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ABSTRACT

DESIGN FRAMEWORK OF UAV-BASED ENVIRONMENT SENSING,

LOCALIZATION, AND IMAGING SYSTEM

December 2022

Yue Sun,
B.S., Sun Yat-Sen University

B.S., Hong Kong Polytechnic University
M.S., University of Hong Kong

M.S., University of Massachusetts Boston
Ph.D., University of Massachusetts Boston

Directed by Professor Honggang Zhang

In this dissertation research, we develop a framework for designing an Unmanned Aerial

Vehicle or UAV-based environment sensing, localization, and imaging system for challeng-

ing environments with no GPS signals and low visibility. The UAV system relies on the

various sensors that it carries to conduct accurate sensing and localization of the objects in

an environment, and further to reconstruct the 3D shapes of those objects. The system can

be very useful when exploring an unknown or dangerous environment, e.g., a disaster site,

which is not convenient or not accessible for humans. In addition, the system can be used

for monitoring and object tracking in a large scale environment, e.g., a smart manufacturing

factory, for the purposes of workplace management/safety, and maintaining optimal system

performance/productivity.

In our framework, the UAV system is comprised of two subsystems: a sensing and

localization subsystem; and a mmWave radar-based 3D object reconstruction subsystem.

The first subsystem is referred to as LIDAUS (Localization of IoT Device via Anchor

UAV SLAM), which is an infrastructure-free, multi-stage SLAM (Simultaneous Localiza-

tion and Mapping) system that utilizes a UAV to accurately localize and track IoT devices
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in a space with weak or no GPS signals. The rapidly increasing deployment of Internet of

Things (IoT) around the world is changing many aspects of our society. IoT devices can

be deployed in various places for different purposes, e.g., in a manufacturing site or a large

warehouse, and they can be displaced over time due to human activities, or manufacturing

processes. Usually in an indoor environment, the lack of GPS signals and infrastructure

support makes most existing indoor localization systems not practical when localizing a

large number of wireless IoT devices. In addition, safety concerns, access restriction, and

simply the huge amount of IoT devices make it not practical for humans to manually lo-

calize and track IoT devices. Our LIDAUS is developed to address these problems. The

UAV in our LIDAUS system conducts multi-stage 3D SLAM trips to localize devices based

only on Received Signal Strength Indicator (RSSI), the most widely available measurement

of the signals of almost all commodity IoT devices. Our simulations and experiments of

Bluetooth IoT devices demonstrate that our system LIDAUS can achieve high localization

accuracy based only on RSSIs of commodity IoT devices.

Build on the first subsystem, we further develop the second subsystem for environ-

ment reconstruction and imaging via mmWave radar and deep learning. This subsystem is

referred to as 3DRIMR/R2P (3D Reconstruction and Imaging via mmWave Radar/Radar

to Point Cloud). It enables an exploring UAV to fly within an environment and collect

mmWave radar data by scanning various objects in the environment. Taking advantage of

the accurate locations given by the first subsystem, the UAV can scan an object from differ-

ent viewpoints. Then based on radar data only, the UAV can reconstruct the 3D shapes of

the objects in the space. mmWave radar has been shown as an effective sensing technique

in low visibility, smoke, dusty, and dense fog environment. However, tapping the poten-

tial of radar sensing to reconstruct 3D object shapes remains a great challenge, due to the

characteristics of radar data such as sparsity, low resolution, specularity, large noise, and

multi-path induced shadow reflections and artifacts. Hence, it is challenging to reconstruct

3D object shapes based on the raw sparse and low-resolution mmWave radar signals.

To address the challenges, our second subsystem utilizes deep learning models to ex-

tract features from sparse raw mmWave radar intensity data, and reconstructs 3D shapes of
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objects in the format of dense and detailed point cloud. We first develop a deep learning

model to reconstruct a single object’s 3D shape. The model first converts mmWave radar

data to depth images, and then reconstructs an object’s 3D shape in point cloud format. Our

experiments demonstrate the significant performance improvement of our system over the

popular existing methods such as PointNet, PointNet++ and PCN. Then we further explore

the feasibility of utilizing a mmWave radar sensor installed on a UAV to reconstruct the

3D shapes of multiple objects in a space. We evaluate two different models. Model 1 is

3DRIMR/R2P model, and Model 2 is formed by adding a segmentation stage in the pro-

cessing pipeline of Model 1. Our experiments demonstrate that both models are promising

in solving the multiple object reconstruction problem. We also show that Model 2, despite

producing denser and smoother point clouds, can lead to higher reconstruction loss or even

missing objects. In addition, we find that both models are robust to the highly noisy radar

data obtained by unstable Synthetic Aperture Radar (SAR) operation due to the instability

or vibration of a small UAV hovering at its intended scanning point. Our research shows a

promising direction of applying mmWave radar sensing in 3D object reconstruction.
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CHAPTER 1

INTRODUCTION

We develop a framework for designing an Unmanned Aerial Vehicle or UAV-based system

for conducting environment sensing, localization, and imaging in the environments that

pose great challenges to exploration and investigation by traditional techniques, e.g., weak

or no GPS signals, low visibility, or access difficulty for humans or mobile ground robots.

To address those challenges, we introduce a UAV-based system that utilizes the various

sensors mounted on a UAV and a collection of learning algorithms to localize and track the

objects in a space and reconstruct their 3D shapes in point cloud format, despite no GPS

signals and low visibility.

Our UAV system is comprised of two subsystems: a subsystem for sensing and local-

ization, and a subsystem for 3D reconstruction and imaging of objects via mmWave radar.

The first subsystem is referred to as LIDAUS (Localization of IoT Device via Anchor UAV

SLAM), which is an infrastructure-free, multi-stage SLAM (Simultaneous Localization and

Mapping) system that utilizes a UAV to accurately localize and track IoT devices in a space.

The second subsystem is referred to as 3DRIMR/R2P, i.e., 3D Reconstruction and Imag-

ing via mmWave Radar, and Radar to Point Cloud. The 3DRIMR/R2P is a deep neural

network architecture (based on conditional GAN) that takes as input raw mmWave radar

sensing signals scanned from multiple different viewpoints of an object, and then outputs

the 3D shape of the object in the format of point cloud.

In the rest of this chapter, we will first provide the background for designing the UAV-

based sensing, localization, and imaging system in Section 1.1. Then we will present the

contributions of the dissertation research in Section 1.2. The organization of the dissertation

will be discussed in Section 1.3.
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1.1 Background

1.1.1 Background of LIDAUS

The first subsystem LIDAUS is an infrastructure-free IoT device localization system based

only on RSSI, due to its ubiquitous presence and wide availability in the existing commodity

IoT devices, especially Bluetooth devices.

In recent years, indoor localization of wireless devices or sensor nodes in general has

been an active research area [BVH16, AQ20, VKK16, SRC12, SKW, LZP11, XJS14,

YYR06, SHZ15, AVB18, KJB15, ABF, WXY12, WL98, KPS14, VW07]. For exam-

ple, [BVH16] applied Received Signal Strength Indicator (RSSI) in localizing smart de-

vices. However, directly utilizing RSSIs can result in large estimation errors due to shadow

fading and multi-path fading in complex indoor environments [YZL13]. To address the

problem, research has been done on improving RSSI-based techniques, e.g., via better

fingerprinting [SHZ15, ABF]. Furthermore, Channel State Information (CSI) has been

utilized to get more accurate localization, but usually these methods need to build cus-

tomized equipment and/or require some coordination between wireless devices in a space

[WXY12, SKW, LZP11, XJS14, YYR06, WL98, KPS14]. The recent trend of applying

neural networks to indoor localization relies on a pre-built model based on extensive data

collection and model training [AQ20][AAW], which is not applicable to a dynamic chang-

ing space. Furthermore as of today, CSI information cannot be easily obtained from Blue-

tooth signals (unlike RSSI) even though some recent research [AVB18] has made some

effort in this direction. Since Bluetooth has been the dominating technology in IoT device

market and its global market size is expected to reach $58.7 billion by 2025 [Gra17], a

universal IoT device localization system should certainly include Bluetooth devices.

LIDAUS is applicable to various IoT devices with RSSIs. We focus on Bluetooth RSSIs.

We now discuss the background of RSSI-based distance estimation and the challenges of

applying it to wireless IoT device localization.

Distance estimation based on RSSIs. The functional relationship between the distance

(between a signal transmitter and a receiver) and the RSSI measured by a receiver is given

2



by the following equation [SR92]:

RSSI =−10α log10 d/d0 +β (1.1)

where α is the signal propagation exponent, β is a reference RSSI value at d0, and d is the

distance between a signal transmitter and a receiver. We usually set d0 to be 1m so that we

can get the value of β , which is RSSI measured at a distance of 1m from the node. Then the

above equation can be simplified as:

RSSI =−10α log10 d +β (1.2)

The parameters α and β in Eqn. (1.2) are different for different wireless transmitters, and

they can be estimated in practice. We can use Least Square Method (LSM) [EH05] to get the

estimated values of α and β based on experimentally collected RSSIs and distance values.

Specifically, we can place a signal receiver at various distances away from a transmitter

and measure the RSSIs of received signals, denoted by RSSIm. Let dm denote a measured

distance between the signal transmitter at position (xt ,yt ,zt) and the receiver at (xr,yr,zr).

Based on Eqn. (1.2), we can get an expected value RSSIe as a function of a measured

distance dm:

RSSIe =−10α log10 dm +β (1.3)

where dm =
√
(xr − xt)2 +(yr − yt)2 +(zr − zt)2. Then the estimated parameters α̂ and β̂

can be obtained by using N measured pairs (dm,RSSIm) in solving the following optimiza-

tion problem:

α̂, β̂ = argmin
α,β

N

∑
i=1

(RSSIm − (−10α log10 dm +β ))2 (1.4)

In this dissertation, we use the LSM to derive the estimated α and β .

1.1.2 Background of 3DRIMR/R2P

Our second subsystem 3DRIMP/R2P reconstructs the 3D shapes of objects in a space by

processing raw Frequency Modulated Continuous Wave (FMCW) mmWave radar sensing

data with deep learning models. We now present the background for this part of our re-

search.
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FMCW Millimeter Wave Radar Sensing and Imaging. Frequency Modulated Contin-

uous Wave (FMCW) mmWave radar sensor works by periodically transmitting continuous

chirps that each linearly sweeps through a certain frequency band [Texb]. Transmitted sig-

nals reflected back from an object in a 3D space will be received by a receiver. Range

Fast Fourier Transform (FFT) is conducted on the received waveforms to detect the dis-

tance of the object from the radar sensor. In addition, multiple receivers can be arranged

horizontally and vertically to form virtual antenna arrays along both dimensions. Then two

additional FFTs can be applied to the data to calculate an object’s relative angles from the

sensor horizontally and vertically, referred to as azimuth angle φ and elevation angle θ .

Those three FFTs together can generate a 3D heatmap or intensity map of the space that

represents the energy or radar intensity per voxel, which is written as x(φ ,θ ,ρ).

The process of electronically or mechanically steering an antenna array to get high az-

imuth and elevation angle resolutions is referred to as Synthetic Aperture Radar (SAR)

operation. Usually higher resolutions along these two dimensions requires longer SAR op-

eration time given fixed number of transmitters and receivers. However, high range resolu-

tion can be achieved even with commodity mmWave radar sensors without time consuming

SAR process. In our work, we use IWR6843ISK [Texc] operating at 60 GHz frequency.

Different from LiDAR and camera sensors, the data generated by mmWave radar sen-

sors is usually sparse, of low resolution, and highly noisy. Though SAR can help improve

resolution, it is a very slow process, which may not be practical in many application sce-

narios that require short application response time. The specularity characteristic makes an

object’s surface behave like a mirror, so the reflected signals from a certain portion of the

object will not be received by a receiver (hence missing data). In addition, the multi-path

effect can cause ghost points which give incorrect information on the object’s shape. For

detailed discussions on FMCW mmWave radar sensing, please see [GMJ, FN, LRZ].

3D Reconstruction Representations. We use point cloud, a widely used format in

robotics, to represent 3D objects’ geometry (e.g., [LRZ]). This format has been used in

recent work on learning-based 3D reconstruction, e.g., [FSG, QSM16, QYS17]. The point

cloud representation of an object is a set of unordered points, with each point is a sample
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point of the object’s surface, written as its 3D Cartesian coordinates. Unlike voxelization

of 3D objects, point cloud can represent an object with high resolution but without high

memory cost. However, CNN convolutional operation cannot be applied to an unordered

point cloud set.

In addition, though we can generate the point cloud of an object by directly filtering out

mmWave radar 3D heatmaps, such a resulting point cloud usually has very low resolution,

being sparse, and with incorrect ghost points due to multi-path effect. Therefore, although

it may be acceptable to just use such a point cloud to detect the presence of an object, it is

impossible to reconstruct the shape of the object. Our work attempts to solve this problem

by using two generator neural networks to produce a smooth and dense point cloud based

on raw radar data.

Other than point cloud, voxel representations are commonly used in 3D reconstruction

to represent 3D objects in learning based approaches, for example, [KHM17, PUS, JGZ17,

WZX16], and 3D CNN convolutional operations can be applied to such data models. How-

ever, such representations have cubic growth rate in the number of voxel grids, so they

are limited to representing low resolution objects. In addition, mesh representations of 3D

objects are considered in existing work, e.g., [KLL, WZL18], but they are also limited by

memory cost and are prone to self-intersecting meshes.

1.2 Dissertation Contributions

In this dissertation, we aim to develop a design framework of UAV-based environment sens-

ing, localization and imaging system, which can not only accurately localize objects in an

3D space, but also reconstruct objects’ 3D shapes and hence reconstruct the target 3D scene.

The whole system consists of two subsystems: sensing and localization of IoT devices via

UAV SLAM and 3D reconstruction and imaging via mmWave radar and deep learning. In

addition, we also explore the feasibility of two different models of reconstructing the 3D

shapes of multiple objects. The contributions of this dissertation can be summarized as

follows.
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1. We first develop and evaluate our sensing and localization subsystem, LIDAUS (Lo-

calization of IoT Device via Anchor UAV SLAM), an infrastructure-free, multi-stage

SLAM system that utilizes an Unmanned Aerial Vehicle (UAV) to accurately localize

IoT devices in a 3D indoor space. LIDAUS consists of two stages: exploring stage,

which derives an initial estimation of the positions of the IoT devices (referred to as

target beacons) in a 3D space, and multi-round searching stages, which accurately lo-

calize all devices. It discretizes a 3D space into multiple horizontal layers, with each

layer being modeled as a grid graph. The exploring stage adopts a UAV path planning

based on an Eulerian cycle that covers all edges of the grid graph of each layer, in

order to resolve direction or angle ambiguity that is inherent in RSSI-only distance

estimation. The UAV’s path in each searching stage is based on a Steiner tree that

allows the UAV to approach each beacon’s estimated position with minimum cost

of deploying anchor beacons, which are dynamically deployed by the UAV along

its path to mitigate the impact of the unreliable noisy RSSIs of target beacons in its

SLAM computation. We also design U-SLAM, a SLAM algorithm based on Fast-

SLAM [Mon03] that can do SLAM in a 3D search space. We introduce a weighted

entropy-based clustering algorithm that selects a cluster of positions where the RSSIs

observed for a specific target beacon can be used in the location estimation of the

beacon in an offline U-SLAM replay to improve the beacon’s localization accuracy.

