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Abstract

We propose an experimental eye-tracking study to test how strategic sophistication is shaped by experi-
ence in 3×3 two-person normal-form games. Although strategic sophistication has been shown to be linked 
to a variety of endogenous and exogenous factors, little is known about how it is affected by previous 
interactive decisions. We show that complete feedback in previous games can significantly enhance strate-
gic sophistication, and that games that in principle provide equivalent learning opportunities lead instead 
to substantially different learning outcomes. Specifically, only repeated play with feedback of games that 
emphasize strategic interdependence significantly enhances strategic learning, producing an increase in the 
frequency of equilibrium play and a shift of attention to the incentives of the counterpart. Moreover, we 
find that the type of learning underlying newly gained strategic skills can vary substantially across players. 
Whereas some players eventually learn to visually analyze the payoff matrix consistently with equilibrium 
reasoning, others appear to use experience with previous interactions to devise simple heuristics of play. 
Our results have implications for theoretical and computational modeling of learning.
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1. Introduction

The idea that strategic thinking—like other human cognitive capabilities—is not only im-
portantly shaped by experience, but also that different kinds of experiences can offer different 
opportunities of strategic learning is certainly intuitive. Nonetheless, we currently have limited 
understanding of the basic mechanisms through which experience with previous interactive deci-
sions shapes decision makers’ strategic sophistication. In this study, we address this issue in the 
specific context of two-person, strategic-form games, in which strategic sophistication is usually 
intended as the ability of players to accurately predict the moves of their opponent based on the 
sole analysis of the payoff structure. Our research question is about how and under what con-
ditions experience with previous decisions in two-person, 3×3 strategic-form games affects the 
degree of strategic sophistication of an individual.

To this end, we designed and ran an eye-tracking experiment consisting of three stages, in 
which players play sequences of games (with a unique pure-strategy Nash equilibrium) against 
an artificial counterpart that always selects the equilibrium strategy. In the initial stage, players’ 
degree of strategic sophistication is assessed based on their lookup patterns in a sequence of 
games of different types (i.e., differing for their dominance structure) played without feedback. In 
the second stage (called Learning stage), players play, with complete feedback after each choice, 
another sequence of games of one of the types encountered in the initial stage (the game type 
being our between-subject factor varying across treatments). This second stage was designed to 
test the effects of experience with games with different dominance structures on players’ strategic 
sophistication. Finally, in the third stage, players’ degree of strategic sophistication is reassessed 
analogously as in the first stage.

Our contribution is four-fold. We show that:

1. Strategic sophistication can be significantly enhanced by the experience gained in the Learn-
ing stage.

2. The newly acquired strategic capabilities are generalized to the types of games that were not 
faced in the Learning stage.

3. The type of games included in the Learning stage crucially affects players’ ability to select 
the equilibrium strategy, and can improve or hinder strategic learning independently from 
players’ initial degree of strategic sophistication. The game types included in the treatments 
offer substantially different learning opportunities to players, even though the behavior of 
their counterpart is invariantly and unambiguously that of selecting the equilibrium strategy.

4. Different types of players learn in substantially different ways. Among those players who 
learn to play the equilibrium strategy in the games faced during the Learning stage, only one 
group of players display a strategic intent compatible with best responding to the opponent’s 
incentives, and successfully transfer such learning to other types of games. Instead, the other 
players appear to learn some heuristics of play which are also generalized to other game 
types, but that lead less often to the equilibrium strategy.

With the third and fourth points of our contribution, we highlight boundary conditions for 
the effects of learning on strategic sophistication. Indeed, it is reasonable to assume that different 
game situations offer players different learning opportunities: Whereas some game structures can 
induce players to focus on their own payoffs, others can induce them to reason more strategically 
about the payoffs of their opponent, even when feedback about their opponent’s choices is pro-
vided in both situations. For example, games in which players have a dominant strategy belong 
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to the former category, because choice behavior is independent from any beliefs about the oppo-
nent’s choices (see, for example, Brandenburger, 1992). Consequently, repeated experience with 
these games is expected to reinforce the tendency to focus on one’s own payoffs and to neglect 
those of the other. Instead, games in which players do not have a dominant strategy are expected 
to induce them to also analyze their opponents’ incentives, in the attempt to anticipate the other 
player’s moves.

In our study, we use the eye-tracking methodology, as the analysis of the lookup patterns 
that precede the selection of an action allows for a reconstruction, at the individual level, of the 
payoff information gathering process.1 The lookup patterns we consider in our analysis have 
been demonstrated to be strongly connected with the underlying decisional process (Arieli et 
al., 2011; Glöckner and Herbold, 2011; Polonio et al., 2015; Graffeo et al., 2015; Devetag et 
al., 2016; Chen et al., 2018; Polonio and Coricelli, 2019; Zonca et al., 2019, 2020a). Therefore, 
the analysis of eye-tracking data allows us to untangle changes in the strategic sophistication 
of players from changes in their beliefs about the actions of their opponent, or from changes 
in their beliefs over the type of opponent they believe they are matched with. This would be 
hard to achieve solely based on the analysis of choice data. In this way, we can observe whether 
experience with previous interactions translates into changes in the way players search for payoff 
information—a reliable proxy of how they elaborate such information.

So far, the eye tracking technique2 has been mainly used in behavioral game theory research 
for assessing individuals’ strategic sophistication in “static settings,” i.e., in decision problems 
intentionally designed to limit as much as possible any learning effects (i.e., one-shot, two-person 
games played without feedback, as in Devetag et al., 2016). Two exceptions to this line of re-
search are the eye-tracking studies by Knoepfle et al. (2009), in which participants play sequences 
of two-person 4×4 games with feedback, and that by Zonca et al. (2019), in which participants 
are taught to become more strategic in two-person 2×2 games by being shown alternative, more 
sophisticated rules of play. However, these two studies leave unanswered the question of how 
strategic learning evolves with experience, and how individuals spontaneously extract and make 
use of the knowledge gained in previous experiences with interactive decisions (for a theoret-
ical account and an experimental test of this generalization tendency, see Grimm and Mengel, 
2012, and Mengel, 2012). Relatedly, economics and psychology studies of learning in games 
have mainly focused on the attempt to replicate the (aggregate) process of mutual adaptation 
of players’ choice behavior (e.g., Erev and Roth, 1998; Camerer and Ho, 1999; Marchiori and 
Warglien, 2008), but without investigating how experience shapes strategic reasoning.

Heterogeneity of strategic sophistication across individuals is a well-established fact: Previ-
ous studies have shown that sophistication is not only linked to and conditioned by a variety 
of individual factors, such as cognitive skills and psychological traits (e.g., Devetag and War-
glien, 2003; Carpenter et al., 2013; Bayer and Renou, 2016; Gill and Prowse, 2016; Proto et 
al., 2019), but also affected by the type and representation of the decision problem (Georganas 
et al., 2015). In addition, evidence exists that individuals can endogenously adjust their own 
level of sophistication based on expectations about that of their counterparts (Agranov et al., 

1 A further advantage of the eye-tracking technique is its ecological validity. Experiments run with and without record-
ing eye movements have highlighted no differences in choice behavior (Wang et al., 2010; Polonio et al., 2015; Polonio 
and Coricelli, 2019).

2 The same applies to the other elicitation techniques. Several other methods for eliciting strategic sophistication have 
been proposed in the literature, each associated with advantages as well as disadvantages (see overview and discussions 
in Franco-Watkins and Johnson, 2011, and Mauersberger and Nagel, 2018).
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2012; Slonim, 2005), or on cost/benefit analyses (Alaoui and Penta, 2015). The study by Gill 
and Prowse (2016) importantly shows how cognitive skills and personal traits affect how people 
learn to play equilibrium in p-Beauty contest games, with high-cognitive ability agents being 
able to reach equilibrium faster and earning substantially more than low-cognitive ability ones. 
Our contribution goes further along this direction, by highlighting another determinant factor 
for heterogeneity of strategic sophistication—i.e., the nature of strategic experiences people are 
exposed to—, and showing how this factor interacts with people’s default strategic approach.

