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ABSTRACT

EDGE ASSIGNMENT AND DATA VALUATION IN FEDERATED LEARNING

August 2022

Thuy T. Do,
B.S. and M.S. , Viet Nam National Univerisity, Ha Noi, Viet Nam.

Ph.D., University of Massachusetts Boston

Directed by Associate Professor Duc A. Tran

Federated Learning (FL) is a recent Machine Learning method for training with private

data separately stored in local machines without gathering them into one place for cen-

tral learning. It was born to address the following challenges when applying Machine

Learning in practice: (1) Communication cost: Most real-world data that can be use-

ful for training are locally collected; to bring them all to one place for central learning

can be expensive, especially in real-time learning applications when time is of essence,

for example, predicting the next word when texting on a smartphone; and (2) Privacy

protection: Many applications must protect data privacy, such as those in the healthcare

field; the private data can only be seen by its local owner and as such the learning may

only use a content-hiding representation of this data, which is much less informative.

To fulfill FL’s promise, this dissertation addresses three important problems regarding

the need for good training data, system scalability, and uncertainty robustness:

1. The effectiveness of FL depends critically on the quality of the local training data. We

should not only incentivize participants who have good training data, but also minimize

the effect of bad training data on the overall learning procedure. The first problem of
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my research is to determine a score to value a participant’s contribution. My approach

is to compute such a score based on Shapley Value (SV), a concept of cooperative game

theory for profit allocation in a coalition game. In this direction, the main challenge is

due to the exponential time complexity of the SV computation, which is further compli-

cated by the iterative manner of the FL learning algorithm. I propose a fast and effective

valuation method that overcomes this challenge.

2. On scalability, FL depends on a central server for repeated aggregation of local

training models, which is prone to become a performance bottleneck. A reasonable ap-

proach is to combine FL with Edge Computing: introduce a layer of edge servers to

each serve as a regional aggregator to offload the main server. The scalability is thus

improved, however at the cost of learning accuracy. The second problem of my research

is to optimize this tradeoff. This dissertation shows that this cost can be alleviated with a

proper choice of edge server assignment: which edge servers should aggregate the train-

ing models from which local machines. Specifically, I propose an assignment solution

which is especially useful for the case of non-IID training data which is well-known to

hinder today’s FL performance.

3. FL participants may decide on their own what devices they run on, their computing

capabilities, and how often they communicate the training model with the aggregation

server. The workloads incurred by them are therefore time-varying, unpredictably. The

server capacities are finite and can vary too. The third problem of my research is to

compute an edge server assignment that is robust to such dynamics and uncertainties. I

propose a stochastic approach to solving this problem.
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CHAPTER 1

INTRODUCTION

Centralized computing relies on a central server to serve clients’ requests. The central

server is an entity responsible for all computation in this system. Centralized comput-

ing, therefore, is a single point of failure and cannot scale. In contrast, decentralized

computing refers to having multiple independent computing nodes to provide a service

without reliance on a central authority. A node’s failure has only a local impact and does

not stop the whole system from functioning. Decentralized computing is suitable for big

organizations and a trend in modern-day business environments. Edge computing, Fed-

erated Computing, and Blockchain are good examples for the shifting from centralized

to decentralized computing.

This dissertation is focused on solving some optimization problems in decentralized

computing environments, in particular with Edge Computing and Federated Learning.

These two computing schemes will be discussed in the background section.

1.1 Background

Edge Computing (EC) is a distributed computing model that brings computation, data

storage, and power closer to the source of data by deploying edge servers nearby edge

devices. Thanks to the exponential growth of internet-connected devices (e.g., IoT) and

new applications that require real-time computing power, EC was introduced and de-
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veloped. In the EC architecture, requests from clients are primarily handled by edge

servers; requests which cannot be processed at the edge servers will be passed to the

cloud. Therefore, EC reduces the amount of data transmitted and stored in the cloud,

and also reduces the delay in data transmission and processing. This advantage and

faster networking technologies (e.g., 5G wireless) accelerate the creation and support

real-time applications, including self-driving cars, artificial intelligence, robotics and

video processing. According to [eca], the worldwide edge computing market will reach

274 billion U.S. dollars by 2025. EC is also extremely attractive to the research com-

munity. The number of articles related to edge computing on Google Scholar increases

dramatically in the last decade: in 2010 there were only 240 articles related to edge

computing on Google Scholar, whereas that number is 25,000 in 2020 [ecb].

Federated Learning is to train a machine learning algorithm in a decentralized data

fashion. We will see why it is a need. A lot of data is born at the edge (not at the core)

of the Internet. There were more than 10 billion active IoT devices in 2021, and the

amount of data generated by IoT devices is expected to reach 73.1 ZB (zettabytes) by

2025 [Jov]. That data would be a source for data-hungry machine learning algorithms to

enable better products and smarter models. However, standard machine learning (ML),

requiring centralizing the training data on a server to train a model, leads to challenges

in bringing ML to practice. Transmitting data is costly, especially in real-time learning

applications when time is of essence, for example, predicting the next word when tex-

ting on a smartphone. Another important issue is that data can be exposed to leakage

on the way. According to the ”Cost of a Data Breach Report 2021” by IBM [IBM21],

the average total cost of a data breach increased by nearly 10% year over year, reaching

up to $4.24 million in 2021. The average cost was $1.07 million higher in breaches

where remote work was a factor in causing the breach, compared to those where remote

work was not a factor. Sensitive sectors tend to experience the highest average cost of
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a data breach, healthcare organizations being at the top for the eleventh year in a row.

Due to data compromise, more and more strict regulations to protect data privacy are

established, for example, General Data Protection Regulation implemented in 2018 in

Europe. We therefore need a new machine learning mechanism which protects data

privacy and works on decentralized data settings. In other words, the new mechanism

should not directly access raw local data and should not require moving local data in

any form to a central server for performing learning algorithms. Federated learning in-

troduced by Google in 2017 is such a technique.

The thesis addresses three important problems in Federated Learning environment re-

garding the need for good training data, system scalability, and uncertainty robustness.

1.2 Practical Shapley Value for Data Valuation in Federated Learn-

ing

In the first problem, I am motivated by the following question, ”How can we incen-

tivize edge devices to provide good data for FL ecosystems?”. Clearly, edge devices are

willing to join the federation if their data contributions are fairly valuated. This means

that we need (1) a fair metric and (2) an efficient algorithm to compute that metric for

quantifying data providers. As ML is context-specific, an useful way to compute the im-

portance of a datum should take account of the quality of that datum itself, the machine

learning algorithm, the performance metric of the algorithm, and the rest of the training

data. In this work, I first go over existing methods to compute the value of each datum in

standard machine learning settings. I then examine approaches used to quantify clients’

data contributions in federated learning scheme. Among those approaches, Shapley

value [rot88], a concept in game theory to fairly distribute the profit of the game to all

players, is the main focus of the research community. In Shapley value based approach,
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FL is considered a game where each FL participant is a player and the performance of

the model trained on the set of participants’ data is the gain of the game. However, com-

puting SVs is expensive. I propose an algorithm to compute it efficiently. My approach

is to apply multi-issue decomposition to partition the grand game into subgames so that

computing SV is less time-consuming. I have proven that in the worst case the time

complexity of my algorithm is the same as that of the literature. However, in practice

with a reasonable choice of parameters my algorithm is much faster. This work is in the

preparation for submission.

1.3 Edge Assignment in Federated Learning

In the second problem, I focus on the challenge of scalability in FL. FL relies on a

central server to aggregate clients’ local models for a global one. Many local updates

simultaneously at the central server can cause the communication bottleneck problem.

Edge federated learning is introduced to overcome this challenge. That is, we deploy

edge servers closer to clients to aggregate local models for regional ones; the central

server aggregates regional models, which are not abundant, to form the global one. The

scalability thus is no longer the problem, but the cost of learning accuracy. That cost

is the consequence of adding edge servers. We will see that the learning accuracy can

decrease due to the divergence of regional models. In this chapter, I aim to maximize the

learning accuracy, using edge server assignment: which edge servers should aggregate

the training models from which local machines.

My approach is to maximize the diversity of local data aggregated through local

models at edge servers. For example, in an eFL setting with 4 participants and 2 edge

servers such that participant 1’s and participant 2’s training data consist of mostly label

A and participant 3’s and participant 4’s mostly label B, participants 1, 3 should be
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combined on one edge server and participants 2, 4 on the other edge server. This way,

each edge server has a comprehensive coverage of training data (having both labels A

and B). I propose an algorithm to compute the edge assignment to maximize the global

model’s learning accuracy without increasing communication cost. To my knowledge,

this work is the first effort on the edge assignment problem aimed to maximize learning

accuracy that can work for every eFL setting. This work has been submitted to IEEE

transaction on Emerging Topics in Computing in March 2022 (under review).

1.4 A Stochastic Geo-Partitioning Problem for Mobile Edge Com-

puting

In the final problem, I consider the edge assignment problem in the new context where

the workloads created by clients change over time. For instance, mobile devices only

join the federation when they are idle, charging, and on an unmetered network. The

capacities of servers are finite and also time-varying. We want an assignment maxi-

mizing the utility of edge computing that is robust to these uncertainties, otherwise we

have to recompute the assignment whenever changes happen. Note that computing the

assignment is expensive as it is NP-hard. We also want each cluster of client to form a

geographically compact coverage. In this work, I introduce a new partitioning problem:

Stochastic Geographically-aware Partitioning (StoGeoPar). Its objective is to optimize

a stochastic quantity formulated to incorporate all the three criteria of cost-efficiency,

geo-compactness, and uncertainty-robustness. I also propose an approximate algorithm

for StoGeoPar. My approach is to optimize an approximative version of its original

stochastic objective by fitting the time-varying inputs with Gaussian distributions and

applying a block-relaxation optimization method to solve it. Major parts of this work

has been published in IEEE transaction on Emerging Topics in Computing [TDZ21].
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1.5 Dissertation Organization

The remainder of the dissertation is organized as follows. The above three research

problems will be presented in Chapter 2, Chapter 3, and Chapter 4, respectively. After

Chapter 2, the reader can read Chapter 3 or Chapter 4 in any order. Chapter 5 concludes

the dissertation with pointers to my future work.
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CHAPTER 2

PRACTICAL SHAPLEY VALUE FOR DATA

VALUATION IN FEDERATED LEARNING

Federated Learning (FL) is an emerging Machine Learning method for training with

private data separately stored in local machines without gathering them into one place

as in central learning. Despite its promise, the effectiveness of FL depends critically

on the quality of the local training data. We should not only incentivize participants

who have good training data, but also minimize the effect of bad training data on the

overall learning procedure. It is therefore important to have a score quantifying how

valuable a participant’s contribution is to the system. Our approach is to compute such a

score based on Shapley Value, a concept of cooperative game theory used to determine

the rewards given to players of a coalition game. In this direction, the main challenge

is due to the exponential time complexity of the Shapley Value computation, which is

further complicated by the iterative manner of the FL learning algorithm. We propose

a fast and effective valuation method that overcomes this challenge. Its performance is

substantiated with an evaluation study using both real-world and synthetic data.

2.1 Introduction

Federated Learning (FL) is a Machine Learning approach recently born [MMR17] to

address the following challenges when applying Machine Learning in practice: (1)
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Communication cost: Most real-world data that can be useful for training are locally

collected; to bring them all to one place for central learning can be expensive, especially

in real-time learning applications when time is of essence, for example, predicting the

next word when texting on a smartphone; and (2) Privacy protection: Many applications

must protect data privacy, such as those in the healthcare and consumer markets; the

private data can only be seen by its local owner and as such the learning may only use a

content-hiding representation of this data, which is much less informative.

FL can compute a learning model using distributed training data that remain private

and unmoved on local machines, hereafter referred to as the “participants”. A conven-

tional FL architecture consists of only the participants (owning private local training

data) and a central server (called the “parameter” server). The learning is an iterative

procedure as follows. In the first step, the parameter server broadcasts a global learning

model, initially random, to all the participants. In the second step, each participant in

parallel uses its own local data to improve this model. In the third step, the participants

send their respective models to the server who in turn aggregates them to obtain a new

global model. Then the first step repeats until the global model converges.

The idea of FL is simple, yet proven effective to some useful extents [KMA21,

BEG19, GBM21]. In practice, more than 90% of global data is stored and processed

locally [ZWB21]. Furthermore, it fits nicely in today’s trend of computing toward de-

centralization, by crowdsourcing to local machines’ computing capabilities for the train-

ing process. Having said that, to realize FL’s full promise, there is much room left to

explore. As FL relies on local participants’ help with the training, the learning accuracy

depends crucially on the quality of the training data and the cooperation of the partic-

ipants. Some participants may contribute more and others less. Participants may also

intentionally harm the FL system by providing bad local training model information.

We should differentiate the good participants from the bad, the better from the good, so
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that we can incentivize good participations and minimize the effect of the bad. It is thus

critical to have a mechanism to valuate each participant’s contribution fairly. This is the

focus of this chapter.

The value of a participant should not solely be based on the standalone quality of

its training data. Instead, an equitable valuation should see how useful it is toward the

whole FL system as a coalition, i.e., how its removal from the coalition degrades the

overall performance. For example, to learn if an image is of an “apple” or “orange”

and the training data collection already has many “apple” samples, a participant A with

few “orange” samples is more valuable than yet another participant B with many “ap-

ple” samples. These “orange” samples are needed more for training, even though A

contributes more samples to the training collection set than B does.

Data valuation is a fundamental problem in machine learning in general [GZ19].

Instead of finding a way to assign an importance value to each datum that would work

universally, a more useful valuation should be context-specific. The value should depend

on the learning algorithm, the performance metric, and as aforementioned, the rest of the

training data. A recent development is [GZ19], who proposed Data Shapley, an equitable

valuation framework based on Shapley Value (SV) [Sha16]. SV is a classic concept for

profit allocation in Cooperative Game Theory. By casting the machine learning task as a

coalition game whose players are different sources of training data, the SV of each data

source, which determines the profit allocated to this source, can be a fair representation

of its contribution to the overall learning accuracy.