This contribution is reported in a publication [SXH].

2. We further introduce 3DRIMR/R2P (3D Reconstruction and Imaging via mmWave

Radar/Radar to Point Cloud), for 3D object shape reconstruction and imaging via

mmWave radar and deep learning. It applies a novel conditional GAN architec-

ture that exploits 3D CNN for local structural information extraction and point cloud

based neural networks for highly efficient 3D shape generation with detailed geom-

etry. This subsystem is a fast 3D object reconstruction system that works on the

signals of two radar snapshots of an object received by a commodity mmWave radar

sensor, instead of a slow full-scale Synthetic Aperture Radar (SAR) scan. It can also

works directly on sparse and noisy raw radar data without any structural assumption
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or annotation. Our proposed point cloud based network architecture can generate

smooth, dense, and highly accurate point cloud representation of a 3D object with

fine geometry details, based on rough and sparse point clouds with incorrect points.

These input point clouds are directly converted from the 2D depth images of an ob-

ject that are generated from raw mmWave radar sensor data, and thus characterized

by mutual inconsistency and orientation/shape errors, due to the imperfect process to

generate them. We further demonstrate with extensive experiments the importance

of loss function design in the training of models for reconstructing point clouds. We

also show the limitations of Chamfer Distance (CD) and Earth Mover’s Distance

(EMD), the two state of art point clouds evaluation metrics, in the evaluation of the

shape similarity of two point clouds. This contribution is reported in publications

[SHZ21][SZH].

3. In the third part of this dissertation, we further explore the feasibility of utilizing a

mmWave radar sensor installed on a UAV to reconstruct the 3D shapes of multiple

objects in a space, rather than a single object. We propose and evaluate two differ-

ent models. Model 1 is our recently proposed 3DRIMR/R2P model [SHZ21][SZH],

and Model 2 is formed by adding a segmentation stage in the processing pipeline

of Model 1. We demonstrate that it is feasible to utilize a multi-stage deep neu-

ral network model to reconstruct multiple objects in a 3D space based on mmWave

radar data. In addition, we find that Model 1 has better quantitative results than

Model 2 even though Model 2 has an extra segmentation stage and can result in

denser/smoother point clouds. This is because any segmentation error can cause cas-

cading failures in the following reconstruction stage, hence making the model less

robust and more error-prone. Furthermore, we find that both models are fairly robust

to the highly distorted and noisy radar data collected by unstable SAR operation due

to the vibration/instability of a commodity UAV when hovering. This finding shows

that the inherent intricate characteristics of radar energy signature of a space is still

retained in the imperfect SAR data, and shows that it is feasible to use low-cost small
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UAV in an environment sensing/reconstruction mission under low visibility. This

contribution is reported in a publication [SXZ].

1.3 Dissertation Organization

This dissertation introduces the design framework of a UAV-based environment sensing and

imaging system. The following chapters will present our research work in details.

Chapter 2: We first introduce some related work and challenges of indoor localization

of IoT devices. Then we present our sensing and localization system design of LIDAUS

and give detailed explanation of our techniques used. After that, we present our evaluation

results via simulations and experiments. Finally, we draw a conclusion and discuss our

future work.

Chapter 3: At the beginning, we introduce some related work and challenges to re-

construct an object’s 3D shape in a low-visibility environment. Then we introduce the

architecture and technical details of the design of 3DRIMR/R2P, our 3D shape reconstruc-

tion system. Finally, we present our evaluation results and findings via implementation and

experiments.

Chapter 4: We first introduce the related work and challenges to further reconstruct

multiple objects in a 3D space. Then we present design details of our two models to solve

this problem. After that, we present our findings.

Chapter 5: In this chapter, we summarize this dissertation, and explain how we will

extend our work in the future.
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CHAPTER 2

LIDAUS: LOCALIZATION OF IOT DEVICE VIA ANCHOR UAV

SLAM

In this chapter, we introduce the first subsystem of our design framework, LIDAUS (Localization

of IoT Device via Anchor UAV SLAM), an infrastructure-free, multi-stage SLAM1 system

that utilizes a UAV (Unmanned Aerial Vehicle) to search and accurately localize IoT de-

vices in a space. LIDAUS is an infrastructure-free IoT device localization system based

only on RSSI, due to its ubiquitous presence and wide availability in the existing commod-

ity IoT devices, especially Bluetooth devices. We aim to design this subsystem that (1)

can work in an indoor space where GPS is not available or a space that is not accessible

for humans, (2) does not require any fingerprinting or pre-trained model and can deal with

dynamic changing environment, (3) is easily deployable (without any customized signal

processing hardware). IoT devices are also referred to as beacons in this dissertation.

2.1 Related Work

Indoor localization of wireless sensors, devices, or humans has been an active research

topic in recent years [VKK16, SRC12, SKW, LZP11, XJS14, YYR06, SHZ15, AVB18,

KJB15, ABF, WXY12, WL98, KPS14, VW07]. RSSI has been utilized in many range-

based indoor localization system, but RSSI exhibits high temporal and spatial variance due

to the multipath effect. To address this issue, research has been done on improving RSSI-

based techniques, e.g., a gradient-based fingerprinting method in [SHZ15] and a neural-

network based approach in [ABF]. In addition, CSI-based method has also been studied

extensively, e.g., [WXY12].

1Simultaneous Localization and Mapping (SLAM) refers to a class of techniques used by a mobile robot
to explore an environment with unknown landmarks, with a goal to develop a map of the environment (i.e., to
localize the landmarks) and in the mean time to localize itself within the environment during its trip.

9



One of the most recent work on localizing IoT devices is iArk [AQ20]. But unlike

our work, iArk needs to design a large customized antenna array with pre-trained neural

network models, which makes iArk not applicable for a dynamically changing environment.

Another related work, HumanSLAM [BVH16], also utilizes SLAM based on the RSSIs

received by smartphones carried by human users walking around to locate IoT devices.

Different from [BVH16], our system can be applied in an environment which is dangerous

for human to access, e.g., a nuclear plant site or a disaster site.

Similar to our idea of using anchor beacons, [VW07] proposes a method to let sensor

nodes to compute their own positions based on the received signals from a set of pre-

deployed and position-known anchor nodes. But in our work, anchor nodes are dynamically

deployed with only estimated positions in a UAV search process. Our work is also related

to the rich literature in robotics on applying mobile robots in search and rescue. FastSLAM

[Mon03] is adopted as an important component in our system. Application of UAVs in

various mobile scenarios has also been active research area. For example, [PBS] introduces

a method that lets a UAV to automatically collect CSI measurements for finger-printing

based localization. [MBT17] discusses a vision-based UAV system for crowd surveillance.

2.2 Methodology

In this section, we present the design of LIDAUS. We first discuss the design challenges.

Then we give an overview of the system’s architecture. We further illustrate our key design

ideas of the whole system. Then we discuss UAV’s path planing and the various compo-

nents of the system.

2.2.1 Challenges

There are two major design challenges of applying the RSSI-based distance estimation

(Section 1.1.1) in the localization of a wireless IoT device.

First, the RSSIs of IoT devices are highly variable [YZL13], which is in sharp contrast

to the reliable and precise sensor data (e.g., LIDAR data) used in the conventional SLAM
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in robotics. Therefore, in a SLAM-based localization system (which we intend to design),

directly feeding RSSI data to a robot’s SLAM algorithm can result in large estimation errors

of both the robot itself and the IoT device to be localized.

Second, RSSIs alone can only be used to estimate the distance between a robot or UAV

from an IoT device, but not the direction or angle of the device relative to the robot. For

example, if a device is on the north side of a UAV, the UAV flies on a straight line from west

to east cannot decide whether the device is on its north side or south side. This ambiguity

is referred to as angle or direction ambiguity.

2.2.2 Architecture Overview

LIDAUS is a multi-stage SLAM system that consists of a UAV and a set of anchor beacons.

The UAV is equipped with a wireless signal receiver module and implements a software

system with its architecture shown in Figure 2.1.

The architecture includes the following main modules.

1. Exploring stage module. This module generates the initial estimates of the positions

of the IoT devices, referred to as target beacons, in the space to be explored. The

UAV’s path planning is done through an algorithm based on a Eulerian cycle. The

estimated 3D coordinates of target beacons are derived via a weighted entropy-based

clustering algorithm.

2. Searching stage module. The UAV may need to conduct multiple searching stages

in order to finalize its localization of all target beacons. In each searching stage, the

UAV flies along a path based on a Steiner tree that connects the estimated positions

of those target beacons that have not been identified as found yet. The UAV utilizes

a dynamic anchor deployment mechanism to help localize itself during its SLAM

flight.

3. Weighted entropy-based clustering algorithm. This algorithm runs at the end of

every stage in order to find a cluster or set of high quality location points at which the
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observed RSSIs of a specific beacon should be used to estimate the position of the

beacon.

4. U-SLAM algorithm. The UAV uses this 3D SLAM algorithm in its exploring and

searching stages, and it also conducts a selective U-SLAM replay of the RSSIs found

by the weighted entropy-based clustering algorithm, at the end of each stage.

5. UAV flight control and sensing. The module collects RSSIs from IoT devices and

the sensor data from the UAV’s onboard height sensors.

Figure 2.1: LIDAUS system architecture.

2.2.3 Some Key Design Ideas

Our LIDAUS subsystem introduces a few novel design ideas. We now illustrate two of

them through simple examples. The first one is that after each SLAM trip of a UAV, for

a particular beacon, the UAV conducts a SLAM replay based only on a selected set of ob-

servation location points that gives high quality RSSIs for the beacon (discussed in Section

2.2.7). The second idea is to utilize anchor beacons in a SLAM process. We let the UAV

deploy anchor beacons2 on its path to help improve the accuracy of localizing itself during

its trip, described later in Algorithm 2.2.4 in Section 2.2.9.

2Deploying or releasing a low-cost coin-sized Bluetooth beacon can be done through a simple mechanism
attached to the UAV. In addition, a low-cost NRF51822 beacon only costs around $4 [ALI].
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2.2.3.1 Replay SLAM Based On High Quality RSSIs

We now use a simple 2D example to illustrate this idea as shown in Figure 2.2. There are 11

target beacons: B 0,B 1, ...,B 10 placed on the floor of a room. Black dots show the actual

locations of those target beacons. Red dots show the estimated positions of the targets when

the drone returns its starting position. Green dots show the estimated positions of the targets

by the drone in its SLAM process. Blue color dotted lines show the estimated locations of

the UAV itself during its trip. The UAV first does a FastSLAM [Mon03] in a pre-determined

0 10 20 30 40 50
x (m)

0

10

20

30

40

50

y 
(m

)

B_0 B_1

B_2

B_3B_4B_5

B_6

B_7 B_8

B_9B_10

Figure 2.2: A 2D example to illustrate our key design idea.

path: (0,0) → (20,0) → (20,40) → (40,40) → (40,20) → (0,20) → (0,0) in the room.

This initial trip gives us an estimation of the locations of those target beacons. The blue lines

in Figure 2.2 shows the UAV’s path. The red dots show the final estimated positions of the

beacons, and the green dots show the changing estimates during the trip. We see that many

beacons cannot be accurately localized as indicated by the distance between the black dots

and their corresponding red dots in Figure 2.2. To address this problem, for each beacon,

we choose a set of RSSIs that are higher than or equal to a threshold RSSI that corresponds

to 10 meters. We replay FastSLAM for each beacon based on its set of selected RSSIs,

then get a further estimation of its location. Out of 11 beacons, 8 beacons’ estimations

13



are significantly improved, with an average 57.7% improvement. Among the improved

beacons, a set of RSSI observation locations that enclose a beacon usually gives the most

accurate estimate. In our system design, we introduce a weighted entropy-based clustering

algorithm to select a set of RSSI observation points for each beacon, shown in Section

2.2.7. This SLAM replay of beacon-specific high quality RSSIs, together with a Eulerian

cycle based path planning (in Section 2.2.8), collectively address the aforementioned design

challenges.

2.2.3.2 Anchor beacons improve SLAM performance

A typical SLAM algorithm of a robot highly depends on the accuracy levels of its sen-

sor readings (that measure the robot’s distance/orientation from surrounding landmarks) in

order to get accurate estimations of its own location and the landmarks’ locations. Unfortu-

nately, the sensor readings used by our system, i.e., RSSIs of IoT devices, are highly noisy

and unreliable. To address this problem, we let the UAV in our system to deploy additional

beacons to aid its SLAM, which are referred to as anchor beacons. The IoT devices to be

localized are referred to as target beacons. We now use a simple example to illustrate the

benefits of anchor beacons. The deployment of anchor beacons is described in Algorithm

2.2.4 in Section 2.2.9.

Consider an 39m by 39m area that is divided into a grid of 39 by 39 cells with 40 by

40 nodes, as shown in Figure 2.3. Those 40× 40 nodes form a grid graph. The distance

between any two neighboring nodes is 1m. We place 5 target beacons at 5 randomly chosen

grid nodes. As shown in Figure 2.3, red dots represent IoT beacons, and the yellow lines

show the UAV’s path. Blank blocks represent obstacles, e.g., rooms or furniture, in the area.

The UAV uses FastSLAM while flying along the planned route.

We simulate the environment with three different noise levels, i.e., standard deviations

(std), of the RSSIs generated by the target beacons: small (std = 3), medium (std = 5) and

large (std = 8). For each noise level, we do the simulation to estimate the 5 target beacons

under the following 3 cases: (1) Place one anchor beacon every one meter; (2) Place one
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Figure 2.3: The locations of the five target beacons, and the UAV’s path.

anchor beacon every four meters; (3) No anchor beacon used. For each experiment, we

repeat it 10 times using different random seeds.

The simulation results show that deploying anchor beacons always gives much smaller

estimation errors than the cases without using any anchor beacon. This improvement can be

very significant when RSSIs are quite noisy or even when a target beacon is very far away

from the UAV’s starting point. For example, Figure 2.4 shows the results of the beacon

at (28,20)m. In the figure, L means we use anchors in the experiment, while N means

we do not use them. Numbers 3, 5, and 8 represent the three RSSI noise levels. The 1m

and 4m respectively corresponds to one anchor per meter and one anchor per 4 meters on

the path. We can see that compared with the case that no anchor is used, deploying one

anchor per meter can improve the average estimation accuracy by 133%, 381% and 229%

for RSSI noise levels being 3, 5 and 8 respectively. In each RSSI noise level, we can get

smaller estimation error with higher anchor density. When noise level is as large as 8, the

estimation error in the case of deploying one anchor per meter is only 85% of that when

deploying one anchor every 4 meters and 22% of that without using anchor beacons.
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Figure 2.4: Boxplots of estimation errors of a target beacon.

