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ABSTRACT

We present zELDA (redshift Estimator for Line profiles of Distant Lyman Alpha emitters), an open source code to fit Lyman
o (Ly @) line profiles. The main motivation is to provide the community with an easy to use and fast tool to analyse Ly « line
profiles uniformly to improve the understating of Ly « emitting galaxies. zELDA is based on line profiles of the commonly used
‘shell-model’ pre-computed with the full Monte Carlo radiative transfer code LyaRT. Via interpolation between these spectra
and the addition of noise, we assemble a suite of realistic Ly o spectra which we use to train a deep neural network.We show
that the neural network can predict the model parameters to high accuracy (e.g. < 0.34 dex H1 column density for R ~ 12 000)
and thus allows for a significant speedup over existing fitting methods. As a proof of concept, we demonstrate the potential of
zELDA by fitting 97 observed Ly « line profiles from the LASD data base. Comparing the fitted value with the measured systemic
redshift of these sources, we find that Ly « determines their rest frame Ly o wavelength with a remarkable good accuracy of ~0.3
A (~ 75 kms™"). Comparing the predicted outflow properties and the observed Ly o luminosity and equivalent width, we find
several possible trends. For example, we find an anticorrelation between the Ly o luminosity and the outflow neutral hydrogen

column density, which might be explained by the radiative transfer process within galaxies.

Key words: radiative transfer — Galaxies: ISM —ISM: jets and outflows.

1 INTRODUCTION

The Lyman o (Ly«) emission line of neutral hydrogen plays a
prominent role in astrophysics. Since it is the first transition of the
most abundant element in the Universe, it is extremely bright and,
thus, used in large galaxy surveys as well as to detect even the most
distant galaxies (for a recent review, see Ouchi, Ono & Shibuya
2020). Specifically, surveys such as Hobby-Eberly Telescope Dark
Energy Experiment (HETDEX; ~0.8 million Ly o emitting galaxies
at 1.9 < z < 3.5; Hill et al. 2008; Farrow et al. 2021; Weiss et al.
2021), Systematic Identification of LAEs for Visible Exploration and
Reionization Research Using Subaru HSC (SILVERRUSH, ~2000
at 6 < z < 7; Ouchi et al. 2018; Kakuma et al. 2021), MUSE WIDE
(~500 at3 < z < 6; Herenz et al. 2017; Caruana et al. 2018; Urrutia
et al. 2019) or the Javalambre Photometric Local Universe Survey
(J-PLUS, ~14 500 at2 < z < 3.3; Spinoso et al. 2020) have increased
the pure number of detect Ly o emitting galaxies at every redshift by
orders of magnitude.

* E-mail: gurung.lopez @ gmail.com
1 Hubble fellow

© 2021 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

Beyond a pure tool for detecting galaxies, the Ly « line is, however,
also an invaluable tracer of cold gas composition and kinematics.
This is because Ly« is a resonant line which means that Ly o
photons get absorbed and re-emitted by neutral hydrogen atoms.
In fact, the re-emission process occurs on such a short time-scale
(~ 1078 ), this process is usually referred to a scattering. Since
for typical Ly« emitting galaxies, the hydrogen column density
is Ng; ~ 10'7-10% cm~? (Gronke, Bull & Dijkstra 2015), and the
scattering cross-section at line center (for gas with 7 ~ 10* K)
is 0 ~ 6 x 107 cm?, Ly o photons typically scatter thousands of
times before they reach the observer (for a review, see Dijkstra
2017). Scatterings occur because of the density and kinematics of the
neutral gas at that point, and each scattering alters the Ly o photon’s
frequency (mostly due to Doppler boosting). This implies firstly that
the redshift of the emergent Ly « line is not corresponding to the true
systemic redshift of the source zgys. Thus, estimating zy using Ly a
is more complex than with other nebular emission lines such as Ha.
The community has made a great effort to learn how to estimate
the systemic redshift solely from Ly« line profile (e.g. Steidel
et al. 2010; Rudie, Steidel & Pettini 2012; Verhamme et al. 2018;
Byrohl, Saito & Behrens 2019; Gurung-Loépez, Orsi & Bonoli 2019b;
Runnholm, Gronke & Hayes 2021). This is particularly important for
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measuring galaxy clustering, as the redshift is crucial to determine
the 3D position of a source in the Universe. In Gurung-Lépez et al.
(2021), we explore the usage of neural networks to extract the
systemic redshift from Ly « line profiles, obtaining accurate results
on simulated data. This work is a continuation of our previous study.
Here, we extend upon this and use deep learning to model the full
line shape including the systemic redshift of the source.

The second implication of the complex resonant radiative transfer
is that, information about the density and kinematic structure of the
cold gas is embedded in the Ly « observables such as the Ly « spectra,
surface brightness profiles and polarization. This is particularly
interesting because this cold gas plays a key role in a range of
astrophysical processes — but is often hard to probe otherwise. For
instance, in the circumgalactic medium, the cold gas is a reservoir
of gas for future star formation, and can trace in- and outflows
of galaxies (Tumlinson, Peeples & Werk 2017; Bresolin 2019). In
this context, the detection of glowing Ly « haloes surrounding star-
forming galaxies has opened a new pathway to probe this cold gas
directly (Steidel et al. 2011; Wisotzki et al. 2016). Furthermore, the
study of the variation of Ly « spectra in space which provides insight
into the connection between galaxies and their surrounding medium
(Rauch 2015; Leclercq et al. 2017; Erb, Steidel & Chen 2018) —
a direction of research which has been facilitated by integral field
spectrographs such as MUSE (Bacon et al. 2010) and KCWI (Martin
et al. 2010).

Another important application of Ly o observables is as a proxy
for ionizing photon escape. As both types of radiation are directly
susceptible to intervening neutral hydrogen — but the direct detection
of Lyman-continuum (LyC) photons is hard (or at z 2 4 impossible
due to the increasingly neutral IGM), Ly « plays a deciding role both
for observational as well as theoretical studies focusing on ionizing
escape mechanisms (e.g. Verhamme et al. 2015; Dijkstra, Gronke &
Venkatesan 2016). It is now well established that Ly o observables
such as the equivalent width or the spectral peak separation correlate
with the ionizing escape fraction (Steidel et al. 2018; Izotov et al.
2021).

While this complex radiative transfer process is a fortunate fact
observationally, modeling it is non-trivial and only few analytical
solutions exist (e.g. Neufeld 1990; Dijkstra, Haiman & Spaans
2006). Due to its complexity, typically Monte Carlo radiative transfer
codes are being employed which allows for flexibility in the HI
geometry — but on the other hand show slow convergence. To
model the observed Ly« spectra, it is common to use relatively
simple geometries, thus reducing the number of free parameters
of the model and hence to limit the suite of synthetic spectra to
<100000. These synthetic spectra can reproduce observed ones
quite accurately — which is maybe surprising given their simplicity.
For instance, Ahn (2003) introduced the ‘shell-model’ consisting
of a moving spherical shell which surrounds a radiation source.
Since then, the ‘shell-model’ has been often used to fit observed
Lyoa spectra and learn about the HI distribution and the true
systemic redshift of the Ly« emitting source (e.g. Verhamme
et al. 2007; Schaerer et al. 2011; Gronke 2017). Other mod-
els used to systematically fit Ly o spectra include moving slabs
(Schaerer & Verhamme 2008), clumpy multiphase model (Li et al.

2021a,b) or spherically symmetric haloes (Song, Seon & Hwang
2020).

Between the model parameters multiple degeneracies exist which
can lead to a multimodal and non-Gaussian likelihood and makes
the fitting process quite computationally expensive. As stated above,
in the near future the number of observed Ly « spectra will increase
dramatically and a modern, fast pipeline to model them is required. In
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this work, we adopt a machine learning algorithm to fit Ly « spectra
to obtain this goal.

While we will focus on the most commonly used model — the ‘shell
model’, this work can easily be extended to include other geometries.
Note also that while the physical meaning of the model parameters
is frequently discussed in the literature (Gronke et al. 2017; Orlitova
et al. 2018) — and in fact it has been shown that a simple mapping
to, e.g. the line-of-sight H column density is not possible (Vielfaure
et al. 2020), this discussion is not part of this work. However, we
hope that future studies targeted to this will benefit from our new
fitting pipeline.

In this work we present zELDA, an open source PYTHON package
to model and fit Ly « line profiles, as well as to predict Ly o escape
fractions from outflows. An sketch of zELDA’s content is displayed
in Fig. 1 with the sections where each feature is presented. zELDA
is based on FLaREON (Gurung-Lépez et al. 2019b) and LyaRT
(Orsi, Lacey & Baugh 2012). In fact, the computation of the Ly «
escape fractions equivalent to the approach used in FLaREON and
therefore we do not discuss it in this work. For the modeling of Ly «
line profiles and escape fractions, several outflow geometries are
included. In particular, zELDA includes the procedures for modelling
ideal line profiles and mock line profiles that replicate the typical
observational limitations that are present in real spectra. The main
motivation for modeling ideal line profiles and escape fractions is to
populate large simulations with Ly o emitters (as was, e.g. done in
Garel et al. 2012; Gurung-Lopez et al. 2019a, 2020). Then, the mock
line profiles are useful to understand possible biases, for example in
the redshift determination, using simulations (Gurung-Lépez et al.
2021). The other main goal of the production of mock spectra is
to fit observational data. For the fitting we have included several
methodologies, among them, a Monte Carlo Markov Chain approach
and a neural network procedure.

ZELDA is publicly available and ready to use.! zELDA contains
all the necessary scripts to reproduce all the results presented in this
work. Documentation and several tutorials on how to use zELDA are
also available.”

This work is organized as follows: in Section 2 we describe the
outflow geometry and the computation of the Ly« line profiles.
Then, we describe the architecture of the deep neural network and
how we compute the outflow properties and redshift in Section 3. In
Section 4, we describe the Monte Carlo Markov Chain implemented
in zELDA. Then, we compare the accuracy and computational cost
of these methodologies in Section 5. In Section 6, we analyse 97
observed Ly « line profiles with zELDA and study the correlations
between these. Finally, we make our conclusions in Section 7.

We use rest-frame length units to quantify the accuracy in deter-
mining the rest frame Ly o wavelength. However, it is common in the
literature to provide this quantity in velocity units (e.g. Verhamme
et al. 2018; Byrohl et al. 2019). A wavelength interval Al nearby
to the Ly @ wavelength can be express in velocity units as Av =
CAMALyq ~ (247km s~ 1y x AM1A, where ¢ is the speed of light and
Mya & 1215.67 A.