2. Experimental design and procedure, and definition of gaze transitions

2.1. Experimental design

To answer the research questions presented in the introduction, we designed an experiment in 
three stages (see Fig. 1 for an overview of the experimental design). In each stage, participants 
played, as row player,3 a sequence of two-person 3×3 games in strategic form with a unique 
equilibrium in pure strategies.

Participants were matched against an algorithm (henceforth, the Computer) that always played 
the equilibrium strategy. At the beginning of the experiment, participants were informed that the 
Computer would play rationally, trying to maximize its own payoff, and that it would not modify 
its strategy during the experiment, nor adjust its choices to those of its counterpart (see instruc-
tions in section S.9 of the Supplementary material). Such strategy is clearly identifiable in the 
Learning stage of both feedback treatments of our experiment (as discussed later). The choice 
of matching participants against an artificial opponent aligns subjects’ beliefs and eliminates 
the problem of uncontrolled endogenous adjustments of the level of strategic sophistication that 
could arise when playing against a human counterpart (see Agranov et al., 2012). Such an en-
hanced control comes at the cost of limiting the generalizability of our results: Interacting with 
an artificial counterpart could trigger strategic considerations and reasonings different than those 
arising in interactions between humans.

We now describe in detail the three stages of our experiment.
The Assessment Stage: Stage 1, which we call Assessment, was designed to assess the initial 

level of strategic sophistication of each participant. In the Assessment, participants play without 
feedback a sequence of 15 two-person 3×3 games, GA

t (t = 1, . . . , 15): Five games have a dom-
inant strategy for the row player, i.e., the participant (“Dominant-Self” games, henceforth DS 
games), but no dominant strategies for the column player; five games have a dominant strategy 
for the column player, i.e., the Computer (“Dominant-Other” games, henceforth DO games), but 
no dominant strategies for the row player; and, finally, five games have no dominant strategies for 
either of the players, and are not solvable through iterated dominance (“No-Dominance” games, 
henceforth ND games).

The Learning Stage: In stage 2, which we call the Learning stage, players play 20 different 
instances of either a DS or DO game, with and without feedback information after each choice 
in a 2 (DS/DO) × 2 (feedback/no-feedback) between-subject design. The games in this stage, 
GL

t (t = 1, . . . , 20), have been obtained by adding independent random (positive and negative) 
constants to the payoffs of one original game GL

0 (either a DO or a DS game, depending on the 

3 Previous research adopting a similar experimental design shows no differences in behavior between playing as row 
or column player (Polonio et al., 2015).
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Fig. 1. Graphical summary of the experimental design (A), and instances of “dominant-self” (DS), “dominant-other” 
(DO), and “no-dominance” (ND) games (B). In Panel B, asterisks “*” indicate equilibrium strategies. In our three-stage 
experiment, the Assessment and Reassessment stages are identical across treatments. Treatments differ for the type of 
games (2 levels: DO/DS) and feedback (2 levels: with/without) in the Learning stage.

treatment), maintaining unaltered the equilibrium and dominance features of the original game. 
In addition, the order of rows and columns of each GL

t game was randomly and independently 
permuted. Finally, also for GL

t games, payoffs were in the interval [10, 99].
The Reassessment Stage: In stage 3, which we call Reassessment, players played without 

feedback another sequence of 15 two-person 3×3 games, GR
t (t = 1, . . . , 15). The payoffs of 

each GR
t game were obtained by adding independent random (positive and negative) constants 

to the payoffs of the corresponding GA
t game, without altering the game’s equilibrium and dom-

inance structure. For both GA
t and GR

t games, the order of rows and columns was randomly and 
independently permuted, and the order of games randomized. In all games, payoffs were within 
the interval [10, 99]. We designed stage 3 to observe how experience gained in stage 2 affects 
the individual level of strategic sophistication. All games used in the three stages are reported in 
Section S.10 of the Supplementary material.

Strategic salience of DS, DO, and ND games: From a behavioral perspective, DS, DO, and 
ND games can be associated to an increasing degree of strategic salience. That is, repeated play 
of these games differently reinforces the tendency to consider the incentives of the opponent. Be-
cause of the presence of a dominant strategy for the row player (the role played by participants), 
recognition of the equilibrium strategy in DS games requires a comparatively lower analytical 
5
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effort: In these games, equilibrium play does not require awareness of the incentives of the oppo-
nent, nor forming beliefs about the actions of the counterpart (Brandenburger, 1992; Aumann and 
Brandenburger, 1995).4 In addition, in DS games, because of the absence of a dominant strategy 
for the Computer, trying to predict its moves is more difficult. This could also discourage some 
players (especially those less sophisticated) from inspecting systematically the payoffs of their 
opponent and encourage them on focusing on their owns.

Instead, in DO games, equilibrium play does require the analysis of the counterpart’s payoffs. 
In DO games, only the players that examine the full structure of incentives are expected to rec-
ognize their opponent’s dominant action and best reply to it. It is worth noting that DO games 
were designed in such a way that the action with the largest payoff sum for the row player (which 
would be attractive for players that mostly focus on their own payoffs) never corresponds to the 
equilibrium strategy. In addition, in DO games, the absence of a dominant strategy for the row 
player makes it difficult to individuate an obvious choice. This could also encourage players to 
systematically inspect the payoffs of the Computer in the attempt to best respond to it. In this 
sense, in these games the strategic dimension is more salient than the DS ones.

Despite the difference in strategic salience, repeated play with complete feedback of both 
DS and DO games in the Learning stage should in principle allow participants to become more 
strategic, as in both situations players can unambiguously observe the best-responding strategy of 
the Computer. However, in DS games, the presence of an own dominant strategy and the absence 
of a dominant strategy for the opponent is expected to reinforce the participants’ tendency (the 
default one for some players) to focus mostly on their own payoffs.

Equilibrium play in ND games requires yet a deeper analysis of the incentive structure. In ND 
games there are no dominant nor strictly dominated actions for either of the two players, so that 
equilibrium cannot be found via the method of iterated dominance: This makes the recognition of 
the equilibrium strategy cognitively more difficult in these games than in the DO ones. We chose 
to include ND games in the Assessment and Reassessment primarily to test the extent to which 
the strategic skills acquired in the training with DS and DO games (see the description of the 
Learning stage) are transferred to similar but not identical games. This point is further addressed 
in the Results section.

We label as treatment DS the treatments in which the Learning stage includes DS games, and 
as treatment DO those in which the Learning stage includes DO games. No-feedback and feed-
back treatments are introduced to control for the effect on learning of immediate and complete 
feedback information from that of mere repeated game play.

Combined, the four treatments defined by the Learning Stage allow us to assess the effect of 
learning on strategic sophistication, as well as to draw boundary conditions for this phenomenon. 
It is worth noting that higher levels of strategic sophistication are generally associated with a 
higher analytical effort (other than a higher cognitive difficulty), which in general is increasingly 
costly to exert. In order to limit as much as possible the effect of cost/benefit considerations on the 
exerted level of sophistication (see Alaoui and Penta, 2015), all games are constructed in such a 
way that the average payoff differs considerably between the participants that behave consistently 
with best-responding to uniform beliefs over a−i, i = 1, 2, 3 (45.3 points)5 and those that select 
the equilibrium strategy (65.6 points; the difference is the same in all treatments).

4 The ease of finding the dominant strategy can be enhanced by representing the game in extensive form as shown by 
Brocas et al., 2018.