2.2.4 Overview of Path Planning

We now give an overview of the UAV’s path planning. The basic idea is to divide an indoor

3D space into multiple horizontal layers, on which the UAV conducts SLAM trips and

collects RSSI data. The UAV’s facing direction is always aligned with the x-axis or y-axis

directions of the space, in order to minimize the movement errors caused by rotation. As

for the z-axis direction, the quadcopter UAV used in our system always go straight up or

down. The overall workflow of LIDAUS is presented in Algorithm 2.2.1. The UAV’s trip

includes an exploring stage and one or multiple searching stages.

In the exploring stage, the UAV flies on all the layers, one by one from a low layer to

a high layer. On each layer, its path is determined by Algorithm 2.2.3 (in Section 2.2.8).

Figure 2.5 gives an example where the space is discretized into 4 layers. On each layer,

its path covers all edges of a grid graph representation of the layer and is determined by a

Eulerian cycle. The UAV starts from the origin (0,0,0) and returns to the origin at the end

of its trip. Its path consists of 8 segments, among which segments 1,3,5 and 7 are on the

four horizontal layers. Since a typical indoor space has a ceiling height of ≤ 3 meters, thus
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Algorithm 2.2.1: System Workflow
Input: A 3D space where IoT beacons to be localized.

Output: Estimated locations of all IoT beacons in the space.

1: Exploring stage: Find initial estimations of all IoT target beacons’ locations. The

UAV invokes Algorithm 2.2.3 for path planning. It conducts U-SLAM (Section 2.2.5)

along the path and collects RSSIs. At the end of the stage, it invokes weighted

entropy-based clustering algorithm (in Algorithm 2.2.2) to find a cluster of

observation locations for each target beacon, and performs a selective replay of

U-SLAM on those clusters to derive estimated coordinates of all target beacons.

2: Searching stage(s): Multiple repeated stages may be needed in order to finalize the

localizations of all target beacons. In each stage, the UAV invokes Algorithm 2.2.4 for

a Steiner-tree-based path planning, and then it performs U-SLAM along the path. A

target beacon is labeled as found if the UAV receives a certain number of observed

high RSSIs (above a threshold). At the end of the stage, it performs clustering and

U-SLAM replay to update the estimated positions of the found target beacons.

Conduct a new search stage if there are still not-found target beacons.

this layered discretization along the z-axis will not significantly increase the complexity of

our system.

In a searching stage, the estimated positions of the target beacons whose final locations

have not been decided yet are projected on the ground layer, and a Steiner tree is built to

connect all the projected positions. Since UAV deploys anchor beacons to help its SLAM

process and they can only be deployed on the ground, thus the tree is constructed on the

graph formed by the nodes projected to the ground layer. The UAV keeps a record of the

estimated height of each beacon, and when it reaches a target beacon’s projected position

on the ground layer, it flies up to reach the estimated height of the beacon. The algorithm

to find a path in this stage is given in Algorithm 2.2.4 in Section 2.2.9. Figure 2.6 shows an

example.

In the next three subsections, we will discuss U-SLAM algorithm, exploring stage, and

searching stage.
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Figure 2.5: Illustration of the path planning in the exploring stage.
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Figure 2.6: An example of the path planning in a searching stage.

2.2.5 UAV SLAM (U-SLAM)

A key component of this subsystem is U-SLAM. In the context of the problem we study,

a UAV is a robot, and the wireless IoT devices to be localized are landmarks. U-SLAM

extends FastSLAM 1.0 [Mon03] algorithm3 by (1) adding a Kalman Filter (KF) to estimate

the elevation of the UAV through a barometer and a laser sensor (ToF sensor VL53L1x)4,

3We have found that FastSLAM 2.0’s performance is not as good as FastSLAM 1.0 in the problem studied
in this paper, as FastSLAM 2.0 relies more on the sensing data of landmarks (i.e., IoT beacons’ RSSIs) which
are highly noisy and unreliable.

4This can be easily extended by adding more accurate and longer range sensors such as mmWave sensors
[Tex20].
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(2) expanding the Extended Kalman Filters (EKF) of FastSLAM to estimate the three-

dimensional coordinates of the target IoT devices, and (3) letting the UAV dynamically

deploy anchor beacons on its path and use the RSSIs of the anchor beacons in updating the

posterior of its own position.

Recall the IoT devices that are to be localized are called target beacons. Let T denote

the set of target beacons. Let A denote the set of anchor beacons, and let B= T
⋃
A. Let bi

denote the position of beacon i with bi = (bi,x,bi,y,bi,z), and vector b denote the positions of

all beacons. The UAV’s position is denoted by s = (sx,sy,sz). A beacon’s relative position

with respect to the UAV is given by g = (r,ϕ,γ)T , i.e., the Euclidean distance, and the

azimuth and elevation angle differences, between the UAV and the beacon, as shown in

Figure 2.7.

Figure 2.7: An IoT beacon’s relative position with respect to the UAV.

Observed and estimated parameters. The observed distance ri of a beacon i from the

UAV is calculated by using Eqn. (1.2) and the observed RSSIs of beacon i. The observed

height of the UAV, denoted by h, is from the height sensors of the UAV. The UAV uses a KF

to estimate sz based on h. Based on observed ri and estimated sz and the motion command

of the UAV (denoted by u), the UAV uses a particle filter to estimate its sx,sy. Inside each

particle, the UAV uses an EKF to estimate beacon i’s bi = (bi,x,bi,y,bi,z). Note that the

RSSIs of a beacon do not give us observed γ and ϕ . However, we can easily derive γ after

we derive the estimated bi and si. In addition, since we keep the UAV’s facing direction
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always along the x-axis and the y-axis of the space, the azimuth angle difference ϕ can also

be derived from estimated bi and s.

Let ri,t denote the observed distance between beacon i and the UAV at time t. Vector

rt = (r1,t ,r2,t , ...,ri,t , ...,r|B|,t) includes all beacons at time t. The UAV’s location at time t is

denoted by st , and an IoT beacon i’s position at time t is denoted by bi,t . Let ut denote the

motion command given by the UAV’s controller to the UAV at time t. The UAV’s history

of positions from time 0 to time t is denoted by s0:t . Similarly, we have r0:t , h0:t , and u0:t .

2.2.5.1 Calculate the posteriors of the positions of UAV and beacons

The UAV updates its estimation of the following probability during its flight5.

p(s0:t ,b)|r0:t ,h0:t ,u0:t) (2.1)

At the end of the UAV’s flight, the final estimate of the mean of b tells us the estimated

locations of all beacons.

The UAV solves (2.1) via the conditional independence between beacons based on the

knowledge of the UAV’s path. That is,

p(s0:t ,b|r0:t ,h0:t ,u0:t)

= p(s0:t |r0:t ,h0:t ,u0:t)p(b|s0:t ,r0:t ,h0:t ,u0:t)

= p(s0:t |r0:t ,h0:t ,u0:t)
|B|

∏
i=1

p(bi|s0:t ,ri,0:t ,h0:t ,u0:t)

(2.2)

The algorithm estimates the UAV’s sx and sy by using a particle filter that has L particles,

and it estimates sz by using a KF with observed height h from height sensors. In addition,

the algorithm estimates beacon i’s posterior p(bi|s0:t ,ri,0:t ,h0:t ,u0:t) by using EKFs, with

one EKF for each beacon.
5We do not need to solve the data association problem as in traditional robotics SLAM algorithms, as each

beacon’s signal contains its unique ID.
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Consider a beacon i. The algorithm uses the following formula to compute the posterior

of its position bi:

p(bi|s0:t ,ri,0:t ,h0:t ,u0:t)

= η · p(ri,t |bi,st) · p(bi|s0:t−1,ri,0:t−1,h0:t ,u0:t−1) (2.3)

where η is a normalizing factor.

The algorithm maintains a set of particles Yt and a KF at time t. Each particle ℓ con-

tains its estimated x- and y-coordinates of the UAV at time t (i.e., s[ℓ]x ,s[ℓ]y ). A KF contains

estimated UAV’s height sz. Let s[ℓ]t denotes the vector collection of these three estimates. In

addition, particle ℓ contains the estimated mean and covariance of the position of each bea-

con i at time t, denoted by (µ
[ℓ]
i,t ,Σ

[ℓ]
i,t ). For ease of exposition, we drop notations i, t, ℓ and

consider a beacon’s position distribution with mean and covariance (µ,Σ), then we have

µ = (µx,µy,µz) and

Σ =


σ2

x σx,y σx,z

σx,y σ2
y σy,z

σx,z σy,z σ2
z


Let Y[ℓ]

t denote particle ℓ at time t, then Y[ℓ]
t = {s[ℓ]t ,(µ

[ℓ]
1,t ,Σ

[ℓ]
1,t), ...,(µ

[ℓ]
|B|,t ,Σ

[ℓ]
|B|,t)}, and

let Yt = {Y[1]
t , ...,Y[L]

t }.

2.2.5.2 The iterative steps

The algorithm generates Yt from Yt−1 at time t based on the latest motion control ut and

observed values rt and ht by running the following steps:

1. Step 1. The height KF estimates the UAV’s sz,t at t.

2. Step 2. Each particle ℓ predicts the new position s[ℓ]t based on ut , s[ℓ]t−1, and sz,t .

3. Step 3. Update the EKF’s estimation of each beacon in every particle.

4. Step 4. Calculate the importance weight of each particle.

5. Step 5. Conduct an importance re-sampling to derive a new particle set.
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2.2.5.3 Impacts of RSSI noise and UAV’s motion noise

There are two types of measurements that can impact the estimation accuracy of the bea-

cons’ positions and the UAV’s position over time. They are the beacons’ RSSI noise and

the UAV’s motion noise. We next examine all 5 steps carefully.

Step 1’s height estimation is affected by the height sensors’ noises and the UAV’s mo-

tion command noise.

Step 2 of the algorithm utilizes a probabilistic motion model to predict the UAV’s posi-

tion, i.e., s[ℓ]t ∼ p(st |ut ,s
[ℓ]
t−1), so this prediction is affected by the motion control noise, not

the noise of the measured RSSIs of beacons.

Step 3 updates the position estimation of a beacon i by using an EKF. Consider particle

ℓ, its EKF first calculates a predicted distance r̂i from beacon i with the beacons’s position

estimated at the previous time step t −1 and the predicted new position of the UAV, i.e.,

r̂[ℓ]i,t = g(s[ℓ]t ,µ
[ℓ]
i,t−1) (2.4)

where g(s,bi) is the Euclidean distance function between s and bi.

Then the EKF derives the estimated mean and covariance of beacon i at time t according

to the following equations:

µ
[ℓ]
i,t = µ

[ℓ]
i,t−1 +K[ℓ]

t (ri,t − r̂[ℓ]i,t−1) (2.5)

Σ
[ℓ]
i,t = (I −K[ℓ]

i,t G[ℓ]
i,t )Σ

[ℓ]
i,t−1 (2.6)

where coefficients K[ℓ]
i,t and G[ℓ]

i,t both are functions of s[ℓ]t ,µ
[ℓ]
i,t−1,Σ

[ℓ]
i,t−1. Therefore, we can

write the following functions to calculate the estimated mean and covariance of beacon i in

particle ℓ at time t:

µ
[ℓ]
i,t = f (ri,t ,s

[ℓ]
t ,µ

[ℓ]
i,t−1,Σ

[ℓ]
i,t−1) (2.7)

Σ
[ℓ]
i,t = f (s[ℓ]t ,µ

[ℓ]
i,t−1,Σ

[ℓ]
i,t−1) (2.8)

Step 4 calculates the importance weight of each particle based on the measured RSSIs

of the beacons at time t. Specifically, the weight of particle ℓ is a function of ri,t .

wℓ
t = f (ri,t ,s

[ℓ]
t ,µ

[ℓ]
i,t−1,Σ

[ℓ]
i,t−1) (2.9)
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We follow the standard procedure to design the KF, the EKFs, and the importance sam-

pling for particle filters.

Remarks. Equations (2.7), (2.8), and (2.9) show that the accuracy of estimated positions

of the UAV and of beacons are highly dependent on the accuracy of the measured RSSIs.

Thus, we let the UAV deploy anchor beacons on its path and only use anchor beacons’

RSSIs in the estimation of its own locations in its U-SLAM, which helps improve its U-

SLAM’s localization accuracy.

2.2.6 SLAM Selective Replay

At the end of each stage (either the exploring stage or each searching stage), for a beacon

i, the UAV selects a set of RSSI points according to a weighted entropy-based clustering

method (i.e., Algorithm 2.2.2 in Section 2.2.7), denoted by Ci. Then the UAV conducts an

offline replay of U-SLAM based on Ci to update its estimation of beacon i’s position.

2.2.7 Weighted Entropy-based Clustering Algorithm

We design this algorithm to select a set or cluster of position points (denoted by Ci) for a

beacon i, at which the observed RSSIs of beacon i can be used for a SLAM selective replay

to get an accurate estimate of beacon i’s position. This algorithm is shown in Algorithm

2.2.2. In addition, the center of cluster Ci is also used as the initial estimate in the SLAM

selective replay for beacon i at the end of the exploring stage.

Let Pinit = {p1, ..., pN} denote the set of the observation points or positions where RSSIs

are collected in a trip of the UAV. For an observation point p j, the UAV derives a set of the

medians of observed RSSIs, denoted by R j = {R j
1, ...,R

j
M} for all M IoT beacons, denoted

by set T = {T1, ...,TM}.

For a beacon i, we use two thresholds to control the selection of RSSI observation

points to be added into cluster Ci: RSSI difference level RdL and RSSI cluster threshold

Rth,c. These two thresholds are dynamically adjusted during the execution of the clustering
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Input Explanation

Pini = {p1, ..., pN} Initial path

R j = {R j
1, ...,R

j
M} M IoT target beacons T = {T1, ...,TM}

RdL = 0 Initial RSSI difference level

Rth,c Initial RSSI cluster threshold

Sth Entropy threshold

{G1, ...,Gq} Edge weight look-up table of each 3D cube

LG
The total number of edges of the multi-layer grid graph

representation of the search space

Li,k
The number of observation points in an edge ek that is

selected for beacon i

Table 2.1: Input of Algorithm 2.2.2 - Weighted Entropy-based Clustering Algorithm.

algorithm in order to get a sufficient number of points in Ci and in the mean time to ensure

only location points with high quality RSSIs for the beacon are added into Ci.

Recall that based on the relationship between RSSI and distance, in general the closer

a location is to a beacon, the stronger its RSSI can be observed. Thus we decide that the

points where the RSSIs observed for a beacon is no less than Rth,c can be candidate points

for the beacon. However, due to multi-path and other factors, a strong RSSI of a beacon

at a location that is not so close to the beacon might also be observed. To mitigate this

impact, we assign a location point as a high quality observation location only to the beacon

that has the strongest RSSI among all beacons with observed RSSIs at the location, i.e.,

the location is only used for the beacon with strongest RSSI, not used for other beacons’

estimation even though their RSSIs are also observed. In case we cannot collect sufficient

observations for a beacon, we lessen this strongest assignment requirement by assigning a

location to a beacon if its RSSI at the location is within a difference threshold RdL from the

strongest RSSI at the location. This is shown on line 12 of Algorithm 2.2.2.