2 MODELING Ly« LINE PROFILES

zELDA is based on the radiative transfer Monet Carlo code LyaRT
(Orsi et al. 2012). In summary, zELDA computes the Ly« line
profiles from a pre-computed grid of LyaRT outputs, where the

"https://github.com/sidgurun/Lya_zelda
Zhttps://zelda.readthedocs.io/en/latest/
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Figure 1. Sketch of zELDA’s content. zELDA source code is publicly available at https://github.com/sidgurun/Lya_zelda while installation instructions and

tutorials can be found at https://zelda.readthedocs.io/en/latest/.

full computation of the radiative transfer of Ly & photons is made.
In this section, we detail the outflow and inflow gas geometry set
in LyaRT (Section 2.1), the grid specs (Section 2.2), a validation
sample that we will be used to test our methodologies (Section 2.3),
the accuracy between the line profiles predicted by zELDA and those
computed by LyaRT (Section 2.4) and how realistic line profiles are
generated (Section 2.5).

2.1 Outflow gas geometry

zELDA, as FLaREON’s successor, includes the three outflow models
used in FLaREON as detailed in Gurung-Lopez et al. (2019b). In
addition to those, we developed an new Thin Shell outflow model for
zELDA, in which we focus this paper. The Thin Shell model is widely
used in the literature (e.g. Zheng & Miralda-Escudé 2002; Ahn 2004;
Verhamme, Schaerer & Maselli 2006; Orsi et al. 2012; Gronke 2017).
Both, the Thin Shell model from FLaREON and zELDA use the same
gas distribution, i.e. an isothermal homogeneous spherical thin layer
of neutral hydrogen described by an inner and an outer radius Rj,
and Ry, respectively, with R;,/R,, = 0.9. We fix the gas temperature
at the typical value of T = 10000 K (Madsen, Reynolds & Haffner
2006). While the (effective) temperature has an effect on resonant
line transfer, constraining it via spectral profile fitting is difficult and
often not possible (Gronke et al. 2015) and we, thus, chose a natural
temperature for H 1 but note that other temperatures could be included
in the future. Then, the neutral hydrogen column density of the gas
geometry is Ny. The gas has an homogeneous radial bulk velocity
Vexp- Also, the dust optical depth is setto 7, = (1 — ALW)% EoNy,
where Eg = 1.77 x 1072 cm™2 is the ratio 7 ,,/Ny for solar metallicity,
Arye = 0.39is the albedo at the Ly o wavelength, Z = 0.02 (Granato
etal. 2000). The parameter 7, is directly related to the more common
dust extinction Ep _y = Ay/Ry, where Ay = 1.0867, and typically
Ry ~ 3.1 (Schultz & Wiemer 1975).

We have included a new Thin Shell model that modifies the
intrinsic spectrum injected into the gas cloud with respect the
Thin Shell model already existing in FLaREON. On one hand, we

conserved the Thin Shell model introduced in FLaREON, where the
intrinsic spectrum is monochromatic photons exactly at Ly . On the
other hand, in the new zELDA’s Thin Shell model we inject a flat
spectrum in wavelength units of f;/" with a Gaussian of full width
half maximum Wj, centred in Ly o with equivalent width EW;,. From
now on, we will refer the new Thin Shell model simply as the Thin
Shell model.

zELDA also incorporates an inflow version of this geometry. In
the inflow, the gas distribution is the same, but the bulk velocity is
below 0. Because of the symmetry of the equations, the emergent
spectrum of a shell with infall velocity Vit = — Vexp Will be identical
to the one for an outflow velocity V., but mirrored around the Ly «
wavelength (Neufeld 1990; Dijkstra et al. 2006; Schaerer et al. 2011).

2.2 Grid of Ly « line profiles

There are a total of 5 free variables in our Thin Shell model: Veyp, Ny,
T4, EWiy, and Wi, In practice, we run the RTMC LyaRT for different
values of Ve, Ny, and 7, while the line profiles with different values
of EW;, and W, are obtained via post-processing. We run LyaRT in
all the {Veyp, N, 74} combinations of

Vexplkm s7'1 = [0, 10, ..., 90, 100, 150, ..., 950, 1000],
log Ny[em™] = [17.0, 17.25, ..., 21.25, 21.5], (1)
logt, = [-4.0, =3.5,... — 0.5, 0.0].

For each value of Vi, Ny, and 7, we generate 2 x 107 photons
with a uniform random distribution of frequency in Doppler units
from x = —1000 to x = 1000 with x = (v — vy)/Avp where v is
the frequency of the photons, v1y, is the Ly o frequency and Avp =
Vi VLyo/c, Where c is the speed of light and vy, = \/2kgT /m,,, where
ky, is the Boltzman constant and 1, is the mass of the proton.

The emerging flux density in Doppler units, fi(x, Vexp, N, Ta),
can be transformed to flux density in wavelength units through f; =
cAvpf,/\?, where X is the wavelength. This would give us a tilted f;,
given the A dependency in the transformation. Then, to mimic a flat

MNRAS 510, 4525-4555 (2022)
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input spectrum in wavelength units, we weight each photon by its
wavelength A2, which give us f25.

Once we have the photons for each outflow configuration provided
by LyaRT, we emulate as a post-process the injection of different
intrinsic spectra in the gas geometry. For this goal, we use the
recorded input wavelength, Ay, (uniform in wavelength), and output
wavelength Aoy of the photons, that contains the RT effects. The
Ly « line profile emerging from an outflow with intrinsic spectrum
fn is computed as the probability distribution function of Aoy, in
which each photon is weighted by fi"(Ap).

We do this process for 30 bins of intrinsic line width,
Win[A]€[0.01, 0.05, 0.1, 0.15,0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.,
1.2,1.4,1.6,1.8,2.,2.2,2.4,2.6,2.8,3.,3.25,3.5,3.75,4.,5.25,5 .5,
5.75, 6.] and for 20 evenly spaced bins from log EW;, [/0\] =—1.0to
3.0. These, in addition to the 29 bins in Ve, 18 in Ny and 10 in 7,
there are in total 3132 000 grid nodes. Finally, in order to compute
Ly « line profiles in arbitrary locations inside the grid volume, we
perform linear interpolation between the grid nodes.

There are a few physical mechanisms that are currently not
implemented in zELDA. For example, the Thin Shell model exhibits
spherical symmetry, while in reality, each line of sight for a given
galaxy could be have a different Ly « line profile. Also, the effects
of the intergalactic medium and circumgalactic medium are not
implemented. Another effect is that the measured Ly « line profile
depends on the aperture within which photons are gathered. This is
due to the fact that some photons will be scattered out to regions
far form the galaxy and therefore they might not be inside the used
aperture. We plan to include these effects in a future release of
zELDA. Note we implicitly assume that aperture effects to not modify
the spectra significantly. In principle, the methodologies described
here can be used in a higher dimensional space.

2.3 Validation sample

To quantify the performance of the different algorithms implemented
in zELDA it is necessary to compare with Ly « line profiles that are
not part of the grid used for the interpolation.

We run additional random 200 combinations of {Vexp, Nu, 7,} of
LyaRT with 2 x 10° photons for each. These random configurations
were chosen with a latin hypercube sampling to homogeneously
cover the parameter space {log Veyp, log Ny, log 7,}. In order to dive
the hypercube, the dynamical range of each parameter is divided in
200 evenly spaced bins, making a total of 200° subvolumes. Then,
for each of these configurations, we computed 10 uniformly random
combinations of {log EW,, log W;, }, making a total of 2000 Ly « line
profiles that are independent of zELDA’s line profile grid. Each of
{Vexp» N, Ta, EWin, Win } in this sample covers its full range defined
in Section 2.2. For this line profile sample, the full radiative transfer
is computed, so they represent the ‘real’ line profiles, while zZELDA’s
prediction for these configurations is just an approximation.

Through this work, we mainly measure the accuracy, focusing on
the outflow model, i.e. Vi, > 0. However, as we show in Appendix A,
the methodologies that we explore have the same accuracy for the
inflow model (Vi < 0).

2.4 Accuracy of the interpolation scheme

In this section, we assess the performance of our Ly « line profile
computations that are not included in our grid. In order to quantify the
agreement between the LyaRT’s and zELDA’s output we compute
the Kolmogérov—Smirnov (KS) estimator, which is defined as the
maximum separation between two cumulative distributions.

MNRAS 510, 4525-4555 (2022)

For illustration, we also show nine random individual examples
of the comparison between LyaRT (black) and zELDA (colours) in
Fig. 2. In the right-hand panel there are some examples showing
the line profiles with the typical highest values of KS, i.e, the cases
where zELDA’s predictions are the least accurate. Additionally, in the
middle and left-hand panels we show line profiles with intermediate
and low KS values, respectively. In these cases, we confirm that
the agreement between LyaRT’s and zELDA’s outputs is excellent.
In some cases it is apparent that the zELDA spectra have a higher
signal to noise than the LyaRT spectra. This difference comes from
the number of photons used to measure the line profile. For these
random runs we injected 2 x 10° photons in LyaRT while in
the configurations used for building the grid for zELDA we used
2 x 107,

Meanwhile, in Fig. 3 we show the probability distribution of the
KS estimator. Overall, zELDA’s estimation is sufficiently accurate
in comparison with the full RT computation of LyaRT. The median
KS value is ~10~"# while the 95 per cent of the studied cases exhibit
KS < 10708,

2.5 Generating realistic Ly « line profiles

As described later, in section Section 6, we compare zELDA’s
predictions with real observations of Ly« line profiles. To make
a fair comparison, we put zELDA’s spectrum to the same quality
level than that with which we are making the comparison. This is
also necessary for the training of the deep neural network, as we
explain later in Section 3.

In general, there are three main variables to characterize the quality
of a spectrum. First, the spectral resolution R = A/W, that effectively
dilutes the spectrum with a Gaussian kernel of width W;. Secondly,
the pixelization of the spectrum, i.e. the binning in wavelength used
for the sampling the flux, AApix. And third, the level of signal compare
to the noise of the spectrum. To characterize the third variable, we
use the ratio
Ly«

SINp = 9‘““) :

A f)L ()‘max)
where A, 1s the wavelength of the maximum of the Ly « line profile
and A j;‘ya is the uncertainty in f;‘yu,

The line profiles computed by LyaRT and predicted by zELDA
are ideal. They exhibit an excellent quality with almost infinite
resolution, small pixel size Ax = 0.08A and a high value of S/Np.
With the current instruments, it is unrealistic to expect observed Ly o
line profiles to present a similar quality. To reduce the quality of the
spectrum predicted by zELDA we follow the process described in
Gurung-Lépez et al. (2021). In summary:

@

(1) We dilute the flux density by convolving it with a Gaussian
kernel of with W,.
(ii) We re-bin the spectrum and it is evaluated in A as

Apix+Ahpix/2 L
/ £ 00dr
A

pix*A)tpix/2
A

F i) = 3)
(iii) We compute the maximum of the line profile and we add
white noise for a given value of S/N,.