5 Or that simply select the action with the largest payoff sum. In both cases, these players do not invest much cognitive 
effort in analyzing the incentives of their opponent.
6
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2.2. Experimental procedure

Two hundred forty-three subjects took part in the experiment (81 males, Mage = 24.1, SDage =
4.6): 91 in treatment feedback/DS, 89 in treatment feedback/DO, 32 in treatment no-feedback/DS, 
and 31 in treatment no-feedback/DO. We originally aimed at collecting data for 30 participants 
per treatment, in alignment with similar experimental studies documented in the literature (e.g., 
Costa-Gomes et al., 2001; Costa-Gomes and Crawford, 2006; Brocas et al., 2014; Polonio et 
al., 2015; Devetag et al., 2016; Polonio and Coricelli, 2019). However, in order to adequately 
increase the size of the groups obtained with the cluster analysis, we ran an additional data 
collection for the feedback treatments. For both data collections, data were analyzed only upon 
completion of the data collection.

The experiment was run with one participant at a time. Upon arrival, each participant was 
given a hard copy of instructions, which were then read aloud by the experimenter. Each par-
ticipant had to complete a questionnaire designed to test the comprehension of the task. If the 
questionnaire was incorrectly answered or under the request of the participant, instructions were 
repeated until full understanding. No participants failed the comprehension check more than 
twice. At each trial, participants selected their preferred action by pressing either the “1,” “2,” or 
“3” key of the keyboard. Payoffs in each matrix were represented in different colors for differ-
ent players (see Fig. 2A) to enhance comprehension (there were no color-blind participants). In 
the feedback treatments, participants could inspect the feedback screenshot (appearing after each 
choice) displaying the whole payoff matrix with arrows indicating their own and the Comput-
er’s choice, with the corresponding matrix cell highlighted by a green border (see experimental 
instructions in Section S.9 of the Supplementary material). Participant could inspect the feed-
back screenshot without time constraints. In all experimental stages, the order of the games was 
independently randomized for each participant.

At the end of the experiment, one trial per stage was randomly selected, and the participant 
was paid based on performance in the selected trials. The experiment, conducted at the Experi-
mental Psychology Laboratory of the University of Trento (Italy), lasted about one hour, and the 
average payoff was about 16 euros (about $16.4).

Participation was on a voluntary basis and participants who had participated in previous eye-
tracking experiments on interactive decisions were not allowed to participate. We did not make 
any ex-post data exclusions and present in the paper all data we collected.

2.3. Codification and interpretation of eye tracking data

To analyze eye movements, we defined eighteen Areas of Interest (AOIs) centered on the 
matrix payoffs (see Fig. 2B). AOIs have a circular shape with an area of 36,000 pixels. AOIs 
cover 46.8% of the game matrix area and are not overlapping. Although the AOIs only cover a 
small portion of the entire visual space, almost all fixations (92%) are located within the AOIs. 
Fixations not falling within any of the AOIs are discarded from the analysis.

For the eye-tracking data analysis, we mostly focus on types of transitions, rather than on mere 
fixations. Fixations6 allow to infer the share of attention allocated to one’s own and the other’s 

6 Eye fixations occur when a participant keeps his/her visual gaze still. In this study, a fixation occurs when the gaze 
is focused within 1◦ of visual angle for at least 80 ms, a threshold commonly adopted to discriminate between fixations 
and other types of ocular activities.
7



D. Marchiori, S. Di Guida and L. Polonio Journal of Economic Theory 196 (2021) 105291
Fig. 2. Panels A and B illustrate, respectively, examples of the stimuli presented to players and of the definition of the 
18 areas of interest (AOIs). Panel C illustrates examples of the five types of transitions defined in our analysis: solid line 
arrows illustrate examples of own-sum transitions; solid line circles exemplify own-dom transitions; dashed line circles 
other-sum transitions; dotted line arrows other-dom transitions; and solid line empty arrows intracell transitions. The 
direction of transitions from one AOI to another is irrelevant for classification. (For interpretation of the colors in the 
figures, the reader is referred to the web version of this article.)

payoffs. Instead, transitions (defined as consecutive fixations that fall within two different AOIs) 
provide information about how participants integrate payoff information, a process that cannot 
be reconstructed by the analysis of fixations alone. According to the classification of transitions 
proposed by Devetag et al. (2016), and Polonio and Coricelli (2019), we consider the following 
five types of transitions for the row player (cf. the game matrix illustrated in Fig. 2C).

1) Own-payoff within-strategy transitions (henceforth own-sum), which connect the AOIs 
centered on payoffs aij and aik , with i, j, k = 1, 2, 3. These transitions are typically used by 
people to detect their own strategy with the largest payoff sum (or average).

2) Own-payoff between-strategy transitions (henceforth own-dom), which connect the AOIs 
centered on payoffs aij and akj , with i, j, k = 1, 2, 3. These transitions are typically used by 
people to detect their own dominant strategy, or find a best response to the predicted action of 
the counterpart (see the temporal analysis of transitions in section S.1 of the Supplementary 
material).

3) Other-payoff within-strategy transitions (henceforth other-sum), which connect the AOIs 
centered on payoffs bij and bkj , with i, j, k = 1, 2, 3. These transitions are typically used by 
people to identify their opponent’s strategy with the largest payoff sum (or average).
8



D. Marchiori, S. Di Guida and L. Polonio Journal of Economic Theory 196 (2021) 105291
4) Other-payoff between-strategy transitions (henceforth other-dom), which connect the AOIs 
centered on payoffs bij and bik , with i, j, k = 1, 2, 3. These transitions are typically used by 
people to identify any dominant strategies of their opponent.

5) Intracell transitions (henceforth intracell), which connect the AOIs centered on payoffs 
aij and bij , with i, j = 1, 2, 3. These transitions are typically used by people to identify a focal 
point (as, for example, the cell that yields the largest payoff sum), or similar strategies based on 
intracell payoff comparisons.

The association of transitions to the different strategic intents has been demonstrated in ex-
perimental settings involving 2×2 two-person games in the strategic form. These experiments 
show that when participants are instructed to choose based on a given decision rule (e.g., finding 
out the dominant actions in a game, or the action associated with the largest payoff sum), they 
actually employ the search-specific gaze transitions described above (see Polonio et al., 2015, 
and Zonca et al., 2019). Furthermore, the link between the type of transitions used and choice 
behavior has been extensively demonstrated in both 2×2 and 3×3 game matrices (e.g., Devetag 
et al., 2016; Polonio and Coricelli, 2019; and Zonca et al., 2020b).

3. Aggregate-level results

In this section, we first present and discuss aggregate choice data, and then aggregate eye-
tracking data. In the next section, we propose an individual-level analysis of both choice and 
eye-tracking data, and which relies on a clustering of participants based on their lookup patterns 
in the Assessment stage.

3.1. Analysis of aggregated behavioral choice data

To observe how experience affects choice behavior, we compare the frequency of equilibrium 
choices in the three game types (DS, DO, and ND) in the Assessment and Reassessment stage, 
in all four treatments (Fig. 3).