24



In addition, we use Shannon entropy to evaluate the quality of the selected observation

points for a beacon. Recall all observation points are along the edges of a grid graph. For

a beacon i, recall Ci denotes the set of the selected points for this beacon. Those points

in Ci are distributed on various edges. We use the following two methods to evaluate the

quality of those points in terms of estimating beacon i’s position. First, note that the more

evenly distributed the points on those edges, the better location estimation we can get for

this beacon. For example, consider Case 5 in Figure 2.9. If all observation points are evenly

distributed on all four edges instead of on only one edge, our SLAM algorithm can get high

estimation accuracy. We use an entropy metric to measure the level of evenness or balance

of the points assigned to beacon i. Second, for a particular beacon, we associate a weight

wk to each edge ek; the wk of an edge gets smaller if the edge is further away from the

beacon. Specifically, we propose to use the following weighted entropy of beacon i’s RSSI

observation points to evaluate the quality of cluster Ci:

Si = Σk(−wk
Li,k

Li
log(

Li,k

Li
))/ log(LG) (2.10)

where Li,k denotes the number of observation points in an edge ek that is selected for bea-

con i, Li = ΣkLi,k, and LG denotes the total number of edges of the multi-layer grid graph

representation of the search space. The goal of Algorithm 2.2.2 is to find a Ci for a beacon

i so that the Ci’s weighted entropy Si is above a quality threshold Sth. Note that since the

edges are weighted, we need to multiply the above Si with another scaling factor to scale

an entropy in the range of [0,1]. Note that a simple clustering to find location estimates of

iBeacons is used in [LVN18], but their method is simply a direct application of K-means

clustering.

Figure 2.8 shows a toy example to illustrate the calculation of the weighted entropy of

the cluster of positions (shown as the red dots in the figure) for a beacon (shown as the

black star in the figure). There are 48 observation points in this beacon’s cluster. There are

30 edges in this space. Given a target estimated located in the middle cube of the graph, 12

cyan edges are the nearest (or core) edges to the beacon, with weight wC; 12 blue edges are

adjacent to the core edges, and their weights are wA; 6 yellow edges belong to the Other
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Figure 2.8: A toy example to calculate weighted entropy of the cluster of points of a beacon.

Figure 2.9: Example locations when a beacon is on a 2D grid graph.

class with weight wO. The 12 core edges have 40 observation locations in total, the 12

adjacent edges have 8 observations, and there are 0 observation locations in other edges.

2.2.8 Exploring Stage Path Planning

In this stage, the UAV models each horizontal layer as a grid graph. Then it travels along a

path based on an Eulerian cycle to cover all edges of the grid graph on each horizontal layer.

It visits all layers, one by one from lower layers to higher layers, as shown in Figure 2.5. It

runs U-SLAM during its trip and in the mean time it collects RSSIs of all IoT devices while
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flying. After returning back, the UAV uses a weighted entropy-based clustering algorithm

to derive initial estimated positions of the IoT devices in the space.

Path planning based on Eulerian cycle. On each layer, the UAV follows a path deter-

mined by Algorithm 2.2.3, which is a minimum distance path that covers all the edges of

the squares of the layer. Let Gin denote the grid graph on a layer. Assume that each edge

of the graph has a unit cost. The basic idea of Algorithm 2.2.3 is to first convert Gin to an

even-degree graph (i.e., every node has even degree), and then utilize an Eulerian cycle al-

gorithm to find the least cost (i.e., shortest distance) tour that covers all edges of the graph.

The tour starts from the origin of Gin and returns back to the origin at the end of the tour.

Rationale for collecting RSSIs on all edges of the grid graph representation of a hor-

izontal layer. This design addresses the problem of direction ambiguity of a beacon due

to the fact that RSSIs can only indicate distance, but no direction or angle information. For

ease of exposition, we take a look at a 2D plane shown Figure 2.9, where the red dots show

the possible locations of an IoT beacon and the points inside a circle and along edges are

the locations that can be used by SLAM replay. We see that in all cases, an edge covering

tour can collect RSSI data of a beacon along both x-axis and y-axis directions. In addition,

for Case 5 (a very common case), all the positions where we get the beacon’s RSSI data

enclose the beacon. This design can greatly improve the localization accuracy of U-SLAM.

2.2.9 Searching Stage

Following the exploring stage, the UAV goes through a limited number of target searching

stages: Stage1,Stage2, ...,StageK . The limit K is a user tunable parameter, depending on

the specific application scenario. This stage is described in Algorithm 2.2.4.

In each stage, the UAV constructs a Steiner tree [HR92] to reach all remaining not-

yet-found target devices, based on the latest estimated positions of them from previous

stages. It travels along the shortest branch of the tree to fly close to the targets on that

branch. While flying along the tree nodes, the UAV also deploys anchor beacons to help

its U-SLAM computation. During this stage, the UAV updates its estimation of all targets
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through U-SLAM. The rationale of utilizing anchor beacons is to improve the estimation

accuracy of U-SLAM, as the algorithm (and in fact all SLAM algorithms based on our

knowledge) is highly dependent on the measured signals of beacons, i.e., RSSIs, but RSSIs

are not reliable.

In addition, since a Steiner tree is a minimum-weight tree that spans all target device

nodes in the graph of the area, the Steiner tree path can minimize the the deployment cost

of anchor beacons. Note that we let the UAV fly close to a target, as RSSIs are more reliable

when a receiver is very close to a transmitter. A target is labeled as found when the UAV

observes a sufficient number of very strong RSSIs.

After exploring the shortest branch of the Steiner tree in Stage i, for all targets that

are labeled as found, the UAV runs a U-SLAM selective replay based on the set of RSSI

observation locations selected by the entropy clustering algorithm. If there are still targets

that are not labeled as found yet, the UAV starts a new stage again. The total number of

stages is bounded by an empirically determined number6.

2.3 Implementation and Experiments

We simulate the operation of LIDAUS in a 3D space with dimensions 40m×40m×3m. We

discretize it into 4 horizontal layers, and their heights are of 0m, 1m, 2m and 3m respec-

tively. We model each layer as a grid graph with squares of size 10m×10m. There are 10

IoT devices (i.e., target beacons) scattered in the space as shown in Figure 2.6, and their

estimated positions are projected on the ground layer where a Steiner tree is built to con-

nect those projected nodes. The UAV has a Gaussian motion noise with standard deviation

(std) of 0.05m in horizontal direction and std = 0.03m in vertical direction, and the RSSI

data received from a target beacon is generated through Eqn. (1.2) with a Gaussian noise

std = 0.1. In simulations, the UAV always starts at the origin (0,0,0), and it collects RSSIs

at every 1m step.

6Note that in our simulations and experiments, the UAV can always quickly label all targets as found
within 5 stages.
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We compare LIDAUS with two baseline methods: Random SLAM Fly and Naive SLAM

Search. With these two baseline methods, the UAV also starts at the origin and measures

RSSIs every 1m, and it also utilizes the 3D U-SLAM algorithm. But these two baseline

methods do not deploy any anchor beacon. For all these three methods, the RSSI threshold

to label a target beacon as found is −51, which corresponds to a distance of 1.7m (i.e.,

about the length of the diagonal line of a cube with 1m side length7). The UAV in LIDAUS

follows the design given in Section 2.2.

With Random SLAM Fly, the UAV randomly chooses a direction to move at each step

of 1m. The UAV will stop if all targets have been labeled as found, or it will stop if its total

flying step reaches 10k steps. Note that this Random SLAM Fly is similar to HumanSLAM

[BVH16], but the former works in a 3D space and the motion control estimation is more

accurate than the smartphone-based human motion estimation in HumanSLAM.

With Naive SLAM Search, the UAV also conducts a multi-stage U-SLAM flight. In

its exploring stage, it flies layer by layer in the same discretized space as LIDAUS, but it

follows the 8-like shape path (same as the one shown in Figure 2.2) on each layer in order

to resolve direction or angle ambiguity. After that, the UAV sets the estimated position of

the closest unfound target as its destination and flies toward it. During this trip, it keeps

updating the estimates of all unfound target beacons via U-SLAM as new RSSIs are being

observed constantly, and when the UAV finds the received RSSI from a target is greater

than −51 at least three times, it will consider that target as found. When UAV reaches

the destination, it will find the closest estimated position of an unfound target as the next

destination and repeat the above process until all target beacons are labeled as found, or

the total flying steps reach 10 thousand steps. To avoid keeping searching the same target

all the time or getting into an infinite loop, we set a counter for each target. Whenever a

target’s estimated position is chosen as a destination, its counter increments by one. If a

target’s counter reaches 5, it will not be chosen as a destination in future.

7The relationship between RSSI and distance varies across different types of devices. A future work of
ours is to design a learning module to deal with a mixture of various different types of wireless signals.
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2.3.1 Comparison between Methods

We now compare the performance of these three methods. Figure 2.10 shows the local-

ization errors (i.e., the distance between the true location of a beacon and its estimated

location) of all three methods over all those 10 target beacons. We see that LIDAUS in

general can achieve significantly higher localization accuracy than the other two methods.

LIDAUS’s estimation errors are always no more than 1m (except that one beacon’s error is

slightly higher than 1m).
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Figure 2.10: Bar charts of all targets’ localization errors of the three methods.

Figure 2.11 shows the boxplots of localization errors of the three methods. We observe

that the average localization errors of LIDAUS, Naive SLAM Search, and Random SLAM

Fly are 0.88, 3.15 and 3.84 meters respectively. LIDAUS’s average performance is signif-

icantly better than the other two methods. Figure 2.12 illustrates LIDAUS’s localization

errors along x, y and z directions. We can see that, except that target beacon 4 has a slightly

large error along y-direction (1.05 meters), all other targets’ localization errors along these

three directions are limited within 1 meter. As a comparison, neither the other two methods

can achieve this level of accuracy. Overall, we see that LIDAUS has the lowest average

localization error and the lowest localization variance, and hence has the best performance.
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Figure 2.11: Boxplots of all targets’ localization errors of the three methods.

To further illustrate LIDAUS, Figure 2.13 shows the Steiner tree built on the ground layer in

the final searching stage of the UAV, and the locations of anchor beacons. The red triangle

denotes the current position of UAV. In ths figure, star symbols denote the real locations

of target beacons, diamond symbols denote the current estimated locations of the not-yet-

found target beacons, cross symbols denote the final estimated locations of found target

beacons, and light green dots on the branch of the tree denote the deployed anchor beacons.

During the searching stage, the UAV flies along the shortest branch of the Steiner tree built

upon the estimated locations of target beacons and deploys anchors every 4m on its path.

2.3.2 Experiments

We now demonstrate our system design via a real-world experiment. We build a UAV

with Bluetooth receiver module based on Crazyflie [Bit20] and use it in our experiments.

Eight IoT beacons (i.e., targets) are placed on the ground of an office space as shown in

Figure 2.14. All targets and anchors (i.e., anchor beacons) advertise at a rate of 2Hz with a

transmission power set to 0 dBm. The UAV is initially placed at the origin (i.e., the main

entrance).

Initially the UAV take a Eulerian cycle path to explore the whole space. Due to the

furniture in the space, the grid graph derived by our space discretization contains various
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Figure 2.12: LIDAUS’s localization errors of target beacons along x, y and z directions.

sized grid squares or rectangles, and most of the grid squares have a side length of 2m. The

UAV collects 20 sets of RSSI data from beacons in the space every 50 cm along its flying

path. During the exploring stage, no anchor is deployed. Then it takes three searching

stages to finish its localization of all target beacons. In each searching stage, the UAV

follows the shortest branch of the Steiner tree built in that stage when searching for target

beacons, and it deploys anchors every 2m. In addition, when it reaches a target’s estimated

location as planned, it flies along an extra square path (1m side length) with the estimated

target position as center in order to receive stronger RSSI data for the target. In addition,

we also conducts experiments with FastSLAM 1.0 and FastSLAM 2.0, following the same

flying path as mentioned above.

Figure 2.15 shows that our system’s localization estimation error for each target is no

more than 1 meter, with an average 0.68m. Note that for those estimated locations that were

out of the range of the space (when using FastSLAM 1.0 or 2.0), they were rounded to the

nearest position in the space. This experiment result shows that our system can achieve

a sub-meter localization accuracy. Note that both FastSLAM 1.0 and 2.0 performed very
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Figure 2.13: Steiner trees built by LIDAUS in its final searching stage.

poorly. In addition, FastSLAM 2.0 is even worse in most cases than FastSLAM 1.0, due to

the high noise level of sensor data (i.e., RSSI).

Figure 2.14: The office space where experiments were performed.

2.4 Conclusion

In this chapter, we have discussed our sensing and localization subsystem LIDAUS, an

infrastructure-free, multi-stage SLAM system that utilizes a UAV to search and accurately

localize IoT devices in a 3D space. The system is based only on the RSSIs of the existing
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Figure 2.15: Estimation errors of LIDAUS, FastSLAM 1.0 and 2.0.

commodity IoT devices. It can be easily deployed without any customized signal process-

ing hardware and without requiring any fingerprinting or pre-trained model. It can deal with

dynamic changing environment. Furthermore, it can work in a complex indoor space where

GPS is not available or a space where it is inaccessible for humans. The system contains

several novel techniques such as a weighted entropy-based clustering of RSSI observation

locations, 3D U-SLAM (and its selective replay) with dynamic deployed anchors, and path

planning based on edge covering Eulerian cycles and Steiner tree route for cost minimiza-

tion. Our extensive simulations and real-world experiments have demonstrated the system’s

effectiveness of IoT device localization.
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Algorithm 2.2.2: Weighted Entropy-based Clustering Algorithm
Input: Table 2.1

Output: ∀i, cluster Ci and its center b̂i

1 INI: Entropy of target beacons {S1 = 0, ...,SN = 0}, Ci = /0, Li,k = 0, Ei,k = /0.

2 for beacon i in T do

3 ∀i,Si,prev = 0,Si = 1,

4 while Si < Sth and Ci ⊂ Pinit do

5 if 0.5 < Random(0,1) then

6 Decrements Rth,c by 1.

7 else

8 if not the first iteration then

9 Increments RdL by 1.

10 Reset entropy Si = 0.

11 for p j in Pini do

12 R j
max = max

i
{R j

1, ...,R
j
i , ...,R

j
N}. if R j

i == R j
max or |R j

i −R j
max| ≤ RdL

then

13 if R j
i ≥ Rth,c then

14 Ci =Ci
⋃
{p j}.

15 Calculates the 1-means center position ci for Ci and locates the cube Gq

where ci is in.

16 for p j in Ci do

17 Find the edge ek where p j is located and Ei,k = Ei,k
⋃
{p j},

Li,k = Li,k +1.

18 Li = ΣkLi,k.

19 for Ei,k of Ci do

20 Find the weight wk of Ei,k from the weight look-up table of Gq. Update

entropy: Si = Si +(−wk
Li,k
Li

log(Li,k
Li
))/ log(LG).

21 b̂i = ci.

