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Abstract 

For discrete-time linear time-invariant systems with 
constraints on inputs and states, we develop an algo- 
rithm to determine explicitly, as a function of the ini- 
tial state, the solution to optimal control problems that 
can be formulated using a linear program. In particu- 
lar, we focus our attention on a receding horizon control 
scheme where the performance criterion is based on a 
mixed l/m-norm (i.e., 1-norm with respect to time and 
oo-norm with respect to space). We show that the opti- 
mal control profile is a piecewise linear and continuous 
function of the initial state. Thus, when the optimal 
control problem is solved at each time step according 
to a moving horizon scheme, the on-line computation 
of the resultant MPC controller is reduced to a simple 
linear function evaluation, instead of the typical expen- 
sive linear program required up to now. The technique 
proposed has both theoretical and practical advantages. 
From a theoretical point of view, the explicit solution 
gives insight on the action of the controller in different 
regions of the state space, and highlights conditions of 
degeneracy. From a practical point of view, the pro- 
posed technique is attractive for a wide range of a p  
plications where the simplicity of the on-line computa- 
tional complexity is a crucial requirement. 

. 

Keywords: Model predictive control, constraints, 
piecewise linear control, multi-parametric program- 
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1 Introduction 

As we extend the class of system descriptions beyond 
the class of linear systems, linear systems with con- 
stmints are probably the most important class in prac- 
tice and the most studied. It is well accepted that for 
these systems, in general, stability and good perfor- 
mance can only be achieved by a nonlinear control law. 
The most popular approaches for designing non-linear 
controllers for linear systems with constraints fall into 
two categories: anti-windup and model predictive con- 
trol. 
Anti-windup schemes assume that a well functioning 
linear controller is available for small excursions from 
the nominal operating point. This controller is aug- 

0-7803-663&7/00$10.00 0 2000 IEEE 632 

mented by an anti-windup scheme to take care of situ- 
ations when constraints are violated. Kothare et al. [28] 
reviewed numerous different anti-windup schemes and 
showed that they differ only in their choice of two static 
matrix parameters. The least conservative stability test 
for these schemes can be formulated in terms of a Linear 
Matrix Inequality (LMI) [29]. The systematic and au- 
tomatic synthesis of anti-windup schemes which guar- 
antee closed loop stability and achieve some kind of op- 
timal performance, has remained largely elusive though 
some promising steps were achieved recently [31]. De- 
spite these drawbacks anti-windup schemes are widely 
used in practice because in most SISO situations they 
are simple to design and work adequately. 
Model Predictive Control (MPC) has become the ac- 
cepted standard for complex constrained multivariable 
control problems in the process industries. Here at each 
sampling time, starting at the current state, an open- 
loop optimal control problem is solved over a finite hori- 
zon. At the next time-step the computation is repeated 
starting from the new state and over a shifted horizon, 
leading to a moving horizon policy. The solution re- 
lies on a linear dynamic model, respects all input and 
output constraints, and optimizes a linear or quadratic 
performance index. Thus, as much as the performance 
index together with various constraints can be used to 
express true performance objectives, the performance 
of MPC is excellent. Over the last decade a solid the- 
oretical foundation for MPC has emerged so that in 
real-life large scale MIMO applications controllers with 
non-conservative stability guarantees can be designed 
routinely and with ease. The big drawback of MPC 
is the relatively formidable on-line computational ef- 
fort which limits its applicability to slow and/or small 
problems. 
In this paper we show how to move off-line all the com- 
putations necessary for the implementation of MPC, 
while preserving all its other characteristics. This 
should largely increase MPC's range of applicability to 
problems where anti-windup schemes and other ad hoc 
techniques dominated up to now. 
From a different point of view we show in effect how 
to solve the equivalent of the Hamilton- Jacobi-Bellman 
equation for discrete-time linear constrained systems. 
Rather than gridding the state space in some ad hoc 
fashion we discover the inherent underlying controller 
structure and provide its most efficient parameteriza- 
tion. 
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The described approach is close in spirit to the tech- 
niques proposed earlier for the explicit solution to MPC 
problems based on a quadratic performance index [6], 
and for hybrid systems [4]. Besides the computational 
advantages mentioned above, these techniques provide 
insight into the basic structure of the MPC controller. 
The results in this paper elucidate MPC schemes based 
on linear programming (LP), which have been investi- 
gated by several authors [36, 22, 331. 
The paper is organized as follows. The basics of MPC 
based on the minimization of a mixed l/m-norm are re- 
viewed first to derive the linear program which needs to 
be solved to determine the optimal control action. The 
conditions for stability of such an MPC scheme are in- 
vestigated. We note that the linear program depends 
on the current state which appears linearly in the con- 
straints, and treat the LP as a multi-parametric linear 
program (mp-LP) [21,20]. Recasting the MPC problem 
as an m p L P  allows one to solve it explicitly [13], and 
to analyze its properties, in particular to show that it is 
a piecewise affine function of the state vector. The pa- 
per concludes with an example of a double integrator, 
which illustrates the different features of the method, 
and highlights the structural properties of the l/w- 
norm receding horizon controller. 