When dealing with Ly « line profiles at redshift z > 0, first, the
line is redshifted and then we apply the process described above to
reduce the spectrum quality. Note that W, and ALpj are defined in
the observed frame.
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Figure 2. Comparison between the Ly « line profiles computed using LyaRT (black) and zELDA (different colours). These nine examples were randomly
chosen from the 2000 random realization of LyaRT. In the left-hand panel, we choose the lines which comparison had —2 < log KS < —1.2, while in the middle
panel we imposed —1.2 < log KS < —0.7 and in the right-hand panel —0.7 < log KS. The vertical dashed line indicated the Ly o wavelength.
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Figure 3. Comparison between the Ly & line profiles of the 2000 random
realization of LyaRT and those predicted by zELDA. The vertical dashed and
solid black lines indicate the 50th and 95th percentiles, respectively.

In Fig. 4, we illustrate the spectral quality as a function of Wy,
Alpix, and S/N,. In grey we show a mock line profile at z = 0.5
with Veyp = 50kms™", Ny = 10* cm™2, 7, = 0.01, EW;, = 10"
A and Win =0.5 A. The combination of parameters {Wg [/GX], AApix
[Al, S/N, } changes from left to right as {0.1,0.05,15}, {0.2,0.4,10},
{0.4,0.2,7.5}, and {0.8,0.4,6}, respectively. The spectral quality
decreases greatly from left to right, as the number of independent
wavelength bins is reduced and also their signal-to-noise ratio.

In the following sections, we will generate mock Ly « line profiles
encapsulating most of the actually observed spectra. In particular,
we will cover W, from 0.1 A (~24 kms™") to 2 A (~500kms™),
AMpix from 0.05 to 1.0 A and S/N,, from 5.0 to 15.0.

3 FITTING Lya LINE PROFILES WITH DEEP
LEARNING

A novel feature of zELDA is that it incorporates a fitting procedure
on the basis of deep neural networks (DNN): namely, zELDA

can find a best-fitting parameter set given a Ly« spectrum. In
this section, we describe our DNN scheme and how the fitting is
performed. In Section 3.1, we describe the DNN architecture and
training set. Then, Section 3.2 describes how the DNN is used to
estimate the outflow properties, while in Section 3.3 we make a
feature importance analysis in order to understand which parts of
the Ly « line profile contain relevant information about the outflow
parameters.

3.1 Deep neural network architecture and training

Here, we describe our DNN scheme. First, in Section 3.1.1 we
describe the input and output of the neural network. Then, in
Section 3.1.2 we describe the sample used for the training set.

3.1.1 Input and output

The input of our DNN scheme is an array of 1003 variables. 1000
of these contain the information about line profile, and the other 3
about its quality and a proxy for the redshift of the source. In terms
of the line profile, we apply the following methodology:

(1) Find the wavelength global maximum of the line profile X ax.
We use this wavelength as a proxy for the true Ly « wavelength of
the line Arpe. In general Aqye 7 Amax. Therefore, the proxy redshift
iS Zmax = Amax/Arye — 1.

(ii) Convert the line profile to the proxy rest frame, f,\L’ Y
Specifically, we convert the array where £, is evaluated in the
observed frame, )ngs to the rest frame wavelength as if Arye = Amaxs
ie A%, = A%/ (1 4 Zmax).

(iii) Normalize our line profile by its maximum f;*(Amay). We
do this so that all the line profiles have a similar dynamical range in
density fluxes. This increases the accuracy in the predictions of the
DNN.

(iv) We re-bin ft ym‘f‘x into 1000 bins from Apy, — 18.5 A to
Alye + 18.5 A (corresponding to v € [+2719] km s7h using linear
interpolation between the values of f,%% evaluated in 1%,. We
chose this range because it covers all the Ly « line profile features.
Additionally, the value of 1000 bins in wavelength is arbitrary as

long as it is big enough to sample properly this wavelength range.
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Figure 4. Illustration the spectral quality as a function of Wy, Alpix, and S/N,,. In grey, we show a mock line profile with Veyx, = 50km s7!, Ny = 102
em™2, v, = 0.01, EWi, = 10" A and Wi, = 0.5 A at z = 0.5. From left to right, the spectral quality decreases, with parameters {Wg[A], Ahpix[Al S/Np},
{0.1,0.05,15}, {0.2,0.4,10}, {0.4,0.2,7.5}, and {0.8,0.4,6}, respectively. The coloured lines show the best-fitting line profile for the different fitting schemes.
In particular, red marks deep learning, blue the Monte Carlo deep learning, and green the Monte Carlo Markov Chain methodology. On the left of each panel
we display the KS estimator values for each fit, from top to bottom the DNN, MC DNN, and MCMC methodologies.

We checked that increasing the resolution in the binning does not
lead to better results.

Finally, the other 3 variables in our input arrays are Zyax, W, and
Apix-

zELDA contains two deep neural networks (DNN), which are
trained to predict the outflow and inflow properties associated with a
Ly « line profile. Each of the two DNN that predict the inflow/outflow
properties uses a regression algorithm for six variables: log |Vep|,
log Ny, log t,,, log EWjy,, log Wi, and the displacement between the
wavelength set as Ly o and the true Ly « wavelength in the proxy
rest frame, Are. For this last quantity, the true Ly o wavelength in

the observed rest frame, A2, can be reconstructed as

)v(r)bs
Al Trye = )‘%ue - )‘«Lya = )\Lya ( = — 1) s (4)
)\max
where we have used that the true Ly o wavelength in the proxy frame
is A% /(Zmax + 1). Once 222, is computed, the redshift of the source

is set simple as z = AQ% /Aryo — 1.

3.1.2 Deep neural network training

Our training sets are composed by Ly o line profiles spawning the
whole range of Vey,, Ny, T4, EWjp, and Wi, covered by zELDA
and a wide range of Wy, AApix, and S/Np. In particular, our default
DNN to predict the outflow properties spawns uniformly log W, [A]
€ [—1, 0.3], log Aipy [A] € [—1.3, 0.3], log S/N, € [0.7, 1.6],
and z € [0.001, 4.0]. We decided to use these dynamical ranges
as they cover most of the spectroscopic Ly « lines in the literature.
Furthermore, sources at larger redshift are prone to exhibit a Ly o
line profile clearly affected by IGM effects (Laursen, Sommer-Larsen
& Razoumov 2011; Byrohl et al. 2019; Gurung-Lépez et al. 2020),
which are not included in our model. For this reason, we train only up
to redshift 4 (note, however, that even for z < 3 the IGM can affect
the Ly o line shape Gurung-Loépez et al. 2020; Byrohl & Gronke
2020). Note that zELDA includes all tools to build the training sets
for the neural networks described here. Users may choose their own
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dynamical ranges for all properties described here if they require a
custom DNN.

Both the inflow and outflow DNNs are trained in the same
outflow/inflow parameter hyper-volume:

(i) log |Vexpllkms™'] € [1.0, 3.0],
(i) log Ny [em™2] € [17.0, 21.5],
(iii) log 7, € [ — 4.0, 0.0],

(iv) log EWin[A] € [0.7, 2.3],

(v) log Win[A] € [ — 2.0, 0.7],

where for inflows Ve, < 0 and for outflows Ve, > 0. Also, in
principle zELDA is designed to estimate the properties of Ly « line
profiles, therefore we decided to train only EW;, greater than 1007
A. As we will show in Section 6 all the observed spectrum that we
analyse is well above this threshold.

To determine the best DNN configuration for our problem, we
tested several configurations with different number of hidden layers
and different hidden layer sizes. In summary, we found that a DNN
with 5 hidden layers, each with 256 nodes is optimal to predict the
inflow and outflow properties given our input for the DNN.

Note that in zELDA, we have incorporated all tools to produce the
training sets. In this way, if users desired to have their own custom
DNN, with a particular redshift range, AApiy, Wy, etc, or even change
the hidden layer configuration, they would be able to train their own
deep neural network.

3.2 Inflow and outflow properties estimation in the DNN

We have incorporated two different methodologies in zELDA to
estimate the inflow and outflow properties for a given Ly« line
profile using the trained DNN. These methodologies are applied
indistinctly to the inflow DNN and to the outflow DNN. Basically, in
the first methodology, the DNN is applied once to the Ly « line profile
(Section 3.2.1). Meanwhile, in the second methodology we perform
a Monte Carlo perturbation of the line profile (Section 3.2.2), which
gives an estimate of the uncertainty of the measurement.
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Table 1. Parameters associated with the line profiles displayed in Fig. 4.
Parameter Unit True Wy =0.1 A Alpix = 0.05 A We =0.2 A Alpix = 0.1A
SN, = 15.0 S/N, = 10.0
DNN MC DNN MCMC DNN MC DNN MCMC

z 0.5 0.5 0.5001F4-2¢=04 0.500273-8e-04 0.4998 0.575 7% 0.5002124e=0
Vesp kms™'] 50.0 502 5751 5o 629195 01 48.1 50055101 LI
logNy [em 2] 20.0 19.9 19.9722=01 19.773 7701 20.2 20.0733¢701 19.8733¢-02

2.2¢e—01 6.3¢—01 2.1e—01 2.5¢—02
Taq 0.01 0.036 0.05823" 0% 0.102%93705 0.0 0.011%11°705 0.15%330705
logEWin (A] 1.5 1.65 1.64723—01 1797302 1.65 17273801 1.8733e-02
Win (Al 05 04 035115751 044177751 02 0291350751 064350
Parameter Unit True Wy =04 A Adpix =02 A Wy =0.8 A Arpix = 0.4 A

SIN, =7.5 SN, = 6.0
DNN MC DNN MCMC DNN MC DNN MCMC

z 0.5 0.5004 0.50067 7<% 0.5005733¢=03 0.5003 0.5007+6 le=04 0.5008 13503
- s 500 1374 OLITIERR joaathet ao6 sTeiil 1e0r 3
logNy [em~2] 20.0 19.5 19.240300 19.47Fev0 19.7 191783200 18.875470)
> 0.01 0.001 0.0061 8102 0.032+40¢=01 0.003 0.003755¢-%2 0.002F)0¢=%2
logEWin [A] L5 1.56 1.5973-2=01 1.72F} 308 1.72 171733701 1.6%39702
Win (Al 0.5 0.94 0.47130¢7 01 0.81153¢70] 1.0 0.4473- 801 1.197] T2

3.2.1 Direct output from the DNN

The first and most basic methodology for measuring the in-
flow/outflow properties of a Ly « line profile is just to use the line
profile as it is.

