 ± 0.04 0.89 ± 0.05 0.90 ± 0.05 0.89 ± 0.03

Table 4

Results on the test set and optimal hyperparameters Maximum Number of Splits (MaxNumSplits) and MinLeafSize 
(Minimum Leaf Size) for the 6 permutations with Decision Trees.

Perm 1 Perm 2 Perm 3 Perm 4 Perm 5 Perm 6

Accuracy 0,82 0,89 0,88 0,94 0,89 0,89
Precision 0,82 0,88 0,86 0,93 0,95 0,87
Recall 0,85 0,91 0,92 0,95 0,83 0,92
F1 score 0,83 0,89 0,89 0,94 0,89 0,89
Optimal 

MaxNumSplits
4 4 4 4 4 4

Optimal 
MinLeafSize

12 2 28 2 19 2

yield similar results. In general, the mean values of the metrics in the train set are very close to those of the test set, which indicates 
an appropriate generalization of the results. Nonetheless, the standard deviation in the test set is significantly higher than in the 
train set. The reason is twofold: On the one hand, it can be due to an insufficient count of test instances; on the other hand, the 
influence of inter–patient variability, which causes that the characteristics of the patients included in the test set are not fully learnt 
from patients of the train test.

In analyzing ML methods, a good choice should be one which holds some of the following properties. A small decrease in 
performance from train to test, indicating nice generalization capacity. Notice that a huge gap from train to test may be indicative of 
overfitting to the train set. Also a small standard deviation in the test set as an indicator of consistency, because this property suggests 
that different models (one ML algorithm with different hyperparameters) trained and tested on different datasets, perform similar 
to each other. The evaluation of Precision and Recall (second and third graphs from top to bottom) is also important because they 
report the rate of 𝐹𝑃 and 𝐹𝑁 , respectively, and a good method should provide a reasonable trade–off between these magnitudes. 
The results reported in the second column of Fig. 6, corresponding to Decision Tree, represent a good deal among the aforementioned 
points. Decision Tree is also the algorithm which yields better precision and recall in the test set.

Table 3 reports the performance of Decision Tree and the comparison with the SM when applied directly on every instance of 
the dataset. As can be seen, rather than using the SM alone, the use of learning methods to detect alternans increases the F1 score 
from 0.76 to 0.89. This improvement is due to a significant Recall upgrade at the expense of a small Precision decrease, resulting in a 
better balance among the two magnitudes. Basically, learning from data to identify alternans elicits a detection growth (𝑇𝑃 increase) 
paying a small cost in the increment of the false alarm.

As depicted in Table 4, the results obtained for Decision Tree from CV in each permutation are stable, hence reaffirming the 
robustness of the classifier. The optimal hyperparameters Maximum Number of Splits and Minimum Leaf Size are shown for each 
permutation as well.

6. Discussion

One of the purposes of the current work was the development of an experimental setting to check the efficiency of learning–based 
algorithms for detection and estimation of TWA in surface ECG. The configuration of a database was essential to achieve this goal, 
because to date, there are no available recordings with labeled TWA to conduct supervised experiments. This is in fact the main 
constraint to report solutions in this field, so the methodology of the design of a database for TWA analysis proposed in this work 
can be considered as a contribution.

The procedure to assemble a set of data is carried out as an extension of a methodology previously introduced in preceding 
works [17,19,18], with the aim of covering as best as possible the actual ECG variability in both dimensions, namely, the structural 
variability of the signal, which represents the dynamic of the cardiac system, and the existing waveform difference among patients. 
Thus, the configuration of control ECGs, i.e., signals free from alternans, is obtained as a result of a two step evaluation of actual ECG 
recordings, which consists of first collecting ECGs with normal sinus rhythm followed by the selection of the signals resulting from a 
negative test of TWA. In this way, the posterior inclusion of TWA sections with alternant waves of different shape and scale (either 
with or without the addition of noise, as done in [17,18]) enables the design of a diverse set of annotated datasets. The SM has been 
chosen for the selection of control signals because alternans identification with this method relies on an accepted decision criterion, 
10

something which is not clearly reported by other methods. The procedure to obtain a database is easy to replicate and the choice 
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of signals from opensource banks ensures reproducibility, though notice that the final result in the database configuration may have 
small variations depending on the manner the different processing blocks are implemented, such is the case of the SM.

The experimental setting presented in this work constitutes a TWA detection experiment which operates on signal excerpts 
of 32–heartbeats long for the identification of a sustained alternant wave of 35 μV introduced in the entire segment. This is an 
initial attempt to demonstrate the liability of learning methods applied in this field, and as shown by the results, the inclusion 
of a classification stage to decide about the presence of TWA can outperform traditional techniques. Nevertheless, further studies 
must be accomplished so that the systems can learn from a wider variety of alternans configurations, namely, different and varying 
amplitudes throughout the segment, considering non–stationary TWA, i.e., non–sustained in the entire window, and including phase 
shift of the alternant pattern [47]. This research could be tackled further by following the framework proposed in this work, but for 
this purpose, a significant increase of the dataset must be addressed.