2 Model Predictive Control 

Consider the problem of regulating to the origin the 
discretetime linear time-invariant system 

while fulfilling the constraints 

at all time instants t 2 0. In (1)-(2), z(t)  E Rn, 
u(t) E Rm, and y ( t )  E R* are the state, input, and 

are p(m)-dimensional vectors2, and the pair ( A ,  B )  is 
stabilizable. 
Model Predictive Control (MPC) solves such a con- 
strained regulation problem in the following way. As- 
sume that a full measurement of the state z( t )  is avail- 
able at the current time t .  Then, the optimization prob- 
lem 

output vector respectively, Ymin 5 gmax (Umin I umax) 

‘Constraints (2) can be equivalently rewritten in the more 
general form Dy(t)  + Eu(t) 5 f. 

2More general, we can allow only some components of the in- 
puts or outputs to be constrained (e.g. ukin = -00). In (2), 
constraints relating to unconstrained input and output compo- 
nents are simply removed. 

subj. to Ymin 5 Yt+/clt I Ymax, k = 1,. . 
k i n  5 Ut+k I Umax, k = 091,. . ., Nc 

%+k+llt = Azt+/clt -k B‘%+kr k 2 0 
Ut+k = 0, Nu 5 k 5 N y  - 1 

Nc 

X t l t  = d t )  

(3) 
is solved at each time t ,  where st+klt denotes the pre- 
dicted state vector at time t + k, obtained by applying 
the input sequence ut,.  . . , ut+k-l to model (1) starting 
from the state z(t) ,  and llVzlloo 4 m u ~ ~ = l , . . . , ~  (Vjz), 
and Vi  = i-th row of V E Itmxn. 
In (3), we assume that Q, R E RnXn are non-singular 
matrices, P E RmXn is full column rank matrix, and 

Let U*( t )  = {U; ,  . . . , u ; + ~ , - ~ }  be the optimal solution 
of (3). Then at time t 

Ny 2 Nc 2 Nu. 

u(t) = U; (4) 

is applied as input to system (1). The optimization (3) 
is repeated at time t+ l ,  based on the new state z(t+l), 
yielding a moving or receding horizon control strategy. 
The two main issues regarding this policy are the fea- 
sibility of the optimization problem (3) and stability of 
the resulting closed-loop system. When Nc < 00 there 
is no guarantee that the optimization problem (3) will 
remain feasible at all future time steps t ,  as “blind al- 
leys” might be entered by the system. On the other 
hand, setting N, = 00 leads to an optimization prob- 
lem with an infinite number of constraints, which is 
impossible to handle. In the next section the stability 
issue is addressed. 

2.1 Stability Through the Terminal Weight 
In general, stability is a complex function of the various 
tuning parameters Nu, IVY, Nc,  P ,  Q, and R. For appli- 
cations it is most useful to impose some conditions on 
Ny,  N, and P so that stability is guaranteed for all non- 
singular Q and R and leave Q and R as free parameters 
to tune the performance. Sometimes the optimization 
problem (3) is augmented with a so called “stability 
constraint” (see [5] for a survey of different constraints 
proposed in the literature). This additional constraint 
imposed over the prediction horizon explicitly forces the 
state vector either to shrink in some norm or to reach 
an invariant set at the end of the prediction horizon. 
Problem (3) is slightly different from the standard MPC 
formulation, as m-norms are used instead of 2-norms. 
Therefore, the standard stability results cannot be di- 
rectly applied. One possibility is to choose P = 0 and 
add the end-point constraint st+Nvlt = 0 to (3). Pro- 
vided that the problem is feasible at time t = 0, the end- 
point constraint implies persistence of solutions (i.e., 
feasibility at each time step) and stability, as shown 
in [25], although the constraint has a negative effect on 
performance, especially for small Ny . Another possibil- 
ity is to relax the end-point constraint by adopting a 
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dual-mode approach [30], namely, by defining an invari- 
ant set around the origin, and constrain the terminal 
state 2t+NuIt to lie in that set. 
In this paper, rather than constraining the final state, 
we weight xt+NuIt as in (3). Assuming that the con- 
straint horizon N,  is long enough so that the shifted 
optimal input sequence {ut+l,. . . , u:+~,-~,  0) is feasi- 
ble at the next time step t + 1 [34, 361, the following 
theorem shows that, by appropriately choosing the ter- 
minal weight P, the control law (3) stabilizes system (1) 
asymptotically 

