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Abstract: This paper discusses the use of Lagrangian and Hamiltonian dynamics as 
alternative approaches for understanding the motion of objects in classical 
mechanics. These approaches, which are based on different mathematical 
techniques, can provide a deeper understanding of the principles of classical 
mechanics and the motion of objects, but may not be covered in high school physics 
curricula or undergraduate STEM courses. The review paper approach is used to 
combine information from a variety of sources, and the material is conceptualized 
to aid reader understanding. These advanced topics may be of interest to advanced 
high school students who are interested in exploring topics beyond the high school 
physics curriculum, and can be studied independently by those with a strong 
foundation in classical mechanics and familiarity with advanced mathematical 
concepts. 
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Introduction 
 
Newtonian dynamics, also known as classical 

mechanics, is a framework for understanding the motion 
of bodies and the forces acting on them (Galili & Goren, 
2022). It is based on the three laws of motion formulated 
by Isaac Newton in the 17th century (Sutton, 2018). 
These laws explain how objects move and change 
direction in response to external forces, and they form 
the basis of much of our modern understanding of 
physics. Newton's approach to understanding motion is 
based on the concepts of force and mass (Erfan & Ratu, 
2018). According to Newton's second law of motion, the 
acceleration of an object is directly proportional to the 
force acting on it and inversely proportional to its mass 
(Hamm, 2020). This allows us to predict the motion of an 
object by considering the forces acting on it and solve for 
acceleration using basic algebraic equations (Sedov, 
2018). 

Lagrangian dynamics and Hamiltonian dynamics 
are alternative approaches to understanding the motion 
of bodies, which are based on different mathematical 

techniques (Chen & Tao, 2021). Both approaches are 
more abstract and mathematical than the Newtonian 
approach, and are usually studied at higher levels in 
undergraduate physics courses (Kersting & Steier, 2018). 
The Lagrangian approach, developed by Joseph-Louis 
Lagrange in the 18th century, is based on the concept of 
the "Lagrangian function", which is a mathematical 
representation of the kinetic and potential energies of an 
object (Mann, 2018). The Lagrangian approach is 
especially useful for understanding the motion of 
systems with constraints, such as pendulums or 
satellites orbiting the earth. The Hamiltonian approach, 
developed by William Rowan Hamilton in the 19th 
century, is based on the concept of the "Hamilton's 
principle", which states that the path of a body is the 
path that minimizes the action integral (Tigist, 2019). 

It is possible to introduce high school students to 
Lagrangian and Hamiltonian dynamics without using 
the calculus of variations, although a full understanding 
of these dynamics approaches requires a more rigorous 
treatment that includes the use of these mathematical 
techniques (MacKay & Meiss, 2020). One way to 
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introduce high school students to Lagrangian and 
Hamiltonian dynamics is to focus on the conceptual 
equations of these approaches and demonstrate how 
they can be used to understand the motion of objects in 
different situations (Simoneau, 2019). 

This can be done by presenting examples of simple 
physical systems, such as a pendulum or a mass on a 
spring, and showing how the Lagrangian and 
Hamiltonian approximations can be used to predict their 
motion (Mandal et al., 2022). It is important to note that 
the Lagrangian and Hamiltonian approaches to 
dynamics are more abstract and mathematical than the 
Newtonian approaches, which is based on the concepts 
of force and mass and is usually taught in high school 
physics courses (Impelluso, 2018). However, 
introducing advanced high school students to this 
alternative approach can give them a taste of the more 
advanced topics they will encounter in a college physics 
course, and can help spark their interest in this area of 
study (Cain et al., 2022). 

As for one-dimensional motion, Newton's second 
law of motion states that the acceleration of an object is 
directly proportional to the force acting on it and 
inversely proportional to its mass (Toto, 2018). This can 
be expressed mathematically as: 

F
a

m
=  (1) 

where F is the force acting on the object, m is the object's 
mass, and a is the object's acceleration. 

dU
F

dx
−   

(2) 

The above equation represents the position 
function, where U(X) is the value of the potential energy, 
while the spatial derivative of the potential energy in the 

above equation is 
dU

dx
−  (Li et al., 2021). We know that 

dx
x

xt
  which means it is the first derivative of the 

distance-time equation, namely velocity (v) (Wu et al., 
2020). Meanwhile, the second derivative is symbolized 

by x  which means it will get the acceleration value (a), 

so 

2

2

d x
a

dx
= = x .  