To estimate the accuracy of this methodology, we generate several
samples of mock Ly « line profiles. We build these samples starting
from the extra LyaRT sample described in Section 2.3. This Ly o
profile set covers a wider range in EW;, than the sample used for
training the neural network described in Section 3.1.2. Therefore,
for each {Vexp ,Nu,7,} combination, we generate 10 new line profiles
with randomly uniform EW;, values across the range used in the
DNN training, resulting in 2000 Ly « line profiles. These line profiles
are ideal in terms of signal to noise, resolution, and wavelength
sampling. We produce samples with realistic quality by conducting
the procedures described in Section 2.5 to the sample of Ly
line profiles just described. Then, for each combination of {S/N,,,
A)\,pix,Wg}, we measure the accuracy of each property as the standard
deviation of the difference between the true and the predicted values
of the six output variables.

In Fig. 4, we show examples of the best-fitting line profile produced
by the DNN methodology (red) to mock line profiles with different
spectral quality. The accuracy of the fit depends on the spectral
quality of the line. This is quantified in Table 1, where the parameters
of the best fitting spectrum are listed. In general, for the best quality
configuration, the predicted parameters are close to the intrinsic
values. Then, as we decrease the spectrum quality, the predicted
parameters become less accurate.

In Fig. 5, we list the accuracy for the six variables that the DNN
predicts, i.e. Vixp, Ny, and 7, in the top row from left to right
and AAre, EWipn, and Wy, in the bottom row from left to right. In
particular, we did this analysis for the sample described in Section 2.3
for each combination of the quality variables S/N,, = [5.0, 8.0, 15.0],
W, = [0.1, 1.0, 2.0] A and Axpy = [0.05, 0.1, 0.25, 0.5, 1.0] A.
The line profiles were homogeneously distributed from z = 0.001
to z = 4. In general, the accuracy of this methodology depends on
the quality of the line profile, achieving better results as the quality
improves, i.e. larger values of S/N, and lower of W, and AApjy.
We find that this methodology predicts with a great accuracy Vi,

Nu, EWiy, Aktne, and Wi,. Specially for log Ve, log EW;,, and
log Wi, which are recovered with a 0.6, 0.36, and 0.45 uncertainty
respectfully even in the most challenging cases with the worst quality.
Then, for Ny the accuracy is below one order of magnitude for the
majority of the quality configurations explored here. For samples
with good quality, the uncertainties in log Vexp, log Ny, log EW;,, and
log Wi, are as low as 0.17, 0.43, 0.15, and 0.25. We also find that
the uncertainty in determining A Ay, is ~0.31 A (~76.5kms™") for
the best quality configurations and ~1.6A (~395.2kms™") for the
most challenging. This is an improved accuracy compared to other
redshift estimation methods used in the literature (e.g. Verhamme
et al. 2018; Byrohl et al. 2019; Muzahid et al. 2019; Runnholm et al.
2021), see Gurung-Lopez et al. (2021) for a comparison.

Regarding 7, we find uncertainties largwe also illustrate the
accuracyer than one order of magnitude over the full quality range
considered. This might be caused by the fact that the dust in some
cases does not impact significantly the line profile shape. Other works
in the literature that extract outflow properties from line profiles have
found the same challenge estimating 7, (e.g. Gronke 2017).

3.2.2 Monte Carlo iterations of the DNN

The second methodology1.5 to extract the inflow/outflow parameters
from a given Ly « line profile consists in perturbing the flux density
fAL Y¥()) by its uncertainty A f,\L Y¥()) and using the result line profile
as input for the DNN iteratively. We will refer to this procedure as the
Monte Carlo methodology. For each random perturbation of the line
profile the DNN predicts a different set of {1og | Vexpl, log Ny, log 7,,
AATpge, log EWiy, log Wiy} Then, the inflow/outflow parameters
predicted by this methodology are defined as the percentile 50th
of the distribution of them. Also, their uncertainty is computed using
the corresponding percentiles of the distributions. For example, the
top and bottom lo uncertainty would be the 16th and the 84th
percentiles.

In Fig. 6, we illustrate the Monte Carlo methodology for a mock
Ly o line profile (shown as a grey cross in the corner plots and in
grey in the top-right panel) at redshift 3.0 and with quality W, =
0.5 A, Arpix = 0.1 A, S/N, = 10. The outflow parameters used to
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6(log Vexplkm s™']) o(log Nu[ecm™]) o(log Ta)
SIN, | W, Alpix | Adpix | Adpix | Apix | Adpix SIN, | W, Alpix | Adpix | Adpix | Adpix | Adpix SIN, | W, Adpix | Adpix | Adpix | Apix | Adpix
0.05 A|0.10 A|0.25 A{0.50 A[1.00 A 0.05 A{0.10 A{0.25 A{0.50 A[1.00 A 0.05 A|0.10 A|0.25 A[0.50 A[1.00 A
150 | 0.14 0.37 15.0 | 0.14 0.78 15.0 | 0.14 142
1.0A 0.31 | 0.38 1.0A 0.83 1.04 1.39 | 1.38
2.04 0.34 | 0.35 | 0.43 2.0A 0.73 | 0.85 2.04 14 | 1.39
80 |0.14 0.34 | 041 | 047 80 |0.14 0.79 | 093 | 1.04 80 |0.14 | 14 | 143 | 1.5 | 1.53 | 1.49
1.04 031 | 0.36 | 0.43 | 0.49 1.0A 0.8 | 0.95 | 1.08 1.04 | 145 | 1.45 | 148 | 1.48 | 1.48
204 | 0.34 | 037 | 043 | 0.46 | 0.51 204 [ 073 | 077 | 088 | 099 | 1.1 204 | 145 | 145 | 146 | 1.49 | 1.48
50 | 0.14 | 036 | 0.39 | 0.45 [ 0.52 | 0.6 50 | 014 [ 084 | 09 | 1.0 | 1.15 | 1.29 50 | 0.01A | 155 | 1.57 | 1.54 | 1.59 | 1.54
1.0A | 037 | 0.4 | 048 | 0.54 | 0.6 1.0A | 085 | 09 | 1.07 | 1.18 | 1.31 1.0A | 153 | 155 | 1.55 | 1.56 | 1.54
204 | 043 | 046 | 0.52 | 0.57 | 0.6 204 1092|097 | 1.11 | 1.2 | 131 204 | 151 | 152 | 1.51 | 1.56 | 1.55
o(Ako[A]) o(log EWin[A]) o(log Win[A])
SIN, | W, Adpix | Adpix | Adpix | Adpix | Adpix siv, | w, Adpix | Adpix | Adpix | Adpix | Adpix SN, | w, Adpix | Adpix | Adpix | Adpix | Adpix
0.05 A|0.10 A[0.25 A|0.50 A[1.00 A 0.05 A[0.10 A{0.25 A[0.50 A[1.00 A 0.05 A|0.10 A[0.25 A|0.50 A[1.00 A
15.0 | 0.14 15.0 | 0.14 15.0 | 0.14
1.0A 1.0A 1.0A 0.32
2,04 2.0A 2.04 0.34
8.0 | 0.14 8.0 | 0.14 8.0 | 0.14 033 | 0.35 | 0.38
1.0A 1.0A 1.04 0.35 | 0.38
2,04 2.04 2.04 032 | 0.33 | 0.36 | 0.41
50 | 0.14 0.736 50 [0.14 [ 027 [ 027 | 03 | 033 | 0.36 50 | 0.14 | 032 | 033 | 0.37 | 0.41 | 0.45
1.0A 0.739 | 0.868 | 1.119 | 1.447 1.0A | 024 | 025 | 0.28 | 0.33 | 0.36 1.0A | 033 [ 0.34 | 0.37 | 0.41 | 0.45
2.0A |0.956 | 1.165 | 0.911 | 1.469 | 1.639 204 | 024 | 024 | 027 | 03 | 0.36 204 | 033 | 033 | 0.38 | 039 | 0.45

Figure 5. Standard deviation of the difference between the true and the predicted inflow/outflow parameters in the direct DNN methodology. In the row, Vexp,
Ny, and 7, from left to right. In the bottom row, AAte, EWin, and Wi, from left to right. Cells are coloured by their value and darker means lower (better).

generate the line profile are Vi, = 200 km s™!, Ny = 10"%ecm2, 7,
=0.1, W, =0.1 A, and EW;, = 100 A. The line profile predicted by
out Monte Carlo methodology is displayed in blue, as well as the 1D
and 2D distribution of the posteriors. The values of the percentiles
50th are displayed as the dashed black lines.

Additionally, we also illustrate the accuracy of the the MC
methodology in Fig. 7, where we compare the intrinsic (horizontal
axis) and predicted (vertical axis) outflow properties for a sub set of
200 line profiles from the 2000 used in Section 3.2.1. In particular we
make this analysis for a quality configuration of W, = 0.5 A, Ahpic
=0.1A, and S/N, = 10. For this quality, we find a tight correlation
between the intrinsic and predicted parameters in general. Also the
error in estimating Aty is almost always below 1 A.

In Fig. 4, we show four particular examples of the MC DNN
performance for different spectral quality configurations. As in the
DNN methodology, by looking at Table 1, we find that spectrum with
less quality have lower accuracy in the estimated parameters. In these
cases, for the good quality line profiles, the shape of the spectrum
and the outflow parameters are well recovered.

Here, we characterize the accuracy in the outflow/inflow parame-
ters as a function of the Ly « line profile quality. For this, we repeat
the exercise done for the direct DNN methodology, but for the MC
methodology. In the top row of Fig. 8 we list the standard deviation
of the difference between the intrinsic and predicted parameters
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(log |Vexpl, log Ny, log 7, from left to right) as well as in bottom
panel for AArye, log EWy,, log Wy, from left to right. In general, we
find that, as well as in the case of the direct DNN measurement, the
better the quality, the higher is the accuracy. The accuracy of the MC
methodology is also excellent, with uncertainties as low as 0.14 for
log [Vexpl, 0.34 for log Ny, 0.25 A (~61.7kms™") for AAqpe, 0.12
for log EW;, and 0.22 for log W;,. Meanwhile, the uncertainty in 7,
is about one order of magnitude.