Theorem 1 Let A be a stable matrix, and let the origin 
be an equilibrium for system (1). If there exists a full 
column rank mat* P such that 

-IIP~llac + IIPAzlla, + llQ~11oo i: 0 (5) 

is satisfied for all x E Rn,then the MPC law (3)-(4) 
stabilizes system (l), in that 

lim z( t )  = 0 

lim u(t) = 0 

while jblfilling the input and output constraints umin I 

Proof: The proof follows from standard Lyapunov 
arguments. Let V(t )  be the minimum of the o p  
timization problem (3) obtained for the minimizer 
U*( t )  = {U:,U:+~, . . . , u ; + ~ , - ~ } ,  and consider the se- 

quence Ushift & {u;+1, --., '$+N,-I, 0). As Ushift is 
feasible at time t + 1 by assumption, 

t-Kw 

t+oo 

~ ( t )  I umaxt Ymin I ~ ( t )  I Ymax. 

V ( t  + 1) - V( t )  I -llQ~(t)Ilco - IIRu(t)ll, 
- IIPxZ+iv,ltIIoo +- ~ ~ p z ~ + N u + l ~ t ~ ~ c a  IIQxCt+iv,ltlloo 

(6) 

As the condition (5) is'satisfied for x = xz+N,It, V(t )  
is a decreasing sequence. Since V( t )  is lower-bounded 
by 0, there exists V, = limt+,V(t), which implies 
V(t  + 1) - V( t )  -+ 0. Therefore, each term of the sum 

IIQz(t)IIm + IIWt)lloo ( 7) 

converges to zero as well, which proves the theorem as 
0 

The question now arises if matrices P and Q satisfy- 
ing (5) exist, and how to find them. Let us focus on 
a simpler problem by removing the decreasing factor 
IlQxll, from condition (5) 

Q and R are nonsingular. 

-11~~11oo  + llp'A.11oo 5 0  (8) 

The existence and the construction of a matrix P that 
satisfies condition (8), has been addressed in different 
forms by several authors [7, 8, 32, 26, 27, 24, 23, 9, 10, 
11, 121. There are two equivalent ways of tackling this 
problem: Finding a Lyapunov function for system (1) 

Wz) = I I W m  (9) 
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with P E W m x n  and m-norm instead of the usual 2- 
norm [32], or equivalently computing a symmetrical 
positively invariant polyhedral set [12] for system (1). 
Differently from the 2-norm case, the condition that 
the matrix A has all the eigenvalues in the open disk 
IlXi(A)II < 1 is not sufficient for the existence of a Lya- 
punov function (9) with m = n [7]. The following 
theorem, proved in [26, 321, states necessary and suf- 
ficient condition for the existence of a the Lyapunov 
function (9): 

Theorem 2 Function (9) is a Lyapunov function of 
system (1) if and only if there exist a matrix H E CmXm 
such that 

PA-HP = o (10) 
IlHllm < 1 (11) 

In [26] the authors proposed an efficient way to compute 
a Lyapunov function (9) by constructing matrices P 
and H satisfying conditions (lo)-( 11). The resulting 
matrix P is square provided the following assumption 
is satisfied: 

Assumption 1 The matrix A in (1) has distinct 
eigenvalues X i  = p, + jo, situated in the open square 

In [32] the author shows how to construct matrices P 
and H in (10)-(11) with the only assumption that A 
is stable. However this approach has the drawback, 
that the number m of rows the matrix P depends on 
the position of the eigenvalues of the matrix A, more 
precisely m may go to infinity as IX i  I --+ 1. 
By using results in [26,32], the construction of a matrix 
P satisfying condition (5) can be performed by comput- 
ing matrices P and H satisfying conditions (10)-(11) as 
in [26] or [32], and then computing P by exploiting the 
result of the following theorem. 