Another important advantage that an ML method can report in the field of TWA detection is to provide decision making solutions, 
because this issue is not well defined with most of the current existing methods. Regarding the SM, it provides a well defined and 
clinically accepted threshold for the K score, but as any other method relying on spectrum analysis, it requires quasi–stationary 
conditions of the signal, and it is typically applied to a middle–term window length of 128 heartbeats, while the performance decays 
for shorter windows. Thus, the SM is not a suitable technique to be used with ambulatory recordings, where a response must be 
supplied in a short–term dimension. On the other hand, the MMA and the TM estimate the alternant voltage, relying the decision 
on a cutpoint value. Nonetheless, the selection of reliable cutpoints to identify positive TWA is not an easy task [48], as it requires 
the development of clinical studies, something that has been possible with the MMA because it is implemented in commercial ECG 
devices. Thus, cutpoints for this method have been found, e.g., 𝑉𝑎𝑙𝑡 ≥ 47 μV in patients during early post–myocardial infarction [36,49]
indicates severely elevated risk for sudden cardiac death. However, methodological studies comparing several methods have shown 
that the MMA may report false positive TWA due to the inherent T–wave variability, the influence of respiration in the ECG, as well 
as higher levels of noise and artifact contaminating the ECG [21,22,50], while others not.

The use of a more sophisticated signal model, with an extended database, will surely require the application of enhanced tools, 
designed by means of the incorporation of additional features to feed the classification systems. For the design of any TWA signal 
index, the attention must be drawn to the repolarization segment to extract the information concerning any every–other–beat 
transition of that part of the ECG. Because extracting this information is the objective of any TWA marker, such those introduced in 
Section 1, these indicators can be considered as very good parameters for ML algorithms based on feature extraction. Recently, the 
alternation of the whole heartbeat is raising interest as indicator of cardiac instability. Although P wave alternans does not occur 
frequently, it has been found to be a predictor of atrial fibrillation. Similarly, QRS alternans is patent in case of supraventricular and 
ventricular tachycardias [51,52]. The underlying signal processing problem of heartbeat alternans is basically the same as that of 
the TWA, and it also suffers from the lack of gold standard. The current work could serve as an inspiration to tackle the alternans 
problem in the whole beat through the design of a specific signal model, the adaptation of TWA markers to the overall problem, and 
the use of existing indices for this purpose [52].

To date, we have not found previous works tackling TWA detection based on ML methods published in international indexed 
journals, but two conference papers [32,33] reporting an F1 score of 89% and 95.9% respectively, with the Physionet TWA dataset 
[34,53]. Although this database is of great value, it may not be appropriate for ML methods since it contains different segments 
from the same patients, and they are unidentified. Therefore, patient separation is impossible in the test and train sets, avoiding 
the evaluation of the effect that intra–patient overfitting can cause. Furthermore, the limitation of this database is the lack of labels 
specifying the information related to TWA in specific regions of the ECG, which has hardly encouraged the development of novel 
TWA studies with this tool.

Some parts of this section deal with future works related to traditional ML algorithms because there are still much work to do. 
Nonetheless, research on detection of TWA relying on Deep Learning should also be tackled because these networks have proven 
nice performance as outstanding approaches within the family of representation learning. Nonetheless, the exploding amount of 
parameters that this type of algorithms needs to adjust will surely require to enlarge the database by scrutinizing more data, e.g.,
by following a similar methodology than that proposed here. Because this approach is not sufficient, the challenge of annotating 
TWA on real ECG becomes more evident, being one of the biggest challenges to be tackled in this field. Manually annotation is in 
general cumbersome, and particularly in this area, where TWA is not straightforward visible on the ECG, requiring previous signal 
processing and special help for visualization. For this purpose, techniques such as Active Learning could be used by combining 
labeling and the use of trained models to track TWA on real data to increase the amount of labeled data and, at the same time, 
improving the performance of the detection algorithms [54]. Although Deep Neural Network, is usually applied to the raw ECG, the 
entire heartbeat, or a transformed version of them, processing the whole beat in TWA could elicit false alarm as long as other types 
of alternans could be detected. Likely in the initial attempts with Convolutional Neural Networks, matrix 𝐌 from Eq. (1) could be a 
suitable choice.

7. Conclusion

The experimental setting designed in this work to conduct supervised experiments for TWA detection constitutes a contribution 
to further investigations with ML and DL algorithms. The ensemble TWA detection method proposed in this work, based on ML 
algorithms fed with features that are the results of three traditional TWA detection and estimation methods, outperformed the SM 
used as a gold standard. Learning from data to identify alternans elicits a substantial detection growth at the expense of a small 
11

increment of the false alarm.
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