SV is widely influential in economics [rot88]; Lloyd Shapley received a Nobel Prize

in Economics for it in 2012. It is the only payoff scheme for a cooperative game that

satisfies the following properties of equitable valuation: 1) Group rationality: the total

profit is fully distributed among the players; 2) Fairness: Players that add the same

utility gain to any subset of coalition receive the same profit, and this profit is zero if
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the performance effect is none; and 3) Additivity: when applied to multiple games, the

profit given to each player equals the sum of the profits he or she receives respectively

from these games.

As SV is that appealing, one would attempt to apply SV to data valuation in FL, as in-

vestigated in the works of [STW19, WRZ20, FFZ21, NN21, FFZ22, LCY21, WDZ19].

However, the practicality of this application remains questionable due to two main rea-

sons. The first is inherited from the well-known hardness of SV computation; to com-

pute the SV for a data contributor requires an exponential number of times to evaluate

the utility function. The second reason is due to the iterative manner of the FL algorithm;

its learning accuracy, which would serve as the utility for SV, can only be measured after

many rounds of computation converges. We will elaborate on this later, but put simply,

combining both reasons, it is impossible to directly apply SV to FL.

We propose a practical data valuation metric for FL that can be considered an ap-

proximative version of SV. Specifically, our contributions are below:

• If we have all the local data of FL gathered at one place for central training, we

can compute SV for each data source. However, we show that this SV, if avail-

able, should not be used as benchmark for the FL setting, where the computation

must go through many iterations, each training on a different subset of local data.

This is particularly true when the training data is non-independent and identically

distributed (non-iid) among the participants. This is a real-world phenomenon

specific only to FL as compared to central learning [ZXL21, WKN20, SWM20].

• It would be ideal if one could customize a SV method for FL. However, not only it

is impossible to apply it directly, existing efforts proposing modified versions of it

to work with FL remain much theoretical. The main motivation for our proposed

SV-based metric is to make it practical. It is faster than the existing SV-based
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methods while still being consistent with their value distribution. Not only that,

our distribution is even smoother with less deviation. This is desirable when we

use these values as basis to incentivize good or penalize bad participations.

• As FL is one of the more recent approaches to Machine Learning, the research on

data valuation has only just begun [LCY21, YLL20c, ZZW20, ZLR20, ZLC21,

PTB20, LYN20, WDZ19, NSM20, STW19, WRZ20, FFZ21, NN21, FFZ22,

XNZ21]. Some have brought the SV concept to FL [STW19, WRZ20, FFZ21,

LCY21, NN21, FFZ22, WDZ19]. Our research is a timely addition to this rela-

tively young literature. The proposed method can serve as a good benchmark for

future developments.

The remainder of the chapter is organized as follows. Related work is discussed in

Section 2.2. The necessary background on the FL data valuation problem is presented

in Section 2.3. The proposed valuation method is proposed in Section 2.4. The results

of the evaluation study are analyzed in Section 2.5. We conclude the chapter in Section

2.6.

2.2 Related works

In large-scale data analysis using Machine Learning, there is an especially strong

need to prioritize samples. A straightforward approach is to measure the effect of each

sample on the accuracy if we remove it from the training set. The accuracy gain (or loss)

is the importance score. For a set of n samples, this so-called Leave-One-Out (LOO) ap-

proach requires re-training the dataset n times, each time with a sample omitted; hence,

very expensive. A more scalable valuation method [WCZ16] proposes using an influ-

ence function called Cook’s Distance [CW80], a classical technique in robust statistics
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as a measure for sample influence, and applies random sampling to avoid re-training.

This work is for linear models, where influence functions are well-defined thanks to

the underlying loss function’s convexity and are generally accurate even for estimating

group influences [KAT19]. However, for deep learning with non-convex loss functions,

influence functions are not well-understood, as experimentally pointed out in [BPF21].

Another approach is to learn a direct mapping between a training sample and its impor-

tance value [YAP20]. The idea is to train this mapping using Reinforcement Learning

applied to a small validation set that reflects the target learning task. This method can

compute the value of a data sample quickly once the mapping is learned. On the other

hand, the reinforcement training is required a priori and the mapping accuracy depends

on the quality of this training.

The above approaches do not satisfy the properties of an equitable valuation. For

example, if the training set contains two identical samples, they will be given zero values

because removing one does not change the training accuracy. This is unfair. Recently,

Shapley value (SV) [Sha16] was proposed for data valuation in Machine Learning, in the

name of Data Shapley [GZ19]. SV is the only scheme that satisfies all the properties of

equitable valuation. Data Shapley has been experimented with good results in medical

imaging of chest X-ray [TGY21].

The SV of a sample can be seen more or less as the average LOO value of this

sample when evaluated on all subsets of training data. As such, SV requires re-training

on all these subsets. Since this is exponential in time complexity, approximation is

a must. For example, in [GZ19, CGT09], Monte-Carlo sampling is applied to select

only a polynomial number of subsets to re-train. To further speed up, the procedure to

compute SV can stop when a convergence threshold is reached, e.g., no more significant

SV change is detected, without having to exhaust all these subsets. By these methods, it

12



typically takes n logn time to reach the convergence of SV approximation. It is shown

in [JDW20] that one can reduce this time to O(
p

n log2 n) with some smart sampling.

Data Shapley has been extended in different ways. A generalization of Data Shapley,

called Beta Shapley, was proposed in [KZ22] arguing that the uniform averaging from all

the subsets giving equal weight to each subset to compute SV is detrimental to capturing

the influence of individual data; Beta Shapley provides better weights based on Beta

distribution. Another generalization, called Distributional Shapley [GKZ20], extends

Data Shapley to the case that the data set is not fixed, but instead follows an underlying

data distribution; the (distributional) SV is the expected SV randomized over the data

set distribution.

In the context of Federated Learning (FL), we are interested in valuing not indi-

vidual data samples, but the participants who each own a subset of the overall training

data. One measure can be based on the data amount and computing resources pro-

vided by the participants [YLL20c, ZZW20, ZLR20]. Another measure considers the

resulted learning performance, for example, how similar their local model updates are

to the global model [ZLC21, PTB20, LYN20]. LOO and influence functions are used

in [YLL20b, BCM18, WDZ19, XNZ21]. In the same line with our research, SV is

used in [STW19, WRZ20, FFZ21, LCY21, NN21, FFZ22, WDZ19]. SV is appealing

not only because of its equitability properties. It is useful to select good participants to

join each update round [NN21] or bad data features to ignore in the local training on

the participant side [FFZ22]. To compute the training accuracy, we cannot have all the

training data into one place. Instead, only their local models may be communicated.

Furthermore, FL must run many rounds of local model updates until convergence to

obtain good training. Re-training must be avoided. This, together with the exponential

complexity of SV computation makes the precise computation of SV for FL infeasible.

The common SV-based approach to date works as follows [STW19]: 1) in each update
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round, compute the SV of each participant based on the utility function applied to cur-

rent local models, and 2) summing these round-based SVs to obtain the final SV for

each participant. Further steps can apply to speed up the round-SV computation by ap-

proximation (e.g., using Monte Carlo sampling [WRZ20], matrix completion [FFZ21],

guided truncation [LCY21]). To improve fairness, for example, in avoiding the case

that two participants with the same training data receives are given different values, one

can consider the method in [FFZ21]. Compared to the above SV-based methods for FL,

our research provides another layer of scaling up the SV computation. Thanks to the

additivity property of SV, a game can be decomposed into sub-games so that the overall

SV can be efficiently computed from the sub-SVs [CS04]. This idea has been shown

[ACC14, CD19] to be faster and more accurate than sampling-based approximation. We

apply a similar divide-and-conquer approach. By dividing the participants into different

subgroups, we can compute SV for their respective sub-games and take advantage of the

addibility property of SV to obtain the final SV for FL. To the best of our knowledge,

we are the first to pursue this direction.

2.3 Background and Motivation

Consider a typical supervised learning task of learning a function that maps an input

object to an output value (called “label”) based on a set of input-output pair samples

(called the “training set”). The label here can be a class label in classification learning

or a real-valued number in regression learning.

Let X and Y denote the input and output (compact) spaces, respectively. Suppose that

we are given a training set of samples, D = {(x1,y1), ...,(x|D |,y|D |)}, such that xi 2 X is

the feature vector of the ith input sample and yi 2Y its corresponding label. The learning

task is to find a function g : X !Y so that given each new input object x we will predict

that its label is g(x). The formulation of g depends on the underlying learning method in
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use (support vector machines, deep neural networks, etc.). We assume that g is uniquely

formulated based on a model w 2 Rd which is a vector of d parameters. Hereafter, we

are interested in finding w (since g can be derived from w).

We quantify the prediction quality by the following empirical loss

F(w;D), 1
|D | Â

(x,y)2D
l
✓

w;x,y
◆

(2.1)

where l(w;x,y) is a user-defined function measuring the prediction loss on sample (x,y)

using model w.

The goal of the learning task is to find w given D to minimize F(w;D). A typical

way to find the optimal w is by the iterative method of Stochastic Gradient Descent as

follows:

Algorithm 1: Stochastic Gradient Descent (SGD)

1. Start with some initial model w(0)

2. For each round t = 1, 2, ..., T :

• Update w(t) = w(t�1) - h —wF(w(t�1);D)

3. Return w(T )

Here, — is the vector differential operator in math. As the number of rounds T is

sufficiently large, the value w(T ) at the end of this loop should converge to the optimum

w. Parameter h is predefined and called the learning rate. The higher h is chosen, the

quicker convergence is reached but there is a higher risk to miss it. On the other hand,

if h is too small, the learning can be too slow to converge.

For ease of presentation, we denote this algorithm with SGD(w(0);D) where w(0) is

the initial model to begin the loop with and D the set of training samples.
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2.3.1 Federated Learning (FL)

In FL, the training samples are not available all at one place, but instead they reside

independently and privately on many local machines (participants). Let K be the set

of K participants and D = D1 [D2 [ ...[DK where Dk denotes the subset of training

samples owned by participant k 2K .

The prediction loss F(w) can then be expressed as follows

F(w;D) =
K

Â
k=1

|Dk|
|D |

✓
1

|Dk| Â
(x,y)2Dk

l(w;x,y)

| {z }
F(w;Dk)

◆
(2.2)

=
K

Â
k=1

|Dk|
|D | F(w;Dk). (2.3)

We can think of F(w,Dk) as the local prediction loss of participant k. In the IID case,

where the set of training samples is distributed uniformly at random among the partici-

pants, we would have

EDk [F(w;Dk)] = F(w;D). (2.4)

That is, the expectation of F(w;Dk) over an IID-generated Dk as a subset of D would

equal F(w,D). What this implies is a simple distributed learning approach: the par-

ticipants can each independently solve the learning problem using their own training

data and the average over all these local models provides a good approximation for the

optimal model. This is the foundation for FL.

The earliest and arguably most widely-used FL algorithm is FedAvg [MMR17]. Fe-

dAvg uses SGD (presented above) as the learning method. In the simplest form it works

as follows:
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Algorithm 2: Federated Averaging (SGD)

1. The server starts with an initial model w(0)

2. For each round t = 1, 2, ..., T :

(a) The server broadcasts model w(t�1) to all the participants

(b) In response, each participant k runs SGD on local data to compute/update

its local model

w(t)
k = SGD(w(t�1);Dk)

and sends it to the server. Note that this SGD starts with the global model

w(t�1) just received from the server.

(c) The server updates the global model by averaging the updated local

models, weighted by the size of each local dataset:

w(t) =
ÂK

k=1 |Dk|w
(t)
k

ÂK
k=1 |Dk|

3. Return w(T )

We denote this algorithm with FL(w(0);{D1,D2, ...,DK}), which uses w(0) as the

initial global model and applies to a FL system of K participants with local training

datasets D1, D2, ..., DK , respectively.

This algorithm has several variations [MMR17]. For example, instead of broadcast-

ing the global model in each round to all the participants (step 2a of the above algorithm),

we choose to send it to only a random subset of them, which will result in lower com-

munication and computation costs. To further reduce the local computation cost of the

participants, the SGD procedure can be modified to apply on a mini-batch of training

samples in each gradient descent step rather than on the entire training set.
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2.3.2 Shapley Value (SV)

Consider a coalition game (K ,v) where K is the grand coalition of candidate players

and v the characteristic function (also called the utility function). Any subset of players

S⇢K can form a coalition to play this game, which results in a payoff value v(S) 2 R

for the coalition; in the trivial case, v(?) = 0. Shapley Value (SV) is a method to

compute the individual payoff given to each player. Intuitively, player k 2K makes a

marginal contribution
✓

v(S[ {k})� v(S)
◆

to each subset S ⇢K \ {k} (excluding k).

The average marginal contribution to a coalition size of size |S|= i is

ai = Â
S⇢K \{k},|S|=i

✓
|K |�1

i

◆�1✓
v(S[{k})� v(S)

◆
.

The SV of player k is the average of this marginal contribution over all possible size

i 2 {0,1, ..., |K |�1},

f(k;K ,v) =
1

|K |

✓
a0 +a1 + ...+a|K |�1

◆

which is equivalent to

f(k;K ,v) =
1

|K | Â
S⇢K \{k}

✓
v(S[{k})� v(S)

◆�✓
|K |�1

|S|

◆
(2.5)

Alternatively, we can express the SV of player k as the average marginal contribution

it adds to a subset formed by each permutation of the grand coalition as follows,

f(k;K ,v) =
1

|K |! Â
permutation P

✓
v(Pk[{k})� v(Pk)

◆
, (2.6)

where Pk is the set of players that appear before player k in the permutation order P.

SV is the only valuation method having all the following desirable properties:

• Efficiency: The payoff value of the grand coalition is fully distributed to the play-

ers:

Â
k2K

f(k;K ,v) = v(K ).
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• Symmetry: Two players, k1 and k2, have the same SV if they make the same

marginal contribution to any subset excluding them:

v(S[{k1}) = v(S[{k2}) 8S⇢K \{k1,k2} (2.7)

! f(k1;K ,v) = f(k2;K ,v). (2.8)

• Null Player: A player k has zero SV if making no marginal contribution to every

subset excluding it:

v(S[{k}) = 0 8S⇢K \{k} (2.9)

! f(k;K ,v) = 0. (2.10)

• Linearity: If a game can be divided into two sub-games such that its characteris-

tic function is a linear combination of the sub-game characteristic functions, SV

follows the same linearity:

f(k;K ,a1v1 +a2v2) = a1f(k;K ,v1)+a2f(k;K ,v2).