Theorem 3 Let E = 1 - llHll,, p = IlQP-'Il,, the 
square matrix: 

P -  P=-P  

IPil+ Io21 < 1 

(12) 
€ 

satisfies condition (5). 
Proof: Note that matrix P satisfies 

P A  = HP 

By substituting (13) into (5) we obtain 

which proves the theorem. 0 
Remark 1 In case matrix A does not satisfy Assump- 
tion 1, system (1) can be pre-stabilized by a linear con- 
troller such that Assumption 1 is satisfied, without tak- 
ing care of the constraints. Then, the output vector 
can be augmented by including the original (now state- 
dependent) inputs, and saturation constraints can be 
mapped into additional output constraints in (3). 
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In [33] the authors use a different approach to con- 
struct P provided the matrix A is stable and not de- 
fective. It can be proven that the resultant P has 

= 2”-no-1 + n2no-1 number of rows where no is the 
algebraic multiplicity of the zero eigenvalues of matrix 
A. 
Remark 2 If P is given in advance rather than com- 
puted as in Theorem 3, condition (5) can be tested 
numerically, either by enumeration (32n LPs) or, more 
conveniently, through a mixed-integer linear program 
( (5n + 1) continuous variables + 4 n  integer variables). 

3 Piecewise Linear Solution of Constrained 
MPC with l /m-Norm 

The MPC formulation (3) can be rewritten as a 
linear program by using the following standard ap- 
proach. The sum of components of any vector 
{E? , .  . . , EY,  . . . , E ~ L N , }  that satisfies 

- ln&$ I Q x t + k / t  k = 1 ,2 , .  . . , Ny 
- l n ~ $  5 - Q x t + k l t  k = 1 ,2 , .  . . , NU 
-1m&E+1 _< &+k k: = 0 ,1 , .  . . , NU - 1 
- l , ~ E + l  I - R u t + k  IC = 0 ,1 , .  . . , NU - 1 

(15) 

represents an upper bound on J*(U,Z(t)) ,  where lk is 
a column vector of length k of ones, 

k-1 

Zt+kl t  = A k Z ( t )  + AjBUk-1-j (16) 
j = O  

and the inequalities (15) should be intended as compo- 
nentwise. 
Similarly to what was shown in [14], it is easy to prove 
that the vector z 4 {E.?, . . . , 
U t , . .  . , u t + ~ , - 1 }  that satisfies equations (15) and si- 
multaneously minimizes J ( z )  = &? + . . . + &%% + EY + 
. . . +E&” also solves the original problem, i.e. the same 
optimum J*(V;-~, ~ ( t ) )  is achieved. Therefore, prob- 
lem (3) can be reformulated as the following LP prob- 
lem 

e?,. . , , 

min J ( z )  
2 

Problem (18) depends on the current state s(t), imple- 
mentation of MPC requires the on-line solution of an 
LP at each time step. Although efficient LP solvers 
based on simplex methods or interior point methods 
are available, computing the input u(t) demands signif- 
icant on-line computation effort. Rather than solving 
the LP on line, we follow the ideas of [6, 31, and pro- 
pose an approach where all computation is moved off 
line. The idea is based on the observation that in (3) 
the state z(t)  E Rn can be considered as a vector of 
parameters. In other words, the state feedback control 
law is defined implicitly as the solution of the optimiza- 
tion problem (3) as a function of the parameter z(t). 
Our goal is to make this dependence explicit. In fact, by 
treating z(t) as a vector of parameters, the LP becomes 
a multiparametric LP (mpLP). 
As we will describe in the next section, we use the al- 
gorithm developed in [15] for solving the mpLP formu- 
lated above. Once the multi-parametric problem (17) 
has been solved off line, i.e. the solution z; = f ( z ( t ) )  
of (18) has been found, the model predictive con- 
troller (3) is available explicitly, as the optimal input 
u(t) consists simply of m components of z; 

u(t) = [O . . . o  I 0 . . . O]f(Z(t)) .  (19) 

3.1 Multi-Parametric Linear Programs 
Problem (18) is known in the literature as multipara- 
metric linear program. The operations research com- 
munity has addressed parameter variations in math- 
ematical programs at two levels: sensitivity analysis, 
which characterizes the change of the solution with re- 
spect to small perturbations of the parameters, and 
parametric programming, where the characterization of 
the solution for a full range of parameter values is 
sought. More precisely, programs which depend only 
on one scalar parameter are referred to as parametric 
programs, while problems depending on a vector of pa- 
rameters are referred to as multi-parametric programs. 
The first method for solving multi-parametric linear 
programs was formulated by Gal and Nedoma [21], 
and later only a few authors have dealt with 
multi-parametric linear [20, 19, 351, nonlinear [18], 
quadratic [17, 61, and mixed-integer [15, 16, 11 program 
solvers. 
Parametric programming systematically subdivides the 
space of parameters into characteristic regions, which 
depict the feasibility and corresponding performance as 
a function of the parameters. In (131 we proposed a new 
algorithm which, rather than visiting different bases of 
the associated LP tableau [21], is based on the direct 
exploration of the parameter space [17, 6) .  Therefore, 
the approach is different from the usual methods based 
on the simplex tableau. Our definition of optimality 
intervals, also called “critical regions”, is directly re- 
lated to the one in [2, 191. The resulting algorithm for 
solving multi-parametric linear programs has computa- 
tional advantages, namely the simplicity of its imple- 
mentation in a recursive form, and the possibility to 
look for parametric solutions within a given polyhedral 
region of the parameter-space without solving the prob- 
lem globally. 
In the following we recall some known properties of the 
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optimal value function J * ( x ( t ) )  and of the optimizer 
z * ( z ( t ) ) ,  see [13]. 