Looking at the two treatments with feedback (Fig. 3, top row), a two-way repeated-measure 
ANOVA (within-subject factor: stage; between-subject factor: treatment) indicates that immedi-
ate feedback significantly improves the frequency of equilibrium choices in all game types (cf. 
the significant effect of the stage factor, Table 1). The driver of this improvement in DO and 
ND games is the experience gained with DO games during the Learning stage (cf. the signif-
icant treatment*stage interaction, Table 1): Equilibrium choices in DO games pass from 46%, 
SD = .37, to 91%, SD = .22, whereas in ND games from 44%, SD = .35, to 70%, SD = .39 
(the difference is significant in both cases: t(88) = 11.344, p < .001, for DO games, and t(88) 
= 5.832, p < .001, for ND games). This result suggests that experience gained with DO games 
during the Learning stage is also transferred to deal with the seemingly similar, but cognitively 
and strategically more demanding, ND games. As for the DS games, the improvement is instead 
due to experience gained with DS games during the Learning stage (cf. the significant treat-
ment*stage interaction, Table 1): Equilibrium choices in DS games pass from 74%, SD = .33, to 
88%, SD = .25, and the difference is significant (t(90) = 3.612, p < .001). The fact that experi-
ence with DO games enhances performance in ND games, but not DS games, could be explained 
by a simple ceiling effect: Since the equilibrium strategy is relatively easy to recognize in DS 
games (as they do not require any strategic reasoning), the proportion of equilibrium choices is 
already large in the Assessment, leaving little room for improvement. However, the cluster-level 
9
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Fig. 3. Frequency of equilibrium choices in the Assessment and Reassessment, by treatment and game type. The label 
“LDS” indicates Learning with DS games, and “LDO” Learning with DO games. Error bars are ± 1SE.

analysis discussed later reveals that this is instead due to players’ heterogeneous reactions to 
experience.

The treatments without feedback in the Learning stage show instead almost no learning effects 
(Fig. 3, bottom row). In both treatments, the absence of feedback in the Learning stage does not 
produce significant differences in the frequency of equilibrium choices across the Assessment 
and Reassessment stages in DO and ND games (cf. the non-significant effect of the stage factor, 
Table 1). Furthermore, no learning effect based on a specific treatment is observed (cf. the non-
significant treatment*stage interaction, Table 1). Although the main effect of the stage factor is 
significant for DS games, indicating an improvement of equilibrium play, such improvement is 
not due to the kind of games faced in the Learning stage (cf. the non-significant treatment*stage
interaction, Table 1). This means that repeated play of DO and DS games without feedback 
equally enhances equilibrium play in DS games.

In summary, behavioral results suggest that, within our framework, feedback is a necessary, 
but not sufficient, condition for the improvement of equilibrium play. It is instead the combination 
of feedback and type of experience (specifically, the one that emphasizes the role played by the 
other player) that produces a large increase of equilibrium play.

However, choice data do not show the cause of such an increase in the frequency of equi-
librium choices. In order to better understand the nature of the strategic learning participants 
engage in and how this is modified by experience, we now turn to the analysis of eye-tracking 
data, which, through the analysis of the different kinds of lookup patterns (transitions), offers a 
closer view on participants’ strategic intent.
10



D. Marchiori, S. Di Guida and L. Polonio Journal of Economic Theory 196 (2021) 105291
Table 1
Tests for differences in equilibrium proportions across experimental stages.

Game type Main effect stage
(Assessment and Reassessment)

Main effect treatment
(own- and other-focus)

Interaction effect 
treatment * stage

Feedback treatments
DS F(1, 178) = 9.367 F(1, 178) = 0.103 F(1, 178) = 5.952

p = 0.003 p = 0.749 p = 0.016

DO F(1, 178) = 46.92 F(1, 114) = 22.59 F(1, 178) = 47.04
p < 0.001 p < 0.001 p < 0.001

ND F(1, 178) = 13.46 F(1, 178) = 6.376 F(1, 178) = 15.26
p < 0.001 p < 0.012 p < 0.001

No-feedback treatments
DS F(1, 61) = 4.322 F(1, 61) = 3.064 F(1, 61) = 0.031

p = 0.042 p = 0.085 p = 0.861

DO F(1, 61) = 1.967 F(1, 61) = 0.233 F(1, 61) = 1.154
p = 0.166 p = 0.631 p = 0.287

ND F(1, 61) = 0.447 F(1, 61) = 0.226 F(1, 61) = 0.461
p = 0.506 p = 0.636 p = 0.500

Note. Two-way repeated measures ANOVAs of the frequency of equilibrium choices in the As-
sessment and Reassessment, for each of the three types of games (within-subject factor: stage; DS 
indicates dominant-self games; DO indicates dominant-other games; ND indicates no-dominance 
games), in the DS and DO treatments (between-subject factor: treatment).

3.2. Analysis of aggregated eye-tracking data

To evaluate the effect of experience on strategic sophistication, we analyze whether fixations 
and lookup patterns significantly mutate across the Assessment and Reassessment stages within 
a given treatment, and whether fixations and lookup patterns in the Reassessment differ across 
treatments. Fixations give a first hint on the payoff information gathering process, showing how 
attention is allocated to one’s own and to the opponent’s payoffs, and how such allocation of 
attention is affected by experience (Fig. 4).

As shown by Fig. 4, the distribution of attention across own and other payoffs is similar in 
the Assessment stage of the various treatments (and aligned with the literature, see Polonio and 
Coricelli, 2019). Only experience in the feedback/DO treatment results in a significant shift from 
own- to other-payoff fixations (from 47%, SD = .22, to 67%, SD = .16, t(88) = 8.617, p <
.001). This result, together with the corresponding increase in equilibrium choices seen earlier, 
suggests an increase in the level of sophistication of the players exposed to repeated play of DO 
games with feedback. In all other treatments the shift from own- to other-payoff fixations is not 
significant.

However, fixation data only show how much attention is devoted to own and other’s payoffs, 
but not how such attention is used by players. Transition data (or lookup patterns) can instead 
shed light on the qualitative dimension of attention, that is, how the information on own and the 
other’s payoffs is collected—and then processed. In addition, looking at how the transition pat-
terns change across stages, can inform us about how experience affects the way players analyze 
the game. Fig. 5 gives a graphical representation of the distribution of transitions by treatment 
and stage.

To understand how experience affects the way players analyze the game, for each partici-
pant and within the same experimental stage, we computed the proportion of the five types of 
11



Fig. 4. Frequency of fixations in the Assessment and Reassessment, by treatment. The label “A” indicates the Assessment, 
and “R” the Reassessment. The label “Own-payoff” [“Other-payoff”] indicates the share of fixations on row player’s 
[column player] payoffs. Error bars are ± 1SE.

transitions (cf. section 2.3), normalized by their sum (as done in Polonio et al., 2015).7 Such 
normalization weighs equally individual observations and allows us to focus on those transition 
types that have a clear interpretation in terms of the underlying strategic analysis carried out 
by players. We refer to the ensuing vector of five components computed for each participant as 
a transition distribution (also commonly referred to as compositions in compositional analysis; 
see Aitchison, 1986). Table 2 reports the centers of transitions (i.e., the geometric means over all 
participants of each type of transition) in the Assessment and Reassessment stages of the four 
treatments, as well as their statistical comparisons across stages. The description of the statistical 
framework for the analysis of change of transition distributions is reported in the Supplementary 
material (see Aitchison, 1986; Pawlowsky-Glahn et al., 2015).

In the two no-feedback treatments (lower panel of Fig. 5), transition distributions do not 
change significantly across stages (see Table 2, column on the right). Thus, the experience gained 
in the Learning stage does not significantly alter the way in which participants analyze the payoff 
matrix.

Instead, in the two feedback treatments, experience does have a significant effect (see Table 2
and top panel of Fig. 5). In the feedback/DS treatment, passing from the Assessment to the 
Reassessment stage, own-sum transitions are decreased in favor of own-dom transitions, and in 
general less attention is paid to the opponent’s payoffs (both other-sum and -dom transitions are 
decreased). Thus, participants appear to learn to detect dominance in their own actions.

7 The five types of strategic transitions do not include all possible types of eye transitions.
D. Marchiori, S. Di Guida and L. Polonio Journal of Economic Theory 196 (2021) 105291
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Fig. 5. Distributions of transitions by treatment and stage. The five columns represent the five types of transitions. The 
first row shows the distribution of transitions for the two treatments with feedback, and the second row the distribution 
of transitions for the two treatments without feedback. “LDS” and “LDO” indicate the Learning stage in the treatments 
including, respectively, DS and DO games. Boxplots visualize the median, two hinges (spanning the inter-quartile range, 
or the distance between the first and third quartiles, indicated with IRQ), the whiskers, and all outlying points. The upper 
whisker extends from the corresponding hinge to the largest value no further than 1.5 * IQR from the hinge. The lower 
whisker extends from the corresponding hinge to the smallest value at most 1.5 * IQR of the hinge.