The paper highlights the potential of using 
Lagrangian and Hamiltonian dynamics as alternative 
methods for comprehending classical mechanics (Mann, 
2018). These techniques, which are based on different 
mathematical techniques, offer a deeper insight into the 
principles and motion of objects, but may not be part of 
the standard high school or undergraduate STEM 
curricula. The authors utilize a review paper approach 
to present information from various sources, which is 

conceptualized to enhance reader comprehension. This 
research presents an opportunity for advanced high 
school students who are interested in going beyond the 
standard high school physics curriculum, or for those 
with a strong foundation in classical mechanics and a 
familiarity with advanced mathematical concepts to 
study these advanced topics independently.   

 

Method 
 

The method used in this article is a review paper 
approach, which involves synthesizing information 
from multiple sources (such as papers and books) to 
provide an overview of a particular topic. In this case, 
the topic is the concepts of Lagrange mechanics and 
Hamilton mechanics in classical mechanics, and the goal 
of the article is to introduce these concepts to high school 
students and college students taking a classical 
mechanics course. The article aims to provide a clear and 
easily understandable explanation of these concepts, 
and it employs the use of software such as Zotero for 
citing sources. The article is written based on the 
author's understanding of the material and is 
conceptualized in a way that aims to make it easier for 
readers to understand the concepts of Lagrange and 
Hamilton mechanics. 

 

Result and Discussion 
 
Lagrange dynamics in physical mechanics 

In this sub-heading, material regarding lagrange 
dynamics will be explained, but it must be known about 
the lagrange function for 2 position variables which are 

usually associated with 2 symbols, namely x  and x . As 

for ( ) 21

2
T x mx= , but for ( )U x  is constant, as seen in 

this equation: 

( )2( ) 1/ 2 ( ) ( ) ,U x mx U x T x L x x− +  = − + =  (3) 

In the above equation which interprets the velocity 
variable in the context of kinetic energy, namely 

( ) 21

2
T x mx= . Whereas for ( )U x  is a variable of 

potential energy. 
The partial derivative is the derivative of a function 

with respect to one variable, with the other variables 
constant (Zukhrufurrohmah & Putri, 2019). This allows 
us to understand how a function changes when one of 
its variables changes while the other variables stay the 
same. For single variable functions, such as f(y), the 
derivative of the function with respect to y is denoted by 
df/dy (Jiroušek et al., 2022). It represents the rate of 
change of function f with respect to variable y. For 
example, if we have a function f(y) = y2, the derivative of 
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this function with respect to y is df/dy = 2y. This tells us 
that, when y is increased by a small amount, the function 
f(y) will be doubled. For a two-variable function, such as 
g(y, z), there are two possible derivatives for each 
variable y or z. These are known as partial derivatives, 
and are denoted by ∂g/∂y and ∂g/∂z. It represents the 
rate of change of the function g with respect to the 
variables y and z, respectively, while maintaining the 
other variables constant. 

 

 
Figure 1. Function g(y,z) 

Source: Ruben Siagian plot in r Program (2023) 

 
For example, if we have a function g(y, z) = y2 + z2, 

the partial derivative of this function with respect to y is 
∂g/∂y = 2y, and the partial derivative with respect to z 
will be ∂g/∂z = 2z. This tells us that, as y or z increases 
by a small amount, the function g(y, z) will double that 
amount, while keeping the other variables constant. 
Partial derivatives are an important tool for 
understanding how functions change when the 
variables change, and they are commonly used in a 
variety of fields, including physics, engineering, and 
economics (Misbah, 2022).  

Although partial derivatives are usually not 
introduced until a college-level calculus course, the 
concepts are relatively simple and can be explained to 
advanced high school students interested in learning 
more about calculus (Musyrifah, 2022). The partial 
derivative is the derivative of a function with respect to 
one variable, with the other variables constant 
(Zukhrufurrohmah & Putri, 2019). This allows us to 
understand how a function changes when one of its 
variables changes while the other variables stay the 
same. 

To explain partial derivatives to high school 
students, it can be helpful to start by introducing the 
concept of the derivative of a function of one variable 
(Nisa, 2018). From there, you can introduce the idea of 
partial derivatives as a way of understanding how a 
function changes when one of its variables changes 
while the other variables stay the same. We may also 
want to provide examples of functions of two or more 

variables and show how partial derivatives can be used 
to understand their behavior. By introducing advanced 
high school students to partial derivatives, you can help 
spark their interest in calculus and prepare them for the 
more advanced topics they will encounter in college-
level courses (Brahier, 2020). 

