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A casting defect is an expendable abnormality and the most undesirable thing in the metal casting process. In Casting 

Defect Detection, deep learning based on Convolution Neural Network (CNN) models has been widely used, but most of 

these models require a lot of processing power. This work proposes a low-power ShuffleNet V2-based Transfer Learning 

model for defect identification with low latency, easy upgrading, increased efficiency, and an automatic visual inspection 

system with edge computing. Initially, various image transformation techniques were used for data augmentation on casting 

datasets to test the model flexibility in diverse casting. Subsequently, a pre-trained lightweight ShuffleNetV2 model is 

adapted, and hyperparameters are fine-tuned to optimize the model. The work results in a lightweight, adaptive, and scalable 

model ideal for resource-constrained edge devices. Finally, the trained model can be used as an edge device on the NVIDIA 

Jetson Nano-kit to speed up detection. The measures of precision, recall, accuracy, and F1 score were utilized for model 

evaluation. According to the statistical measures, the model accuracy is 99.58%, precision is 100%, recall is 99%, and the 

F1-Score is 100 %.  
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Introduction 

Advanced industrial systems demand better 

product performance and a higher requirement for 

quality control throughout the manufacturing 

process.
1–3

 Every industry has its quality inspection 

section responsible for removing defective products. 

However, the main difficulty is that this inspection is 

done manually. The process takes a long time and is 

not always accurate due to human error, which could 

cost the company a significant amount of money. 

Casting is a process of manufacturing that entails 

pouring a liquid substance into a mould with a hollow 

hole in the chosen shape and then allowing it to 

solidify. Casting is commonly used to make vital 

components such as the cylinder head, cylinder block, 

bridge shell and crankshaft. Pinholes, shrinkage 

defects, burrs, blow holes, pouring metal defects, 

mould material defects, metallurgical defects, and so 

on are all common casting problems. These defects 

have a detrimental impact on the product's aesthetics, 

convenience of use, and performance.
4–6

 Defect 

detection considerably reduces the negative effect of 

product problems.
7
 

In the automotive industry, inspecting all safety-
critical parts is standard procedure. Traditional 

computer vision algorithms require predefined features 
and statistics-based machine learning models.

8,9
 Visual 

inspection of casting faults, on the other hand, is done 
manually based on human experience or intuition. 
In a range of industries, vision-based inspection 
technologies are frequently used to improve 

recognition accuracy and reduce the cost of manual 
inspection.

10
 Image processing algorithms are 

employed to construct feature vectors, and subsequent 
machine learning-based methods are used to create 
inspection systems.

11
 Through robust vision sensors, 

image processing algorithms and smartly engineered 

optical transmission systems, machine vision can 
perform many more jobs than artificial vision.  

Industries are striving to decrease time-consuming 
and unsafe old methods in various fields. With the 
advent of Industry 4.0, many companies began to 
concentrate on automating their standard procedures. 

Automated technologies improved the manufacturing 
floor and assisted employees in completing previously 
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difficult or tedious tasks. Similarly, industries might 
use visual inspection systems based on images, 
sensors, and infrared to perform faster inspection 
rates, deliver higher quality solutions, and 
substantially reduce product inefficiencies through 

quantitative evaluation. 
The development of deep learning technologies has 

accelerated recently. It has improved object detection, 
intelligent automation, error detection, autonomous 
driving, and other industry-related issues.

12
 Deep 

learning allows industries to use non-destructive 

inspection procedures. Deep learning-based machine 
vision systems are critical in the Industrial Internet of 
Things (IIoT) and fully automated manufacturing 
processes. These methods can be applied to even the 
tiniest of products to ensure that the inspection 
process is not obstructed. Another way, it permits a 

product's quality to be monitored throughout the 
manufacturing process without risking it. Intelligent 
machine vision systems were developed by 
researchers for defective product examination based 
on data generated by several integrated technologies 
in modern manufacturing lines. In addition, Industry 

4.0 has automated manufacturing procedures by 
providing personalized and adaptive mass production 
technologies.

13
 

Although Deep Learning algorithms have shown 
efficiency for detection and classification problems, 
their use in specific industries is still limited.