Table 2
Centers (i.e., geometric means) of transitions in the Assessment and Reassessment, by treatment, and statistical test of 
the difference.

Treatment Stage Centers of transitions Signif. 
(Hotelling’s T2)own-sum own-dom other-sum other-dom intracell

feedback/DS A .336 .211 .162 .161 .130 T2 = 4.867
Df = (4, 87)
p = .001

R .293 .296 .142 .122 .147

feedback/DO A .313 .230 .167 .174 .117 T2 = 22.894
Df = (4, 85)
p < .001

R .045 .203 .278 .372 .100

no-feedback/DS A .323 .226 .178 .158 .114 T2 = 2.226
Df = (4, 28)
p = .092

R .309 .303 .110 .152 .125

no-feedback/DO A .223 .169 .254 .223 .130 T2 = 1.434
Df = (4, 27)
p = .250

R .188 .213 .206 .260 .131

Note. In the column named “Stage”, “A” indicates the Assessment, and “R” the Reassessment. Due to rounding, the 
reported distributions may not sum up exactly to one.
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In the feedback/DO treatment, experience has a different impact on players’ strategic so-
phistication. In this treatment, experience with the strategically more salient DO games induces 
participants to allocate more attention to the inspection of their counterpart’s incentives, at the 
expense of own-sum transitions, which are reduced from 31% (SD = .23) in the Assessment to 
9% (SD = .15) in the Reassessment. Instead, other-dom transitions, used to detect dominance in 
the counterpart’s actions, increase from 26% (SD = .21) to 41% (SD = .25) as well as other-sum
transitions (from 17%, SD = .10, to 25%, SD = .17), used to detect the opponent’s strategy with 
the largest payoff sum.

As for the comparisons across treatments, we are interested in testing whether the experience 
in the feedback/DO treatment alters transition distributions in a significantly different way than 
the other treatments. More specifically, we ask ourselves whether the distributional changes (re-
ferred to as perturbations in compositional analysis) from the Assessment to the Reassessment 
are significantly different across treatments. The maximum likelihood procedure used for com-
paring independent samples of perturbations (described in the Supplementary material) answers 
this question positively. Comparing the treatments feedback/DS and feedback/DO, transition per-
turbations differ in both the center and variance structure (we reject H03 in favor of Hgen; X2(4)

= 34.42, p < .001; see Supplementary material for the description of the hypothesis structure). 
As for the comparisons of feedback/DO with the no-feedback treatments, transition perturbations 
differ in the centers, although not in the variance structure (we reject H01, but fail to reject H02; 
X2(14) = 17.42, p = .23, for the comparison with no-feedback/DO; X2(4) = 12.17, p = .59, for 
the comparison with no-feedback/DS). Thus, the significant differences in the perturbation cen-
ters show that the effect of experience on transition distributions in the feedback/DO treatment is 
significantly different from that observed in all other treatments.

Together, these results from the analysis of aggregate eye-tracking data corroborate the in-
terpretation of choice data presented earlier. Only the combination of immediate feedback and 
experience in a strategic decision setting that emphasizes strategic interdependence of choices re-
sults in a more complete analysis of the payoff matrix, which, in turn, enhances equilibrium play. 
It is important to note that the relation between lookup patterns and frequency of equilibrium play 
is a relation of causality, the former phenomenon causing the latter, as demonstrated in Polonio 
et al. (2015). Participants not only allocate relatively more attention to the other’s incentives, but 
also make use of those gaze transitions (especially other-dom transitions) that are consistent with 
equilibrium reasoning. This important point will be further elaborated in the individual analy-
sis sections, and it is also supported by the temporal analysis of gaze transitions reported in the 
Supplementary material. In addition, in the feedback/DO treatment, participants developed some 
generalizable experience that they also applied to optimally play games on which they were not 
trained, i.e., the non-dominance solvable ND games.

Overall, these results provide evidence that the level of strategic sophistication of an individual 
is plastic, and that it can be substantially enhanced by experience. The individual analysis that 
follows gives a more insightful picture of players’ heterogeneous learning styles.

4. Individual-level results

In this section, we propose an analysis of individual-level data that relies on the clustering 
of participants. Such clustering is based on the lookup patterns (transitions) observed in the 
Assessment stage of the experiment. We first discuss how clusters are constructed, then present 
and discuss cluster-level choice data, and, finally, cluster-level eye-tracking data.
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Table 3
Number of participants in each cluster by treatment.

feedback/DS feedback/DO no-feedback/DS no-feedback/DO Total

Cluster 1 47 54 16 17 134
Cluster 2 19 22 10 6 57
Cluster 3 25 13 6 8 52
Total 91 89 32 31 243

4.1. Definition of the clusters

We analyze how different player types react to experience. Specifically, our analysis shows 
which groups of participants are the drivers of the aggregate effect of experience on transitions 
(illustrated in Fig. 5), but also evaluates the possibility that different types of participants engage 
in fundamentally different types of learning. Indeed, the increase of frequency of equilibrium 
choices highlighted in the aggregate analysis could in principle mask underlying reasonings that 
depart from equilibrium reasoning (see, for example, Crawford et al., 2013).

To this end, we carry out a cluster analysis of participants based on the distribution of transi-
tions recorded in the Assessment, pooling together the data for the feedback and the no-feedback
treatments (this because the Assessment stage is common across all four treatments). We use 
the Gaussian Mixture Modeling approach for model-based clustering described by Fraley and 
Raftery (2002). A point of strength of this approach is that the clustering model that best de-
scribes data is endogenously determined by the procedure: Clustering models are first estimated 
via the Expectation-Maximization algorithm, and then selected based on the Bayesian Informa-
tion Criterion (see details in section S.8 section of the Supplementary material).

Consistently with previous research (Polonio et al., 2015; Devetag et al., 2016), the best clus-
tering model is the one that categorizes participants into three clusters as reported in Table 3.

4.2. Analysis of clustered behavioral data

We here analyze the frequency of equilibrium choices in the Assessment and Reassessment, 
by cluster and treatment (see Fig. 6). In this and the following sections, we focus on data from 
the feedback treatments, as the no-feedback treatments have been previously shown not to affect 
substantially strategic sophistication, irrespective of the games included in the Learning stage. 
In addition, the disaggregated analysis of choice behavior in the no-feedback treatments (see 
Supplementary material for the details) confirms the very limited effect of the Learning stage on 
strategic sophistication, thus not revealing effects that cancel out with the aggregation of data.

In the feedback/DS treatment (marked as “LDS” in Fig. 6), the frequency of equilibrium 
choices averaged over all three types of games does not change significantly across the As-
sessment and Reassessment in any of the clusters (paired t-tests for the equilibrium frequencies 
averaged over all types of games: t(46) = 0.56, p = .58, for the initially strategic players in 
Cluster 1; t(18) = 1.10, p = .29, for players in Cluster 2; and t(24) = 1.61, p = .12, for players 
in Cluster 3), reflecting the result seen for the aggregate data. However, Cluster 1 and 3 appear 
to significantly increase equilibrium play in DS games (from 83%, SD = .24, to 93%, SD =
.22, t(46) = 2.535, p = .015, for Cluster 1; from 50%, SD = .38, to 86%, SD = .27, t(24) =
3.662, p = .001, for Cluster 3). We will see that this latter result is supported by changes in the 
distribution of transitions that will be discussed in the next session.
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Fig. 6. Frequency of equilibrium choices by cluster, game, and stage in the feedback treatments. The label “LDS” indi-
cates Learning with DS games, and “LDO” Learning with DO games. Error bars are ± 1SE.