A FL task can be considered a coalition game, where each participant is a player

and the payoff function for a participant subset is the learning accuracy of the FL

system using this subset as the participants. Specifically, the payoff value v(S) for

such a participant subset S = {s1,s2, ...,sl} which respectively contributes training data

{Ds1 ,Ds2 , ...,Dsl} is

v(S) = accuracy
⇢

wS = FL(w(0);{Ds1 ,Ds2 , ...,Dsl})
�
.

Here, wS is the global model resulted from applying FL to S. Obviously, to compute SV

precisely this way for FL is infeasible, because it requires running FL for an exponential

number of times, O(2|K |) for Eq. (2.5) or O(|K |!) for Eq. (2.6), each time applying
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to a subset of participants. The complexity is no better than O(T 2|K |), where T is the

number of rounds of global update in FL.

Alternatively, to avoid re-running FL, a typical approach is to compute the following

modified version of SV; this is referred to as Federated SV. Let T be the number of

rounds of global update. The Federated SV of participant k is the sum of the SV of k in

each round of the FL process,

f(k) = f(k;K ,v1)+f(k;K ,v2)+ ...+f(k;K ,vT )

where in each round t = 1,2, ...,T we define a coalition game with the following payoff

function for each participant subset S⇢K :

vt(S) = acc
⇢

w(t)
S =

Âk2S w(t)
k

|S|

�
. (2.11)

Intuitively, imagining that FL stops at the end of round t, payoff function vt(S) represents

the worth of subset S if the average model of its participants is used as the global model.

Federated SV can be computed on the fly as we are running FL, or later separately

after FL completes if the intermediate per-round local models are saved. No re-running

of FL is required, but it has the same computational complexity as the straight applica-

tion of SV to FL. The time complexity of both is O(T 2|K |). To reduce this time, the

general approach adopted in earlier works is to apply random sampling to compute SV

in each round approximately; i.e., choosing a polynomial number of random subsets to

include in the computation of f(k;vt) in each round t).

However, to achieve a low approximation error, sampling-based SV approximation

still requires prohibitively many subset samples [ACC14, CD19]. A more practical

method is needed.
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2.4 Practical Federated Shapley

We propose a new method to compute Federated SV based on multi-issue decompo-

sition (MID), a divide-and-conquer theory for profit distribution in coalition games.

2.4.1 Multi-Issue Decomposition

MID was suggested for SV computation in [CS04]. The most important result is the

following theorem.

Theorem 2.4.1 ([CS04]). Consider a coalition game with K candidate players and util-

ity function v. Suppose that v can be decomposed as a sum of M utility functions v1, v2,

..., vM,

8S⇢K : v(S) =
M

Â
m=1

vm(S),

and, or each m 2 [M], we are given Cm ⇢K such that vm “concerns only” Cm. Then

8k 2K : f(k;K ,v) =
M

Â
m=1

y(k;Cm,vm),

where

y(k;vm) =

8
><

>:

f(k;Cm,vm), if k 2Cm

0, otherwise

Here, the relation “concerns only“ means the following.

Definition A utility function u “concerns only“ a set C if u(S1) = u(S2) for every sets

S1 and S2 satisfying S1\C = S2\C. Intuitively, the utility ignores those players outside

of C.

The above theorem is very useful. Solving the original SV problem directly (apply-

ing the utility function v on the grand coalition K ) takes O(2|K |) time. Instead, we will
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solve M sub-problems, each problem applying utility function vm on coalition Cm, and

then sum the respective SV results to obtain the final SV. The MID approach incurs only

O(M2max{|Cm|:m2[M]}) time, much faster.

But that is just theory. The biggest question which is not easy to answer is whether

there exist a decomposition {(vm,Cm)}M
m=1 and, if so, how to find a good one. As such,

MID realizability depends on the SV utility function. [ACC14] (and [CD19] similarly)

proposed a decomposition for the case that utility function v is sub-additive: v(S1)+

v(S2) � v(S1 [ S2) for every S1,S2 ⇢ K . First, partition the grand coalition into M

clusters, K =
SM

m=1Cm, to maximize the intra-cluster player similarity, where similarity

of two players i and j is defined as di j = v({i})+ v({ j})� v({i, j}); i.e.,

minÂ
m

Â
m0 6=m

Â
i2Cm

Â
j2Cm0

di j.

Then, the sub-utility functions are defined as

vm(S) = v(S\Cm).

This is an approximation of MID because the utility decomposition is not precise:

v(S) = v
✓ M[

m=1
(S\Cm)

◆
<

M

Â
m=1

v(S\Cm) =
M

Â
m=1

vm(S).

The strict (<) inequality holds instead of equality because the utility function is assumed

sub-additive; else, it must be strictly additive. The goal of the similarity partitioning is

meant to minimize the effect of this imprecision.

2.4.2 Proposed Algorithm

MID has not been explored in the FL setting. We propose that for Federated SV we

apply MID to each round-local utility function vt of Eq. (2.11). Consider a particular

22



round t and, for the sake of presentation, let us ignore the index t. We propose to use a

linear decomposition instead of a sum decomposition:

v =
M

Â
m=1

vm, (2.12)

vm(S) = v(S\Cm). (2.13)

Extending from Theorem 2.4.1, thanks to the linearity of SV (which is stronger than the

additivity property), we can compute the SV of each participant k in round t efficiently

as

f(k;K ,v) =
M

Â
m=1

y(k;vm).

In general, Equality (2.12) does not hold precisely and so approximation is needed. The

decomposition error is

e(S) = v(S)�
M

Â
m=1

vm(S) (2.14)

= acc
✓

Âk2S wk

|S|

◆
�

M

Â
m=1

acc
✓

Âk2S\Cm wk

|S\Cm|

◆
. (2.15)

For a good approximation, a heuristic is to form a partition K =
S

mCm to maximize

pairwise similarity inside each cluster. We can use METIS, a very fast graph partitioner

tool, for the partitioning step. To further speed up the computation, for the SV game in

each round t, we do not consider the entire participant set K . In FL, due to large number

of participants, the global model update in each round is broadcast to K0 < |K | random

participants. Therefore, we run SV only concerning this subset, instead of applying to

K . Putting all together, we propose the following algorithm to compute a practical SV

for FL.

2.5 Evaluation Study

We conducted an evaluation study comparing three valuation methods:
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Algorithm 3: Practical Federated Shapley Value (FSV proposed)

• Initialize Fed SV f(k) = 0 for every participant k 2K .

• In each round t = 1,2, ...,T of the FL process

1. Let w(t)
k be the current local model of participant k and K (t) ⇢K the

subset of K0 participants selected to receive the global model update.

2. Define a coalition game with K (t) as the grand coalition and utility

function

v(S) = acc
✓

Âk2S w(t)
k

|S|

◆
.

3. Build a similarity graph G of participants in K (t) with similarity

di j = v({i})+ v({ j})� v({i, j}).

4. Apply min-cut size-balanced graph partitioning on G to obtain M clusters

C1, C2, ..., Cm.

5. Compute the SV f(k;Cm,vm) for each participant k 2Cm. Utility function

vm is defined such that vm(S) = vm(S\Cm) for every set S.

6. Let y(k;vm) = f(k;Cm,vm) for each participant k 2Cm; it is zero for

k 62Cm.

7. Let y(k) = ÂM
m=1 y(k;vm) for each participant k 2K (t) and y(k) = 0

otherwise. Then normalize these values to make them sum to 1.

8. Update f(k) += y(k) for each participant k 2K (t). No update for

k 62K (t).

• Return f(k) as the Federated SV for each participant k 2K .
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Table 1: Evaluation parameters: datasets and learning models
Dataset Dist. #train #test #features #labels FL model #participants BS LR #rounds acccuracy

MNIST IID 60K 10K 784 10 MLP 50 10 0.01 10/450 90%

MNIST non-IID 60K 10K 784 10 MLP 50 10 0.01 10/800 76%

CIFAR10 IID 50K 10K 1,024 10 CNN 50 20 0.15 10/600 60%

CIFAR10 non-IID 50K 10K 1,024 10 CNN 50 20 0.15 10/800 35%

SYNTH non-IID 4.8K 960 3 regression MLP 16 10 0.001 10/200 MSE: 0.001

• SV central: Assuming that all the local data are available for central training,

we compute exact SV for each participant. Although this method does not apply

to FL, it serves as a benchmark for comparison.

• FSV optimal: This method computes Fed SV exactly, by applying the SV for-

mula on FL, as we presented at the beginning of Section 2.4. Although this

method is not feasible in practice, it is used as the optimal benchmark which we

aim to approach.

• FSV sampling: This method, presented in Section 2.3 and following the imple-

mentation in [WRZ20], is representative of the current way based on random sam-

pling to apply SV to FL.

• FSV proposed: This is our proposed method. In the partitioning step of each

global update round, the participants selected for this round are partitioned in two

clusters using Spectral Clustering [ACC14].

For FSV sampling and FSV proposed, in approximating the SV formula we use

the same permutation sampling approach with the same parameters (Algorithm 2 of

[WRZ20], e = 0.8 and s = 0.05).
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2.5.1 Setup

The learning was applied to two real-world datasets, MNIST [Den12] (60K sam-

ples, hand-written digit recognition) and CIFAR10 [Kri09] (50K samples, object im-

age recognition). Since the time complexity to compute exact SV in SV Central and

FSV Optimal is exponential in terms of the number of participants, we generated a syn-

thetic dataset, SYNTH (5760 samples, linear regression), to allow us to evaluate these

methods in reasonable time. Each dataset is split into a testing set and a training set.

The information about these datasets is summarized in Table 1. Note that in that table

learning rate is denoted by RL, and #rounds represents number of local rounds/number

of global rounds.

Two cases for the data distribution among the participants are considered: IID and

non-IID. To generate the non-IID case, for the real-world datasets we have the same

sample size for each participant but make the label distribution non-IID, and for the

synthetic dataset we assign samples to participants uniformly at random but make the

sample size for each participant follow a non-IID distribution. A good valuation method

should value the participants equally in the IID case, whereas very differently in the

non-IID case.

2.5.1.1 Real-World Data

In the evaluation with real-world data, the training set is distributed into 50 local train-

ing datasets corresponding to 50 participants. To generate the IID case, the training set

is distributed uniformly at random such that each participant equally has for each of

the 10 labels the same number of samples (120 samples in MNIST and 100 samples in

CIFAR10). For the non-IID case, we make an imbalanced label distribution as usually

used in non-IID FL evaluation studies [MMR17, HCP21, ZXL21, WKN20]. Specif-
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ically, each participant has 90% of its training samples with only one dominant label

while the remaining samples are with the other 9 labels equally likely. For example, for

non-IID MNIST, a participant has 1080 samples with only one label and the remaining

120 samples are with labels equally chosen among the other 9 labels.

2.5.1.2 Synthetic Data

In the synthetic dataset, each sample is a 3-feature vector < x1,x2,x3 > and labeled ac-

cording to a linear regression y = w1x1 +w2x2 +w3x3 where the model < w1,w2,w3 >

is hidden. The feature values x follow a normal distribution. The label y is the ground

truth added with a Gaussian noise with standard deviation 0.01. The samples are dis-

tributed among 16 participants such that the number of samples at each participant is a

Zipf distribution with Zipf parameter set to 0.7 (this is typical Zipf skewness in practice).

Hence, the participant with the most samples has roughly 20% of the total while the one

with the fewest samples has roughly 3%. Given the sample size, the samples given to

each participant are drawn uniformly at random. With this setup, the sample size can

serve as a good representation for how much a participant contributes to the learning

system. For example, if a valuation method results in that a participant having many

samples is valued less than one having very few samples, this method is questionable.

2.5.1.3 FL Learning Models

In setting up FL, we use Multi-Layer Perceptron (MLP) as the learning method for the

MNIST dataset and Convolutional Neural Network (CNN) for CIFAR10. The setup

details are as follows:

• MLP for MNIST (203,530 model parameters): Fully connected (784, 256) !

sigmoid activation! Fully connected (256, 10)! Softmax().
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• CNN for CIFAR10 (258,762 model parameters): we use the convention (in chan-

nels, out channels, kernel) for convolutional layers and ReLU activation after

convolutional layers. Specifically, Conv2D(in channels = 3, out channels = 32,

kernel = 3)! MaxPool2D(2, 2)! Dropout(p = 0.1)! Conv2D(in channels =

32, out channels = 64, kernel = 3) ! MaxPool2D(2, 2) ! Dropout(p = 0.1) !

Conv2D(in channels = 64, out channels = 128, kernel = 3)! MaxPool2D(2, 2)

! Dropout(p = 0.1) ! Fully connected(128*2*2, 256) ! ReLU() ! Fully c

onnected(256, 128)! ReLU()! Fully connected(128, 10)! Softmax().

For the synthetic dataset, we use a MLP model with three neurons for the input layer

(to match with the three features) and one neuron for the output layer (to match with

the ground truth). There is no hidden layer for this MLP. Mean Squared Error (MSE) is

used for the loss function.

We implemented the above neural networks, MLP and CNN, with Torch. For the

SGD algorithm (Algorithm 1) in FL, we employed its “mini-batch” version [MMR17]

with batch size and learning rate given in Table 1; this parameter choice was chosen to

fit the datasets reasonably. After each global update, it is broadcast to a random subset

of K0 = 40 out of K = 50 participants (80%). The number of local training rounds and

the number of global model update rounds are also given in Table 1. These parameters

are chosen so that the test accuracy of FL is in the range as specified in this table; these

accuracies consistent with the benchmark in the literature.

2.5.2 Results

In this section, we first show the efficiency of our method, FSV proposed. Sec-

ondly, we evaluate SVs computed in two fashions: central learning and federated

learning (SV central and FSV proposed, respectively). We finally compare our fed-
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Figure 1: FSV proposed vs. FSV optimal: The x-axis is each participant, sorted in the

decreasing order of training size. The y-axis is the importance score (SV).

erated SVs (FSV proposed) with federated SVs computed by the sampling method

(FSV sampling).