22 return C = {C1, ...,CM} and {b̂1, b̂2, ..., b̂M}.
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Algorithm 2.2.3: Path Planning of Exploring Stage
Input: Grid graph Gin on a plane

Output: UAV’s initial fly path P0

1 if Gin is not an even-degree graph then

2 Form a graph G∗ from all odd-degree nodes in Gin.

3 forall node pairs u,v in G∗ do

4 if euv /∈ Gin then

5 Add euv in G∗.

6 Set weight w(euv) = dmin(u,v).

7 Use Blossom V alg. [Kol09] to find the minimum perfect matching M∗ in G∗.

8 Add edges in M∗ into Gin to get an even-degree graph G∗
in.

9 Use an Eulerian cycle alg. (e.g., Fleury’s alg.) to find a least-cost tour P0 in G∗
in.

Input Explanation

b̂0 = {b̂0
1, ..., b̂

0
M} Initial estimated positions of target beacons’ coordinates

Rth Threshold RSSI value

nth
Threshold, eg. a target beacon is labeled as found if the number

of its RSSIs that is above Rth reaches nth

Table 2.2: Input of Algorithm 2.2.4 - Searching Stage with Anchor Steiner Tree.
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Algorithm 2.2.4: Searching Stage with Anchor Steiner Tree
Input: Table 2.2

Output: Target beacons’ estimated coordinates: b̂ = {b̂1, ..., b̂M}.

1 INITIALIZE: UAV starts at origin: (0,0,0), let b̂ = b̂0, found target set Tf ound = /0,

not-yet-found target set Tnon = T, set of the coordinates of expected anchors

Aexp = /0, set of the coordinates of deployed anchors Adep = /0, set of tree nodes

Ntree = /0.

2 Discretize the ground plane as a grid graph G with each cell’s SideLength = 1m.

3 while Tnon ̸= /0 do

4 Execute Sub-Algorithm 2.2.5.

5 forall step point p j ∈ P do

6 if p j ∈ Aexp and p j /∈ Adep then

7 UAV deploys one anchor beacon on the ground at p j.

8 Adep = Adep +{p j}.

9 if p j and a node vi ∈ T pro j
non have the same x and y coordinates then

10 UAV flies up to (b̂i,x, b̂i,y, b̂i,z,) of b̂i ∈ Tnon, as vi is b̂i’s projection, then

flies around, and finally down to p j.

11 if there are nth collected RSSIs R j
i for target beacon ti such that R j

i > Rth

then

12 F = F +{ti}.

13 Tf ound = Tf ound +F .

14 Use Algorithm 2.2.2 based on all RSSIs collected so far to get cluster Ci for

each target beacon ti.

15 forall ti ∈ Tnon do

16 Use Ci and R j
i to replay U-SLAM algorithm.

17 Update b̂i in b̂.

18 Tnon = Tnon −F .

19 return b̂
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Algorithm 2.2.5: Sub-Algorithm for Algorithm 2.2.4.

• Project every target beacon ti’s estimated position (b̂i,x, b̂i,y, b̂i,z) in Tnon to its

closest node on G, denoted by (vi,x,vi,y), and put all these nodes in T pro j
non .

• Ntree = T pro j
non +Adep.

• Use UAV’s current position as root to build a Steiner tree Tree out of G that

connects all nodes in Ntree.

• Let path P = the shortest branch of Tree.

• Generate Aexp, the set of expected positions of anchors to be deployed on P.

• F = /0.

• UAV flies on the ground plane, following path P and performing U-SLAM

algorithm.
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CHAPTER 3

3DRIMR/R2P: 3D RECONSTRUCTION AND IMAGING VIA

MMWAVE RADAR / RADAR TO POINT CLOUD

In this chapter, we present the design of our second subsystem 3DRMIR/R2P. It is a deep

neural network based system that takes as input raw mmWave radar sensing signals scanned

from multiple different viewpoints of an object, and then outputs the 3D shape of the object

in the format of point cloud.

Recent advances in Millimeter Wave (mmWave) radar sensing technology have made

it a great tool in autonomous vehicles [GMJ] and search/rescue in high risk areas [LRZ].

For example, in the areas of fire with smoke and toxic gas and hence low visibility, it is

impossible to utilize optical sensors such as LiDAR and camera to find a safe route, and

any time delay can potentially cost lives in those rescue scenes. To construct maps in those

heavy smoke and dense fog environments, mmWave radar has been shown as an effective

sensing tool [LRZ, GMJ].

However, it is challenging to use mmWave radar signals for object imaging and recon-

struction, as their signals are usually of low resolution, sparse, and highly noisy due to

multi-path and specularity. A few recent work [GMJ, FN, LRZ] have made some progress

in generating 2D images based on mmWave radar. In this chapter, we move one step further

to tackle a more challenging problem: reconstructing 3D object shapes based on raw sparse

and low-resolution mmWave radar signals.

To address the challenge, we propose our reconstruction and imaging subsystem, 3DRIMR/R2P

[SHZ21, SZH], a deep neural network architecture based on conditional Generative Adver-

sarial Network (GAN). The architecture consists of two generators in two stages. In Stage

1, generator Gr2i takes 3D radar intensity data as input and generates 2D depth images. In

Stage 2, generator Gp2p takes as input a set of multiple 2D depth images (results from Stage

1) of the object (from k different viewpoints) and generates a dense and smooth 3D point
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cloud of the object. Generator Gr2i is jointly trained with a discriminator Dr2i, which fuses

3D radar intensity data and 2D depth images (either generated or ground truth images). In

addition, generator Gp2p is also jointly trained with a discriminator Dp2p.

This architecture is designed to combine the advantages of Convolutional Neural Net-

work (CNN)’s convolutional operation and the efficiency of point cloud representation of

3D objects. Convolutional operation can capture detailed local neighborhood structure of a

3D object, and point cloud format of 3D objects is more efficient and of higher resolution

than 3D shape representation via voxelization. Specifically, Gr2i applies 3D convolution

operation to 3D radar intensity data to generate depth images. Generator Gp2p accepts a 3D

object in point cloud format (unordered point set hence convolutional operation not appli-

cable), so that it can process data highly efficiently (in terms of computation and memory)

and can express fine details of 3D geometry.

In addition, because commodity mmWave radar sensors (e.g., TI’s IWR6843ISK [Texc])

usually have high resolution along range direction even without time consuming Synthetic

Aperture Radar (SAR) operation, a 2D depth image generated by Gr2i can give us high

resolution depth information from the viewpoint of a radar sensor. Therefore, we believe

that combining multiple such 2D depth images from multiple viewpoints can give us high

resolution 3D shape information of an object. Our architecture design takes advantage of

this observation by using multiple 2D depth images of an object from multiple viewpoints

to form a raw point cloud and uses that as the input to generator Gp2p.

Although 3DRIMR [SHZ21] introduces an architecture that generates 3D object shapes

based on mmWave radar, there is still room for significant improvement in order to produce

more satisfactory end results, especially the design of network architecture in 3DRIMR’s

Stage 2 (named PNG, PointNet [QSM16] based GAN model) can be further improved.

Hence, we further introduce Radar to Point Clouds (R2P), to replace the generator net-

work of PNG, and we find that R2P significantly outperforms PNG both quantitatively and

visually.

40



3.1 Related Work

There have been active research in recent years on applying Frequency Modulated Con-

tinuous Wave (FMCW) Millimeter Wave (mmWave) radar sensing in many application

scenarios, for example, person/gesture identification [VKJ18, YLC], car detection/imaging

[GMJ] and environment sensing [LRZ, FN] in low visibility environments. To achieve high

resolution radar imaging, usually mmWave radar systems need to work at close distance to

objects or they rely on SAR process [MMA14, SM18, GHD16, SMH07].

Our work is inspired by a few recent researches on mmWave radar imaging, mapping,

and 3D object reconstruction [GMJ, FN, LRZ, YKH18, QSM16]. Both [GMJ, LRZ] have

shown the capability of mmWave radar in sensing/imaging in low visibility environments.

Their findings motivate us to adopt mmWave radar in our design. In addition, we intend to

add the low-visibility sensing capability on our UAV SLAM system [SXH] for search and

rescue in dangerous environments.

Learning-based approaches have been adopted in recent research on 3D object shape

reconstruction [YWW17, DRN, SGF16, SM17]. Most of them use voxels to represent

3D objects, as CNN convolutional operation can be easily applied to such data format.

However, voxelization of 3D objects or space cannot achieve high resolution due to cubic

growth of memory and computation cost. Our architecture’s generator at Stage 2 uses

point cloud to represent 3D objects which can give us detailed geometric information with

efficient memory and computation performance. In addition, in Stage 1 of our architecture,

we are able to take advantages of convolutional operation to directly work on 3D radar

intensity data.

HawkEye [GMJ] generates 2D depth images of an object based on conditional GAN

architecture with 3D radar intensity maps obtained by multiple SAR scans along both ele-

vation and azimuth dimensions. Our architecture adopts this design to generate intermedi-

ate results used as inputs to a 3D point cloud generator. Different from [GMJ], we use data

of only two snapshots along elevation dimension when using commodity TI IWR6843ISK

sensor [Texc]. This is similar to the input data used in [FN], but the network of [FN] out-
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puts just a higher dimensional radar intensity map along elevation dimension, not 2D depth

images.

The research in [YKH18] and [QSM16] uses point cloud to reconstruct 3D object

shapes, which motivates us to adopt PointNet structure in our 3D point cloud generator.

Different from those existing work, our architecture’s Stage 2 utilizes a conditional GAN

architecture to jointly train a generator and a discriminator to achieve high prediction accu-

racy.

Our proposed reconstruction and imaging subsystem significantly outperforms the ex-

isting methods such as PointNet [QSM16], PointNet++ [QYS17], and PCN[YKH18].

3.2 Methodology

3.2.1 Challenges

As we mentioned above, it is a great challenge to use radar sensing to reconstruct 3D object

shapes.

First, the characteristics of radar data include sparsity, low resolution, specularity, high

noise, and multi-path which can induce shadow reflections and artifacts. As we can see in

Figure 3.1, it actually shows a received radar signal of a car, but we cannot see any shape

from that. It is very time-consuming to collect full-scale mmWave radar data even use

Synthetic Aperture Radar (SAR) technique. Thus, we need to design our system to handle

the input data with as few snapshots as possible.

Second, point clouds are unordered and in irregular format, thus, changing the permu-

tations of points in a point cloud will not change its geometry property. For this reason,

we cannot find the correspondence between each point in a generated point cloud and its

ground truth point cloud.

Third, existing evaluation metrics like Chamfer Distance (CD) and Earth Mover’s Dis-

tance (EMD), are quite limited when evaluating a point cloud’s overall accuracy.
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Figure 3.1: An example of the 2-snapshot radar intensity map of a car captured from one

view.

3.2.2 Architecture Overview

The architecture consists of two generator networks in two stages. In Stage 1, generator

network Gr2i takes 3D radar intensity data as inputs and generates 2D depth images. In

Stage 2, generator network Gp2p takes as input a set of k 2D depth images (results from

Stage 1) of the object (from k different viewpoints) and generates a dense smooth 3D point

cloud of the object. Generator Gr2i is jointly trained with a discriminator network Dr2i,

which fuses 3D radar intensity data and 2D depth images (either generated or ground truth

images). In addition, generator Gp2p is jointly trained with a discriminator network Dp2p.

These two stages are shown in Figures 3.2 and 3.3.
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Figure 3.2: 3DRIMR/R2P’s Stage 1.
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Figure 3.3: PNG’s architecture.

Generator Gr2i takes as input a 3D radar energy intensity map of an object and generates

a 2D depth image of the object. Let mr denote a 3D radar intensity map of an object captured

from viewpoint v. Let g2d be a ground truth 2D depth image of the same object captured

from the same viewpoint. Gr2i generates ĝ2d that predicts or estimates g2d given mr.

Given a set of 3D radar intensity maps {mr,i|i = 1, ...,k} of an object captured from k

different viewpoints v1, ...,vk, generator Gr2i predicts their corresponding 2D depth images
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{ĝ2d,i|i = 1, ...,k}. Each predicted image ĝ2d,i can be projected into 3D space to generate a

3D point cloud.

This subsystem generates a set of k coarse point clouds {Pr,i|i = 1, ...,k} of the object

from k viewpoints. It first unions the k coarse point clouds to form an initial estimated

coarse point cloud of the object, denoted as Pr, which is a set of 3D points {p j| j = 1, ...,n},

and each point p j is a vector of Cartesian coordinates. We choose k = 4 in our experiments.

Generator Gp2p takes Pr as input, and predicts a dense, smooth, and accurate point cloud

P̂r.

Since the prediction of Gr2i may not be completely correct, a coarse Pr may likely

contain many missing or even incorrect points. The capability of our method handling

incorrect information differs our work from [YKH18] which only considers the case of

missing points in an input point cloud.

By leveraging conditional GAN, the architecture’s training process consists of two

stages: Gr2i and Dr2i are trained together in Stage 1; similarly, Gp2p and Dp2p are trained

together in Stage 2. The network architecture and training process are described in more

details in Section 3.2.3.

The design of Gr2i is similar to HawkEye [GMJ], but Gr2i’s each input radar intensity

map only contains two snapshots whereas HawkEye’s input radar intensity map has 64

SAR snapshots along elevation (which gives higher elevation resolution but it takes much

longer time to generate those 64-snapshots data). In addition, 2D depth images are the final

outcomes of HawkEye, but in our architecture, they are only our intermediate results to be

used as input for generating 3D object shapes. The design of Gp2p in Stage 2 learns the

idea from [YKH18], but with different network architecture design. And unlike [YKH18],

we use a conditional GAN architecture. In addition, our Stage 2’s generator networks are

designed to operate on sparse and only partially correct point clouds.

Next we discuss the two stages of the architecture of 3DRIMR/R2P.
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3.2.3 Stage 1: 3D Radar Intensity Map to 2D Depth Image

3.2.3.1 Input and output representation

We first pre-processes a set of 2-snapshot raw mmWave radar data of an object by using

three FFTs: range FFT, azimuth FFT, and elevation FFT, to generate a 3D radar intensity

map mr of the object from a particular viewpoint. Input mr is a 64×64×256 tensor. Gr2i’s

output is a high-resolution 2D depth image ĝ2d .

Similar to the hybrid 3D to 2D network architecture of HawkEye [GMJ], our Gr2i is

also a 3D-encoder-2D-decoder network. Different from HawkEye [GMJ], each of our input

data sample only contains 2 snapshots of SAR radar signals. Therefore, our system can run

much faster than HawkEye in practice. Recall that fewer snapshots means lower radar

resolution, thus our network handles more challenging inputs, but our network can still

produce high-quality outputs.

3.2.3.2 Generator Gr2i

This generator follows a standard encoder-decoder architecture [BKC17], which maps a

sparse 3D radar intensity map to a high-resolution (same level as that of the depth image

taken by a stereo camera) 2D depth image. As shown in Figure 3.2, its encoder consists

of six 3D convolution filters, followed by Leaky-ReLU and BatchNorm layers. The 3D

feature map is down-sampled and the number of feature channels increases after every con-

volution layer. Hence, the encoder converts a 3D radar intensity map into a low-dimensional

representation. The decoder consists of nine 2D transpose convolution layers, along with

ReLU and BatchNorm layers. The 2D feature map is up-sampled and the number of feature

channels is reduced after every transpose convolution layer. Passing through the decoder

network, low-dimensional vectors are finally converted to a high-resolution 2D depth im-

age.
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3.2.3.3 Discriminator Dr2i

The discriminator takes in two-stream inputs, 3D radar intensity maps mr and 2D depth

images (either g2d or ĝ2d). As shown in Figure 3.2, we design two separate networks to

encode both of them into two 1D feature vectors. The encoder for 3D radar intensity maps

is the same as Gr2i’s encoder architecture. The encoder for 2D depth images is a typi-

cal convolutional architecture, which consists of nine 2D convolution layers, followed by

Leaky-ReLU and BatchNorm layers. The outputs of these two encoders are two 1D fea-

ture vectors, which are concatenated and then are passed into a simple convolution network

with two 2D convolution layers and Leaky-ReLU and BatchNorm layers in between, and

followed by a sigmoid function to output the final classification result.