Next we continue in the calculation, we can see in 
the equation below: 

dU L

dx x


− =


 (4) 

On the right side by replacing  x  to x  then the p-

value will be obtained, namely mx . p is the variable of 

momentum. So that we can multiply 
L

x




 with a 

derivative with respect to time (1/dt) i.e. will yield mx .  

L d
mx

x dt

 
=  

 
 (5) 

Then we can get Newton's equation: 

L d L

x dt x

  
= 

  
 (6) 

The Euler-Lagrange equation is the basic equation 
of motion in Lagrangian dynamics, which is an 
alternative approach to understanding the motion of 
bodies (Tokasi, 2022). In one dimension, the Euler-
Lagrange equation is used to describe the motion of an 
object in terms of its position, velocity, and forces acting 
on it (Mishra et al., 2020).  In Lagrangian dynamics, the 
Euler-Lagrange equation is used to replace the equation 
F = ma, which is the equation of motion in Newtonian 
dynamics. In Newtonian dynamics, F = ma relates the 
force acting on an object to its mass and acceleration, but 
in Lagrangian dynamics, the Euler-Lagrange equation 
relates the motion of an object to its position and 
velocity, as well as the forces acting on it (Zain, 2019). 

By explaining the Euler-Lagrange equation to 
students, you can help them understand how 
Lagrangian dynamics differs from Newtonian dynamics 
and how it can be used to understand the motion of 
objects in one dimension. This can be especially useful 
for advanced high school students who are interested in 
learning more about physics and who may be preparing 
for a college-level course in this subject. 

 
Hamiltonian dynamics in physical mechanics 

In the dynamic formulation of the Hamiltonian, the 
Hamiltonian is a mathematical function that describes 
the motion of an object in terms of its position and 
momentum (Mattheakis et al., 2019).  

In terms of physics, the Hamiltonian is a 
mathematical function that describes the motion of an 
object based on its position and momentum (North, 
2021). The Hamiltonian is an important concept in 
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Hamiltonian mechanics, which is an alternative 
approach to understanding the motion of bodies. The 
Hamiltonian is a function of the two variables p and x, 
where p is the object's momentum and x is its position. 
Momentum is a measure of an object's motion and is 
equal to the product of the object's mass and velocity. 
Position is the location of objects in space. The kinetic 
energy of the object is half the product of the object's 
mass and its velocity squared, while the potential energy 
is half the product of the spring constant k by the object's 
displacement from its equilibrium position 
(Usubamatov, 2020). The Hamiltonian can be defined as 
the sum of the kinetic and potential energies (Fichtner & 
Zunino, 2019). This Figure 2 shows how the Hamiltonian 
increases with the object's position and the object's 
momentum, illustrating how the total energy of the 
system increases with the object's motion. 
 

 
Figure 2. Dynamic formulation of the hamilton 

Source: Ruben Siagian plot in r Program (2023) 

 
The Hamiltonian is a central concept in 

Hamiltonian mechanics, which is an alternative 
approach to understanding the motion of bodies. The 
Hamiltonian is a function of the two variables p and x, 
where p is the object's momentum and x is its position. 
The momentum of an object is a measure of its motion, 
and it is equal to the product of the object's mass and 
velocity. The position of an object is its location in space 
(Ma, 2003). 

( ) ( ), ,L x x px H p x− + =  (7) 

2 2 21 1

2 2
T U mx U mx mx U+ = + = − +  defined as H, 

Where the sum of U+T is the total energy. In equation 
left side there is L which is not part of the momentum 

function (p). The next stage we can identify x  is 
H

p




. 

Meanwhile, based on the explanation above, L is 
part of the function x, so we get: 

L H

x x

 
− =
 

 (8) 

And further 

H
p

x


= −


 (9) 

The above equation is obtained by reviewing the 

explanation, and the equation p  which will be 

reviewed in the sub-chapter, examples of lagrange 

dynamics will be obtained L p x =  , so: 

H p x− =   (10) 

In Newtonian dynamics, the basic equation that 
describes the motion of a particle is F = ma, where F is 
the force acting on the particle, m is the mass of the 
particle, and a is the acceleration of the particle (Koczan, 
2021). This equation tells us that the force acting on a 
particle is equal to the mass of the particle multiplied by 
its acceleration. Instead of using force and acceleration 
as the fundamental variables, Hamilton's equations use 
the position and momentum of the particle as the 
fundamental variables (Hjelmstad & Hjelmstad, 2022).  
The position and momentum of a particle are related by 
the equation p = mv, where p is the momentum of the 
particle, m is its mass, and v is its velocity. Therefore, the 
Hamilton equation can be thought of as a generalization 
of the p = mv equation to a system of particles or 
continuous fields. 