2.5.3 The Efficiency of FSV proposed

We can see the reliability and computation time of FSV proposed in this section. Here,

the SYNTH dataset is used because it is small enough to be feasible for exact compu-

tation of the proposed and optimal methods. We also run the two methods on the same

CPU configuration for fair time consuming comparison.

Figure 1 reveals the FSV of all participants resulted from FSV optimal and

FSV proposed for the SYNTH dataset. Obviously, FSV proposed is quite consistent

with FSV optimal which serves as an optimal benchmark. The trend of FSV proposed

aligns well with that of FSV optimal and the variation between two curves is small.

Figure 2 illustrates that FSV proposed computes SVs stably over time. Clearly, each
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Figure 2: The stability of SVs computed by FSV proposed over the time: The x-axis is

each global time step to train the global model. The y-axis is the importance score (SV).

Table 2: Computation time (in seconds), SYNTH dataset
FSV proposed 311.4368

FSV sampling 22903.7091

participant has the same SV in all time steps. This is expected since we have all partici-

pants join the federation in each training round.

Table 2 shows the computation time to compute the FSV of FSV optimal and

FSV sampling. As we can see FSV proposed is significantly faster than FSV optimal,

roughly 73.5 times. This is a big achievement in making computing FSV practical.

2.5.3.1 Central SV vs. Federated SV

Figure 3 compares SV central and FSV proposed. Again, we use the SYNTH dataset

for exact computation. As seen, they are different to the extent that the former should

not serve as a benchmark to represent SV in a FL setting. With respect to the training
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Figure 3: SV central vs. FSV proposed: The x-axis is each participant, sorted in the

decreasing order of training size. The y-axis is the importance score (SV). To be fair,

the score given to a participant should follow the pattern of its training size.

size distribution, which is best reflective of participant contributions for this dataset,

to be fair the score given to a participant should follow the pattern of its training size.

FSV proposed is closely consistent with this fairness. In contrast, SV central is not;

for example, it gives the same value to participant 0 and participant 2 even though par-

ticipant 0 contributes twice more training samples. This result demonstrates that 1) SV

is a good measure to value participant contributions in FL, and 2) The FL setting has a

different impact on the valuation of participants compared to the case they are valued in

a centralized setting.

2.5.3.2 Federated SV: Proposed method vs. Sampling method

Figure 4 shows the FSV of every participant resulted from FSV sampling and

FSV proposed for the MINIST dataset in both IID and non-IID case. The FSV variation
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(a) IID (b) non-IID

Figure 4: Federated SV for MNIST dataset: FSV sampling or FSV proposed are con-

sistent in the ranking order of importance values, but FSV proposed offers a smoother

valuation especially for the non-IID case.

among the participants is wider for the non-IID case than the IID case, which is under-

standable because the data distribution among them is skewed in the non-IID and uni-

form in the IID. Besides that triviality, we observe that FSV sampling or FSV proposed

are consistent with each other in that the participants are valued in the same importance

order in both methods. However, more interestingly, FSV proposed provides a notice-

ably smoother valuation, especially for the non-IID case. Whereas FSV sampling gives

highly important participants very high values and lowly important ones very low val-

ues, FSV proposed is less extreme. By having smaller gaps between them, the proposed

method avoids the kind of winer-take-it-all risk. The same pattern is demonstrated for

the CIFAR10 dataset (Figure 5).
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(a) IID (b) non-IID

Figure 5: Federated SV for the CIFAR10 dataset: FSV sampling or FSV proposed

are consistent in the ranking order of importance values, but FSV proposed offers a

smoother valuation especially for the non-IID case.

2.6 Conclusions

Valuation of participant contribution is crucially important in Federated Learning (FL).

It is useful not only to recognize and incentivize good participants, but also to make

the learning algorithm more efficient by emphasizing less on those participants of low

influence. As Machine Learning, and FL in particular, can be cast as a kind of coalition

game, it is tempting to apply Shapley Value (SV), the de facto best valuation method

in cooperative game theory. Earlier attempts, which are very few, are not sufficiently

efficient. We have presented a novel method, called Practical Federated Shapley Value

(PFSV), which leverages the idea of multi-issue decomposition to make the SV com-

putation for FL faster and more accurate. Its superiority compared to the literature has

been substantiated in our evaluation study with both real-world and synthetic data.
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CHAPTER 3

EDGE ASSIGNMENT IN EDGE FEDERATED

LEARNING

Despite its promise, FL depends on a central server for repeated aggregation of local

training models, which is prone to become a performance bottleneck. Therefore, one

can combine FL with Edge Computing: introduce a layer of edge servers to each serve

as a regional aggregator to offload the main server. The scalability is thus improved,

however at the cost of learning accuracy. We show that this cost can be alleviated with

a proper choice of edge server assignment: which edge servers should aggregate the

training models from which local machines. Specifically, we propose an assignment

solution which is especially useful for the case of non-IID training data (well-known to

hinder today’s FL performance). Our findings are substantiated with an evaluation study

using real-world datasets.

3.1 Introduction

The reliance on the parameter server for central aggregation of local training models

in FL settings is a vulnerability. For large-scale applications, the server can easily be-

come a bottleneck. Hence, one can combine FL and Edge Computing to overcome this

challenge.
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Edge Computing has emerged as a viable technology for network operators to push

computing resources closer to the users to avoid long-haul crossing of the network core,

thus improving network efficiency and user experience. Originally initiated for cellular

networks to realize the 5G vision [ETS14], Edge Computing has become mainstream

with broader applicability in many types of long-distance wired or wireless networks

[MYZ17, AZT18], serving various data- or computing-intensive applications; e.g.,

video optimization [XLT17], content delivery [SHZ17], big data analytics [NRS17],

roadside assistance [PGF18], and augmented reality [LHO18].

In this chapter, we assume an Edge Computing architecture for FL. In this so-called

Edge Federated Learning (eFL) architecture [LZS20, LLH20, WTS19], a middle layer

of edge servers, which are commodity servers deployed at the edge of the network near

the participants, serves as “regional” aggregation servers. The learning in eFL works in

a hierarchical manner as follows: (1) Each regional server computes a regional model

by aggregating the local models in its region; and (2) The global server (the original

parameter server) updates the global model by aggregating only the regional models.

Performance bottleneck is no longer an issue because the global server only needs to

communicate with the edge servers, which are not many, and each edge server com-

municates only with the local participants in its region, which is also a much smaller

group.

However, eFL incurs an inevitable tradeoff: learning accuracy. The more decentral-

ization of the central aggregation server into distributed edge servers, the worse learning

accuracy as a result. Figure 6 illustrates an example. We compared the learning accu-

racy of FL and eFL on a real-world dataset (MNIST [Den12]) in fair parameter settings.

While FL offers an accuracy of more than 90%, eFL by deploying more edge servers

results in an accuracy increasingly worse (reduced to 80%). This is understandable be-

cause a regional server in eFL gathers information only from its region whereas the
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Figure 6: Tradeoff between decentralization of the central aggregation server into dis-

tributed edge servers and resulted learning accuracy. Here, the learning is applied to

the real-world MNIST dataset [Den12] distributed non-iid among 300 participants. The

x-axis is the global time during the algorithm running. The y-axis is the accuracy when

evaluated against the test dataset.

parameter server in FL receives information from all the participants. Although the

global server in eFL will eventually receive information from all the participants via

edge aggregation, the learning is slower to converge.

The tradeoff can be significant and so we should minimize it, hence the focus of

this chapter. We propose an approach by solving an edge server assignment problem:

given a number of edge servers, choose which servers to aggregate which participants

to maximize the learning accuracy. To date, it is implicitly understood in eFL designs

that this assignment is given a priori. We make the following contributions:

• The proposed edge assignment problem does not require any parameters. It is

purely data-driven but protects data privacy. The only assumption made is our

knowing the local models after a few early rounds of local training. To our knowl-
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edge, this work is the first effort on the edge assignment problem aimed to maxi-

mize learning accuracy that can work for every eFL setting.

• The problem is not trivial because there is no closed form to formulate the learning

accuracy as an objective function. Due to FL’s iterative manner, its accuracy can

only be measured on the fly after the procedure completes. The best we could do

thus is a heuristic approach. Yet, no obvious heuristic benchmark exists other than

random assignment. We propose a heuristic solution that is data-driven and also

useful as a better benchmark.

• A well-known hinderance to the learning accuracy of eFL, which is inherited from

FL, is the non-IID (non-independent and identically distributed) nature of local

training data observed in the real world [ZXL21, WKN20, SWM20]. Indeed, the

edge assignment problem is not much of a need if the data is IID, because any

balanced-size assignment should suffice. Our solution is noticeably effective in

the non-IID case, where the assignment problem matters.

The remainder of the chapter is organized as follows. Related work is discussed in

Section 3.2. The setting and objective of our server assignment problem are described

in detail in Section 3.3. The proposed algorithm is proposed in Section 3.4. The results

of the evaluation study are analyzed in Section 3.5. The chapter concludes in Section

3.6 with pointers to future work.

3.2 Related Work

The use of Edge Computing in eFL to address the performance bottleneck of the FL

server has only recently been investigated, but gained traction quickly. Good surveys of

the state of the art are provided in [LLH20, XYT21, AHS22]. In [LLH20], a compre-
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hensive review of eFL categorizes the challenges in eFL into different topics, namely

communication cost, resource allocation, privacy and security, and considers applica-

tions of eFL in cyberattack detection, edge caching and computation offloading, base

station association, and vehicular networking. The survey in [XYT21] summarizes the

research problems and methods in eFL in terms of applications, development tools, com-

munication efficiency, security, privacy, migration, and scheduling. It also suggests open

problems in eFL. The authors in [AHS22] present a report as a result of investigating

more than 500 FL papers published between 2016 (the year FL was first introduced) and

October 2021. This report shows that 57.3% of these papers discussed eFL. It is clear

that FL and Edge Computing are well-suited for each other.

In [LZS20], the authors provide proofs that under some feasible assumptions eFL

can provide a learning accuracy approaching that in a centralized learning setting where

all the training data are collected in one place. One of the assumptions is the IID -ness

on the distributed training datasets, which is often implicit in most machine learning

algorithms. However, in a FL (and eFL) setting, the training data reside independently

in different physical places and it is often the case that their distribution is non-IID,

meaning that the data distribution at each place may be very statistically different from

that at another place [ZXL21, WKN20, SWM20]; put another way, the participating

data are strongly skewed. In a typical implementation of FL, the model aggregation in

each iterative round involves only a subset of local models and a careless selection of

them ignoring the non-IID of the training data may hurt the global model’s convergence

and learning accuracy [WKN20]. Indeed, the local models can overfit local data, leading

to a poor global model.

Few studies have considered non-IID data in an eFL setting. An eFL approach is

proposed in [HCP21] where edge servers can have overlapping coverages. That is, a

local model may be included in the model aggregation at multiple servers; it is updated
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based on model updates sent from these multiple servers. With the overlapping, the

servers are closer-to-IID (or, equivalently, less non-IID) in terms of the training data

they aggregate. This approach, however, incurs more communication cost because a

local model may be sent to more than one server. In contrast, our work assumes non-

overlapping (disjoint) servers. We maximize the learning accuracy without increasing

the communication cost.

The authors in [YLL20a] focus on reducing the computation cost incurred due to

model calculations at the mobile devices. They propose an eFL approach in which the

edge servers do not only aggregate the local models, but also collaboratively join in the

computation of the local models. Specifically, each server collaborates with a constant

k of participants. The (deep learning) model is a sequence of two types of layers: the

low layers and high layers. At each participant, the raw training data go through the

low layers, at the end of which the output including the model weights and the ground

truth is uploaded to the corresponding edge server. At each edge server, upon receipt of

the low-layer outputs from its collaborating participants, will perform calculations at the

high layers of the model. This approach’s drawback is that local devices must share with

their edge servers partial raw local data (which is the ground truth aforementioned). This

violates the privacy preservation of the FL paradigm. In our eFL setting, local models

are trained completely at the participant side and the job of an edge server is only to

aggregate local models to obtain a regional model. Hence, no raw data is shared beyond

its local owner.

To our knowledge, the only previous work sharing the same goal with our work,

i.e., solving the edge server assignment problem in eFL, is [MAM22]. In this reference

work, the objective is to minimize the divergence between eFL’s global model and the

“centralized” global model; the latter is the result of running the same learning method

assuming all the data centralized in one place. The fundamental difference between this
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work and ours is two-fold. First, they assume that the local data distribution at each

and every local participant is known to the global server. Second, they assume that the

global data distribution, combining all the local data together, is also known. These

two assumptions are too strong, thus limiting the applicability of their edge assignment

solution. In contrast, our work makes no such assumptions, hence suitable for any eFL

setting.

3.3 Background and Motivation

Recalling the background discussed in 2.3 with the SGD algorithm [algorithm 1] and

the FedAvg algorithm [algorithm 2], in this section, we will use the two algorithms to

elaborate an algorithm for edge federated learning.

3.3.1 Edge Federated Learning (eFL)

Let M be the number of edge servers. Let zik 2 {0,1} denote the assignment of partic-

ipant k to edge server i. The aggregation coverage of server i is the set of participants

k such that zik = 1. Our setting assumes that each a participant is assigned to only one

edge server, i.e., 8k 2 [K] : ÂM
i=1 zik = 1.

Intuitively, we can think of eFL as a a distributed system of FL subsystems, each

running aggregation on an edge server, thus having a corresponding edge model. The

job of the global/central server in this distributed system is simply to compute the global

model by averaging the edge models. We can modify the FedAvg algorithm above to

work for eFL as follows:

We denote this algorithm with eFL(x,w(0);M,{D1,D2, ...,Dk}) which uses w(0) as

the initial global model and applies to an eFL system with M edge servers and K par-
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Algorithm 4: Edge Federated Averaging (EdgeFedAvg)

1. The server starts with an initial model w(0)

2. For each global round t = 1, 2, ..., T :

(a) The server broadcasts model w(t�1) to all the edge servers

(b) In response, in parallel, each edge server i runs FL with its own subsystem,

consisting of only the participants assigned, to compute/update its edge

model

e(t)i = FL(w(t�1);{Dk|zik = 1})

and sends it to the server. Note that this FL starts with the global model

w(t�1) just received from the server.