A direct comparison between the accuracy of both methodologies
(Figs 5 and 8) shows that the MC methodology is slightly more
precise than the direct measurement through the explored range of
quality. For example, this becomes apparent in the accuracy of AAqy,e
for the best configuration considered (W, = 0.1 A, Adpix = 0.05 A,
and S/N, = 15). Meanwhile for the direct DNN output o (AAqp) =
031 A (~76.5kms™ 1), for the MC methodology o (AAtye) = 0.25
A (~61.7kms™"). This is the case also for the other outflow/inflow
properties, but Aty is the one with the most prominent differences
in accuracy.

We have explored the converge of the outflow/inflow parameters
as a function of the number of iterations in the MC analysis. We
have found that for 1000 iteration the percentiles converge and that
increasing the number of realization does not lead to different results.
Therefore, unless otherwise stated, we have used 1000 iterations in
all the shown MC DNN measurements.
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Figure 6. Illustration of the Monte Carlo methodology using our DNN for a mock Ly « line profile, at redshift 3.0, Vexp = 200 km sTL,Ng=108cm™2, 7, =
0.1, Wi, =0.1 A, and EW;, = 100 A and quality Wy = 0.5 A, Alpix = 0.1 A, S/N;, = 10. The grey cross is the true outflow parameters, the black dashed lines
indicate the percentile 50 of the distributions of the outflow parameters predicted by the DNN after perturbing the input Ly « line profile consecutively by its
uncertainty. In the top right-hand panel, we display the input Ly o line profile in grey and in blue, zELDA’s prediction, which corresponds to the percentile 50
of the outflow parameters distributions. The yellow curves indicate the 1o and 2o contours of the 2D distributions.

3.2.3 Uncertainty accuracy in the Monte Carlo DNN methodology

In this section, we test the accuracy of the uncertainties computed
by the Monte Carlo deep neural network methodology. In general,
it is challenging to have a good estimation of the uncertainty of
the quantities predicted by deep neural networks (see Kuleshov,
Fenner & Ermon 2018). For example, it might be the case that for a
90 per cent confidence level, more (less) than the 90 per cent of the
times the true solution is compatible with the measurement, which
would mean that the uncertainty is overestimated (underestimated).

To assess the accuracy of the MC DNN methodology, we compare
the fraction of times that a measurement is compatible with the true
observable as a function of the confidence level. Here, we study the

same samples used previously to quantify the accuracy of the MC
methodology as a function of the line profile quality. For example,
for a confidence level of a 10 per cent we compute the fraction of
cases feomp in Which the true quantity is between the 45th and 55th
percentiles of the posterior of each outflow/inflow property returned
by the MC DNN approach.

We performed this analysis for all the quality configurations
explored in Fig. 8, but here we arbitrarily focus on the sample
with Wy = 0.5 A, Aipiy= 0.1 A, and S/N, = 10, as we find
similar results in the other samples. Of course the accuracy of the
uncertainties depends on the number of MC realization performed
in the analysis. We find that for 1000 iterations the uncertainties
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Figure 7. Accuracy of DNN predictions. 200 mock line profiles computed making interpolation in the grid with random outflow parameters and from redshift

0.0001 to 4.0 with quality Wy = 0.5 A, Axpix = 0.1 A, S/N, = 10.

have already converged. As illustrated in Fig. 9, in general the biases
in the uncertainties derived using the MC DNN methodology are
below the 10 per cent level (blue). For comparison, we also display
the case of purely Gaussian measurements (red). In some cases,
the outflow/inflow parameter uncertainties are overestimated while
others are underestimated. In this particular case, the uncertainty of
Vexp» Ta» and Wi, are underestimated. Meanwhile, the uncertainty
of Ny, EWi,, and AAye are overestimated. Although, this analysis
probes that the uncertainty calculation is not perfect, it also shows
that its bias is below the 10 per cent, and we regard it as a good
enough estimation that we will improve it in future version of the
code.

3.3 Feature importance analysis

In this section, we perform a feature importance analysis to our DNN
in order to analyse which DNN input variables are more determinant
to predict the line profile properties.

There are several methodologies to estimate the impact of a DNN
feature into the DNN output. One of the most common technique is
Feature Perturbation (Lundberg & Lee 2017; Hooker et al. 2018).
In this methodology, the importance of a given feature in a sample is
computed by shuffling the values of a that particular feature among
all the sample objects and passing the new shuffled sample to the
DNN. Then, the comparison between the accuracy obtained using
the original sample and the new sample with the shuffled feature
determines the importance of that feature. In general, the accuracy
of the DNN using the new shuffled sample will be worst, as the
information contained by the target feature is removed. For example,
the importance of a given feature F in determining a given output
variable T could be define as IT = o /oT — 1, where o7 is the
standard deviation of the difference between values of the true output
variable and predicted output for the original sample. Also, oy is the
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analogous of o7 but in the sample in which we have shuffled the
feature F. In this way, if the accuracy heavily decreases after shuffling
a given feature (o rises), it would suggest that the shuffled feature
has a significant importance (I} increases). In the same way, If = 0
indicates that the accuracy is not affected by removing the studied
feature. Note that since the quality of the estimate is decreased, we
have generally o > o and, hence, IT > 0.

We analyse the sample of ~2000 line profiles described in
Section 3.2.1 with quality W, = 0.5 A, Api, = 0.25 A, and SN,
= 15.0. We tested that we find similar trends for the other quality
configurations.

First, we focus on the non-spectral features in the input of the
DNN. In order to study the importance of Wy, AApiy, and Zm.x We
apply a similar procedure as the explained above. However, since all
the line profiles have exactly the same values of W, = 0.5 A, Adpy =
0.25A, shuffling these features across the sample would not change
the result. Instead, we assign each line profile random values of W,
and AAp;x homogeneously distributed in the range in which the DNN
was trained (see Section 3.1.2). Meanwhile, 7z, is shuffled across
the population, which is homogeneously distributed from z = 0.001
to 4. For each line profile we perform 1000 perturbations.

We show the results in the top left corner of each panel of Fig. 10.
Each panel corresponds to a different output variable, Ve, Ny, and
z from left to right of the top row and 7,, EW;, and W;, from left to
right in the bottom row. In general, we find that the importance of
these three features is different on predicting each of the six output
variables. Also, these features exhibit a small impact (I < 0.05) on
the output of the DNN. In the most extreme case, the importance of
W, determining V., is 0.042, which means that the accuracy drops a
4.2 per cent when W, is removed from the analysis. Additionally, we
find that Wy, AApix, and zma have a impact greater than 1 per cent
in predicting Veyp, Nu, EWj,, and Wi,. Meanwhile, only AApi, has an
impact greater than 1 per cent in determining the redshift of source.
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Figure 8. Standard deviation of the difference between the true and the predicted inflow/outflow parameters for the MC DNN methodology. In the upper row,
Vexp> Nu, and 7, from left to right. In the bottom row, AAtwe, EWin, and Wi, from left to right. Cells are coloured by their value and darker means lower (better).

Finally, none of the three variables seem to be important to determine
7,4, as they affect less than 1 per cent the accuracy.

Regarding the importance of the spectral features, we find it
interesting to study the importance of the rest-frame wavelength into
determining the output outflow parameters and redshift. However,
note that, the flux density that we use as input to the DNN is in the

proxy rest frame that assumes that the maximum of the line profile is
Ly o, as explained in Section 3.1.1. Therefore, we need to make some
adjustments to the procedure described above, but keeping the same
philosophy. So, instead of perturbing the features corresponding to
the line profile, we are going to perturb the observed line profiles
directly.
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Figure 9. Comparison between the fraction of cases that a measurement is compatible with the intrinsic true value as a function of the confidence level. This
particular figure shows the results for a sample of 2000 line profiles with quality Wy = 0.5 A, Akpix =0.1 A, and S/N, = 10.

Another challenge in determining the importance of a given rest-
frame wavelength is that the flux density bins are not independent
among them. This implies that even if we remove the information of
only one spectral bin, the neighbour bins would still contain infor-
mation about the removed bin. This can affect to the determination
of the importance of a given line profile bin, as its information is
still fed to the DNN through nearby bins. In order to overcome this
challenge, instead of removing the information of individual density
flux bins, we remove the information of flux density chunks of width
1A (blue) and 2 A (green) in the rest frame of the source.

To sum up, the procedure to study the importance of a given density
flux chunk centred at ,\g with width AA¢ is the following. First, we
convert from observed frame to rest frame all the line profile sample.
Secondly, we measure the PDF of all the density flux bins in the rest
frame wavelength window ranging from A5 — Ak/2to Al + Axg/2.
Thirdly, we substitute the density flux values in the same wavelength
chunk by random values of flux density following the same PDF. In
this way, we remove all spectral the information within A5 £ Ax¢/2.
Finally, we apply the DNN to the new sample with the removed
information and measure the accuracy in the outflow parameters. We
make this analysis for 100 rest-frame wavelength chunks and 1000
perturbations each.

We present the results of the feature importance analysis of
the rest-frame wavelength in Fig. 10. We show the result of this
analysis for two chunk sizes, Ai; = 1.0 A (blue) and AXr; = 2.0
A (green). Overall, both wavelength chunk sizes exhibit similar
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trends. In particular, the importance of the wavelength chunks of
size Ads = 2.0 Ais greater than those of size AA; = 1.0 A. This is
caused by the fact that the larger the chunk size, the more information
is removed.

In general, we find that each rest frame wavelength chuck con-
tributes differently to each DNN output variable. A common pattern
is that the regions 45 A of Ly « contribute the most to determining
the output. Also, the importance tends to extend more towards redder
wavelengths than to bluer. This might be due to the fact that in
the Thin Shell outflow, in the explored parameter volume, there is
more variance in the shape of the red peaks than in blue peaks. For
example, for large values of Ve, the line profiles tend to exhibit
only an asymmetric wide red peak with a red tail. Meanwhile, no
combination of parameters produce a blue peak with a blue tail as
extended as in the red case. It is noticeable that some wavelengths
chunks play an important role in determining Veyp, Ny, and z, as the
importance goes up to 1.5, i.e. the accuracy drops a 150 per cent
when these chunks are removed. In comparison, the chunks in 7,
EW,,, and W;, have less importance as they go up to ~0.4 (notice the
different scale in the Y-axis).