There are two main forms of the Hamilton 
equation: canonical form and Lagrangian form 
(Castellani & D’Adda, 2020). The canonical form is 
usually used to describe particle systems, while the 
Lagrangian form is used to describe continuous fields 
(Harlow & Wu, 2020). Both forms of the equation are 
used in various fields of physics, including classical 
mechanics, quantum mechanics, and statistical 
mechanics (Wallace, 2021). 

 
Example of lagrange dynamics 

The one-dimensional harmonic oscillator is a 
system consisting of a mass m attached to a spring with 
a spring constant k (Sisini & Sisini, 2021). The mass is 
free to move along the line, and the spring applies a force 
on the mass that is proportional to the displacement of 
the mass from its equilibrium position (Shaw et al., 
2021). This system can be explained using the 
Lagrangian formula, which is a method for describing 
the motion of a system in classical mechanics using the 
principle of least action. 

To begin with, we need to define the Lagrangian 
system, which is a function that describes the kinetic 
energy of the system minus its potential energy (García-
Garrido et al., 2020). The kinetic energy of the mass is 
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given by 
21

 
2

T mv=  where v is the velocity of the mass, 

and the potential energy of the mass is given by 

21

2
V kx= , where x is the mass transfer from its 

equilibrium position. Therefore, the Lagrangian of a 
one-dimensional harmonic oscillator can be written as: 

2 21 1
- 

2 2
L T V mv kx= − =  (11) 

Next, we can use the Euler-Lagrange equations to 
find the system's equations of motion. The Euler-
Lagrange equations are a set of differential equations 
that describe the evolution of a system in its Lagrange 
terms given by (Baleanu et al., 2019): 

0
d dL dL

dt dv dx

 
− = 

 
 (12) 

dL

dv
 is the Lagrangian partial derivative with 

respect to the velocity v and 
dL

dx
 is the Lagrangian 

partial derivative with respect to displacement x. 
Substituting the Lagrangian for the one-dimensional 
harmonic oscillator into the Euler-Lagrange equation, 
we get: 

( ) 21
 0

2

d d
mv kx

dt dx

  
− =  

  
 (13) 

This is simplified to: 

  ma kx= −  (14) 

The above equation is the equation of motion for a 
one-dimensional harmonic oscillator. This equation tells 
us that the acceleration of a mass is proportional to the 
displacement of the mass from its equilibrium position 
and in the opposite direction (Verlinde, 2011).  

 

 
Figure 3. visualize one-dimensional harmonic motion 

Source: Ruben Siagian plot in r Program (2023) 

 
In figure 3 above illustrates one-dimensional 

harmonic motion, namely the motion of an object 
oscillating at an equilibrium position with a fixed 
frequency. In this case, the object's position in time is 
represented by the y-axis, while time is represented by 
the x-axis. The basic physics concept underlying the plot 
is Newton's second law of motion, namely that the 
acceleration of an object is proportional to the force it 
receives and inversely proportional to the object's mass. 
In this case, the force acting on the object is the elastic 
force, that is, the force that pulls the object back to its 
equilibrium position. By using Euler's technique, the 
position and speed of objects can be accepted over time. 
This plot shows that an object oscillates at a fixed 
frequency over time, following the laws of harmonic 
motion. This is a simple example of how the Lagrangian 
formulation can be used to describe the motion of a 
system. The Lagrangian equation is a powerful and 
widely used tool in classical mechanics, and especially 
useful for systems with constraints or symmetries. 

Students can be encouraged to work out the 
equations of motion for other types of forces and 
systems using the Lagrangian formulas, and to prove 
that the same equations of motion result from the 
Lagrangian equations and Newtonian dynamics. They 
can also be encouraged to think about three-dimensional 
problems and derive three Euler-Lagrange equations 
resulting from the three-dimensional Lagrangian 
(Norbury, 2000). This can help them develop a deeper 
understanding of classical mechanics and the principles 
of least action. 