(c) The server updates the global model by the averaging the updated edge

models, weighted by the size sum of the training datasets aggregated by

each edge server:

w(t) =
M

Â
i=1

e(t)i
ÂK

k=1 |Dk|zik

ÂK
k=1 |Dk|

3. Return w(T )
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ticipants with local training datasets D1, D2, ..., DK , respectively, and ZZZ the assignment

matrix of these K participants to the M edge servers.

One can prove that when certain conditions hold, like in FL [LHY20], eFL will

eventually converge to a performance comparable to that of the centralized learning

setting [LZS20], which is true for both convex and non-convex loss functions.

3.3.2 Problem Statement

The implementation detail of eFL requires some parameters: the number of rounds

(T = G) the global server updates the global model from the edge models, the number

of rounds (T = E) each edge server updates the edge model from the local models

before sending it to the global server, and the number of rounds (T = L) each participant

performs SGD before sending the updated local model to its edge server.

In this work, we consider an eFL setting with given G, E, and L. Its learning per-

formance then depends on the edge server assignment ZZZ = {zik}M⇥K . Our goal is to

find the best ZZZ to maximize eFL accuracy. To date, it is implicit in eFL designs that this

assignment is random or given a priori without justification. Although eFL has gained

a lot of traction, surprisingly the edge server assignment is rarely touched, except the

work [MAM22] which is different from ours as discussed in Section 3.2.

When the training data distribution among the participants is non-IID, Equality (2.4)

is untrue: averaging F(w,Dk) over Dk (the local training dataset at participant k as a

non-IID subset of D) can unpredictably be bad as an approximation for F(w,D). The

non-IID case remains a severe hindrance to FL accuracy. With eFL, if a proper edge

assignment ZZZ is used, we can hope to neutralize the non-IID effect.

If the IID assumption holds true, FL works effectively and the edge assignment

problem for eFL does not matter much, because a random assignment solution that
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balances the coverage size of each edge server would provide a good learning accuracy.

We thus seek an assignment solution ZZZ that works more effectively for the non-IID case,

yet as well as the random solution for the IID case. Unfortunately there exists no closed

form to formulate the learning accuracy as an objective function. Due to the iterative

manner of eFL, the learning accuracy can only be measured on the fly after the procedure

completes.

3.4 The Assignment Algorithm

Our heuristic is to include in the aggregation coverage of an edge server those partici-

pants whose training datasets are statistically as diverse as possible. For example, in an

eFL setting with 4 participants and 2 edge servers such that participant 1’s and partici-

pant 2’s training datasets consist of mostly label A and participant 3’s and participant 4’s

mostly label B, participants 1, 3 should be combined on one edge server and participants

2, 4 on the other edge server. This way, each edge server has a comprehensive coverage

of training data (having both labels A and B).

3.4.1 The rationale

We elaborate this heuristic mathematically as follows. Think of each edge server as

“virtual” participant with a virtual training set Di ,
S

k:zik=1 Dk. The loss F(.) can be
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re-written as follows

F(w;D) =
1
|D | Â

(x,y)2D
l
✓

w;x,y
◆

(3.1)

=
M

Â
i=1

|Di|
|D |

✓
1

|Di| Â
(x,y)2Di

l(w;x,y)

| {z }
F(w;Di)

◆
(3.2)

=
M

Â
i=1

|Di|
|D ||{z}

bi

F(w;Di) =
M

Â
i=1

biF(w;Di). (3.3)

Let Qi(x,y) be the ground-truth (hidden) distribution representing the samples in Di.

Denote Ei(w) , EQi [F(w;Di)] and E(w) , ÂM
i=1 biEi(w). Applying Proposition 2 of

[ZWB21], the global optimum w⇤ , argminw F(w;D) introduces the following error

bound when minimizing Ei(w), with probability 1�d :

Ei(w⇤)�min
w

Ei(w) A
|D | +2

⌧
Qi�

M

Â
j=1

b jQ j

�
(3.4)

where h f i , R
x,y | f (x,y)|dxdy and A is a constant only depending on the definition of

the loss function l, the data dimensionality, and the threshold d (which can be made

arbitrarily small).

44



Summing this over all edge servers i’s, we have

E(w⇤)�min
w

E(w) (3.5)

=
M

Â
i=1

biEi(w⇤)�min
w

M

Â
i=1

biEi(w) (3.6)


M

Â
i=1

biEi(w⇤)�
M

Â
i=1

bi min
w

Ei(w) (3.7)

=
M

Â
i=1

bi

✓
Ei(w⇤)�min

w
Ei(w)

◆
(3.8)


M

Â
i=1

bi
A
|D | +2

M

Â
i=1

bi

⌧
Qi�

M

Â
j=1

b jQ j

�
(3.9)

 A
|D | +2

M

Â
i=1

bi

⌧
Qi�

M

Â
j=1

b jQ j

�
. (3.10)

Although the left hand side of this inequality does not depend on the edge assignment Z,

its right-hand-side upper bound does. Our heuristic is to compute Z that minimizes this

upper bound. This happens when Qi(.) = Q j(.) = Q(.) for all i, j, because that leads to

hQi�
M

Â
j=1

b jQ j

�
= hQ�Q

M

Â
j=1

b j

�
= 0.

In other words, ideally, we want the aggregate probability distribution of the samples

virtually belonging to each server is identical. This mathematically justifies the intuition

that the data distribution at the edge level should be made IID to minimize the global

learning loss. However, we do not know the underlying distribution of each participant.

Therefore, we apply two heuristics: 1) participants belonging to a server should be

statistically diverse, and 2) we use the diversity of the local models observed empirically

to represent this statistical diversity.

Consider participant k and let Pk(x,y) denote its data probability distribution. From

the strong law of large numbers, when the training data size |Dk| is sufficiently large,

the loss F(w;Dk) should converge to the true risk Fk(w) of model w for participant k,
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which is

F(w;Dk)⇡ Fk(w), EPk [l(w;x,y)] =
Z

l(w;x,y)dPk.

Participant k’s local model after one round of SGD is

w(1)
k = w(0)�h—wF(w(0);Dk)⇡ w(0)�h—wFk(w(0)).

Since —wFk(w) =
R

—wl(w;x,y)dPk, considering two participants k and k0, their model

divergence after one SGD round is

kw(1)
k �w(1)

k0 k= h
����—wFk(w(0))�—wFk0(w(0))

���� (3.11)

= h
����
Z

—wl(w(0);x,y)d(Pk�Pk0)

���� (3.12)

 hC
����
Z

d(Pk�Pk0)

����, (3.13)

where constant C denotes the upper-bound maxx,y k—wl(w(0);x,y)k (the maximal norm

of the gradient of the per-sample loss at w(0)). This bound exists given the typically

assumed convexity and smoothness of the loss function (standard assumptions in FL

to guarantee its convergence [LHY20, ZWB21]); for example, this holds when l is the

2-norm.

This inequality implies that if participants k and k0 have similar data distributions

Pk and Pk0 , they should have small model divergence, and vice versa, if they have large

model divergence, their data distributions should be largely different. Therefore, the

model divergence after the first SGD round (even better if more rounds take place) is a

good representation for the statistical data distribution difference between two partici-

pants.
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3.4.2 The algorithm

We define the “distance” between two participants to be their 1st-round model diver-

gence: dist(k,k0) = kw(1)
k �w(1)

k0 k. To compute this distance, all the participants only

need to send the server their 1st-round local model (local data privacy remains intact).

Once these distances are computed, we represent the participants as vertices in a

graph whose edge weight between vertex k and vertex k0 is the corresponding distance

dist(k,k0). We (the server) then apply k-balanced min-cut graph partitioning (e.g., using

METIS algorithm [KK98]) to divide the graph into M clusters of participants, each

cluster being assigned to an edge server. Since each cluster consists of vertices with

heavy-weight edges (correspondingly, long distance), we achieve the goal of grouping

participants as statistically distant as possible into an edge server. See Algorithm 5 for a

full description.

3.5 Evaluation Study

We conducted an evaluation study comparing three learning algorithms: 1) eFL metis:

the eFL algorithm (Algorithm 4) using our assignment solution (Algorithm 5) with

METIS [KK98] for graph partitioning; 2) eFL rnd: the eFL algorithm using a random

assignment; and 3) FL: the FedAvg algorithm (Algorithm 2).

3.5.1 Evaluation setup

The learning was applied to two real-world classification datasets: MNIST [Den12]

(hand-written digit recognition) and CIFAR10 [Kri09] (object image recognition). Each

dataset is split into a testing set and a training set. The training set is distributed into

300 local training datasets (300 participants). The number of classes, features, training
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Algorithm 5: Edge Server Assignmemt (EdgeFedAvg). Let w(0) be the (arbi-

trary) initial global model.

1. The global server sends w(0) to all participants.

2. Each participant k:

(a) Perform w(1)
k = SGD(w(0);Dk); or better if running it for more than 1

round.

(b) Send w(1)
k to the global server.

3. The server computes the assignment matrix ZZZ as follows:

(a) Construct an undirected edge-weighted graph G consisting of K vertices,

each representing a participant, such that the weight of an edge connecting

two vertices k and k0 is dist(k,k0) = kw(1)
k �w(1)

k0 k.

(b) Apply a k-balanced min-cut graph partitioning algorithm to divide G in M

clusters and assign the participants in each cluster to an edge server.

Table 3: Real-world datasets used in evaluation
Dataset train size test size #features #classes

MNIST [Den12] 60,000 10,000 784 10

CIFAR10 [Kri09] 50,000 10,000 1,024 10
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samples, and test samples are given in Table 3. The three aforementioned algorithms are

compared in terms of the learning accuracy when applied to the testing set.

The local data distribution can be IID or non-IID. For the IID case, the training set

is distributed uniformly at random such that each participant equally has for each of

the 10 labels the same number of samples (20 samples in MNIST and 16 samples in

CIFAR10). For the non-IID case, we make an imbalanced label distribution as usually

used in non-IID FL evaluation studies [MMR17, HCP21, ZXL21, WKN20]. Specif-

ically, each participant has 90% of its training samples with only one dominant label

while the remaining samples are with the other 9 labels equally likely. For example, for

non-IID MNIST, a participant has 180 samples with only one label and the remaining

20 samples are with labels equally chosen among the other 9 labels.

For the eFL setting, we vary number of edge servers in the set M 2 {10,20,30} to

explore the effect of decentralization in eFL on the learning performance of the global

model. Respectively, each edge server aggregates 30, 15 and 10 participants on average.

Two configurations for the numbers of edge rounds and local rounds are considered: (E

= 2, L = 10) and (E = 5, L = 20). The former configuration represents the case that

edge and global aggregation updates are more frequent and the latter represents the case

less frequent. It is well-known in FL for the non-IID case that when L is higher (longer

local SGD computation before aggregation) can cause more divergence between local

models, thus slowing down the convergence speed of the global model [MMR17]. In

total, we have 24 model cases for each eFL algorithm.

For the FL setting, M and E are irrelevant; the only parameter is L, set to L = 20 or

L = 100 so that the number of global model updates resulted is the same for both FL

and eFL (corresponding to cases (E = 2, L = 10) and (E = 5, L = 20, respectively). In

total, we have 4 model cases for FL.
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Because training a model on CIFAR10 is expensive, we only have FL results for

MNIST. Multi-Layer Perceptron (MLP) was used as the learning method for the MNIST

dataset while Convolutional Neural Network (CNN) was used for CIFAR-10. The setup

details are as follows:

• MLP for MNIST (203,530 model parameters): Fully connected (784, 256) !

sigmoid activation! Fully connected (256, 10)! Softmax().

• CNN for CIFAR10 (258,762 model parameters): Conv2D(in channels = 3,

out channels = 32, kernel = 3) ! MaxPool2D(2, 2) ! Dropout(p = 0.1) !

Conv2D(in channels = 32, out channels = 64, kernel = 3) ! MaxPool2D(2, 2)

! Dropout(p = 0.1)! Conv2D(in channels = 64, out channels = 128, kernel =

3) ! MaxPool2D(2, 2) ! Dropout(p = 0.1) ! Fully connected(128*2*2, 256)

! ReLU()! Fully connected(256, 128)! ReLU()! Fully connected(128, 10)

! Softmax().

We implemented these two neural networks with PyTorch. For the SGD algorithm

(Algorithm 1) in FL and eFL, we employed its “mini-batch” version [MMR17] with

batch size set to 10 for MNIST and 20 for CIFAR10; the learning rate h is set to 0.01

and 0.15, respectively. This parameter choice was chosen to fit the datasets reasonably.

To form the participant graph in our edge assignment solution, the model divergence

between two participants is computed using local models resulted after running SGD

for 10 rounds. In computing this divergence, we use the Minkowski metric of order 1

(we found that order 2, which is the Euclidean distance, is worse as a representation for

the statistical difference based on the raw data).
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3.5.2 Effect of the number of edge servers

Figure 7 shows the test accuracy of eFL as an effect of the number of edge servers (M)

for the MNIST case (here, we chose eFL metis as an example; the result pattern for

eFL rnd is similar). Clearly, increasing the number of edge servers in eFL results in

accuracy loss. This is understandable since, given a fixed number of participants, as

more edge servers are placed, each will aggregate from fewer participants. This causes

less diversity of data distribution at the edge aggregation and so regional models tend to

accumulate divergently. As a result, the global model which is aggregated from these

regional models gets worse. The pattern for the CIFAR10 dataset is similar (Figure 8).

3.5.3 Effect of edge server assignment

Figure 9 compares eFL metis to eFL rnd, plotting their ratio of test accuracy. A ratio

larger (smaller) than 1 means better (worse) test accuracy for the former. First, it is

observed that eFL metis is comparable to or better than eFL rnd in all configurations.

They are comparable in the IID case, which is expected because a random assignment

would neutralize the non-IID case effectively. They are also comparable when few edge

servers are deployed, in either IID or non-IID case. This is because with few edge

servers, the degree of decentralization in eFL is not that significant, giving little room

for accuracy improvement as a result of an edge server assignment. That said, we still

see a slightly better accuracy for eFL metis compared to eFL rnd.