14 
An 

automatic casting defect detection system is necessary 
to address manufacturing industry needs such as low 
latency response, storage, and high accuracy. The 
casting defects could be minor in the manufacturing 
process. If distortion is not correctly observed, a large 
withdrawal of items could occur, causing severe 

damage to the brand's reputation and financial losses. 
Edge Computing (EC) is advantageous to Industry 4.0 
since it provides various benefits. The idea behind 
edge computing is that computation should take place 
close to data sources. EC is a type of decentralized 
processing that lets data be handled directly by the 

device that produces it or a local server. Therefore, we 
believe that edge computing could have a similar 
significant impact on society as cloud computing has. 
Based on its benefits of improving service, and 
latency, reducing data transmission and easing cloud 
computing pressure, edge computing is a crucial 

option to overcome the bottleneck of new 
technologies like cloud computing, IoT, etc. 

This work proposes a casting defect detection 

method based on EC to meet industry needs. The key 

contributions of the study are: First, different image 

transformation methods were employed as data 

augmentation to improve the model's adaptability; 

second, by fine-tuning the ShuffleNetV2's hyper-

parameters with transfer learning, a lightweight, 

adaptive, and scalable model that can ensemble the 

resource-constrained edge device is created, and 

finally the trained model is deployed to the NVIDIA 

Jetson Nano-kit as an edge device to speed up 

detection. 
 

Related Research 

Increased automation, manufacturing flexibility, 

and improved quality are effective strategies for 

increasing profitability in any company. Traditional 

and visual inspection approaches, widely used for 

several years, have shown positive results in many 

industries detecting cast defects. 

Image processing is widely used in defect detection 

techniques. The Ng et al.
15

 used valley-emphasis 

method to construct a defect detection system to 

maximize between group variance based on the 

thresholding of original images. In Mery et al
16

, a 

method for automatic defect detection in aluminium 

castings based on a two-step analysis: radioscopic 

image recognition and tracking was proposed. The 

Phase-Only Fourier Transform (POFT) is employed 

in work
17

 to detect saliency, effectively improving 

weak regions. The method enables for more precise 

detection of the casting defect's location. On the other 

hand, the defect detection techniques discussed above 

could only find information such as the estimated 

location and size of the defect, but not its 

classification. 

Many industries have recently adopted deep 

learning-based detection, which may be used to 

identify the location of casting faults and classify 

them. In their work, the authors developed an 

upgraded You Only Look Once (YOLOv3) algorithm 

using the anchor box initialization clustering 

technique.
18

 They included a double-density 

convolutional layer structure and a model prediction 

scale to improve the network model for detecting 

casting flaws. An in-depth convolution neural 

network was developed
19,20

 to perceive the suspicious 

defect area of casting through a centre-peripheral 

difference calculation approach based on a selected 

attention mechanism. Numerous state-of-the-art 

object analyzers are employed to localize casting 

defects after the feature extraction layer is detached 

from the object detection architecture.
21

 Different 
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feature extractors can be used to analyze each 

architecture, but R-CNN is the fastest and produces 

the best results. 

Even if deep learning methods are more efficient 

than standard approaches, deep learning systems 

typically require a lot of processing resources to 

implement. When computational resources are 

limited, the system's detection performance suffers 

significantly. Most recent deep learning techniques 

are integrated with cloud computing to solve this 

problem. However, data queues caused by the transfer 

of huge volumes of data (such as videos and images) 

will significantly impact production effectiveness 

with this cloud-centric method.
22

 A mix of deep 

learning and edge computing is employed to solve the 

problem. Edge Computing is an open platform that 

brings computational and storage abilities closer to 

customers or data sources by integrating data 

processing, storage, systems, and applications.
23

 A 

pavement defect detection system based on YOLOv3 

(you only look once, version 3) was implemented 

with a field-programmable gate-array-based edge 

computing platform.
24

 

An edge computing solution has been presented to 

identify casting defects in the product manufacturing 

business
25

, with low response time, power, and 

upgradeability. The latency and power consumption 

issues were better handled with the scalable and 

lightweight ShuffeNetV2 algorithm with NVIDIA 

Jetson TX2. Data improvement approaches and cross-

entropy loss functions are presented to increase the 

model's predicting capacity. In this work, a modified 

CNN model was integrated with edge computing  

to detect defects in a real-time context, resulting in 

high energy efficiency, quick reaction time, and 

scalability. 
 