From this analysis it is clear how some of the output variables
are estimated in the DNN. Overall, we find that that naturally the
typical spectral width is imprinted in the importance curve. However,
there are some additional interesting features. The most apparent is
EW,,, where the range AXy < —5 Ahasa significant importance. In
contrast, these chunks exhibit little importance (<0.05) in the other
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Figure 10. Feature importance analysis for the quality configuration Wy = 0.5 A, Aipix = 0.25 A, and S/N;, = 15.0. Top panels show the importance in
predicting Vexp, Nu, and z from left to right, respectively. Bottom panels show the importance in finding t,, EWi, and Wi, from left to right, respectively. The
blue lines show the importance of each wavelength chunk around the corresponding rest-frame wavelength. In the top right corner of each panel we display the
importance of Wy, ALpix, and zmax determining the value of the DNN output variables. The horizontal dashed line indicates zero importance. Finally, the size
bar in the top left panel illustrated the size of the wavelength chunks used in the analysis. In solid yellow we display the stack of the line profiles used, computed
as the 50th percentile. The yellow shade indicates the 16th and 84th percentiles of the distribution of line profiles.

output variables. One possible interpretation is that the DNN uses
this wavelength range to estimate the continuum, while it uses the
chunks close to Ly « to determine the injected flux. The combination
of these two properties would give EWj,.

Another interesting feature appears in the importance of determin-
ing the redshift, which exhibits a small bump at Axg ~ —5 A. As
pointed out by Verhamme et al. (2018), the position of the blue and
red peaks in a Ly « line profile can give a good estimation for the
redshift. The small bump in the importance could be seen as if the
DNN was using these wavelength to estimate the redshift in some
cases.

4 FITTING Lya LINE PROFILES WITH MONTE
CARLO MARKOV CHAIN

In addition to the deep neural network approaches, zELDA also
includes a Monte Carlo Markov Chain methodology to infer the
outflow/inflow properties from an observed Ly « line profile. This
technique has already been explored in the literature, giving reason-
able results for fitting observed Ly « line profiles (e.g. Gronke et al.
2015). In Section 4.1, we describe the MCMC methodology, while
in Section 4.2 we analyse its performance on mock spectrum.

4.1 Methodology

In our MCMC scheme the fitting is done in the observed frame using
emcee (Foreman-Mackey et al. 2013). There are six variables in
our MCMC approach: {Vep, Nu, Ta, EWin, Wiy, z}. For each step
of each walker we compute a Ly o line profile with the same W,
and Aipix as the observed spectrum, as described in Section 2. In

particular, given the observed density flux of a Ly « line profile f; (1)
and its uncertainty o’; (A) with n wavelength bins evaluated in A,, we
minimize the logarithmic of the likelihood, i.e.

1 (f)»()“n) - ):n()‘n))z 2
log L = — — = —Ino;(A,)|, 5
¢ 22{ 07 () 20 ©
where f}"(X,) is a mock Ly « line profile computed with the same
W, and Apix as the observation and {Vexp, Nu, Ta, EWin, Wiy, 2} of
that walker in that step.

The procedure followed in the MCMC scheme is:

(1) We define a redshift range where to run the MCMC. For this,
first we find the wavelength global maximum A, of the line and
compute the redshift z,,« assuming that A, corresponds to the
observed Ly o wavelength. Then the redshift interval is z,, £ 0.002.

(i1) In order to initialize the model parameters we perform a fast
Particle Swarm Optimization (PSO) using PySwarms (Miranda
2018) minimizing

oS {(fmn) — "GP

o7 (An) ©

n

This analysis is a first attempt to fit the observed line profile and,
although even if the fit is not perfect, it narrows down the 6D volume.
The initial position of the walkers is then set around the PSO solution.
Additionally, in zELDA there are other two methods for initializing
the walkers for the MCMC. (i) covering homogeneously the 6D
volume and (ii) using the output of the MC DNN analysis. However,
in the results shown in this work we always make the walkers
initialization with the PSO algorithm.
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Figure 11. Standard deviation of the difference between the true and the predicted inflow/outflow parameters in the MCMC methodology. In the row, Vexp, N,
and 7, from left to right. In the bottom row, AAtwe, EWipn, and Wi, from left to right. Cells are coloured by their value and darker means lower (better).

(ii1) We perform a first MCMC iteration with 500 walkers, with
a ‘burn-in’ phase of 200 steps and a consecutive run of 1000
steps. In general, the this leads to a complex and multi modal
likelihood distribution (see Gronke et al. 2015). This process yields
the parameters with maximum likelihood.

(iv) Then we perform a second iteration of the MCMC, running
with the same settings but using for initializing the walkers around
the peak positions computed in the previous step.

(v) We repeat this process until the solutions of the actual MCMC
run and the previous iteration are compatible. Normally, only two
iterations are required.

4.2 Performance

In Fig. 4 we show the four examples of line profiles of different qual-
ities fitted with the MCMC methodology (green), while the outflow
parameters are listed in Table 1. The MCMC methodology predicts
outflow parameters close to those intrinsic. As the spectral quality
is decreased, the parameters become less accurate progressively but
are still consistent with the true parameters.

In Fig. 11, we list the accuracy of the MCMC methodology as a
function of the quality of the line profile. For these analysis we used
50 randomly chosen mock line profiles from the samples described
in Section 3.2.1. For the 50 mock line profiles, the redshift and
outflow properties {Vexp, Ny, T4, EWiy, Wiy} are the same across all
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the quality configurations. We made this analysis with only 50 line
profiles per quality configuration due to the heavy computational cost
of the MCMC analysis (see Section 5).

Overall, as for the DNN and MC DNN schemes, the performance
of the MCMC methodology improves as the quality of the spectra
increases. We find that for the best quality configurations considered,
S/N, = 15, Akpix = 0.1 A, and Wi, = 0.1 A, the Vexp accuracy is as
good as 10%% kms~!. For this quality configuration, the accuracy
in the determination of the Ly« wavelength is also good with
o(Axg) =~ 0.12 A.

5 COMPARISON BETWEEN METHODOLOGIES

In this section, we compare directly the different methodologies
available in zELDA. As discussed, zELDA contains three method-
ologies to fit Ly « line profiles that could be split into two categories;
those using the deep neural network (DNN and MC DNN) and
that using the Monte Carlo Markov Chain algorithm (MCMC).
Each of these categories have a different philosophy in the fitting
procedure. While the MCMC fits the shape of line profile to get
the outflow parameters, the deep neural network procedures fit the
outflow parameters and as a ’by product’ they reproduce the shape
of the line. These methodologies also have different accuracy and
different computational cost, being the MCMC procedure much more
expensive than the deep neural network approaches (see below).
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Figure 12. Standard deviation between the input and predicted quantities for the DNN (red), MC DNN (blue), and the MCMC (green) methodologies as a
function of S/N;,. The shown outflow properties are Vexp, NH, T, (top from left to right), EWj,, Wiy, and AArpe (bottom from left to right). Here, we show the
results for two spectrum qualities: Wy = 1.0 A, Adpix =0.25 A (squares) and Wy = 2.0 A, Adpix =05 A (dots).

On one hand, the MCMC samples the parameter space looking for
the region in which the mock line profile fits better the shape of the the
target line profile through equation (4.1). We have tested the accuracy
of the MCMC procedure in Section 4.2 on mock line profiles, finding
that, by fitting the shape of the line profile with the MCMC, the
output outflow parameters match the input parameters (with some
uncertainty). On the other hand, DNN and MC DNN make use of
a deep neural network in which the input is the line profile and its
quality and the output are the outflow parameters (see Section 3.1.1).
In this sense, the deep neural network is trained to fit the relation
between the line profile and the outflow parameters. In Section 3.2,
we tested that the outflow parameters are well recovered (also with
some uncertainty) using the DNN and MC DNN methodologies.
Then, as consequence of the accurate estimation of the outflow
parameters, the line profile shapes are also relatively well recovered
(KS ~ 107!2, see Section 6.2.1.)

The MCMC and the methodologies using the deep neural network
also exhibit different accuracy. In Fig. 12, we compare the accuracy
of the DNN (red), MC DNN (blue), and MCMC (green) methodology
as a function oof the S/N,, for two quality cconﬁgurations: YVg =1.0A,
Akpix =0.25 A (squares), and W, = 2.0 A, Adp;x = 0.5 A (dots). For
the DNN and MC DNN methodologies we used the samples of 2000
mock line profiles also used in Section 3.2.1. Thus, the accuracy
values presented here are the same those in Fig. 5 for the DNN and
in Fig. 8 for the MC DNN. Meanwhile, due to the computational cost
of the MCMC procedure we used a subsample of 100 line profiles.
The error bars indicate the uncertainty in the standard deviation

of the difference between the input and output parameters. Overall
we find that as we improve the spectral quality, the accuracy in
determining the parameters improve. In general, we find that the
accuracy of the MCMC is the best, although it is closely follower
by the MC DNN and then by the DNN. The MCMC methodology
exhibits the best accuracy in determining Veyp, Ny, T, and Adpix —
albeit at a much higher computational cost as discussed below. Then,
the accuracy in EWj, and is similar between the MC DNN and the
MCMC methodologies. Finally, for W;,, the MC DNN procedure
seems the most accurate.

Finally, in terms of computational cost, the MCMC methodology
is considerably more expensive than the MC DNN and the DNN.
The MC DNN approach is computationally cheap as it basically
only needs to load the trained neural network and perform matrix
operations. The typical executions time for the MC DNN method-
ology is ~10s (1000 iterations, one core) per line profile and needs
12MB of Random Access Memory (RAM). Meanwhile the MCMC
is expensive, as in each step of each walker a mock line profile
has to be computed from the LyaRT’s grid and compared with the
observations. The MCMC analysis takes about 1.5 h (one core) per
line profile and it needs ~10 GB of RAM memory, as it has to keep in
RAM LyaRT’s grids. The cheap cost of the MC DNN methodology
allow for a wider variety of analysis. For example, in Section 3.3 we
performed a feature importance analysis, showing which regions of
the line profile contain information about the outflow parameters. In
principle, the same analysis can be done using the MCMC, however,
due to the computational cost, performing a feature importance
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Figure 13. Two examples of the performance of the MC DNN and MCMC approaches to extract the outflow properties of real observed Ly « line profiles.
The model lines given by the MC DNN (MCMC) methodology are shown in blue (green) and the value of the outflow parameters and the 1o uncertainties are
indicated in the same colour in the top left (middle left). The vertical dashed lines and shaded regions mark the value and the 1o uncertainty of the true Ly «
wavelength of the observation (grey) and the Ly « wavelength predicted by the MC DNN (blue) and MCMC (green). The KS estimator is given on the right of

each panel. On top, for the MC DNN and on the bottom for the MCMC approach.

analysis with the MCMC method is challenging. For the analysis
presented in Section 3.3 we predicted the outflow parameters using
the MC DNN for a total of 8 x 10° line profiles. For the time expenses
of the MC DNN, this was feasible.