Instead, experience in the feedback/DO treatment significantly increases the frequency of 
equilibrium choices for all clusters (paired t-tests for the equilibrium frequencies averaged over 
all types of games: from 67%, SD = .23, to 84%, SD = .17, t(53) = 6.79, p < .001, for the 
Cluster 1; From 38%, SD = .07, to 78%, SD = .20, t(21) = 8.58, p < .001, for Cluster 2; and 
from 43%, SD = .31, to 71%, SD = .28, t(12) = 3.18, p = .008, for Cluster 3). Even though 
starting from very different frequencies of equilibrium choice in the Assessment stage, players in 
the three clusters similarly learn to select the equilibrium choice in the DO and ND games in the 
final Reassessment stage (83%, SD = .24, for the Cluster 1; 79%, SD = .24, for Cluster 3; and 
83%, SD = .32, for Cluster 3; the difference across clusters is not significant, F(2, 86) = 0.216, 
p = .81). Nonetheless, players in Cluster 2 and 3 fail to match the frequency of equilibrium 
choices by Cluster 1 players in the simple DS games, in which dominance in the row player’s 
actions should instead facilitate the detection of the equilibrium choice. In the DS games of the 
Reassessment, players in Cluster 2 and 3 select, respectively, the equilibrium option only 70% 
(SD = .43) and 48% (SD = .47) of the time, whereas for Cluster 1 the frequency of equilibrium 
choices is 93% (SD = .22). The difference is significant (F(2, 86) = 11.75, p < .001), and only 
the pairwise comparison of equilibrium frequency in DS games between Cluster 2 and Cluster 
3 is not significant (for Cluster 2 vs. Cluster 3, Tukey’s adjusted-p = .13; for Cluster 1 vs Clus-
ter 2, Tukey’s adjusted-p = 0.017; and for Cluster 1 vs. Cluster 3, Tukey’s adjusted-p < .001). 
This result prompts the question of whether the learning that Cluster 1 players engage in is the 
same of those in Cluster 2 and 3. To answer this question, we turn to the analysis of individual 
eye-tracking data.
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Fig. 7. Distributions of transitions in the feedback treatments, by cluster and stage. The five columns represent the five 
types of transitions, whereas the three rows the three clusters. “LDS” and “LDO” indicate the Learning stage in the 
treatments including, respectively, DS and DO games. Boxplots are constructed as in Fig. 5.

4.3. Analysis of clustered eye-tracking data in the Assessment stage

We begin discussing the distributions of transitions observed in the different clusters during 
the Assessment Stage, before any learning took place (see red bars in Fig. 7). Since clusters were 
created based on gaze transitions in the Assessment stage by pooling all participants together, we 
observe no differences in the distributions of transitions across the feedback/DS and feedback/DO
treatments. Therefore, our observations about transitions in the Assessment stage refer to both 
treatments.

Cluster 1: Players carry out a comparatively more complete analysis of players’ incentives, 
allocating a considerable share of attention to the inspection of their opponent’s payoffs. Par-
ticipants in this cluster make a larger use of other-dom transitions (37%, SD = .17), mainly at 
expense of own-sum transitions (20%, SD = .14). Such a lookup pattern identifies players that 
are since the beginning more strategically sophisticated (as in Costa-Gomes et al., 2001), and is 
compatible with best-responding to the opponent’s incentives.

Cluster 2: Players mostly focus their attention on their own payoffs, displaying a larger fre-
quency of own-sum transitions (63%, SD = .15), typically used to recognize the action with the 
largest payoff sum. Overall, participants in this cluster pay little attention to the payoffs of their 
opponent (the average of other-sum and other-dom transitions is 5%, SD = .06). Nonetheless, we 
cannot exclude that this cluster could also include some strategic players selecting the strategy 
that best responds to uniform beliefs over the Computer’s actions a−i, i = 1, 2, 3 (analogous to 
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a level-1 strategy; cf. Nagel, 1995), and that gather payoff information according to this belief 
(Fehr and Huck, 2016).

Cluster 3: Similarly to players in Cluster 2, players in this cluster appear to behave non-
strategically at the beginning of the experiment, although they use yet another approach of 
analysis of the game payoffs. These participants frequently compare payoffs within a single 
matrix cell, i.e., through intracell transitions (27%, SD = .11).8 These players do not analyze the 
game in a strategic way, mostly making own- and other-sum transitions (respectively, 22%, SD 
= .10, and 28%, SD = .13), beside the intracell ones.

Participants in Cluster 2 and 3 display an initial different analytical approach of the payoff 
matrix. However, a combined analysis of the behavioral and eye-tracking data in the Reassess-
ment stage suggests a similar reaction to experience of players in these two clusters, and this 
reaction appears to be substantially different than that exhibited by players in Cluster 1.

4.4. Comparison of clustered eye-tracking data across Assessment and Reassessment

Comparing the transition distributions observed in the Assessment and Reassessment stages 
of the two feedback treatments, we can test whether all players respond to experience in the 
same way. The results of the statistical tests for these comparisons, by cluster and treatment, are 
reported in Table 4.

Lookup patterns of participants are significantly affected by experience in feedback treatments 
(cf. the column on the right of Table 4 and Fig. 7), meaning that transition distributions change 
significantly across the Assessment and Reassessment stages. In general, experience in the feed-
back/DS treatment increases players’ tendency to focus on their own payoffs. In fact, players 
in Cluster 1 and 3 substantially increase the frequency of own-dom transitions at the expense 
of transitions focusing on other payoffs (the former by halving the frequency of the strategic 
other-dom transitions, the latter reducing the frequency of other-sum transitions). This change in 
the lookup pattern is consistent with the increase of equilibrium play in DS games that we high-
lighted in the previous section, when discussing cluster-level choice data. For players in Cluster 
2, experience in this treatment lowers the frequency of own-sum transitions by slightly increas-
ing that of other-sum ones. However, for these players, own-sum transitions still constitute about 
half of all transitions and this small increase in the attention allocated to their opponent’s payoffs 
does not translate into a significant increase in the frequency of equilibrium choices.

Experience in the feedback/DO treatment has a different effect on transitions. In the Reassess-
ment, Cluster 1 players remarkably increase the use of other-dom transitions that are useful to 
detect dominance in the opponent’s actions, and decrease the use of own-sum transitions (they 
also keep using own-dom transitions to check for dominance in their actions and best reply to 
the expected strategy of their counterpart; see the temporal analysis of transitions discussed in 
section S.1 of the Supplementary material). This is a clear signal of an improved strategic so-
phistication, consistent with best-response reasoning. For players in Clusters 2 and 3, experience 
with DO games mainly translates into a decrease in own-sum transition, and an increase in other-
sum and other-dom transitions, where other-sum transitions remain substantially more frequent 
than other-dom transitions. In addition, players in Cluster 2 still distinguish themselves for the 

8 Significantly more frequently than participants in the other two clusters. For players in Cluster 1 and 2, the average 
frequency of intracell transitions is 8% (SD = .05). The difference between this average frequency and that for players 
in Cluster 3 is statistically significant (Welch corrected t(54.972) = 12.979, p < .001).
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Table 4
Centers (i.e., geometric means) of transitions in the Assessment and Reassessment, for the three clusters of players in the 
two feedback treatments.