Methodology 

The methodology section presents the work flow 

process requirements that enable the flow process in 

detecting the casting defects of the manufacturing 

industry with the features of the DL model and EC 

platform. Manufacturing industries require intelligent 

and reliable production systems with more benefits. 

The proposed automated system for casting defect 

detection should have improved operational efficiency 

and quick real-time response with lower production 

costs. We use the ShuffleNetV2 architecture and an 

edge computing detection system to respond to  

the specific requirements above. The operational 

workflow process is shown in Fig. 1. 
 

ShuffleNet V2 

The ShuffleNet uses point wise group convolution 

and channel shuffle to reduce computation costs while 

preserving accuracy. ShuffleNet's core design uses a 

novel channel shuffle operation to facilitate 

information flow between feature channels. The 

network can be freely customized to the appropriate 

level of complexity. FLOPs are the most popular 

metric for measuring a network's efficiency in terms 

of computation. ShuffleNet v2 assesses the network's 

computational complexity directly using metrics like 

speed or memory access cost (FLOPs as well, which 

act as an indirect metric). The direct metrics are also 

evaluated on the target platform. However, a few 

studies have shown that FLOPs do not fully expose 

the underlying facts; networks with comparable 

FLOPs differ in their speeds due to several factors, 

including the level of parallelism and the cost of 

memory access, the target platform, etc. Since none of 

them meets the FLOP definition, they are all ignored. 

ShuffleNet v2 eliminates these problems by providing 

four rules to represent a network. 
 

Proposed Architecture 

The concepts around which the network has been 

formed shall provide insight into how numerous  

other direct measurements have been taken into 

consideration before analyzing the network 

architecture. 

1. Memory access costs are low when the ratio of 

input to output channels is 1:1, achieved using 

equal channel widths. 

2. Excessive group convolution raises memory 

access costs: Memory access costs are likely to 

increase if the group number is too high. 

3. Reduced parallelism due to network 

fragmentation: Parallel computations become 

more challenging to execute due to network 

fragmentation. 

4. The operations elementwise are non-negligible: 

Element-wise operations can lengthen memory 

 
 

Fig. 1 — Operational workflow process of the proposed model 
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access times, even though they involve few 

FLOPs.  

The above measures are incorporated into the 

architecture of ShuffleNet-V2 to increase network 

efficiency, as represented in Fig. 2. Two groups, one 

of which is left as an identity, are formed when the 

channel splitter splits the channels. The other branch 

along the three convolutions has the same number of 

input and output channels. Group-wise, 1 × 1 

convolutions don't exist. Examples of element-wise 

operations constrained to a single branch are ReLU, 

Concat, and depth-wise convolutions. 
 

Transfer Learning 

Transfer learning allows deep learning models 

trained on massive datasets to perform similar tasks 

on new datasets. By applying transfer learning, we 

can use all or a portion of a model already trained for 

another task to complete a specific task. Moreover, 

the computation resources and time required for 

training a model can also be significantly reduced 

since pre-learned knowledge from other domains and 

tasks can be reused. A pre-trained model is the term 

used to describe such a deep learning model. The 

most well-known examples of pre-trained models are 

the deep learning models for computer vision based 

on the ImageNet dataset. Therefore, for building a 

model from scratch, a pre-trained model as an initial 

point is preferable. Due to the advantages of transfer 

learning for improving performance and efficiency, 

supervised learning is rarely used in the industrial 

sector. 
 

Model-based Fine-Tuning 

Fine-tuning the hyperparameters of the model 

outperforms the feature extraction method. In deep 

learning algorithms, hyperparameters are crucial 

because they describe the training details and directly 

impact the output of the model.
26,27

 Fine-tuning the 

weights in some of the pre-trained model's layers and 

training the output classifier can improve the model's 

performance. The last network layers are typically 

unfrozen for tuning, while the earlier network layers 

are usually freezed (particularly for CNN). As a 

result, we can modify the parameters at the last layers 

and fully train the current model. 