3.2.3.4 Skip connection

We also apply skip connection in Gr2i to help avoid the gradients vanishing problems in

deep networks, and to make the best use of the input data since the range or depth informa-

tion of an input 3D intensity map can be directly extracted and passed to higher layers. We

choose 8 max values of a 3D radar intensity map along range dimension to form a 8-channel

2D feature map. Then, we concatenate this feature map with the feature map produced by

the 6-th layer of the decoder, and they together are passed through the remaining decoder

layers.

3.2.3.5 Loss function

Our subsystem trains Dr2i to minimize discriminator loss LDr2i , and trains Gr2i to minimize

generator loss LGr2i simultaneously. LDr2i is the mean Mean Square Error (MSE) of Dr2i’s

prediction error when the input of includes (mr, ĝ2d) and (mr,g2d). LGr2i is a weighted

sum of vanilla GAN loss LGAN , L1 loss between Gr2i’s prediction and ground truth, and

a perceptual loss Lp. The perceptual loss is calculated by a pre-trained neural network

VGG[SZ15] on Gr2i’s prediction and ground truth.

LGr2i = LGAN(Gr2i)+λ1L1(Gr2i)+λpLp(Gr2i) (3.1)
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Note that λ1 and λp are two hand-tuned relative weights, and in our simulations, we find

that it performs well when the values of them are 1000 and 20 respectively.

3.2.4 Stage 2: Multi-View 2D Depth Images to 3D Point Clouds

For Stage 2, we have developed two different models: PNG - PointNet [QSM16] based

GAN Model; and R2P - PCN [YKH18] based Generator Model. We will next discuss these

two models.

3.2.4.1 PNG: PointNet based GAN model

As shown in Figure 3.3, Stage 2 consists of another conditional GAN based neural network

Gp2p that generates a point cloud of an object with continuous and smooth contour P̂r, based

on Pr, a union of k separate coarse point clouds observed from k viewpoints of the object

{Pr,i|i = 1, ...,k}, which are the outputs from Stage 1. We choose k = 4 in our experiments.

Note that Pr may contain very noisy or even incorrect points due to the prediction errors in

Stage 1.

Both input Pr and output P̂r = Gp2p(Pr) are 3D point clouds represented as n×3 matri-

ces, and each row is the 3D Cartesian coordinate (x,y,z) of a point. Note that the input and

output point clouds do not necessarily have the same number of points. Generator Gp2p is

an encoder-decoder network in which an encoder first transforms an input point cloud Pr

into a k-dimensional feature vector, and then a decoder outputs P̂r. The discriminator Dp2p

of this stage takes (Pr,Ptrue) or (Pr, P̂r) pairs and produces a score to distinguish between

them.

3.2.4.2 PNG’s generator Gr2i

The generator also adopts an encoder-decoder structure. The encoder has two stacked

PointNet [QSM16] blocks. This point feature encoder design follows similar designs in

PointNet [QSM16] and PCN [YKH18], characterized by permutation invariance and toler-

ance to noises.
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The first block of Gp2p takes the input Pr, and uses a shared multi-layer perceptron

(MLP) to produce a high-dimensional local feature fi(i = 1, ...,n) for each point pi in Pr,

and hence we can obtain a local feature matrix FPr with each row being the local feature

of the corresponding point. Then, it applies a point-wise maxpooling on FPr and extracts

a high-dimensional global feature vector gPr . To produce a complete point cloud for an

object, we need both local and global features, hence, the encoder concatenates the global

feature gPr with each of the point features fi and form another matrix F ′
Pr

. The second block

also consists of a shared MLP and point-wise maxpooling layer, which takes F ′
Pr

as input

and produces the final global feature g f .

The decoder consists of 3 fully connected layers with proper non-linear activation layers

and normalization layers. It expands g f to a 3m×1 dimensional vector, and then reshapes it

to a m×3 matrix. The matrix has m rows and each row represents the Cartesian coordinate

(x,y,z) of a point of the predicted point cloud. The fully-connected decoder design is good

at predicting a sparse set of points which represents the global geometry of a shape.

3.2.4.3 PNG’s discriminator Dp2p

Note that the number of points of input Pr and output P̂r and ground truth Ptrue can be

different, and the points of a point cloud are unordered. Therefore, we need to design

a discriminator with two-stream inputs. As shown in Figure 3.3, these two inputs pass

through the same architecture as used in Gp2p and are converted into their own final global

feature, which are concatenated and fed into 2 fully connected layers to produce a score,

which is used to indicate whether the input is real or generated point cloud.

3.2.4.4 PNG’s loss function

For this GAN based network, we train Dp2p to minimize LDp2p , and train Gp2p to minimize

LGp2p simultaneously. LDp2p is calculated in the same way as described in Stage 1, but

LGp2p is different due to the characteristics of point clouds. LGp2p is a weighted sum, con-

sisting of LGAN(Gp2p), Chamfer loss Lc f between predicted point clouds and the ground

truth, and IoU loss Liou(Gp2p).
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Chamfer distance [YKH18] is defined as:

dc f (S1,S2) =
1
|S1| ∑

x∈S1

min
y∈S2

∥x− y∥2 +
1
|S2| ∑

y∈S2

min
x∈S1

∥y− x∥2 (3.2)

In our case, Chamfer loss is calculated as:

Lc f (Gp2p) = dc f (P̂r,Ptrue) (3.3)

We define IoU of two point clouds as the ratio of the number of shared common points

over the number of points of the union set of both two point clouds. First, we voxelize the

space, and all the points in the same voxel will be treated as the same point. We define the

number of voxels occupied by P̂r and Ptrue as V̂r and Vtrue respectively. Then, the IoU can

be calculated as:

IoU =
V̂r ∩Vtrue

V̂r ∪Vtrue + ε
(3.4)

Note that ε is a very small number such as 10−6 to avoid dividing by zero. Since IoU is

within range 0 and 1, we define our IoU loss as:

LIoU(G) = 1− IoU (3.5)

LGp2p is given by Eqn. (3.6), and λdc f and λiou are also need to be hand-tuned. In our

experiments, we set the values of them to 100 and 10 respectively.

LGp2p = LGAN(Gp2p)+λdc f Lc f (Gp2p)+λiouLiou(Gp2p) (3.6)

3.2.4.5 R2P: PCN based generator model

Even though PNG can give some promising results, its design of generator network and loss

function are still not quite satisfactory. Specifically, the edges of generated point clouds are

still blurry and their points tend to be evenly distributed in the space, and thus do not give

a clear sharp shape structure. To address those issues, we further introduce R2P (Radar to

Point Cloud). Compare it with PNG, we find that R2P significantly outperforms PNG both

quantitatively and visually.
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Figure 3.4: R2P network architecture.

R2P’s input Pr and output Po are 3D point clouds represented as n×3 matrices, where

n is the number of points in the point cloud, and each row represents the 3D Cartesian

coordinate (x,y,z) of a point. Note that the output point cloud generated from R2P has a

larger number of points than the input point cloud, i.e., R2P can reconstruct a dense and

smooth point cloud from a sparse one. R2P consists of two sequential processing blocks,

and both blocks share the same encoder-decoder network design. The first block takes the

raw input point cloud Pr to produce an intermediate point cloud Pm, and then the second

block processes Pm to generate the final output Po. In each block, the encoder takes its input

point cloud and converts it to a high dimensional feature vector, and the decoder takes this

feature vector and converts it to the intermediate or final output point cloud.

Encoder. As shown in the upper part of Figure 3.4, in the first block, the encoder gets Pr

as input, and passes it to a shared MLP to extend every point pi in Pr to high dimensional

feature vector fi and form the point feature matrix F1. This shared MLP is a network with

two linear layers with BatchNorm and ReLU in between. Then, the encoder applies a point-

wise maxpooling on F1 and extracts a global feature vector g1. To produce a complete

point cloud for an object, we need both local and global features, therefore, the encoder

concatenates the global feature with each of the point features f 1
i (of F1) and form the
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complex feature matrix F1
c . Then another shared MLP is used to produce point feature

matrix F1
p . Then, another point-wise maxpooling will perform on F1

p to extract the final

global feature g1
f .

Decoder. Decoder takes the final global feature g1
f as input, and then passes it to a MLP,

which consists of three fully-connected layers with ReLU in between. After this MLP, the

final global feature is converted to 3m×1 vector (where m is the number of points in Pm),

and then reshaped to m×3 matrix which represents the point cloud Pm.

As shown in the lower part of Figure 3.4, the second block’s design is similar to the first

block. The encoder of the second block takes Pm as input to produce a final global feature

g2
f , and then the decoder generates the final output point cloud Po.

3.2.4.6 R2P’s loss function

Due to the irregularity of point clouds, it is quite difficult to choose an effective loss

function to indicate the difference between a generated point cloud and its corresponding

ground truth point cloud. There are two popular metrics to evaluate the difference between

two point clouds: Chamfer Distance (CD) [YKH18] and Earth Mover’s Distance (EMD)

[YKH18].

CD calculates the average closest distance between two point clouds S1 and S2. The

symmetric version of CD is defined as:

CD(S1,S2) =
1
|S1| ∑

x∈S1

min
y∈S2

∥x− y∥2 +
1
|S2| ∑

y∈S2

min
x∈S1

∥y− x∥2 (3.7)

EMD can find a bijection φ : S1 → S2, which can minimize the average distance between

each pair of corresponding points in two point clouds S1 and S2. EMD is calculated as:

EMD(S1,S2) = min
φ :S1→S2

1
|S1| ∑

x∈S1

||x−φ(x)||2 (3.8)

Note that the generator generates the intermediate point cloud Pm after its first encoder-

decoder block, and then generates the final output point cloud Po after the second block.

Hence, we design our loss function to evaluate both generated point clouds. That is, our

loss function is defined as a weighted sum of the loss of the first block d1(Pm,Pgt) and the
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loss of the second block d2(Po,Pgt).

L (R2P) = d1(Pm,Pgt)+αd2(Po,Pgt) (3.9)

Both d1 and d2 can be either CD or EMD, or some weighted combination of them.

Note that unlike CD, EMD needs to find a bijection relationship between two point clouds,

which is an optimization problem and hence computationally expensive, especially when

the point clouds have large amounts of points. Moreover, this bijection also requires these

two evaluated point clouds have the same number of points.

3.3 Implementation and Experiments

We implement our models and conduct experiments to test 3DRIMR/R2P with real and

synthesized data.

3.3.1 Data Collection and Generation

To the best of our knowledge, there is no publicly available dataset of mmWave radar sens-

ing, therefore, we conduct experiments to collect real data. However, since real data col-

lection is time consuming, we also augment our dataset via synthesizing mmWave data as

done in [GMJ].

Real radar data collection. We collect real radar data with Synthetic Aperture Radar

(SAR) operation using an IWR6843ISK [Texc] sensor and a data capture card DCA1000EVM

[Texa]. To generate a full-scale 3D energy intensity data as a baseline, we first conduct SAR

radar scans with a 24× 64 virtual antenna array of the sensor by sliding the sensor hori-

zontally and vertically through a customized slider. Note that the each sensor’s scan has

a range or depth of 256 units. We expand a 24× 64× 256 3D data cube (obtained via a

SAR scan) to a full-scale 64×64×256 3D data cube, which can be regarded as consisting

of 64 snapshots stacked vertically, with each snapshot being a data plane of size 64×256.

Note that the full-scale data is only used as a base reference in validating our deep learning

system’s effectiveness. When training and testing model, each actual input data sample has
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only 2 out of 64 snapshots. Getting 2-snapshot data is a much faster process than getting

full-scale 64-snapshot data.

Synthesized radar data. Similar to [GMJ], we use 3D CAD models of cars [FDU12] to

generate synthesized radar signals. We first generate 3D point clouds based on those CAD

models, and then translate and rotate them to simulate different scenarios. Then we select

points in each point cloud as radar signal reflectors. Next we simulate received radar signals

in a receiver antenna array based on our radar configuration.

Generating 3D radar energy intensity data. For both real and synthesized radar data, we

perform FFT along all three dimensions, namely azimuth φ , elevation θ , and range r. Note

that a radar 3D data cube is measured in degree along azimuth φ and elevation θ dimension.

We convert a data cube into Cartesian coordinate system so that it matches the coordinate

system of the depth camera. This is different from [GMJ], which directly used original data

in spherical coordinate system (hence introduced additional errors).

Ground truth 2D depth images and point clouds. For real data, ground truth depth

images are obtained via a ZED mini camera [STE]. Note that ZED mini camera is widely

used in mobile robots and VR sets. For synthesized data, based on the derived point clouds

of CAD models, we generate ground truth depth images after perspective projection with

appropriate camera settings and viewpoints positions. Similarly, we generate ground truth

3D point clouds.

Real data collection environment setup. We collect radar data for a L-shape box placed in

our lab, in which we let a mobile robot carry a tall flag and it moves around in the room to

simulate humans walking around. We also augment this dataset by generating synthesized

data for the same L-Box via CAD models placed in the same settings as used in the real

data collection. Figure 3.5 shows the scene where our real experiments are performed.

3.3.2 Model Training and Testing

We conduct experiments of 3DRIMR on cars (large objects with average size of 445cm×

175cm× 158cm), and a L-shape box (a small object with size of 95cm× 73cm× 59cm).

Furthermore, we conduct experiments of R2P on a larger dataset including 5 different cat-
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Figure 3.5: A lab space where our real experiments are performed.

egories of objects, namely industrial robot arm, car, chair, desk, and L-shape box (L-box).

All their datasets consists of both synthesized data and real data collected from experiments,

and we use real data only in the experiment of L-shape box.

3.3.2.1 Stage 1

The training data of car consists of 8 different categories of car models, and for each car

model, we collect data of 300 different car orientations from 4 views, so in total 300×

4× 8 = 9600 data samples are used in training, and another 6400 data samples are used

to test the model. We train the network of L-box based on 320 real data samples and

4800 synthesized data samples and test the model using 80 real data samples and 6400

synthesized data samples. We extend the dataset to include more data from other categories

(industrial robot arms, chairs, and desks) of objects to compare the models in Stage 2. We

train each model based on 4000 data samples and test each model using 6000 data samples.