Treatment Stage Centers of transitions Signif. 
(Hotelling’s T2)own-sum own-dom other-sum other-dom intracell

Cluster 1
feedback/DS A .163 .185 .211 .353 .087 T2 = 5.72

Df = (4, 43)
p < .001

R .220 .367 .130 .167 .115

feedback/DO A .152 .175 .211 .380 .080 T2 = 15.176
Df = (4, 50)
p < .001

R .026 .204 .203 .502 .065

Cluster 2
feedback/DS A .753 .200 .010 .007 .028 T2 = 3.988

Df = (4, 15)
p = .021

R .496 .229 .117 .043 .011

feedback/DO A .691 .229 .020 .010 .050 T2 = 9.874
Df = (4, 18)
p < .001

R .098 .229 .328 .208 .136

Cluster 3
feedback/DS A .229 .090 .261 .130 .290 T2 = 10.338

Df = (4, 21)
p < .001

R .279 .200 .163 .124 .234

feedback/DO A .205 .092 .293 .114 .296 T2 = 10.313
Df = (4, 9)
p = .002

R .082 .094 .443 .166 .214

Note. In the column named “Stage”, “A” indicates the Assessment, and “R” the Reassessment. Due to rounding, the 
reported distributions may not sum up exactly to one.

share of attention allocated to their own payoffs, and those in Cluster 3 also for that allocated to 
intracell comparisons.

Thus, eye-tracking data suggest the possibility that the increase of equilibrium in the feed-
back/DO treatment can mask substantially different underlying learning styles. In the Learning 
stage, players in the three clusters similarly learn to select the equilibrium strategy (the propor-
tion of equilibrium choices in the last block of five games is 91%, SD = .26, for Cluster 1, 96%, 
SD = .13, for Cluster 2, and 85%, SD = .38, for Cluster 3; the difference across groups is not 
significant, F(2, 86) = 0.866, p = .424), but the learning outcomes for the three clusters are sub-
stantially different. This is confirmed by the analysis of transitions in the Learning stage (reported 
in the Supplementary material) and in the Reassessment. Differently than players in Cluster 1, 
Cluster 2 and 3 players do not learn to suppress the use of own-sum and intracell transitions to 
analyze the other player’s payoffs, and display a large variability in the use of other-dom tran-
sitions (whose frequency remains lower than that for Cluster 1 players; see Table 4, Fig. 7, and 
Figure S.3). Thus, although paying attention to the incentives of their opponent, and partially 
using other-dom transitions, these players do not appear to carry out a systematic analysis of 
dominance and best-reply.

In the analysis of choice data by cluster in the Reassessment of the feedback/DO treatment, 
we showed that Cluster 2 and 3 players, although being able to learn to choose the equilibrium 
action in DO and ND games similarly to players in Cluster 1, fail to do so in the strategically 
simpler DS games. By analyzing how players in the three clusters allocate their attention to the 
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payoffs of the opponent in the final Reassessment stage, we can see how different lookup patterns 
affect the frequency of equilibrium choices in DS games. In DS games, other-dom and other-sum
transitions are significantly negatively correlated (the test of Pearson’s product-moment correla-
tion gives an estimate of −0.49, t(52) = 4.107, p < .001 for Cluster 1; −0.57, t(20) = 3.064, p =
.006, for Cluster 2; and −0.74, t(11) = 3.683, p = .003, for Cluster 3). This means that these two 
types of transitions tend to be mutually exclusive: Players that make large use of one type of tran-
sitions tend not to use the other. In addition, for all three clusters, the frequency of equilibrium 
choices in DS games is significantly positively correlated with that of other-dom transitions (the 
test of Pearson’s product-moment correlation gives an estimate of 0.44, t(52) = 3.500, p < .001 
for Cluster 1; 0.60, t(20) = 3.340, p = .003, for Cluster 2; and 0.66, t(11) = 2.931, p = .0137, 
for Cluster 3), but negatively correlated with that of other-sum transitions (the test of Pearson’s 
product-moment correlation gives an estimate of −0.58, t(52) = 5.125, p < .001 for Cluster 1; 
−0.88, t(20) = 8.463, p < .001, for Cluster 2; and −0.78, t(11) = 4.209, p = .001, for Cluster 
3). This means that players that use other-dom transitions learn a best-response reasoning, and 
choose the equilibrium choice in DS games more frequently than players that use other-sum tran-
sitions, who do not appear to make a strategic analysis of their opponent’s incentives. The fact 
that players in Cluster 1 use more often other-dom transitions, whereas those in Cluster 2 and 
3 use more often other-sum ones explains the difference between the frequency of equilibrium 
choices in DS games illustrated above.9 Therefore, both choice and eye tracking data illustrated 
earlier reject the use of best-response reasoning by players in these two clusters. Rather, Cluster 
2 and 3 players are likely to use some heuristics of play that in DS games does not allow them to 
recognize their own dominant strategy (respectively, 30% and 52% of the time), and that system-
atically suggests them playing what could be labeled as the “cooperative” strategy10 (players in 
Cluster 2 select this strategy 28% of the time, SD = .43, whereas those in Cluster 3 select it 43% 
of the time, SD = .46), although this does not necessarily imply that these are cooperative play-
ers. However, our data do not allow us to accurately reconstruct such a heuristic, and furthermore 
it is plausible that different players develop and apply different heuristics.

On the contrary, Cluster 1 players in the feedback/DO treatment learn to look for dominance in 
their own and in their opponent’s actions, displaying a larger frequency of other-dom transitions, 
and substantially suppressing own-sum transitions (but not the own-dom ones, that are necessary 
for the recognition of own dominant actions and the formulation of the best-response). This re-
veals a deeper strategic learning compatible with the dominance analysis, which is effective in 
DS, DO, and ND games. As for ND games, although not solvable through iterated dominance, 
the combination of own-dom, other-sum, and other-dom transitions (intracell and own-sum tran-
sitions are almost totally suppressed) displayed by Cluster 1 players is indicative of a strategic 
thinking close to equilibrium reasoning also in these games, as indicated by the significant cor-
responding increase in the frequency of equilibrium choices (passing from 53%, SD = .35, to 
67%, SD = .40; paired t-test: t(53) = 2.820, p = .007).

9 Of course, also own-dom transitions are positively and highly correlated with the frequency of equilibrium choices in 
DS games in all three clusters (the test of Pearson’s product-moment correlation gives an estimate of 0.51, t(52) = 4.253, 
p < .001 for Cluster 1; 0.65, t(20) = 3.873, p < .001, for Cluster 2; and 0.63, t(11) = 2.679, p = .0214, for Cluster 
3). However, the point here is that these transitions are not necessarily related to a more strategic approach of analysis 
of the game incentives, whereas the transitions used by players to analyze their counterpart’s payoffs provide a more 
compelling elicitation of their strategic intent.
10 This strategy corresponds to Action III of the example of DS game illustrated in Fig. 1. The cooperative strategy is 
the row that includes the cell that yields the largest payoff sum (i.e., the cell (67, 79) in the example of Fig. 1), and in DS 
games it never corresponds to the equilibrium action.
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It has to be noticed that in ND games, by design, the equilibrium action for the Computer is the 
action with the largest payoff sum and is also a “quasi-dominant” action (i.e., it is dominant but 
for one payoff), although it is never the action that includes the largest payoff (cf. Section S.10 
of the Supplementary material). Therefore, in the feedback/DO treatment, for players in Clus-
ters 2 and 3, the selection of the equilibrium strategy can be facilitated by the structural features 
of ND games just mentioned. Thus, for these players (who make substantial use of other-sum
transitions), equilibrium choice in the ND games is likely to be supported by a heuristic that 
exploits some of the just mentioned features of these games. For Cluster 1 players, however, 
learning appears to be rather different. The large use of other-dom transitions does not support 
the use of a “largest-sum” heuristic by these players in ND games. In addition, although the use 
of a “quasi-dominance” heuristic is not ruled out for these players, their analysis of game pay-
offs reveals a reasoning that significantly differs from that of players in the other two clusters 
and more closely conforms to the detection of dominance and best reply, if not proper equilib-
rium reasoning. Figures S1 and S2 of the Supplementary material report temporal analyses of 
transitions (within trials and across trials) observed during the Learning stage, disaggregated by 
cluster. Those analyses show the different impacts that repeated play of DS and DO games with 
feedback has on choice behavior of players in the three clusters and further confirm the results 
reported in this section.