In the non-IID case, especially significant with more edge servers deployed (when

the server assignment is critical to the learning accuracy), eFL metis’s superiority be-

comes more noticeable. For example, as seen in Figure 9(b) for the MNIST dataset,

using 30 edge servers, eFL metis improves over eFL rnd by 15%. This improvement

is 20% for the CIFAR10 dataset; see Figure 10(b).
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Figure 11 provides a radar-chart overview of the comparison summarizing all the

configurations in terms of the number of local updates, the number of edge updates, and

the number of edge servers. It is expected that FL is the best and the difference between

eFL metis and eFL rnd is not significant for the IID case; however, eFL metis brings

more substantial accuracy gain for the non-IID case especially with more edge servers

deployed.

3.5.4 IID-ness at the edge vs. IID-ness at the local

Here we focus on the case that local data distribution is non-IID and investigate how eFL

helps neutralize its effect. The edge IID-ness comparison of eFL metis versus eFL rnd

is illustrated in Figure 12 for both MNIST and CIFAR10. In these figures, each plot

shows the distribution of the training samples of the participants assigned to each server

over the 10 classification labels; there are M (10 or 30) curves in each plot, where each

curve represents a server.

Good IID-ness is obtained if (1) these curves appear close to each other (ideally, each

server should have the same distribution curve) and 2) the horizontal deviation should

be small (ideally, each label should have the same number of samples; in our evaluation,

the global dataset has identical numbers of samples for each label). eFL rnd clearly has

substantial deviations both horizontally and vertically. In contrast, eFL metis produces

a much more constant-line looking curve shape. It is also observed that edge IID-ness

improvement of eFL metis over eFL rnd is more noticeable when there are more edge

servers (M = 30 servers vs. M = 10 servers).
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3.6 Conclusions

FL cannot scale when the number of participants is too large for the global server to ag-

gregate. eFL improves scalability by using edge servers as regional aggregators, which,

however, leads to degraded learning accuracy. We have shown that the edge server

assignment is critical to minimizing this tradeoff. We have proposed a simple yet ef-

fective solution based on the idea that the local models to be aggregated by an edge

server should be maximally diverse. This statistical diversity can be measured without

violating data privacy. This solution has been shown in our evaluation study to outper-

form the de facto standard random assignment by up to 20% when tested on popular

real-word datasets. The proposed assignment solution is especially helpful when more

edge servers are deployed and the local training data distribution is non-IID. It does not

require strong assumptions and is useful as a universal benchmark for comparing eFL

algorithms.
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(a) IID case

(b) Non-IID case

Figure 7: MNIST Dataset: The test accuracy of eFL metis under the effect of the

number of edge servers deployed for different combination settings of the number of

local training updates and the number of edge training updates.
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(a) IID case

(b) Non-IID case

Figure 8: CIFAR10 Dataset: The test accuracy of eFL metis for different combination

settings of the number of local training updates and the number of edge training updates.
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(a) IID case

(b) Non-IID case

Figure 9: MNIST Dataset: The ratio of eFL metis’s test accuracy to eFL rnd’s test

accuracy for different combination settings of the number of local training updates and

the number of edge training updates.
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(a) IID case

(b) Non-IID case

Figure 10: CIFAR10 Dataset: The ratio of eFL metis’s test accuracy to eFL rnd’s test

accuracy for different combination settings of the number of local training updates and

the number of edge training updates.
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Figure 11: Accuracy summary comparing eFL metis, eFL rnd, and FL for different

combination settings of the number of local training updates, the number of edge train-

ing updates, and the number of edge servers. Here, the meaning of the labels is as

follows: A (M = 10), B (M = 20), C (M = 30) for case (L,E) =(10, 2) and D (M = 10),

E (M = 20), F (M = 30) for case (L,E) =(20, 5).
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Figure 12: Edge IID-ness given IID training data across participants: Each plot shows

the distribution of the training samples of the participants assigned to each server over

the 10 classification labels. The x-axis is each label, the y-axis is the number of corre-

sponding samples having this label, and each curve is for a server (M = 10 or M = 30).
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CHAPTER 4

A STOCHASTIC GEO-PARTITIONING PROBLEM

FOR MOBILE EDGE COMPUTING

The success of a mobile edge computing network depends critically on how to assign the

edge servers to the user cells. The criterion for this assignment is application-specific. In

many practical applications, the workload demanded by each cell is unknown and time-

varying. So are the effective capacities of the servers. We need an assignment incurring

minimum backhaul cost that is robust to these uncertainties. We also want to make the

cells assigned to the same server form a geographically compact cluster. This challenge

motivates us to introduce a novel stochastic geo-aware partitioning problem. As it is

computationally hard, we propose a heuristic algorithm that can produce a range of so-

lutions representing different tradeoffs between cost minimization versus geographical

awareness. We evaluate the proposed algorithm using a real-world dataset.

4.1 Introduction

Mobile Edge Computing (MEC) [ETS14] has emerged as a viable technology for mobile

operators to push computing resources closer to the users to avoid long-haul crossing of

the network core, thus improving network efficiency and user experience. Originally

initiated for cellular networks to realize the 5G vision, MEC has been generalized for

broader wireless and mobile networks [MYZ17, AZT18]. It is becoming more of a
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phenomenon with the Internet of Things; 5+ billion IoT devices would be connected to

MEC by 2020 according to a recent forecast by BI Intelligence [New17].

In a nutshell, a typical MEC architecture consists of four layers of entities: the

mobile devices (users), the base-stations (cells), the edge servers, and the cloud data-

center. The edge servers are introduced in the network edge which connects the base-

stations to the network core, each server being an aggregation hub, or a mini datacenter,

to offload processing tasks from the remote datacenter. Because the region served by

an edge server, also known as a “cloudlet” [SBC09], is much smaller, a commodity

virtualization-enabled computer can be used to run compute and network functions that

would otherwise be provided by the datacenter.

A challenge with MEC is how to assign a given set of edge servers to the user cells

to maximize the edge computing benefit. This challenge is not new outside MEC. In-

deed, it belongs to the large body of work on distributed allocation of resources (virtual

machines) in cloud computing; e.g., [HKL14, AL12, Man15, DHY17]. The MEC as-

signment problem is similar, however with unique constraints. Firstly, the MEC servers

need be near the user side, not the datacenter side, and so the communication cost to

be minimized is due to the use of the backhaul network towards the datacenter, not the

front-haul towards the cells. Secondly, the geographic spread of the cells served by a

MEC server should be a design factor [BC17, MSG15], which typically is not a priority

for a distributed cloud solution.

To address the MEC assignment challenge is application-specific. We focus on ap-

plications where requests for service are initiated by and processed for individual users

(devices), which are plenty in the real world, e.g., video optimization [XLT17], content

delivery [SHZ17], big data analytics [NRS17], roadside assistance [PGF18], and aug-

mented reality [LHO18], to name a few. Applications that involve pairwise user-to-user
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interactions such as peer-to-peer video streaming and multi-player online gaming are

not considered.

Ideally, given a number of edge servers with limited capacity, a partition of the user

cells into clusters (to assign to the edge servers respectively) should achieve there key

goals: (1) Cost-Efficiency: The total backhaul cost is minimal. This cost is incurred

for processing requests not fulfilled by the edge servers due to capacity limitation; (2)

Geo-Compactness: The cells in each cluster should be close to each other. This makes

the partition robust to user mobility and, also, results in the assigned server being ge-

ographically close to its users for efficient operation and shortened latency; and (3)

Uncertainty-Robustness: The partition should remain efficient in the presence of time-

varying workloads and the dynamics that a server’s effective capacity may go up and

down. Otherwise we would need to recompute the partition frequently to cope with

these uncertainties.

What makes the research especially interesting is with the third goal: robustness.

Indeed, while cost-efficiency is understandably a must-achieve in every MEC solution

and geo-awareness has already been integrated in some recent partitioning techniques

[BC17, MSG15, TV20, XLX16], we are aware of no prior research for the following

questions: is there an efficient way to compute just one partition, no update needed,

that can sustain a long period of time-varying workloads under time-varying effective

server capacities? To demonstrate these dynamics, Figure 13 shows the cellular traffic

intensity in a real-world cellular network, plotted for each base station at different hours

on the same day. Obviously there is a significant workload variation over the time.

The instability of effective server capacity in real-world computer systems is also well-

known [IW11, KKS11].

Motivated by these questions, we introduce a new partitioning problem: Stochastic

Geographically-aware Partitioning (StoGeoPar). Its objective is to optimize a stochas-
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(a) 2 AM (b) 4AM

(c) 9AM (d) 8PM

Figure 13: Heat map of cellular traffic intensity for each base station at different hours

during a day. The cellular network consists of 13,296 base-stations serving a large

population in a medium-size city of China; courtesy of [CJQ15].

tic quantity formulated to incorporate all the three criteria of cost-efficiency, geo-

compactness, and uncertainty-robustness. Our contributions are as follows.

• StoGeoPar is an original partitioning problem. Specifically, in the context of

MEC, stochastic partitioning to represent uncertain workloads and/or capacities

is not yet explored. So is the computation of a fixed partition optimized for an

unknown future workload.
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• We propose an approximate algorithm for StoGeoPar. Our approach is to opti-

mize an approximative version of its original stochastic objective by fitting the

time-varying input with a Gaussian distribution and applying a block-relaxation

optimization method to solve it.

• We evaluate the proposed algorithm using a real-world mobile traffic dataset,

showing that not only it is better than intuitive approaches, it can produce a

range of partitions representing arbitrary tradeoffs between cost-efficiency and

geo-compactness.

It is noted that, for an extended period of time-varying workloads, a typical approach

is to adjust the partition dynamically upon each workload change. This is a theoretical

perspective. In practice, because this approach is expensive if changes are frequent, one

should only apply the repartitioning once after a sufficiently long period within which

there may still be many workload changes. Our research is motivated by wondering

if there is a way to compute a stable partition that is robust to such changes inside

this period. Hence, our work is complementary to the typical approach. Indeed, given

statistical parameters empirically obtained by monitoring the workload, we compute

a partition robust to changes according to these parameters. When workload changes

significantly, leading to new values of Gaussian parameters, we will re-run the algorithm

as in the typical approach.

The remainder of this chapter is organized as follows. Related work is discussed

in Section 4.2. The problem is introduced and formulated as a stochastic optimization

problem in Section 4.3. The proposed algorithm is proposed in Section 4.4.2. The

results of the evaluation study are analyzed in Section 4.5. The chapter concludes in

Section 4.6.
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4.2 Related Work

A MEC system, like every other finite computing system serving many resource-hungry

requests, faces the challenge of how to assign resources to computing units to opti-

mize hardware consumption and best satisfy application QoS requirements [CLL18].

The assignment problem in [WZT17] is aimed to support a set of applications with

known request load and latency expectation and the challenge is to determine which

edge servers to run the required virtual machines, constrained by server capacity and

inter-server communication delay. In [BG17, WZL17], where only one application is

being considered and consists of multiple inter-related components organizable into a

graph, the challenge is how to map this component graph on top of the physical graph

of edge servers to minimize the cost to run the application. In the case that edge servers

must be bound to certain geographic locations, a challenge is to decide which among

these locations we should place the servers and connect them for optimal routing and

installation costs [CPS17, FA18b, XLX16, TV20].

The above works do not take into account the geographical spread of the region

served by a server. The cells served by the same server can be highly scattered geo-

graphically, causing long latency and high management cost. While latency constraints

can be set directly as in [XLX16], the works in [BC17, MSG15, TV20] introduce geo-

graphical constraints in the optimization of the server assignment. In [BC17], a spatial

partitioning of the geographic area is proposed such that the cells of the same server

are always contiguous while its capacity is not violated. In [MSG15], the cells served

by each server must also be contiguous, but the objectives are different, for example,

trying to minimize server deployment cost and cell-to-cell latency via the edge. Instead

of enforcing the geographic contiguity in the partition, [TV20] aims to minimize the ge-
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ographical spread of the cells served by each server. It is argued therein that these cells

do not have to be contiguous; they just should not be too far from the serving server.

For time-varying workloads, the conventional or implicit approach in the literature

is either to recompute the partition or make incremental adjustments. It is often required

that workload rates be known prior to the update. In contract, our goal is to compute

one single partition that stays unchanged but robust for a long sequence of randomly

changing workloads and, importantly, without knowing the workload rates. The work

in [VT19] considers time-varying workloads, but assumes fixed server capacities and is

applicable only to workloads of interaction between user and user. In our problem setup,

the server capacities can be time-varying and we focus on workloads of requests serving

individual users.

Besides the assignment problem, the emergence of MEC has also given rise to other

interesting problems that share some overlapping requirements but with different foci.

For example, a network slicing problem is addressed in [LH19] for a multi-domain cel-

lular edge network. Network slicing refers to building ”virtual clouds”, called network

slices, sharing physical resources of the underlying mobile edge network. Functional

isolation between different slices is a central goal for a network slicing solution, which

does not apply in our partitioning problem.

The cloudlet placement problem is addressed in [FA19], whose goal is to determine

the location to deploy and how much compute capacity to assign to each cloudlet. Re-

call that a cloudlet refers to the edge subnetwork of cells served by an edge server. This

problem is not the same as our partitioning problem. The same authors also proposed

a workload allocation method for a hierarchical cloudlet network to minimize the com-

puting delay incurred by each cloudlet [FA18a]. In contrast, our research assumes a flat

cloudnet/edge architecture.
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A radio access network with a special scenario of having only two edge servers is

considered in [RSN17], where a method is proposed for minimizing the service delay by

controlling the computation delay via virtual machine migration and improving trans-

mission delay via Transmission Power Control. When there are more clients and de-

vices, the same authors also address the cloudlet activation problem (how to add cloud-

net) [RSN18] to increase the scalability of an edge network. Wang et al. [WLK19b]

propose to allocate computing and network resources adaptively to reduce the average

service time in a dynamic MEC environment by adopting a deep learning approach.

They also suggested a solution for IoT-based smart cities [WLK19a]. These aforemen-

tioned works choose the delay as the objective to minimize. The setting of our research

problem is different not only in the nature of the problem (stochastic partitioning) but

also the optimization objective (backhaul cost) and constraint (geographical awareness).