We train each model with batch size 4 for 200 epochs. The learning rate is 2×10−4 for the

first 100 epochs, and then linearly decreased to 0 in the rest 100 epochs.
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3.3.2.2 Stage 2

PNG. We use the 2D depth images generated in Stage 1 to form a dataset in Stage 2 of

coarse point clouds. The dataset of car includes 1600 point clouds with 200 point clouds of

each car model. We train the model using 1520 point clouds and test it using the remaining

80 point clouds. For the model of L-box in Stage 2, we train it based on 10 point clouds

generated by Stage 1’s output of real data and 1500 point clouds generated by Stage 1’s

output of synthesized data. We test the model using the rest 110 data samples (10 from real

and 100 from synthesized data). Similarly, we train each model with batch size 4 for 200

epochs. The learning rate is 2×10−4 for the first 100 epochs, and then linearly decreased

to 0 in the rest 100 epochs.

R2P. As mentioned above, we have a extended dataset of coarse and sparse input point

clouds for the 5 different categories of objects, which are industrial robot arm, car, chair,

desk, and L-shape box (L-box). Each input point cloud has 1024 points and an intermedi-

ate/final output point cloud has 4096 points. We train our proposed network model for each

category independently. For each object category, we train the model based on 1400 pairs

of point clouds for 200 epochs with batch size 2. The learning rate for the first 100 epochs

is 2×10−4 and linearly decreases to 0 in the rest 100 epochs. Then we test the model using

the remaining 100 point clouds.

3.4 Results

3.4.1 Results of Stage 1

We compare 3DRIMR/R2P’s results in Stage 1 against HawkEye [GMJ] as HawkEye’s goal

is to generate 2D depth images only. Here we only list the results of objects in 2 categories,

car and L-box. Example scenes of car and L-box experiments are shown in Figure 3.6(a)

and Figure 3.6(b) respectively. Four colored dots in each figure show four viewpoints of

radar sensor or camera.
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(a) An example scene of car experiment. (b) An example scenes of L-box experiment.

Figure 3.6: Example scenes of car and L-box experiments.

We show our model’s performance in car experiments in Figure 3.7. The top row shows

the 3D radar intensity data from 2 snapshots only, the middle row shows the outputs from

our Stage 1, and the bottom row shows the ground truth depth images. We see that visually

our model can accurately predict an object’s shape, size, and orientation, and it can also

estimate the distances between an object’s surface points and radar receiver. Although

most of our training data is synthesized data, our model can still predict depth images well

based on the real data. We observe similar performance from the experiments with L-box.

Note that we only use 2-snapshot 3D intensity data in our experiments whereas Hawk-

Eye [GMJ] uses 64 SAR snapshots along elevation, but our system’s Stage 1 results are still

comparable with those of HawkEye. To prove that, we evaluate the same metrics as those

in [GMJ]. Table 3.1 shows the median errors of 3DRIMR/R2P’s Stage 1 results compared

against those in [GMJ]. Since the size of L-box is different from the size of cars, we scale

it to the average size of cars when calculating length, width, and height errors. In the com-

parison, we calculate the average errors of HawkEye’s three experiment settings (i.e., clean

air, fog, and synthesized data). Table 3.1 shows that our system outperforms HawkEye in

terms of range and orientation prediction. Compared with HawkEye, our car predication’s

length error is 29% larger, and our L-box prediction’s length error is about 50% smaller.

The errors in height and % Fictitious Reflections in both our car prediction and HawkEye’s

58



are very similar, but these errors in our L-box prediction are 67% and 89% smaller. The

errors in width and % Surface Missed of ours and HawkEye are similar.

In sum, our Stage 1’s performance is comparable with that of HawkEye. Recall that

Stage 1’s results are just our intermediate results. Next we evaluate our final prediction

results in Section 3.4.2 .

Figure 3.7: Reconstruction and imaging subsystem 3DRIMR/R2P. Stage 1’s qualitative

performance in car experiments.

Method Range Err. Length Err. Width Err. Height Err. Orientation Err. FR SM

our-Cars 16 cm 84 cm 37 cm 10 cm 4.8◦ 1.9 % 15.4 %

our-Lbox-scaled 8 cm 32 cm 34 cm 3 cm 12.4◦ 0.2 % 16.1 %

HawkEye-avg 34 cm 65 cm 37 cm 9 cm 28.7◦ 1.8 % 12.8 %

Table 3.1: Quantitative results of 3DRIMR/R2P’s Stage 1, compared with HawkEye

[GMJ]. (FR: % Fictitious Reflections; SM: % Surface Missed.)

3.4.2 Results of Stage 2

Recall that in Stage 2, we have proposed two models: PNG and R2P. We then discuss both

of their results in the following.
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3.4.2.1 PNG’s results.

Figure 3.8 shows our final output point clouds compared with input point clouds and groud

truth point clouds. In Figure 3.8, top row shows the input point clouds, middle row shows

the output point clouds, and bottom row shows the ground truth point clouds. We can see

that due to predict errors in Stage 1, the input point clouds to Stage 2, which are simply

the unions of coarse point clouds from 4-view depth images, are discontinuous and have

many incorrect points. To the best of our knowledge, the state of art research only studies

reconstructing point clouds from sparse and partial point clouds with missing points, but not

dealing with systematic incorrect points which might give slanted or even wrong shapes.

However, our system can perform reasonably well even based point clouds with incorrect

points. As shown in Figure 3.8, the point clouds after PNG’s are continuous and complete,

compared with the input point clouds.

Figure 3.8: PNG’s point clouds in car experiments.

We compare PNG’s performance against two baseline methods.
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Method
Chamfer Distance IoU F-score

avg. std. avg. std. avg. std.

PNG-Cars 0.0789 0.0411 0.0129 0.0052 0.0841 0.0322

DPN-Cars 0.1164 0.1358 0.0121 0.0061 0.0806 0.0389

CLN-Cars 0.1485 0.1843 0.0120 0.0071 0.809 0.0447

PNG-Lbox 0.0205 0.0036 0.0937 0.0124 0.5575 0.0961

DPN-Lbox 0.0303 0.0265 0.0862 0.0268 0.4808 0.1576

CLN-Lbox 0.0367 0.0558 0.0845 0.0281 0.5103 0.1774

Table 3.2: Quantitative results of PNG, compared with two baseline methods.

• Double-PointNet Network (DPN). This is modified from PNG’s structure by re-

moving Dp2p, i.e., this is not a GAN architecture. This one is used to examine the

effectiveness of GAN in training.

• Chamfer-Loss-based Network (CLN). This is the network modified from PNG’s

structure by removing IoU loss from training process. This one is used to examine

whether IoU loss can help with the training.

Table 3.2 shows the average and standard deviation of Chamfer Distances, IoUs, and

F-Scores of PNG and two baseline methods. We can see that in both cars and L-box ex-

periments, PNG always performs best among three methods in terms of all the evaluation

metrics. These results show that GAN architecture can indeed improve the generator’s per-

formance. In addition, Chamfer-Loss-based Network has the worst performance, which

shows that our IoU loss can significantly improve the network’s performance.

3.4.2.2 R2P’s results.

To the best of our knowledge, except for our previous model PNG, there are no other point

cloud-based networks to reconstruct smooth, dense, and accurate point clouds from point

clouds with many incorrect and inconsistent points, e.g., the union of multiple coarse point

clouds which are converted from various 2D depth images of an object that are possibly
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inaccurate and inconsistent between themselves in terms of orientation and shape struc-

ture details. For example, a generated 2D depth image from radar data [GMJ, SHZ21] can

possibly have a car’s left and right sides switched, or it can be shaped like a similar but

different car with different shape details. Note that the existing works (e.g., [YKH18]) on

this subject usually do not have such strong inaccuracy assumption on their inputs except

missing points. Nevertheless we compare R2P against five related baseline methods. They

are popular point cloud-based generative models, mainly designed for the purposes of clas-

sification, segmentation, and point clouds completion, assuming input data is either sparse

or there are missing points. To ensure fair comparison, we train all six models (including

baselines and R2P) based on the same training and testing datasets. These baseline methods

include:

• PointNet. It is introduced in [QSM16]. We choose 1024 as the dimension of global

feature of PointNet. The loss function is a combination of CD and EMD.

• PointNet++. We use the same encoder architecture of PointNet++ [QYS17] for clas-

sification with three Set Abstraction (SA) modules to get a 1024-dimension global

feature, followed by a decoder consists of 3 fully-connected layers. The loss function

is also a combination of CD and EMD.

• PCN CD. We use the same architecture of PCN[YKH18], and set the grid size as

2. The number of points in the coarse and detailed output point clouds are 1024 and

4096 respectively. Note that in this method, both d1 and d2 are CD.

• PCN EMD. In this method, the architecture of the network is same as PCN CD, but

d1 is EMD.

• PNG. This is the only architecture designed for point clouds reconstruction from

inaccurate input point clouds among the 5 baselines. To ensure fair comparison, we

use the combination of CD and EMD as its loss function.

We compare the performance of the two variants of our proposed R2P, labeled as

R2P CD (both d1 and d2 use CD) and R2P EMD (both d1 and d2 use EMD), with the
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Figure 3.9: Quantitative comparison on datasets of 5 different objects using baseline meth-

ods and our method.

five baseline methods mentioned above in terms of CD and EMD. The results are shown in

Figure 3.9. We can see that except the case of robot arm, R2Ps always have the smallest

CD or EMD loss among all the methods. Even for the robot arm, the performance of R2Ps

are similar to the other five methods.

We further compare the results of all six methods by visually examining their output

points clouds, shown in Figure 3.10. Since the output point clouds of PointNet, PCN CD,

R2P CD are very similar to those of PointNet++, PCN EMD, R2P EMD, respectively. they

are not shown here due to space limitations. R2P EMD can give the best shape reconstruc-

tion of objects among all the methods. Especially for some small objects with fine shape

details like chairs, only our method R2P EMD can reconstruct an object with accurate

shape.
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Figure 3.10: Comparison of the generated point clouds of different objects using different

methods.

3.5 Discussion

3.5.1 Performance of Different Loss Functions in Stage 2

Loss function plays a quite important role in model training. A well-designed loss function

can not only speed up the training process, but also affect the performance of a deep learning

model. On the other hand, a bad loss function may not converge even with a well-designed

network model. Hence, we need to carefully design our loss function used when training

our model. However, existing popular evaluation metrics to compare point clouds are CD

and EMD, which can only evaluate the overall distance between a pair of point clouds but

cannot effectively capture the similarity of their shapes.
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To search for a good loss function for R2P, we conduct a series of experiments with

different combinations of these two metrics. Except the loss functions used in training are

different, all other settings are all the same for these experiments. The quantitative results

are shown in Figure 3.11. We explore 5 different combinations of d1 and d2. L1 means

both d1 and d2 are CD, L2 means both d1 and d2 are EMD, L3 means both d1 and d2

are CD+EMD, L4 means d1 is CD and d2 is EMD, and L5 means d1 is EMD and d2 is

CD. We can see that if we only use EMD in the loss function, which is L2 in the figure,

the CD between output and ground truth point clouds will be large; and except in the box

experiment, if we only use CD in the loss function, which is L1 in the figure, the EMD

between output and ground truth point clouds will also be large. Hence, it makes sense to

use the combination of CD and EMD, which is L3 in the figure, which gives both small CD

and EMD. However, since calculating EMD is very expensive and time-consuming, using

CD to evaluate intermediate output Pm and EMD to evaluate final output Po, which is L4 in

the figure, is also a good choice for the sake of efficiency.
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Figure 3.11: Comparison of different loss functions.

3.5.2 Limitations of CD and EMD

CD and EMD are important metrics to evaluate the difference between two point clouds.

Generally speaking, small CD/EMD value means better reconstruction performance, and

vice versa. However, due to the irregular format and lack-of-order information of point

clouds, these two metrics are quite limited in terms of accurately indicating the shape dif-
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ference between two point clouds, and hence cannot accurately describe the performance

of a point cloud reconstruction method. Sometimes, a reconstructed point cloud may have

larger CD or EMD though its shape is more similar to the ground truth point cloud. For

example, as we can see in Figure 3.9, the EMD of chair using 3DRIMR is smaller than

R2P EMD, but from Figure 3.10, we can see that the output of R2P EMD has more accu-

rate shape of a chair. Hence, we should not focus only on the values of CD or EMD when

evaluating a method’s reconstruction performance.

We have also conducted a series of experiments to explore different designs of our net-

work architecture, e.g., using different pooling methods to extract global features, applying

discriminators during the training process, and deeper network architecture with more lay-

ers. Nevertheless, we find that the architecture shown in Figure 3.3 performs the best and

is efficient.

3.6 Conclusion

In this chapter, we have discussed our second subsystem 3DRIMR/R2P, a deep learning

architecture that reconstructs 3D object shapes in point cloud format based on raw mmWave

radar signals. 3DRIMR/R2P is a conditional GAN based architecture. This architecture

takes advantage of 3D convolutional operation and point cloud’s efficiency of representing

3D shapes. Our experiments have shown its effectiveness in reconstructing 3D objects

based on two snapshots of a commodity mmWave sensor. 3DRIMR/R2P can generate 3D

objects in the form of smooth, dense, and highly accurate point clouds with fine geometry

details, the generator of Stage 2 of 3DRIMR/R2P are directly converted from the 2D depth

images that are generated from raw mmWave radar sensor data, and thus characterized by

mutual inconsistency or errors in terms of orientation and shape. We have demonstrated

with extensive experiments that R2P significantly outperforms existing methods such as

PointNet/PointNet++ and PCN. In addition, we have shown the importance of loss function

design in the training of models for reconstructing point clouds.
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CHAPTER 4

APPLICATION OF 3DRIMR/R2P TO RECONSTRUCT MULTIPLE

OBJECTS

Frequency Modulated Continuous Wave (FMCW) Millimeter Wave (mmWave) radar sens-

ing recently has been shown as an effective sensing tool in low visibility environment, thus

making it a promising sensing technique in autonomous vehicles [GMJ] and search/rescue

scenarios [LRZ]. The capability of 3D object reconstruction is important in a search

and rescue scenario, e.g., firefighting scenes, where heavy smoke makes optical sensing

not practical. However, it is quite challenging to reconstruct 3D object shapes based on

mmWave radar data because the data is usually of low resolution, sparsity, specularity, and

large noise due to multi-path effects. As we introduce in the last chapter, recent work on

3D reconstruction has made some progress in this direction [GMJ, LRZ, SHZ21, SZH],

focusing on single object reconstruction.

In this chapter, we go one step further to explore the feasibility of reconstructing 3D

shapes of multiple objects in a space (which is more challenging than single object recon-

struction), based on mmWave radar data collected from a sensor mounted on a UAV. We

let the UAV fly in the 3D space and hover at various locations to scan/collect radar signals.

Then the UAV can obtain a collection of heatmaps or energy intensity maps of the space

after Fast Fourier transform (FFT) processing of the received raw radar signals. We take

the 3D heatmaps as input to a deep learning model to generate the smooth and dense point

clouds of the multiple objects in the space.

We investigate two different deep learning models for point clouds generation. (1)

Model 1 is our recently proposed 3DRIMR/R2P model [SZH]. It consists of two stages. In

Stage 1, it generates the 2D depth images of the space based radar signals. In Stage 2, it

generates 3D point clouds of those objects based on their depth images obtained from Stage

1. Model 1 is used to reconstruct single objects in our previous work [SZH]. (2) Model 2

is formed by adding an image segmentation stage between Stage 1 and Stage 2 of Model 1.
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The segmentation stage separates the objects in the depth image representation of a scene

(result of Stage 1), so that they can be reconstructed separately in the next stage. The reason

of introducing a segmentation stage is that working on single objects separately is easier

than on multiple objects together when generating final point clouds.