For the current number of available Ly« line profiles (a few
hundreds in LASD), the MCMC is a helpful tool and in a few
hundreds of hours of computational time the full analysis can be
made. However, future surveys will provide thousands of Ly « spectra
and the use of deep neutral networks such as zELDA will become a
crucial tool to analyse them.

6 zELDA PERFORMANCE ON OBSERVATIONAL
DATA

So far we have demonstrated the accuracy of zELDA’s methodologies
to extract the inflow/outflow parameters from mock Ly « line profiles.
In this section, we apply our methodologies to the observed Ly « line
profiles available in the literature. We describe the used observation
data in Section 6.1, while in Section 6.2 we present our results.

The systemic redshift is an observable that can be measured with
other means, such as finding other emission and/or absorption lines
unaffected by the complex Ly« RT, therefore, in principle, more
reliable. Then, we can compare the systemic redshift obtained from
the Ly « line profile and the other methodologies to quantify zELDA’s
accuracy.

6.1 Observational data description
The observational data used in this work was obtained through the

Lyman alpha Spectral Database (LASD; Runnholm et al. 2021),
that contains to date more than 300 Ly « emission lines at between

3http://lasd.lyman-alpha.com
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redshift 0 and 6.6. As we want to test the redshift accuracy of
zELDA we focus on the local LASD sample with systemic redshifts
estimated using other emission or absorption lines than Ly o. LASD
contains a total of 107 Ly« line profiles with systemic redshift.
From the original 107 line profiles we remove (i) line profiles with
a very steep continuum around Ly «, (ii) spectra with low S/N,,
and (iii) spectra that contain apparently the Ly o« emission line of
several sources. The excluded spectrum is discussed in Appendix B.
This leaves a total of 97 Ly« line profiles from redshift 0 to
0.44 for which the line profiles are shown in grey in Figs 13, 14,
and 15.

The Ly« line profiles used in this work were obtained by the
Cosmic Origins Spectrograph (COS; Green et al. 2012) on board the
Hubble Space Telescope (HST) in the General Observers (GO): GO
11522 and 12027 (PIL: Green, Salzer et al. 2001; Wofford, Leitherer
& Salzer 2013), GO11727 and 13017 (PI: Heckman, Heckman et al.
2011, 2015), GO 12269 (PI: Scarlata, Songaila et al. 2018), GO
12583 (PI: Hayes Hayes et al. 2014; Rivera-Thorsen et al. 2015),
GO12928 (PI: Henry Henry et al. 2015), GO 13293 and 14080
(PI: Jaskot Jaskot & Oey 2014; Jaskot et al. 2017), GO 14201 (PI:
Malhotra Yang et al. 2017), and GO 13744 (PI: Thuan Izotov et al.
2016, 2018, 2020).

These Ly o line profiles have an excellent spectral quality. In
particular, for these line profiles Aipy might take two individual
values; 0.0598 and 0.0735 A, which results in an excellent wave-
length sampling. This is given by the two the medium resolution
gratings G130M and G160M used to observed the sources. The
spectral resolution is also high, and ranges from W, = 0.073 to
0.10 A with median 0.085 A. Finally, the signal-to-noise ratio of
the maximum of the line spawns a wide range from S/N, = 6.5 to
~400 with a median of ~38 and only an ~ 11 per cent of sample
exhibit S/N,, values below 15. Considering this, most of the line
profiles studied here have similar quality to the best case studied in
the previous sections.
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Figure 14. Comparison between the observed line profiles (grey) and the predicted line profiles by the MC DNN (blue) and MCMC (green) methodologies. In
order to make a better comparison of the shape, the line profiles are shown assuming that the maximum of the line is the true Ly o wavelength. In the top right
corner, we display the KS estimator values for the MC DNN (top, blue) and the MCMC (bottom, green) methodologies.
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The name, systemic redshift, Ly o luminosity and observed equiv-
alent width for each of the observed line profiles is listed in Tables C1
and C2.

6.2 Results

Here, we analyse the 97 outflow parameters and redshift estimated
for the 97 observed Ly « line profiles using the MC DNN and the
MCMC methodologies. For these 97 line profiles we only used the
outflow DNN, as none of them show inflow characteristics, such
as a more prominent blue peak than a red peak. All the outflow
parameters given by the MC DNN and MCMC methodologies are
listed in Tables C3, C4, and C5. In Section 6.2.1, we focus on
the line profile shapes recovery, in Section 6.2.2 on the redshift
accuracy, while on Section 6.2.3 we compare the properties obtained
with the MC DNN and the MCMC methodologies. Finally, we study
the possible correlation between the outflow parameters between
themselves on Section 6.2.4.

For illustration, we display two detailed examples in Fig. 13 in the
observed frame. The KS estimator values for each methodology are
shown in the left of each panel. We find that both, the MCMC (green)
and the MC DNN (blue) approaches manage to fit the observed
spectra (shown in grey) well (KS < 0.1). For both line profiles,
the two approaches agree, as the continuum, the red and the blue
peaks are well reproduced. Also, the line profiles predicted by the
MCMC and the MC DNN methodologies are similar with only minor
differences.

Additionally, the systemic Ly« wavelength given by auxiliary
lines is marked in a vertical grey dashed line. For these two cases
we find a good agreement between the measured and the estimated
systemic redshift. In particular, for the line profile in the left, the
difference between the true and the predicted Ly o wavelengths is
~—0.35 A in the rest frame (~ —86kms™!). For the line profile in
the right, this difference is ~0.1 A in the rest frame (~ —24kms™!).

In terms of the outflow parameters, both methodologies predict
relatively similar values. These are shown on the top left in blue
for the MC DNN and in the middle left in green for the MCMC
with their respective =1 — o uncertainties. In particular, in both
cases, the predicted Ve, Ny, and EW;, values are close. Then,
the methodologies predict different values for W, in both cases.
In the first one (left) there is more than one order of magnitude
of difference between the predicted Wj,, while in the second (right)
there is half and order of magnitude of difference. This might indicate
that in this particular configurations Wj, is not important to shape the
line profiles, as the agreement between both methodologies and the
observed data is quite good (KS < 0.1). This is also the case for 7,
that might differ more than two orders of magnitude depending on
the methodology.

6.2.1 Performance reproducing the observed Ly « line profile shape

In Figs 14 and 15, we display the other 96 observed Ly « line profiles
(grey) and the prediction given by the MC DNN (blue) and MCMC
(green) methodologies. Each panel is labelled with a number in the
top left. This number matches the labels of Tables C3, C4, and CS5,
where all the outflow properties are listed. In this comparison we
focus on the shape of the line profiles. Therefore, the line profiles
are shown in the the proxy rest frame, as described in Section 3.1.1,
in which we assume that Ay, is the true Ly o wavelength. Then, in
order to quantify the goodness of the fit we display in the top left
corner of each panel the KS estimator value for the MC DNN (top

Ly o line profile fitting 4543
blue) and MCMC (bottom green) computed in the observed frame.
Meanwhile, the KS estimator distribution is shown in the left-hand
panel of Fig. 16.

We find, in general, that both, the MCMC and the MC DNN
produce an agreement of KS < 0.1 between the predictions and the
observations. Also, in general, zELDA fits better (lower KS values)
the line profiles with a better spectral quality. In particular, we find
that the mean KS estimator value is 10~1?2! for the MC DNN while
it is 107"32! for the MCMC methodology. For example, for the line
profiles with a good signal to noise, (e.g. 3, 5, 8, 9, 16, 22, 26, 29,
31, 32, 33, 38, 46. 55, 59, 64, 65, 67, 68, or 85) we find an excellent
agreement with typical values of KS ~ 0.05. Also, for other line
profile with a lower signal to noise, such as the cases 5, 10, 24, 34,
43, 48, 54, 61, 79, or 95, the agreement is also good (KS ~ 0.09).

Additionally there are some cases in which the MCMC reproduces
well the observed line profile, while with the MC DNN there are
small differences between the observation and the prediction. Some
examples are cases 4, 20, 30, 44, 80, and 82. We find that in the cases
in which the quality of the fit is lower for both methodologies, the
main peak is still well reproduced while the secondary peak might
differ. For example, this happens in cases 4, 7, 19, and 23. This
analysis shows that the shape of the line profiles are well (KS < 0.1)
recovered by both methodologies in general.

6.2.2 Accuracy in systemic redshift estimation

In order to quantify the shift between the redshift given by the MC
DNN and the MCMC methodologies and the systemic redshift, we
use the difference in rest frame wavelength, i.e.

Zchda _ ZSys

1425

where 7% is the true systemic redshift given by a Ly o independent
measurement and z”% in the redshift predicted by our various
methodologies.*

In the right-hand panel of Fig. 16, we show the performance of
recovering the systemic redshift by the MC DNN (blue) and the
MCMC (green) methodologies. We find that both the MC DNN and
the MCMC algorithms exhibit similar performances with the MC
DNN showing slight more accurate results. In particular, the disper-
sion around the true Ly o wavelength in rest frame in the MC DNN
approach is 0.348 A (~85kms~') and in the MCMC approach is
0.366 A (~89 kms~"). This accuracy in the redshift estimation would
lead to accurate clustering measurements down to ~ 2cMpch~! in
the monopole and ~4 cMpc h™! in the quadrupole of the two point
correlation function (Gurung-Lépez et al. 2021). We also find that
both methodologies slightly overestimates the systemic wavelength
in the rest frame by ~0.154 A (~37 km s7!) in the MC DNN
and ~0.181 A (~44 km s") in the MCMC methodology. This was
noticed before in the literature and likely hints towards a shortcoming
of the ‘shell model’ (Orlitova et al. 2018; Li et al. 2021a).

Runnholm et al. (2021) used a parametric method for redshift
estimation in a slightly larger but mostly overlapping sample to ours.
In comparison, our methodologies show a better accuracy in the
redshift estimation. They find a sightly larger scatter (~ 180kms™!,
~0.7 A) around the true value. Also, a similar systemic shift of
~34kms~! (~0.14 A) was also obtained in Runnholm et al. (2021).

Zeld:
ANZEER = 5

(N

4Note that A)»(Z)eld“ is not exactly identical to AATrye, as Adtrels calculated
assuming that the maximum of the line profile is the Ly« wavelength.
However, these two quantities differ less than 0.001A.
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Figure 16. Left: Distribution of the logarithm of the KS estimator for the observed Ly « line profiles by the MC DNN (blue) and the MCMC (green)
methodologies. Right: Distribution of the difference between the true Ly o wavelength (given by the systemic redshift) and the wavelength assigned as Ly « in
the rest frame of the galaxy. For both panels, the mean () and the standard deviation (o) of the distributions are indicated in the top left (MC DNN) and in the

middle left (MCMC).