4.3 Problem Statement

The geographical area is partitioned into a set of N cells, indexed by the set C =

{1,2, ...,N}, each cell i 2 C served by a base-station (also referred to as base-station

i). The meanings of “base-station” and “cell” are general, not necessarily understood in

conventional meaning as in cellular networks; for example, as a Wi-Fi access router and

its coverage area in Wi-Fi networks. Denote the location of each cell i by li (which can

be 2D or 3D).

Let the time be discretized into time slots t = 1, 2, 3, ... The system workload at

each time t consists of the workloads from all the cells at t. We model the time-varying

workload rate of each cell i at time t as a random variable Xi 2 [0,•). Suppose that we

can afford to deploy M edge servers, indexed by the set S = {1,2, ...,M}. Each server

s has a compute capacity Ks. In practice, the effective capacity of a server may fluctuate
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from time to time due to the dynamics of its resource usage (the server may involve in

other computing tasks). Therefore, we also model Ks as a random variable in the range

[0,•).

The server assignment problem is how to partition the cellset C into M clusters,

so that each cluster is assigned to a server to help process its workload. We represent

this partitioning by a binary mapping zzz : C ⇥S ! {0,1} and denote by zis = 1 the

assignment of cell i to server (cluster) s and zis = 0 otherwise. We need to compute z. In

what follows, without explicitly specified otherwise, we use indices i, j 2 C to denote a

cell/base-station, and s 2S to denote a server.

4.3.1 Backhaul Cost

Minimizing the backhaul cost is the main reason for the adoption of mobile edge com-

puting. There are other costs such as those involved at the edge servers we should also

keep low. If we aim to minimize them together with the backhaul cost, there would be

multiple costs to minimize, making the optimization problem a multi-objective prob-

lem difficult to solve. That said, we do not ignore these costs. We choose to address

them by setting the constraint on the server capacity (the Ks quantity aforementioned).

The server capacity is a general quantity that represents how much an edge server can

process or afford, including computation, energy, storage, etc.

The backhaul cost is then defined as that incurred when the data center has to process

the workloads assigned to a server that exceed its capacity. Given a partition z and the

cell workloads X1, X2, ..., XN , the workload demand put on server s (i.e., the amount of

workload this server is supposed to process) is

Ws =
N

Â
i=1

zisXi.
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Not all the requests assigned to server s may be fulfilled by s due to its limited capacity

Ks. As both workload demand and server capacity are uncertain, Ws may exceed the

capacity Ks. In such a case, the requests that lead to violation of this capacity will be

processed by the datacenter, incurring a backhaul cost of Ws�Ks. In any case, we can

write the backhaul cost incurred by workloads assigned to server s as

costs = max
✓

0,Ws�Ks

◆

| {z }
overload amount o f server s

.

The total backhaul cost is the sum of these amounts for all the servers:

cost=
M

Â
s=1

costs = Â
s

max
✓

0,Ws�Ks

◆

=
M

Â
s=1

max
✓

0,
N

Â
i=1

zisXi�Ks

◆
. (4.1)

Ideally, we want a partition z such that when applied to a (future) time-varying workload

the total backhaul cost is minimal.

4.3.2 Geographical Compactness

Our focus is on the cell partitioning, after which the servers will be deployed accord-

ingly. Because the network delay is more or less an increasing function of geographical

distance, a shorter distance from a server to a cell should result in shorter delay serving

this cell. Ideally, a server would be placed at the center of its cluster, and so minimizing

the average distance from this server to its assigned cells is equivalent to minimizing the

average pairwise distance between these cells.

Consequently, for shorter latency and easier management, we should keep the geo-

graphical region of each cluster from spreading too far. We quantify the geospread of a

cluster as the sum of pairwise squared distances of its assigned cells normalized by the
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cluster size,

spreads =
ÂN

i=1 ÂN
j=1 zisz jsd2

i j

ÂN
i=1 zis

. (4.2)

where di j is the geographical distance between cell i and cell j (i.e., kli� l jk where li, l j

are the geographical location of cell i and cell j, respectively).

We want to minimize the total geospread for all the servers,

spread=
M

Â
s=1

spreads

=
M

Â
s=1

ÂN
i=1 ÂN

j=1 zisz jsd2
i j

ÂN
i=1 zis

. (4.3)

It is noted that this is the same objective as that of k-means, a classic clustering method.

4.3.3 Stochastic Optimization Formulation

Because Xi’s and Ks’s are random variables, cost (Eq. (4.1)) is also a random variable.

To minimize this cost not knowing future workloads and server capacities, we aim to

minimize its expectation,

E[cost] = E
 M

Â
s=1

max
✓

0,
N

Â
i=1

zisXi�Ks

◆�
. (4.4)

We combine the two objectives, cost and spread, into a single objective and formulate

the problem as follows, which we refer to as StoGeoPar (Stochastic Geo-Partitioning):

min
zzz

⇢
W = l ⇥E[cost]+ (1�l )⇥ spread

�
(4.5)

s. t. 1)
M

Â
s=1

zis = 1, 81 i N (4.6)

2) zis 2 {0,1}, 81 i N,1 sM (4.7)

where coefficient l is to tune the priority tradeoff between the backhaul cost and the

geospread. Constraints (4.6) and (4.7) ensure that each cell must be assigned to only

one server.
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In the special case where l = 0, StoGeoPar is precisely the optimization of Eu-

clidean k-means clustering (which is NP-hard). In the other extreme case where l = 1,

the deterministic version of StoGeoPar can be cast as a Multiple Subset Sum Problem

(MSSP) (which is NP-hard [CKP00]). Indeed, we can treat each cell i as an item with

weight Xi and profit Xi and each cluster s as a bin of capacity ks. Then, we have an MSSP

in which we must put N items in M bins to not violate their capacity while maximiz-

ing total packed profit (which is equivalent to minimizing the total unpacked profit). In

the arbitrary case, StoGeoPar is a computationally hard stochastic optimization problem

unexplored in the literature.

4.4 Solution Approach

The probabilistic objective W in Eq. (4.5) is not computationally-friendly. Hence, our

approach is to approximate it with a non-probabilistic objective and accordingly solve a

non-probabilistic optimization problem. Specifically, we propose to approximate work-

load rates Xi’s and capacities Ks’s with Gaussian distributions.

Why Gaussian? For a random distribution whose pattern is unknown, Gaussian

is known to be the best fitting model as an approximation. Therefore, in search of a

heuristic solution to our proposed stochastic optimization problem, we approximate the

workload (X) and server capacity (K) as random variables of the Gaussian distribution.

In practice, when these entities vary according to some unknown pattern, the first step

is to use the Gaussian distribution to approximate them and the second step is to find

the solution according to our proposed algorithm (to be presented below). The Gaussian

approximation allows our solution framework to apply widely to many applications.
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4.4.1 The Idea

For a Gaussian variable X ⇠N (µ,s2), its pdf and cdf are

fX(x) =
1
s

f
✓

x�µ
s

◆
, FX(x) = F

✓
x�µ

s

◆

where f and F are the pdf and cdf of the standard N (0,1),

f(x) = 1p
2p

e�
1
2 x2

, F(x) =
1
2


1+ erf

✓
xp
2

◆�

and erf is the Gaussian error function

erf(x) =
2
p

Z x

0
e�t2

dt.

The following lemmas are useful for our derivations.

Lemma 4.4.1. Let X ⇠N (µ,s2). Then, we have the following nice closed-form

E[max(0,X)] = sf
✓
�µ
s

◆
+µ

✓
1�F(

�µ
s

)

◆
(4.8)

or we can also write

E[max(0,X)] = s2fX(0)+µ
✓

1�FX(0)
◆
. (4.9)
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Proof. We have

E[max(0,X)] =
Z •

0
xfX(x)dx

=
Z •

0
x

1
s
p

2p
e�

(x�µ)2

2s2 dx

=
Z •

�µ/s
(ys +µ) 1

s
p

2p
e�

y2
2 d(ys +µ)

=
Z •

�µ/s

ysp
2p

e�
y2
2 dy+

Z •

�µ/s

µp
2p

e�
y2
2 dy

= s
Z •

�µ/s

1
2
p

2p
e�

y2
2 d(y2)+µ

✓
1�F(�µ)

◆

= s
Z •

µ2/s2

1
2
p

2p
e�

t
2 dt +µ

✓
1�F(

�µ
s

)

◆

=
�sp

2p
e�

t
2

����
•

µ2/s2
+µ

✓
1�F(

�µ
s

)

◆

=
sp
2p

e�
µ2

2s2 +µ
✓

1�F(
�µ
s

)

◆

= sf
✓
�µ
s

◆
+µ

✓
1�F(

�µ
s

)

◆

= s2fX(0)+µ
✓

1�FX(0)
◆

Suppose that the random workload rate of each cell i can be approximated with a

Gaussian distribution with mean µi and variance s2
i and the capacity of each server s

can also be approximated with a Gaussian distribution with mean ks and variance g2
s .

Xi ⇠N

✓
µi,s2

i

◆
, Ks ⇠N

✓
ks,g2

s

◆
.
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Because a sum of Gaussian variables is also Gaussian,

Ys =
N

Â
i=1

zisXi

⇠N

✓ N

Â
i=1

zisµi,
N

Â
i=1

z2
iss2

i

◆

= N

✓ N

Â
i=1

zisµi,
N

Â
i=1

ziss2
i

◆

(the last equality is because zis is binary). Then,

Zs = Ys�Ks

⇠N

✓ N

Â
i=1

zisµi�ks,
N

Â
i=1

ziss2
i + g2

s

◆
.

Applying Eq. (4.8), we have

E[max(0,Zs)] = f
✓ N

Â
i=1

zisµi�ks,

s
N

Â
i=1

ziss2
i + g2

s

◆

where function f denotes

f (µ,s) = sf
✓
�µ
s

◆
+µ

✓
1�F(

�µ
s

)

◆
. (4.10)

The backhaul cost expectation E[cost] in the objective W of Eq. (4.5) becomes

E[cost] = E
 M

Â
s=1

max
✓

0,
N

Â
i=1

zisXi�Ks

◆�
(4.11)

=
M

Â
s=1

E[max(0,Zs)] (4.12)

=
M

Â
s=1

f
✓ N

Â
i=1

zisµi�ks,

s
N

Â
i=1

ziss2
i + g2

s

◆
. (4.13)
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Consequently, to minimize the objective cost W in StoGeoPar, which is probabilistic,

our approach is to minimize the following non-probabilistic cost:

min
zzz

⇢
WG = l

M

Â
s=1

f
✓ N

Â
i=1

zisµi�ks,

s
N

Â
i=1

ziss2
i + g2

s

◆

+(1�l )
M

Â
s=1

ÂN
i=1 ÂN

j=1 zisz jsd2
i j

ÂN
i=1 zis

�
. (4.14)

4.4.2 The Algorithm

To solve the optimization problem (4.14), we propose an approximative algorithm based

on block relaxation. Block relaxation is a fixed point method to optimize a multivari-

ate function by making iterative local updates until a convergence. We start with an

initial partitioning assignment and conduct iterative rounds of moving vertices between

the clusters as long as the objective continues to improve. A nice property of block re-

laxation is that it always guarantees improvement as the number of iterations increases.

With sufficiently many iterations, it may converge quickly to yield a close to optimal

solution.

Let zzz(t) = (zzz(t)1 ,zzz(t)2 , ...,zzz(t)N ) where zzz(t)i = (z(t)i1 ,z
(t)
i2 , ...,z

(t)
iM) be the partition in each

iterative update round t; zzz(0) denotes the initial partition. In each successive round t, we

make the following updates in sequence:

• For i = 1 to N, update:

zzz(t)i = argmin
zzzi

WG

✓
zzz(t)1 , ...,zzz(t)i�1,zzzi,zzz

(t�1)
i+1 , ...,zzz(t�1)

N

◆

Consider the ith update, in which we are finding a new cluster for cell i currently in

cluster m. A feasible candidate for zzzi is

zzzi 2
⇢
(0, ...,0| {z }

s

,1,0, ...0| {z }
M�s

) | 0 sM
�
,
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meaning the moving of cell i to cluster s. If s = m, there will be no move. There

are at most M candidates. We compute the cost WG for each candidate and select the

minimum. However, the computation of WG can be expensive. Below we show how it

can be done more efficiently.

In each update, we keep track of us and vs the corresponding mean and variance of

the workload sum in each cluster s,

us =
N

Â
j=1

zisµ j�ks

vs =
N

Â
j=1

ziss2
j + g2

s .

If the update moves cell i to a different cluster s 6= m, we update these quantities as

follows:

unew
m = um�µi, vnew

m = vm�s2
i (4.15)

unew
s = us +µi, vnew

s = vs +s2
i (4.16)

The corresponding objective gain in terms of backhaul cost is

gaincost = f
✓

um,
p

vm

◆
+ f

✓
us,
p

vs

◆

� f
✓

unew
m ,

p
vnew

m

◆
� f

✓
unew

s ,
p

vnew
s

◆
.

In each update, we also keep track of the number of cells and the geospread of each

cluster s:

sizes =
N

Â
i=1

zis

spreads =
ÂN

i=1 ÂN
j=1 zisz jsd2

i j

ÂN
i=1 zis

.
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After the update, these quantities are updated as follows:

sizenew
s = sizes +1,sizenew

m = sizem�1

spreadnew
m =

spreadm · sizem�ÂN
j=1 z jmd2

i j

sizem�1

spreadnew
s =

spreads · sizes +ÂN
j=1 z jsd2

i j

sizes +1
.

The objective gain in terms of geospread is

gaingeo = spreadm + spreads� spreadnew
m � spreadnew

s .

The overall objective gain is

gain= l ⇥gaincost +(1�l )⇥gaingeo. (4.17)

We will move cell i from its current cluster m to a new cluster s if that results in the

maximal gain. Our block relaxation based algorithm is summarized in Algorithm 6,

which we name the Gaussian Block Relaxation Algorithm. The number of iterations,

L, in the outermost for-loop should be sufficiently large, for example, such that the

objective gain at the end becomes negligible.

Our proposed algorithm is an application of the Block Relaxation Method, a well-

known iterative method to find the optimum of an optimization problem. The conver-

gence of our algorithm, therefore, is inherited from that of the Block Relaxation Method

(the proof is provided in the paper [Lee94] by Leeuw). This proof is valid if we can find

an optimum in each iterative step which applies in our case (line 5 of Algorithm 6).