4.1 Related Work

Recently the application of mmWave radar sensing and imaging has been investigated in

various areas [LRZ, GMJ, VKJ18, YLC, FN, XJM21, SHZ21]. Different from person

identification [VKJ18, YLC] and 3D human mesh estimation [XJM21], our work aims to

reconstruct detailed 3D shapes of various objects in a space. Instead of focusing on a spe-

cific object (e.g., human body [YLC, XJM21]), we would like to develop a generic system

that can reconstruct the 3D shape of any object. In addition, we choose to work on the raw

radar energy heatmaps of a space instead of the point clouds generated by commodity radar

sensors as we find them highly sparse and missing lots of information.

Our work is also closely related to a large body of literature in 3D reconstruction in

computer vision [YWW17, DRN, SGF16, QSM16, QYS17, YKH18]. In particular the de-

sign of neural networks used in our architecture is inspired by PointNet [QSM16] and PCN

[YKH18]. Our work in this chapter is developed based on our recent work on 3D recon-

struction of a single object from mmWave radar signals [SHZ21, SZH] as we introduced in

the last chapter. In addition, this work also deals with the input radar energy heatmaps of

highly noisy SAR data due to the hovering instability of a small quadcopter UAV.

4.2 Methodology

4.2.1 Challenges

According to our work described in the last chapter, Chapter 3, reconstructing an object’s

3D shape in the format of point clouds with mmWave radar data is challenging, because

the data is usually of low resolution, sparsity, specularity, and large noise due to multi-
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path effects. Hence, reconstructing multiple objects simultaneously in a space is even more

challenging.

In addition, the sensing/reconstruction system we consider only utilizes low-cost com-

modity mmWave radar sensors (e.g., [Texc]) which have low resolution. Therefore, in order

to obtain high resolution radar scan of a space, we mount a light-weight slider mechanism

with radar sensor on a UAV so that the UAV can conduct Synthetic Aperture Radar (SAR)

operation by sliding the sensor horizontally and vertically while hovering in the air. Due to

the hovering instability of a small UAV, the data collected is highly noisy and the heatmaps

of FFT processing is quite different from those of a stable precise SAR operation. Thus we

are interested in whether such a vibrating UAV SAR operation can result in any meaningful

reconstruction in practice.

4.2.2 Architecture Overview

We investigate two different models to address the problem of 3D reconstruction of multiple

objects based on mmWave radar data. Model 1 is the model to reconstruct the 3D shape of

the single object as we introduced in the last chapter, and Model 2 is formed by adding an

imaging segmentation stage into Model 1. The input to each model is a set of k mmWave

radar intensity maps or heatmaps collected by an UAV’s SAR operation while hovering at

k different locations surrounding a scene of interest. We will discuss the design details of

these two models in the following.

4.2.3 Model 1

Model 1 is 3DRIMR/R2P introduced in Chapter 3 with R2P [SZH] as its Stage 2’s genera-

tor. For completeness, we show the model in Figure 4.1. It consists of two stages. In Stage

1, generator network Gr2i generates depth images based on the radar scans of a scene from

multiple view points. Those depth images can be directly converted to a rough point cloud

that containing m objects. In Stage 2, the rough point cloud is processed by another gener-

ator network Gp2p to produce final dense and smooth point clouds of the those m objects in

the scene.
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Figure 4.1: Processing pipeline of Model 1.

4.2.4 Model 2

We add an imaging segmentation stage into Model 1 to form Model 2. The idea is to sepa-

rate the objects in the depth images (obtained from Stage 1), and then feed each individual

object’s depth image into the next stage to produce their corresponding final 3D point cloud,

and finally combine them together. This model’s processing pipeline is illustrated in Figure

4.2. Conditional GAN architecture is also used to train the model.

1. Stage 1: Each one of k mmWave radar intensity map captured from k view points is

fed into generator Gr2i, which can output the corresponding depth image from each

viewpoint.

2. Stage 2: An image segmentation network (e.g., Pix2Pix [IZZ17]) takes each gener-

ated depth image as input, and then does semantic segmentation of each pixel on the

image. Based on the output annotation of each pixel, it can separate a depth image

with multiple objects into m depth images, each containing only one object.

3. Stage 3: For each object, the model projects its corresponding k depth images from k

viewpoints into a 3D space to form a coarse point cloud of the object. Then for each

object, a Gp2p network takes its coarse point cloud as input, and outputs an accurate,

complete and smooth point cloud of this object. Finally, the model combines all
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point clouds of those m objects in the scene to get the final reconstructed point cloud

containing multiple objects.

Figure 4.2: Processing pipeline of Model 2.

4.2.5 Image Segmentation Network of Model 2

The segmentation stage of Model 2 is to label every pixel of a depth image as either a target

object or background. We use the popular Pix2Pix [IZZ17] network, which is a image-to-

image translation conditional generative adversarial network (cGAN), in the segmentation

stage. The generator is a 2D encoder-decoder convolutional neural network (CNN), which

can map a grayscale depth image into its annotated image. The discriminator is a simple

2D CNN, which can output a score to indicate whether the generator’s output is good or

not.

Remarks. Since the model we introduce in the last chapter can reconstruct a single object

well, we would like to explore its effectiveness of reconstructing multiple objects, thus

we investigate Model 1. On the other hand, since image segmentation may be able to

separate multiple objects from each other in a scene and hopefully reconstructing single

objects might be easier, we come up with the design of Model 2. However, introducing

the segmentation stage will inevitably add more uncertain errors in the formation of those

coarse point clouds, and then those additional errors may make Gp2p not be able to extract
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useful features and fail to reconstruct the 3D shapes of objects. For example, if some pixels

of a small-sized object are annotated as background pixels during the segmentation stage,

then the generated coarse point cloud may totally lose the shape characteristics of that

object.

4.3 Implementation and Experiments

4.3.1 Datasets

Our experiments are mainly based on synthetic datasets, as collecting data via our current

UAV platform is very time consuming. We first use OptiTrack [Opt] system to measure

the deviation distances of a hovering UAV along x-, y-, and z-axis from its intended stable

hovering position for SAR operation (scanning a space). Then based on the collected statis-

tics we add noise (caused by hovering vibration) into the synthetic data generating process

[GMJ, SHZ21]. We next show via an example that the radar data collected by a vibrating

UAV’s SAR operation visually looks quite different from the data of a normal stable SAR

operation. Figure 4.3 shows a scene where a car and a desk are placed, and Figure 4.4

shows the analysis of the radar data of the scene. As shown in Figure 4.4, a normal SAR

operation gives cleaner and more distinctly clustered radar energy maps and FFT heatmaps

(Figure 4.4 (a) and (b)) when compared with the maps obtained from a vibrating UAV’s

SAR operation. Our experiments reported in this chapter are all based on the vibrating

UAV’s SAR data.

In addition, we follow a procedure that is similar to our previous work as described in

Chapter 3 to generate ground truth depth images and point clouds. To generate the ground

truth annotated images that are used to train the segmentation network, we manually set the

background pixels to black color, and the pixels of the same object to the same RGB color

(except black color).
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Figure 4.3: Example scene of two objects.

4.3.2 Model Training and Testing

The training and testing processes of Gr2i and Gp2p in Model 1 are the same as those

decribed in Chapter 3 except that in this chapter, both the training and testing data are point

clouds of multiple objects rather than individual ones. Similarly, the training processes of

Gr2i and Gp2p in Model 2 are the same as those in [SZH]. As for the segmentation stage of

Model 2, we use 2400×4 views, totally 9600 pairs of images to train Gseg for 200 epochs,

and the learning rate is 2× 10−4 for the first 100 epochs and linearly reduced to 0 for the

rest 100 epochs.

4.3.3 Evaluation Results

In our experiments, Gp2p takes an input point cloud with 1024 points and generates an

output point cloud with 4096 points. If we combine m objects’ generated point clouds of

Model 2, the final output point clouds will contain 4096×m points, which is m times denser

than the output point clouds of Model 1. For the sake of fairness, when comparing the

Chamfer Distance (CD) and Earth Mover’s Distance (EMD) of both models, we randomly

sample 4096 points from the output point clouds of Model 2 so that the output point clouds
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(a) Radar energy from normal SAR operation. (b) FFT heatmap from normal SAR.

(c) Radar energy from vibrating UAV’s SAR. (d) FFT heatmap from vibrating UAV’s SAR.

Figure 4.4: Comparison between normal SAR and the SAR of vibrating UAV.

using these two methods have the same number of points. Then we calculate the two

models’ CD/EMD with the ground truth point clouds containing 4096 points respectively.

Figure 3.10 shows the visual comparison of the two models in reconstructing two ob-

jects. We see that both models can give reasonably good reconstruction performance visu-

ally. However, there might be extra points between two objects in the point clouds generated

by Model 1. This is due to the fact that Model 1 attempts to reconstruct multiple objects

together. We also see that the point clouds generated by Model 2 are smoother and denser.

We have similar observations of the experiments with three objects. Figure 3.10 also shows

that both models are fairly robust to the highly distorted/noisy SAR data (Figure 4.4) caused

by unstable UAV hovering.

Table 4.1 shows the test results of both Model 1 and Model 2 on two different scenes:

a scene containing 2 objects (a car and a desk) and a scene containing 3 objects (a car,

a desk and a robot arm). The loss type CD or EMD in the parenthesis of method names

indicates the distance functions used in training. For example, Model 1 (CD) means the

Model 1 is used and CD is used as the distance functions during training. We can see that

the two models’ test results of CDs are almost the same for the two scenes. However, their
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Scene Method
CD EMD

avg. std. avg. std.

2 objects

Model 1 (CD) 0.2 0.06 2.74 0.8

Model 2 (CD) 0.21 0.06 4.74 1.04

Model 1 (EMD) 0.22 0.05 0.57 0.32

Model 2 (EMD) 0.25 0.07 3.79 0.87

3 objects

Model 1 (CD) 0.36 0.12 4.58 0.63

Model 2 (CD) 0.3 0.08 5.81 1.28

Model 1 (EMD) 0.31 0.08 0.74 0.28

Model 2 (EMD) 0.33 0.1 4.46 1.15

Table 4.1: Quantitative results under different settings.
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performances are different in terms of EMD. For the 2-object scene, if the loss functions

used in training are CDs, then the average test result EMD between generated point clouds

and ground truth point clouds of Model 2 is around 1.7 times of Model 1. If the loss

functions in training are EMDs, then the average test result EMD of Model 2 is more than

5.6 times larger than Model 1. The scene with 3 objects also shows the similar results.

The superior performance of Model 1 over Model 2 in terms of CD/EMD can be ex-

plained as follows. During the training of Gp2p in Model 1, the goal is to reduce the losses

(CD/EMD) of all m objects as a whole between the generated point clouds and the ground

truth point clouds. On the other hand, the Gp2p of each object in Model 2 is trained sep-

arately, so the network is only trained to reduce the losses (CD/EMD) of a single object.

Therefore, Model 1 will have much lower overall losses than Model 2 during testing or

inference. Furthermore, we notice that the segmentation network in Model 2 can introduce

additional reconstruction errors. One example is shown in Figure 4.5. Due to poor perfor-

mance of Gseg, the projected point cloud of the m objects will contain lots of errors (Figure

4.5(a)), which further causes Gp2p’s failure. As shown in Figure 4.5(c)-(d), the object with

too many wrong points (desk in this example) is totally missing in the output point clouds,

and the other object is wrongly reconstructed (e.g., the orientation of the reconstructed car

is inversed).

However, Model 2 can generate denser point clouds than Model 1. Besides, since Model

2 reconstructs each object separately, there will be no extra points between objects in the

final point cloud, a problem associated with Model 1. For example, as we can see in Fig-

ure 3.10, the output point clouds of Model 1 (EMD) have some extra points between two

objects.

4.4 Conclusion

In this chapter, we have shown via an exploratory study that it is feasible to utilize the

mmWave radar data collected by a vibrating small UAV’s unstable SAR operation to recon-

struct 3D shapes of multiple objects in a space. We have studied two deep neural network
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(a) Input/Coarse Point Cloud. (b) Ground Truth Point Cloud.

(c) Output Point Cloud of Model 2 (CF). (d) Output Point Cloud of Model 2 (EMD).

Figure 4.5: A failure example of Model 2.

models, and our experiments results have shown that they achieve promising results and

they are robust to the vibrating UAV’s SAR operation.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Overall Conclusion

In this dissertation, we have presented our design framework of UAV-based Environment

Sensing, Localization and Imaging System, which includes LIDAUS, an IoT sensing and lo-

calization subsystem, and 3DRIMR/R2P, a 3D reconstruction subsystem based on mmWave

radar/Radar to Point Cloud.

With LIDAUS, a UAV navigates and explores in an unknown, challenging, and dynamic

changing environment where GPS is not available or a space where it is inaccessible for

humans, and thus can do self-localization and also localize wireless IoT devices through

dynamic self-deployed anchors and novel algorithms (such as a weighted entropy-based

clusteringof RSSI observation locations, 3D U-SLAM and its selective replay with dynamic

deployed anchors, and path planning based on edge covering Eulerian cycles and Steiner

tree route for cost minimization). LIDAUS is based on RSSI data only and can be easily

deployed without any customized signal processing hardware and without requiring any

fingerprinting or pre-trained model.

Then we have discussed 3DRIMR/R2P, a 3D reconstruction and imaging subsystem

based on a conditional GAN deep learning architecture, which can reconstruct single 3D

objects in the format of smooth and dense 3D point clouds from sparse and highly noisy

mmWave radar signals of a commodity mmWave sensor. This architecture takes advan-

tage of 3D convolutional operation and point cloud’s efficiency of representing 3D shapes.

We have demonstrated with extensive experiments that our method outperforms existing

methods such as HawkEye, PointNet/PointNet++ and PCN. We also show the limitations

of Chamfer Distance (CD) and Earth Mover’s Distance (EMD), the two state of art point

clouds evaluation metrics, in the evaluation of the shape similarity of two point clouds.
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Furthermore, we have explored two different models to reconstruct 3D shapes of multi-

ple objects in a space, and show that it is feasible to utilize the mmWave radar data collected

by a vibrating small UAV’s unstable SAR operation to reconstruct 3D shapes of multiple

objects in a space. Our experiments results show that both two models achieve promising

results and they are robust to the vibrating UAV’s SAR operation.

5.2 Future Work

In the future, I will continue my research to further improve the two subsystems.

1. Sensing and Localization subsystem. We will further improve the software and hard-

ware design and conduct large scale experiments in consideration of the limited bat-

tery capacity of UAVs to achieve high energy efficiency. We will also extend the

system to include a swarm of UAVs with support from edge computing.

2. 3D Reconstruction and Imaging subsystem. We will further develop novel modules

into the architectures of these deep neural networks (both generators and discrimina-

tors), and also conduct large scale experiments on more practical real world environ-

ments and with more object categories to further improve our design.
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