A natural question is whether experience in the feedback treatments leads to transition distri-
butions that are different across the three clusters. To answer this question, we adopt the same 
maximum likelihood procedure for testing differences between independent samples of distri-
butional changes (also referred to as “perturbations”) used in section 3.2 (see details in the 
Supplementary material). The perturbations of transitions distributions computed for Cluster 1 
and Cluster 2 players in the feedback/DO treatment differ significantly in the center and variance 
structure (we reject H03 in favor of Hgen, X2(4) = 13.80, p = .008; see Supplementary material 
for the description of the hypothesis structure), as well as for Cluster 1 and 3 (we reject H03 in 
favor of Hgen, X2(4) = 13.43, p = .009; see Supplementary material for the description of the 
hypothesis structure). Similar results hold for the feedback/DS treatment (for Cluster 1 vs. Clus-
ter 2, H03 is rejected in favor of Hgen, X2(4) = 16.99, p = .002; for the comparison Cluster 1 vs. 
Cluster 3, H01 is rejected in favor of Hgen, X2(10) = 183.84, p < .001). These results provide 
evidence that experience produces changes in the lookup patterns that are significantly different 
between the more strategic players in Cluster 1 and players in the other two clusters.

5. Discussion

The level of strategic sophistication of an individual is commonly intended as his/her ability 
to anticipate the moves of the other decision makers in an interactive decision problem, based on 
the analysis of his/her own incentives as well as those of his/her counterparts. Although previous 
research has shown that people can be taught more sophisticated strategies of play (Zonca et 
al., 2019), or that cognitive skills and personal traits affect how people learn equilibrium play 
(Gill and Prowse, 2016), the question of how individuals endogenously extract knowledge from 
experience and use it to enhance their strategic skills is substantially unanswered. In this article, 
we test the hypothesis of whether and under what conditions experience affects players’ strategic 
sophistication. To this end, we first assess participants’ initial level of strategic sophistication 
by analyzing choice and eye-tracking data on three classes of 3×3 two-person strategic-form 
games (DS games, in which only the participant has a dominant action; DO games, in which 
only the opponent, i.e., the Computer, has a dominant action; and ND games, in which neither 
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of the players has a dominant action) that were played without feedback (Assessment stage). 
Subsequently, we train participants on a sequence of either DS or DO games, played with or 
without immediate feedback, in a between-subject design (Learning stage). Finally, we reassess 
participants’ strategic sophistication on the same three families of games as done in the first stage 
(Reassessment stage).

We show that strategic sophistication and equilibrium play are significantly enhanced only in 
presence of feedback. Furthermore, although feedback in DS and DO games provides the same 
opportunity of strategic learning, we observe that participants improve their strategic skills only 
if trained on DO games. More in detail, repeated play of games in which participants do have a 
dominant action but their opponent does not (i.e., DS games) prevents them from shifting their 
attention to their opponent’s incentives, and thus does not increase their level of sophistication. 
In particular, the absence of a dominant action for the Computer makes the task of predicting its 
choices more difficult than in DO games, and could discourage players from inspecting consis-
tently its payoffs. We observe that participants that are exposed to repeated play of DS games 
learn to make use of lookup patterns that are associated with the search for their own strategy 
with the largest payoff sum. On the contrary, participants that repeatedly play games in which 
they do not have a dominant strategy (i.e., DO games) do learn to allocate significant part of their 
attention to the other player’s incentives, displaying a process of acquisition of visual information 
that reflects an enhanced level of strategic sophistication. These participants increase the share of 
lookup patterns that are associated with the search of a dominant action of the other player, and 
generalize such learning to recognize and select the equilibrium action also in the ND games, 
which cannot be solved by iterated dominance. Such transfer of strategic approach across game 
types is confirmed by the observation that players use the same lookup patterns while solving the 
three different game types (see Figure S5 and S6 of the Supplementary material).

Do all players that play DO games with feedback in the Learning stage learn in the same way? 
The individual analysis of choice and eye-tracking data reveals an interesting result. We classify 
players according to their strategic sophistication at the beginning of the experiment, before the 
manipulation of experience in the Learning stage has occurred, and we obtain three clusters. 
The data show that players that already had a more strategic approach (participants in Cluster 
1) responded to repeated play with feedback of DO games in a very different way than those 
who initially displayed a strategically naive approach (participants in Cluster 2 and 3). Players 
that are initially more naive appear to learn a heuristic of play that allows them to match the 
equilibrium play of the more sophisticated players of Cluster 1 in DO and ND games, but not in 
the “strategically simpler” DS games. This result is explained by the observation that although 
naive players do learn to allocate attention to the payoffs of the other player, they do that mostly 
by adopting lookup patterns that are not compatible with the detection of dominance and, more 
in general, with equilibrium reasoning. After having gained experience with DO games, also 
sophisticated players learn to pay more attention to the payoffs of their opponent, but mostly 
through lookup patterns that reveal intentional search for dominance in their opponent’s actions, 
and thus correspond to a deeper strategic analysis—if not proper equilibrium reasoning. This is 
reflected by the increased frequency of equilibrium choices in DS, DO, and ND games in the 
final stage of the experiment for these players.

A word of caution is due for what concerns the persistency of the learned strategic skills. In 
this paper we refer to the “newly acquired” strategic skills of participants, but our experimen-
tal design does not test to what extent the observed enhancement in strategic sophistication is 
retained. This important question about the temporal stability of learned strategic skills will be 
addressed by future work.
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The milestone study by Selten et al. (2003) shows that repeated play with feedback of (ran-
domly generated) two-person 3×3 games enhances participants’ rational reasoning, significantly 
increasing the proportion of equilibrium choices across trials.11 Our study enriches and qualifies 
Selten et al.’s (2003) conclusion, by analyzing strategic learning at a higher level of detail, which 
allows us to distinguish between substantially different types of learning and to draw boundary 
conditions for strategic learning to occur.

Our analysis of the ocular movements and of how these are linked to strategic sophistication 
is inherently connected with the normal form representation of our games. Thus, the extent to 
which our results can be generalized to games presented in different forms (e.g., in the extensive 
form) is an open question. However, we believe that our general considerations on the plastic-
ity of strategic sophistication and the observation that players can learn very different choice 
strategies from the same type of experience have a general validity that goes beyond our specific 
experimental settings.

6. Conclusions

Our data provide evidence that strategic sophistication is importantly shaped by experience 
with previous strategic decisions, but also that the reactions to this experience can be quite hetero-
geneous. The construct of strategic learning goes well beyond the sole learning of sophisticated 
equilibrium thinking, but also encompasses the development of simple choice rules that were re-
inforcing in similar situations in the past. This generalization hypothesis has been theorized and 
empirically confirmed in psychology studies of individual decision making (see, for example, 
Gonzalez and Dutt, 2011; Plonsky et al., 2015; Marchiori et al., 2015), but also in economics 
studies of similarity across games (see, for example, Gilboa and Schmeidler, 1995; Knez and 
Camerer, 2000; Devetag, 2005; Mengel, 2012; Grimm and Mengel, 2012). In addition, our re-
sults further confirm that equilibrium play can mask different underlying strategic intents and 
types of strategic learning, not necessarily consistent with equilibrium reasoning (see also Craw-
ford et al., 2013). Even in those situations in which incentives are unambiguously and fully 
described to players and the behavior of the strategic counterpart is unambiguously identifiable 
(as in our experiment), experience can affect decision makers’ behavior in radically, when not 
unexpectedly, different ways.
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