4.5 Evaluation Study

We conducted an evaluation using the cellular traffic dataset made available by Chen et

al. [CJQ15]. This dataset provides hourly HTTP traffic statistics at the base-station gran-

ularity during the period from August 19, 2012 to Aug 26, 2012. There are N = 13,296
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Algorithm 6: Gaussian Block Relaxation Algorithm
Input: Geographical distances between cells, {di j}N⇥N ; means and standard

deviations, {(µi,si)}N
i=1, of the workload rates; means and standard

deviations, {(ks,gs)}M
s=1, of the capacities

Output: Partition assignment {zis}N⇥M ⇢ {0,1}NM

1 Start with a random partition zzz;

2 for (L iterations) do

/* L: the larger value, the more improvement */

3 for i 1 to N do

4 m : current cluster of cell i ;

5 Find s⇤ 2 {1,2, ...,M} such that the quantity gain in Eq. (4.17) is

positive and maximum;

6 if (s⇤ 6= m) then

7 Remove cell i from cluster m;

8 Add cell i to cluster s⇤;

9 For each cell i that is in cluster s, set zis to 1;

base-stations serving a large population in a medium-size city of China. Specifically,

we used the data about the number of transferred packets.

4.5.1 Setup

We compare the proposed block relaxation (BR) algorithm (Algorithm 6), hereafter re-

ferred to as BR/Gaussian, to the following benchmark: (1) Rand: a random partition,

assigning a cell to a random server; (2) kMeans: a partition obtained from k-means,

which is the best case scenario for geo-compactness; and (3) BR/Mean: a partition ob-
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(a) Mean (b) Coefficient of Variation

Figure 14: Statistics about the distribution of each cell’s workload rate over the time.

Plots are in log-linear scale, where the x-axis represents the cells which are sorted in the

increasing order of workload rate mean. Left figure: the workload rate mean among the

cells clearly varies widely. Right figure: the coefficient of variation varies from 0.8 (for

“busiest” cells) to 10 (for “lightest” cells).

tained from a block relaxation algorithm similar to BR/Gaussian but using the mean

information only but not variance information. By comparing to BR/Mean, our hypoth-

esis is that the variance information is useful for finding a better partition.

In the dataset, there is a normalized longitude/latitude position for each cell, which

we convert to a planar x/y position. The location of a cell is then defined as this x/y

position and the Euclidean distance is used to measure the distance between cells. The

time-varying workload Xi of each cell i is the number of transferred packets involving

cell i. We collected this count at every hour during the entire 8-day period. From

these samples (8 days ⇥ 24 hours/day = 192 of them for each cell), we computed the

sample mean and variance for each cell; they serve as the mean µi and variance s2
i for

Xi. Figure 14 shows the mean µi and the coefficient of variation (cv) si/µi for each

cell’s workload. It is observed that the distribution of µi spanning different cells varies
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widely (Figure 14(a)). Also, as shown in Figure 14(b), the cv varies widely from 0.8

(for heaviest-workload cells) to 10 (for lightest-workload cells). It is implied that there

is a wide variation not only for the workload demand of a single cell over the time but

also across different cells.

We set the number of clusters (edge servers) to M = 100 which is reasonable given

N = 13,296 cells. The measure for comparison is the empirical cost of the objective

in Eq. (4.5) when applied to the actual 192 workload samples. For each server s’s

capacity at a specific hour, we generated a random value according to Ks ⇠N (ks,g2
s ),

where ks = k · ÂN
i=1 µi
M and gs = g ⇥ ks . Various configurations are considered, where

k 2 {0.7,1.3} (the higher, the more capacity) and g 2 {0.1,0.3, ...,0.9} (the higher, the

more time-varying for the capacity). For example, when k = 0.7 and g = 0.1, what

it means in the context of MEC is that we deploy 100 servers with similar capacities,

whose total can nominally handle 70% of the expected total workload and each server’s

capacity can expectedly vary within 10% of its mean.

It is noted that the objective function of our optimization problem combines two

objectives that have different units (cost unit versus distance unit). As such, setting

coefficient lambda to 0.5 does not mean giving equal priority to each objective. To

balance these units, we applied a normalization method as follow. First, we generate a

random assignment of cells to the servers. Let

A =
M

Â
s=1

f
✓ N

Â
i=1

zisµi�ks,

s
N

Â
i=1

ziss2
i + g2

s

◆
,

which is the backhaul cost part in Eq. (4.14), and

B =
M

Â
s=1

ÂN
i=1 ÂN

j=1 zisz jsd2
i j

ÂN
i=1 zis

the geospread part in Eq. (4.14). Here, {zis}0s represent the random assignment. If

coefficient l is fair (i.e., same unit scale for both objectives), then A and B should have
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similar values. In practice, they are not. So, instead of trying to minimize the original

objective function of Eq. (4.14), we minimize

WG = lB
M

Â
s=1

f
✓ N

Â
i=1

zisµi�ks,

s
N

Â
i=1

ziss2
i + g2

s

◆

+(1�l )A
M

Â
s=1

ÂN
i=1 ÂN

j=1 zisz jsd2
i j

ÂN
i=1 zis

.

Although this is not a perfect normalization method (which does not exist though), it is

a simple method applicable to all applications.

4.5.2 Results

Figure 15 provides a perspective in which the four algorithms are compared in backhaul

cost and geospread separately. Here we show the results for four cases: whether the

server capacity is low (k = 0.7) or high (k = 1.3) and whether it is stable (g = 0.1) or

not (g = 0.9).

Expectedly, kMeans offers the most geo-compact partition but incurs the worst back-

haul cost. Rand has the worst geospread but much lower backhaul cost. This is because

our simulation sets similar capacities for the servers and so Rand keeps the server load

similarly balanced, hence a low backhaul cost.

While these two partitions represent extreme cases whose objective cost is not tun-

able, the proposed algorithm BR/Gauss offers a nice range of tunable partitions. When

more priority is given to minimization of backhaul cost, i.e., increasing l towards 1,

BR/Gauss can produce a partition highly efficient in backhaul cost, which can be much

better than that of Rand (it is noted that the plots in Figure 15 are log-log). When more

priority is given to minimization of geospread, BR/Gauss can produce a partition highly

geo-compact, which can approach that of kMeans. By tuning l in-between, we can

obtain a partition that represents a tradeoff between backhaul cost and geospread.

81



Another observation is that BR/Gauss provides better Pareto-efficient partitions than

BR/Mean which ignores the variance information; a solution A is more Pareto-efficient

than a solution B if A is no worse than B in any objective and strictly better in at least one

objective. Also, BR/Mean is always worse than Rand in terms of backhaul cost, whereas

by tuning l large enough, BR/Gauss will incur less backhaul cost. It is therefore clear

that the variance information helps BR/Gauss produce more desirable partitions.

Figure 16 compares the four algorithms in terms of the empirical objective cost

incorporating both backhaul cost and geospread by the tradeoff coefficient l . For any

l , BR/Gauss is obviously the best solution, followed by BR/Mean. Rand (for small

l ) or kMeans (for large l ) is always the worst, by a large margin. For example, when

l = 0.2 (Figures 16(a), 16(e)), BR/Gauss results in a cost roughly 8 times less than

kMeans; when l = 0.8, the improvement is almost 2 times for the low-capacity case

(Figure 16(d)) and much more substantial for the high-capacity case (Figure 16(h)).

Comparing BR/Gauss over BR/Mean, the improvement is more noticeable when l

increases, putting more priority on backhaul cost. This is understandable because the

influence of the variance information is in the backhaul cost, and so when we empha-

size more on minimizing this cost, the role of the variance information becomes more

important.

It is noted that kMeans always offers the best geospread. Figure 17 provides a 2D vi-

sualizations of the partition map resulted by BR/Gauss in comparison to that of kMeans.

When l = 0 (Figure 17(b)), i.e., all the priority is put for optimization of the geospread,

BR/Gauss results in a partition that is geographically comparable to kMeans. As we

increase l to put more priority on minimizing the backhaul cost, the clusters start to get

scattered, sacrificing geo-compactness for better overall objective cost, as we can see in

Figure 17(d) for l = 0.8. A nice feature of our proposed algorithm is its capability to

tune the tradeoff coefficient l to obtain any degree of geo-compactness.
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4.6 Conclusions

Server assignment is an important problem in MEC. Its computational hardness is in-

herited from being a non-trivial instance of the combinatorial partitioning problem. We

have introduced a novel stochastic setting for this problem in which we consider time-

varying workloads and time-varying server capacities and seek a solution aimed to opti-

mize backhaul cost, geographical compactness, and robustness to such uncertainty. Our

solution approach is to model uncertainty information as Gaussian random variables and

accordingly derive an objective function that is computationally friendly for optimiza-

tion. Subsequently, we have proposed an approximate algorithm with the capability to

produce a wide range of partitions representing different tradeoffs between backhaul

cost and geographical compactness. Our research will result in less frequently having to

reassign the cells to the edge servers due to workload dynamics.
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(a) k = 0.7,g = 0.1 (b) k = 0.7,g = 0.9

(c) k = 1.3,g = 0.1 (d) k = 1.3,g = 0.9

Figure 15: Pareto-efficiency comparison: The blue-colored point represents kMeans and

the red point Rand. The yellow points, connected by line segments, represent BR/Gauss

for different l 2 {0,0.2, . . . ,1}. The purple points, connected by line segments, repre-

sent BR/Mean for different l 2 {0,0.2, . . . ,1}.
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(a) k = 0.7,l = 0.2 (b) k = 0.7,l = 0.4

(c) k = 0.7,l = 0.6 (d) k = 0.7,l = 0.8

(e) k = 1.3,l = 0.2 (f) k = 1.3,l = 0.4
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(g) k = 1.3,l = 0.6 (h) k = 1.3,l = 0.8

Figure 16: Effect of the server capacity variation (by increasing g) for different tradeoff

cases between backhaul cost versus geospread. Top plots: when the capacity mean is

fixed at k = 0.7 (total capacity can nominally handle 30% less than the expected total

workload). Bottom plots: when the capacity mean is fixed at k = 1.3 (total capacity can

nominally handle 30% more than the expected total workload).
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(a) KMeans (b) BR/Gauss: l = 0

(c) BR/Gauss: l = 0.4 (d) BR/Gauss: l = 0.8

Figure 17: 2D visualization of the partition maps (each point represents a cell): by tun-

ing parameter l to set higher priority on geospread minization or backhaul cost mini-

mization, we can obtain a partition (l = 0) geographically comparable to kMeans or one

that sacrifices geo-compactness for much better overall objective cost (e.g., l = 0.8). In

these plots, cells of the same cluster have the same color; however, since 100 clusters is

too many for coloring, some colors are reused for different clusters.
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CHAPTER 5

FUTURE WORKS

The dissertation is mainly focused on solving some optimization problems in decentral-

ized learning, particularly in the context of Federated Learning and Edge Computing.

Below I will summarize my work and explain how I will extend my research in the

future.

5.1 Dissertation Summary

Federated Learning (FL) is a recent Machine Learning method for training with private

data separately stored in local machines without gathering them into one place for cen-

tral learning. It was born to address the following challenges when applying Machine

Learning in practice: (1) Communication cost: Most real-world data that can be use-

ful for training are locally collected; to bring them all to one place for central learning

can be expensive, especially in real-time learning applications when time is of essence,

for example, predicting the next word when texting on a smartphone; and (2) Privacy

protection: Many applications must protect data privacy, such as those in the healthcare

field; the private data can only be seen by its local owner and as such the learning may

only use a content-hiding representation of this data, which is much less informative.

To fulfill FL’s promise, I have addressed three important problems regarding the

need for good training data, system scalability, and uncertainty robustness:
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1. The effectiveness of FL depends critically on the quality of the local training data.

We should not only incentivize participants who have good training data, but also

minimize the effect of bad training data on the overall learning procedure. The

first problem of my research is to determine a score to value a participant’s con-

tribution. My approach is to compute such a score based on Shapley Value (SV),

a concept of cooperative game theory for profit allocation in a coalition game. In

this direction, the main challenge is due to the exponential time complexity of the

SV computation, which is further complicated by the iterative manner of the FL

learning algorithm. I propose a fast and effective valuation method that overcomes

this challenge.

2. On scalability, FL depends on a central server for repeated aggregation of local

training models, which is prone to become a performance bottleneck. A reason-

able approach is to combine FL with Edge Computing: introduce a layer of edge

servers to each serve as a regional aggregator to offload the main server. The

scalability is thus improved, however at the cost of learning accuracy. The sec-

ond problem of my research is to optimize this tradeoff. This dissertation shows

that this cost can be alleviated with a proper choice of edge server assignment:

which edge servers should aggregate the training models from which local ma-

chines. Specifically, I propose an assignment solution which is especially useful

for the case of non-IID training data which is well-known to hinder today’s FL

performance.

3. FL participants may decide on their own what devices they run on, their com-

puting capabilities, and how often they communicate the training model with the

aggregation server. The workloads incurred by them are therefore time-varying,

unpredictably. The server capacities are finite and can vary too. The third problem

89



of my research is to compute an edge server assignment that is robust to such dy-

namics and uncertainties. I propose a stochastic approach to solving this problem.

5.2 Future Work

On the Federated Shapley Value work, there is room to optimize the computation further.

Since FL is an iterative procedure trying to adjust the models of the previous rounds

toward global model convergence, in the future work, I will explore ways to utilize the

results in previous rounds to compute the SV faster in the future rounds. Also, the multi-

issue decomposition in each round can be made more effective if we introduce weight

coefficients the clusters of this decomposition to minimize the SV approximation error.

The work on Edge Federated Learning (eFL) can naturally be extended to cases

where the edge servers and participants are limited by computing and communication

constraints. I will investigate these extensions in the future. On the Edge Server Assign-

ment work, I will go beyond the Gaussian distribution as the approximation model to

incorporate uncertainty in the optimization. I will explore optimization methods other

than block relaxation in order to further improve the partitioning result.

Computing SV for eFL is also an interesting problem. To the best of my knowledge,

this problem has not been studied in the literature yet. Due to edge assignment, data

valuation in eFL is more challenging than that in FL: different assignments would result

in different SVs for the same data provider. I will investigate how my Federated SV

algorithm can be revised to work for this setting.
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