In this study, the FC layer of the pre-trained 

ShuffleNetV2 is changed to our casting defect dataset, 

and knowledge learned from the ImageNet dataset is 

transferred from one model to another. The pre-

trained ShuffleNetV2 model was trained using the 

ImageNet dataset. Its weights and biases accurately 

reflect the dataset features. As a result, the pre-trained 

model has acquired standard features like edges and 

curves, which it can utilize to solve classification 

problems. The parameter values must be set correctly 

to get the best learning results from the 

backpropagation algorithm. The primary factors 

determining Deep CNN's learning performance in the 

backpropagation algorithm are activation function, 

learning rate and momentum rate. During training, the 

backpropagation of error computes the volume of 

error that a node's weights in the network are 

responsible for. The weight is scaled by the learning 

rate rather than updated with the full amount. The 

learning rate controls the speed at which the model 

learns. When weights are updated for each batch of 

training, the learning rate controls the amount of 

distributed error. The momentum rate influences 

smoothing the optimization process, slowing updates 

to continue in the previous direction that misleads the 

gradient descent algorithm. Generally, transfer 

learning in CNN can be applied in various test cases 

for fine-tuning the model. However, the best settings 

for these factors can't be chosen according to any set 

rules. The best parameters can only be determined 

through numerous trials and errors. A smaller learning 

rate value results in minimal error change over time, 

whereas a more significant learning rate value 

frequently results in over-fitting.  
 

Test Case-1 

The central concept is to use the weighted  

layers of the pre-trained ShuffleNetV2 model to 

extract features without changing the model's  

weights while training. Only the final classification 

block was altered; it contains two classes and is 

trainable. 

 
 

Fig. 2 — ShuffleNet v2 Architecture for different levels of 

complexities 
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Test Case-2 

In contrast to layers of the network, which are more 

focused on a specific task, the earlier layers assist in 

general recording features. The higher-order feature 

representations of the underlying model should be 

changed to suit the current goal. We can retrain some 

model layers while keeping others frozen in training. 
Test Case-3  

The complete ShuffleNetV2 model is trainable in 

this experiment by considering pre-train weights as 

initial network weights with the casting defect dataset.  

 

Results and Discussion 

The experiment is performed on a local server, and 

the computer hardware configuration depicts in  

Table 1. The computer software configuration 

includes the Ubuntu operating system and the 

PyTorch deep learning framework. The demonstration 

of this work is supported by all the tests conducted in 

this part, and deep extracted features are utilized to 

assess the findings using a large dataset of defect 

categories.  
 

Dataset 

The dataset
28

 provides a top view of the 

submersible pump impeller corresponding frames, 

respectively. The dataset contains 7340 images and is 

all grey-scaled images of size 300 × 300 pixels. The 

data augmentation is applied to all the frames. There 

are mainly two categories: 

1. Defective 

2. OK 

The defective and OK images of the given dataset 

classes are depicted in Fig. 3. The data is divided into 

a train and a test folder for training a classification 

model. Both the train and test folder contains deffront 

and okfront subfolders. The dataset description of 

total frames with class labels is shown in Table 2. 

The Table 3 illustrates the input parameters used to 

configure the ShuffleNetV2 model and displays the 

setting for the functional parameters. A single epoch 

presents the dataset that the neural network accesses 

in many batches by simultaneously performing a 

forward and backward pass and iteratively. The batch 

size measures how much data the network can fit into 

a batch of 32 with a learning rate of 0.001. The 

adaptive learning rate optimization algorithm Adam is 

chosen during the training and verification procedure 

to readily adapt to the new task without considerably 

erasing the learned information through the expertise 

of managing the verification error in the fine-tuning 

process. Softmax is the most suitable activation 

function when the output layer of the classifier 

considers two classes. 
 