Theorem 4 Consider the multi-parametric linear pro- 
gram (18) and suppose that for  each x( t )  the solution of 
the linear program (la),  i f  it exist, is  unique. Then the 
set of feasible states Xf C X is convex, the optimizer 
z ( x )  : Xf H Ws is continuous and piecewise afine, 
and the optimal solution V ( x )  : Xf H W is  continuous, 
convex and piecewise linear. 

Remark 3 If the problem (18) has multiple solutions 
for some z(t) ,  then it is dual degenerate in some region 
of the state-space. In this case, one can always choose 
a partition of such a region and a particular optimizer 
so that the function z(z)  is continuous. 
Because of (19), we can establish the analytical prop 
erties of the controller (3), (4) through the following 
corollary of Theorem 4 

Corollary 1 The control law u(t) = f (z( t ) ) ,  f : Rn I-+ 

Wm, defined by the optimization problem (3) and (4)  is  
continuous and piecewise affine. 

10 

5 

0 

5 

I 
0.5 
0 

I 

(a) Closed-loop MPC (b) Polyhedral par- 
tition of the state- 
space and closed-loop 
MPC trajectories 

Figure 1: Double integrator example 

4 Examples (a) Nu = 3 (b) Nu = 4 

Consider the double integrator 

(20) 
1 

?At> = @t), 

and its equivalent discretetime state-space representa- 
tion 

obtained by sampling (20) with T = 1. 
We want to regulate the system to the origin while min- 
imizing the performance measure 

subject to the input constraints 

-1 5 Ut+k I 1, k = 0 , l  (23) 

(24) 

and the state constraints 

-10 i St+klt 5 10, IC = 1,2 

This task is addressed by using the MPC algorithm (3) 
where N - 2, Nu = 2, Q = [ A  :], R = 0.8. 
The solution of the mpLP problem was computed in 
13.57 s by using a Pentium 111-300Mhz and the cor- 
responding polyhedral partition of the state-space is 
depicted in Fig. l(b). Note that region #6 and #7 
correspond to the saturated controller. 
The same example was solved increasing number of de- ~ 

grees of freedom Nu. The corresponding partitions are 
reported in Fig. 2. Note that white regions correspond 

.- 

$0 
8 

a 
4 

I 
:0  

4 
4 

d 

d 
-10 
Q -16 -10 d 0 6 10 $5 1D 

r 

8 

8 

4 

¶ 

. " O  

4 

d 

d 
90 45 40 d 0 6 $0 15 W 

(c) Nu = 5 (d) Nu = 6 

Figure 2: Partition of the state space for the MPC con- 
troller 

to the saturated controller u(t) = -1 in the upper part 
and u(t) = -1 in the lower part. The off-line com- 
putation times and number of regions are reported in 
Table 1. Note that by increasing the number of free 
control moves Nu, the control law appears to change 
only far away from the origin, the larger Nu the more 
in the periphery. 

5 Conclusions 

In this paper we formulated a model predictive con- 
troller for linear systems subject to input and state con- 
straints based on a l/m-norm performance objective, 
and we gave conditions on the weighting matrices for 
its stability. We provided the explicit solution of such 
an MPC scheme, and shown that it is a piecewise linear 
function of the state vector. Further extensions of the 
basic set-up include trajectory following, suppression of 
measured disturbances, time-varying constraints, and 
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0 Free moves Nu I Computation time (s) I Ir;. of regions N, fl 

Table 1: Off-line computation times and number of regions 
for the  double integrator example 

the output feedback problem. The mpLP approach of 
this paper can also be extended to other norms as 1/1, 
m/l, oo/m norms (where o/y stands for o-norm with 
respect to time and y-norm with respect to space). 
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