Three-dimensional Lagrangian is a mathematical 
function that describes the dynamics of a physical 
system in three dimensions. It is defined as the 
difference between the kinetic energy of the system and 
its potential energy, and is used to derive the system's 
equations of motion. The result of the three-dimensional 
Lagrangian is the system's equation of motion, which 
describes how the system will change over time 
(Sugiyama et al., 2003). These equations can be used to 
predict the future behavior of the system, such as the 
position and speed of an object as it moves through 
space. The three-dimensional Lagrangian can also be 
used to analyze the stability of systems, as well as the 
conservation of energy and other physical quantities 
(Zak, 2003).  The three-dimensional Lagrangian is a 
powerful tool in physics and engineering, because it 
allows us to understand the behavior of complex 
physical systems in three dimensions. It is widely used 
in many fields, including classical mechanics, quantum 
mechanics and field theory. 
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( )

( )

2 2 21
( , , )

2

, , , , ,

U x y z m x y z

L x x y y z z

= − + + +

=

 (15) 

 
Example of lagrange dynamics 

The Hamiltonian of a system is a mathematical 
object that represents the total energy of the system. In 
classical mechanics, this is given by the sum of the 
kinetic energy and potential energy of the system. For a 
harmonic oscillator, the Hamiltonian can be written as: 

2 2

2 2

p kx
H

m
= +  (16) 

 
where p is the oscillator's momentum, m is its mass, 

k is the spring constant, and x is the oscillator's 
displacement from its equilibrium position. first Tribe, 

2 / 2p m  represents the oscillator's kinetic energy, 

which is determined by its momentum and mass. second 

Tribe, 
2 / 2kx , represents the potential energy of the 

oscillator, which is determined by the spring constant 
and the displacement of the oscillator from its 
equilibrium position. The Hamiltonian of a harmonic 
oscillator is a useful tool for analyzing oscillator 
behavior, as it allows us to determine the total energy of 
a system at any given time (Insinga et al., 2016). It can 
also be used to derive the oscillator's equation of motion, 
which describes how the position and momentum of an 
oscillator change over time. 

By using examples students have learned in 
Newtonian dynamics, such as a particle moving in a 
straight line or a simple pendulum, students can show 
that Hamilton's equations produce the same equations 
of motion as those obtained using Newton's laws 
(Katsikadelis, 2020). This can help students to 
understand the relationship between the two classical 
mechanics approaches and to see how they can be used 
to analyze the same physical system. In addition, 
students can work on three-dimensional generalizations 
of Hamilton's equations by considering the motion of 
particles in three-dimensional space (He et al., 2022). 
This involves the introduction of additional coordinates 
and momentum to describe the motion of a particle in 
three-dimensional space. The resulting equations of 
motion can then be used to analyze particle motion in 
three dimensions (Lee et al., 2019). 

( )

( )

, , , , ,

, ,

x y z

x y z

L x y z x y z p z p y p z

H p p p

= − + + +

=
 (17) 

Lagrangian dynamics is based on the principle of 
least action, which states that the path a particle takes 
between two points is the path that minimizes the action, 
which is a mathematical measure of the change in the 

system (Wang, 2005). The motion of a particle is 
described using the Lagrangian, which is a function that 
expresses the kinetic energy of the particle and the 
potential energy of the system. 

Hamiltonian dynamics is also based on the principle 
of least action, but uses a different mathematical 
formulation to describe particle motion. It introduces the 
concepts of momentum and conjugate coordinates, 
which are used to describe the motion of a particle in 
terms of energy (Smith, 1960). The Hamiltonian is a 
function that represents the total energy of a system, and 
the equations of motion are derived from it using the 
principle of least action. 

Overall, it is important for students to understand 
that Newtonian mechanics and 
Lagrangian/Hamiltonian dynamics are different 
approaches to understanding the motion of bodies, and 
that they are based on different principles. Although 
they can be used to describe the same physical system, 
they provide different insights into the behavior of that 
system and can be used to solve different types of 
problems. 

 

Conclussion 
 

The conclusion of this research is that Lagrangian 
and Hamiltonian dynamics are advanced topics in 
classical mechanics that are not typically covered in high 
school physics curricula, but can provide a deeper 
understanding of classical mechanics and the motion of 
bodies. These approaches are based on the principle of 
least action and use different mathematical formulations 
to describe particle motion. Lagrangian dynamics uses 
the Lagrangian function to express the kinetic and 
potential energy of a system, while Hamiltonian 
dynamics introduces the concepts of momentum and 
conjugate coordinates and uses the Hamiltonian 
function to represent the total energy of a system. It is 
suggested that these topics could be an interesting and 
engaging for high school students interested in 
exploring topics beyond the standard curriculum, but it 
is noted that a strong foundation in classical mechanics 
and familiarity with advanced math concepts are 
necessary in order to understand and learn about these 
topics independently. 
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