Evaluation Metrics 

The classification metrics are used to assess the 

model performance. The model’s overall performance 

can be improved using various metrics for 

Table 1 — Hardware Configuration 

Hardware Product Specification 

CPU 2 × Intel Xeon Gold 6226R-2.9G 

GPU NVIDIA Quadro RTX 6000, 24GB GDDR6 

Motherboard Power Edge R740/R740 XD 

RAM 2 × 64 GB RDIMM 

SSD 4 × 960 GB SSD SATA 

Edge Device NVIDIA Jetson Nano-kit 
 

 
 

Fig. 3 — Dataset Classes of casting sample: (a) Defective and  

(b) OK 
 

Table 2 — Dataset description 

Classes Train Dataset Test Dataset Total 

OK 2875 262 3137 

Defective 3758 453 4211 

Total 6633 715 7348 
 

Table 3 — Model hyper-parameters 

Parameters Value 

Batch Size 32 

Learning rate 0.001 

Loss Cross Entropy 

Optimizer Adam 

Activation function ReLU 

Epochs 25 
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performance assessment. Before using the model for 

production on unseen data, these indicators are crucial 

for assessing its performance. When the model is 

deployed on unseen data without proper assessment of 

the model using various evaluation metrics and only 

based on accuracy, it can lead to poor predictions. 

True Positive (TP) is a correctly predicted sample of 

the defective case, and False Positive (FP) is a sample 

of misclassified defective case. True Negative (TN) is 

a correctly classified OK case, and False Negative 

(FN) is a sample of misclassified OK cases. 
 

1. F1 score is a weighted average of precision and 

 recall 
2 × precision × reacall

precision + recall
 

2. The precision formula is given as 
TP

FP +TP
  

3. The recall formula can be given as 
TP

 FN +TP
 

4. Accuracy is 
 TP +TN

TN +FP +TP+FN
 

 

We experimented with the pre-trained model in 

three test cases and applied fine-tuning process. It can 

be observed that when we modify only the classifier, 

i.e test case-1, the precision, recall, F1-score values 

are 56%, 66%, and 61% for OK class and 78%, 70% 

and 74% for Defective class. For this case, only 

68.81% accuracy is achieved because the model is not 

trained using the new dataset, and the pre-trained 

model's weighted layers extracted the features. Still, 

they did not update the model's weights during 

training. In test case-2, it can retrain some layers of 

the model while keeping some frozen in training. In 

the experiment of test case-2, the first 25 layers are 

frozen, and the last 25 layers are trainable.  

The precision, recall, F1-score values are 99%, 82% 

and 90% for OK class and 90%, 100% and 95%  

for Defective class. The result shows 93.01% 

accuracy. The entire model is trainable in the test 

case-3 experiment, showing 99.58% accuracy. The 

classification report of the proposed model, along 

with the metrics, Recall, Precision, F1-Score, and 

accuracy, is shown in Table 4. The accuracy and loss 

curves of the test and training data of the ShuffleNet 

V2 model with an accuracy of 99.58% are shown in 

Fig. 4(a) and Fig. 4(b). 
 

Conclusions 

A lightweight ShuffleNetV2-based Transfer 

Learning model with low power consumption, 

improved latency, higher efficiency, simple 

upgradeability, and an automatic visual inspection 

approach for casting defect detection, is presented in 

this study. The image transformation techniques were 

utilized as data augmentation for the casting defect 

dataset's adaptability. The hyperparameters like 

learning rate, activation function and batch size are 

fine-tuned to optimize the model performance by 

considering three test cases. Test case-3 achieves  

high accuracy of 99.58%, which is adequate for the 

 
 

Fig. 4 — ShuffleNet V2 model accuracy and loss curves: (a) Test 

loss vs accuracy, (b) Train loss vs accuracy 

 

Table 4 — Classification Report 

Test Cases Classes Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

Test case-1 

(Only modified classifier) 

OK 56 66 61 
68.81 

Defective 78 70 74 

Test case-2 

(50 % of the model ) 

OK 99 82 90 
93.01 

Defective 90 100 95 

Test case-3 

(Full model ) 

OK 

Defective 

99 

100 

100 

99 

99 

100 
99.58 
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industry requirements. The proposed method 

improves casting production quality and reduces the 

casting process's scrap rate. To accelerate detection, 

deploy the learned model to the NVIDIA Jetson 

Nano-kit edge device. In conclusion, the trained 

network model improves industrial production 

efficiency and is quick and precise in defect 

identification.  
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