As mentioned above, understanding whether this systemic shift has
a true physical origin or is due to the simplicity of the ‘shell-model’
is an interesting avenue for future work. Also, in Verhamme et al.
(2018), authors developed an empirical methodology to estimate the
systemic redshift using only the Ly « line profile. They reported an
accuracy of ~ 100kms~! (~0.4 ;\) in a sample of 55 sources at
different redshifts.

6.2.3 Comparison between methodologies

In Fig. 17, we compare the outflow properties predicted by the MC
DNN (horizontal axis) and the MCMC (vertical axis) methodologies.
In the top row we show Vi, Ny, and 7, from left to right, while EW,,
Win, and Aty are shown in the bottom panel from left to right. In
order to quantify the correlation between the MCMC and the MC
DNN we used the Spearman correlation coefficient p, which ranges
from —1 to 1. Large values of |p| indicate tight correlations (if p >
0) and anticorrelations (if p < 0). Overall we find a good agreement
between the properties predicted by the MC DNN methodology and
those predicted by the MCMC approach (p > 0.8). We find that most
of the times the measurements are compatible in the 1o confidence
level with the one-to-one relations.

We also quantify the agreement between the predictions of both
methods by computing the mean (u) and standard deviation (o)
of the distribution of the difference between the output of MC DNN
and MCMC analysis. We show these quantities in their corresponding
panel of Fig. 17. Overall, we find that, for all the properties, the means
are compatible with zero if we consider their standard deviations.
This indicates that, if the MC DNN and MCMC methodologies
are biased, at least they are biased in the same way. We also find
that Vi, is the outflow property that has a better agreement, with
(A log Veyp) = 0.08 and o (A log Viyp) = 0.23. Meanwhile, the
agreement in AArye is remarkable, as pu(A Axgme) = —0.03 and
a(A AAIM) = 0.19.

Considering that the quality of the observed data is usually
comparable (see Section 6.1) to our best mock sample (Aipy =
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0.05, Wi, = 0.1 and S/N;, = 15), the agreement between the MC
DNN and MCMC is consistent with the uncertainties derived for this
level of spectral quality (see Fig. 8).

When we compare the accuracy of the MCMC and the MC DNN
in predicting the systemic redshift of these sources we find that both
have a similar performance. In particular, the accuracy of the MC
DNN methodology (o (AAZ19) = 0.348) is slightly better than that
of the MCMC methodology (o (AA5%) = 0.366), see Fig. 16. It is
noticeable that in the mock line profiles the MCMC methodology had
a better accuracy than the MC DNN. This shows that the accuracy
of both procedures is comparable, at least, in the redshift estimation.

6.2.4 Relations between model and observed properties

In Fig. 18, we show the correlations of the outflow properties
computed using the MC DNN methodology (blue), i.e. Vexp, Ny,
T4, EWin, Wiy, the redshift. We also show two extra parameters from
the LASD data base; the Ly o luminosity Ly, and the measured
Ly« equivalent width of the line in the rest frame of the galaxy
EWyy«(grey). In particular, in the diagonal we show the 1D PDF of
each of these parameters. We find that the outflow parameters cover
a wide dynamical range. In particular, if we compute the percentiles
Sthand 90th of the V., distribution, 90 per cent of the line profiles are
assigned Veyp values between 14.4 and 246 km s~! and the median of
the PDFis 96.4 km s~ . In the same way, 90 per cent of the population
in contained between Ny = 1080 and 10" cm~2 with median 10'°"!
cm™2. For 7,, 90 per cent of the population is between 10~>! and
107%2! and the median is 10~'2. For EWj,, the 90 per cent is between
12.1 and 133 A with median 54.1 A. Finally, for Wi,, 90 per cent of
the sample is between 0.15 and 1.1 A with median 0.41 A. The wide
diversity of line profiles shapes shown in Figs 14 and 15 is reflected
in the large parameter volume that the observed sample spawns.
Also, in comparison with the volume covered by zELDA’s Ly o
line profile grid (Section 2.2) and the volume used to train the
DNN (Section 3.1.2), we find that most of the observed line profiles
lie well inside our outflow parameter volume. Moreover, we find

€20z fieniga4 |z uo Jasn ABojouyoa | B 8oualog 10 AlisIaAlun LNOSSIN AQ | €/6519/S2S/S/0 1 S/8101e/SeluW/Wwod dno olwapeoe//:sdiy Wolj papeojumo(]


art/stab3554_f16.eps

Ly o line profile fitting 4545
3.0 0-
. B(A log Vexp) =0.08 . (A log Ng)=0.05 _’/ n(ATogTy) =0
n 6(A log Vexp) =0.23 - 2116(Alog Ng)=0.5 P o( :
x |
251 °og n 9
g B ' S
@] O O
- = =N J
320 5 g
= = 191 &
< ) oy
g z < ¢
> 1.5 0 18 4 -3
on 2 _?7’__ e
2 ~ [p=0.84 Y ‘Jf »=0.79 % ~0.62
1.0+ . . . 17 ¥ —0— . 4+ : :
1.0 15 2.0 25 3.0 17 18 19 20 21 —4 -3 -2 -1 0
10g Vexp, panlkm s7!] log Ny pan[em™2] log T4, NN
25 0.50 0.5 _
u(ﬁ }og EWi))= 60.10‘ . u(i }og Win)= 837 .,/ H(A ArJ™ [A])=-0.03 4
=z o(A log EWin) =080y __ 025{C(AloeWi)=0.27 0.0 {o(A AN [A}=0.
°= 201 = o<t —_
g g 0001 °<L, 0.5
= g s
= 1.5 —0.25 g -1.01
;s £ g2
[l
a %0 ~0.50 2" ~151 % o
& S pd
= —0.75 1 204 7
) 0.82 ) & =089
05 . . . ~1.00 . . -25 : : :
0.5 1.0 1.5 2.0 25 ~1.0 -0.5 0.0 0.5 -2 -1 0
log EW;, pan[A] log Win pan[A] ANBNTA]

Figure 17. Comparison between the line profile properties predicted by the MC DNN (horizontal axis) and the MCMC (vertical axis) procedures. Vexp, NH,
and 7, are shown in the top row from left to right. Also, EWj,, Wiy, and AAtre are displayed in the bottom row from left to right. The filled circles show the
percentile 50th of the PDF of each property. Meanwhile, the error bars indicate the percentiles 16th and 84th. The one-to-one relation is marked as the black
dashed line. The mean p and the standard deviation o of the difference between the properties predicted by MC DNN and MCMC are shown in the top left of
each panel. The Spearman correlation coefficient between the MCMC and the MC DNN prediction is displayed in the bottom left of each panel.

that none of the PDF of the outflow parameters end abruptly at its
corresponding edge of the parameter range. This indicated that the
volume covered by zELDA is large enough to explain, a priori, the
majority of observed Ly « line profiles.

Let us now focus on the panels of Fig. 18 comparing the behaviour
of properties against other properties. We confirm some possible
correlations between different properties. The Spearman coefficient
computed using properties estimated with the MC DNN approach are
labelled as pnn, while those computed using the MCMC approach are
labelled as pyic. We find that the variables that show a [p|Z0.4 are:

NH with EWLya (pNN = —0.49, PMC = —039),

Win with LLya (,ONN = 032, PMC = 041), LLya and z (,ONN = 064)
and Liy, and EWpy, (0 = 0.48).

Next, we estimate the significance of these trends by measuring
the uncertainty in the Spearman’s coefficients. To do so, we draw
1000 times a new set of outflow parameters from the posterior
and re-compute the Spearman’s correlation coefficient each time.
Specifically, for the MCMC we pick randomly a walker within the
region where the chains have already converge. For the MC DNN
we pick a random realization. In this way, for both methodologies,
the degeneracy between outflow parameters is kept within the
individual line profiles.

In Fig. 19, we show the median Spearman coefficient and differ-
ences to the 16th and 84th percentile obtained from the procedure
outlined above. We find that in general pyc and pnn are compatible
with 1o, although there are a few exceptions. This indicates that the

trends derived with the MCMC and the MC DNN methodologies
are, in general, compatible. We list here the (anti)-correlations that
we find significant:

(1) Correlation between the intrinsic equivalent width EW;, and
measured rest frame equivalent width EWiy, (onn = 0.81%0%5,
oMC = 0.68J_r8:8‘5‘): This is the most clear correlation that we find in
our Ly « line profile sample. The ratio between these two properties
can be written as as a function of the escape fraction of non-ionizing

continuum photons £< and the escape fraction of Ly & photons
f2e as

EWy [ ®
EWiyo  f2°

We find that on average, EW, is larger than EWy,, which indicates
that the Ly o escape fraction is lower than the escape fraction of
continuum photons.

(ii) Anticorrelation between Ny and EWy, (pxn = —0.38700%),
oMC = —0.35f8:8§: The equivalent width of a galaxy is a balance
between L1y, and continuum luminosity density. On one side of the
balance, Ly, anticorrelates with Ny, as just discussed. On the other
side, galaxies with higher Ny can be expected to be more massive
and therefore to have a brighter continuum. In this case, we find
that the flux reduction due to the Ly « radiative transfer plays the
determinant role in this trend and EWy, anticorrelates with Ny.
This anticorrelation might be influenced by the fact that sources with
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Figure 18. Correlation figure of the properties derived by zELDA and also the Ly « luminosity and equivalent with of the line computed by LASD. The diagonal
(line of panels from the top left to the bottom right) shows the PDF of the properties. The figure is divided in two parts. The part above the diagonal makes use
of the properties predicted by the MCMC (green), while the part below the diagonal makes use of the MC DNN predictions (blue). Meanwhile, if properties
computed by LASD are present, they displayed en grey. Vexp, NH, Tas EWin, Win, 2, Liyw, and EWLy, are shown from left to right and from top to bottom,

respectively. Also, the Spearman coefficient is displayed in the top left corners.

higher Ny would scatter photons to larger distances from the source,
which, for a fixed aperture, might result in a loss of Ly « flux.

(iii) Correlation between Ly, and EWyy (p ~ 0.44): Thisis given
by the definition of these two properties, i.e. EWy o = Liyo/Cryq,
where Cyy, is the luminosity density of the continuum around Ly o.

(iv) Correlation between Ly, and Wi, (onny = 0.321’828‘5‘, PMC =
O.41f8;8§): In principle, the intrinsic width of the Ly o line, W,
depends on the temperature of the HII region where the Ly«
photons are originated. The hotter the region, the larger W;,. At the
same time, in average, galaxy regions with higher star formation
rate would be hotter and exhibit a higher intrinsic Ly, which could
explain this correlation.
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Interestingly, correlations of the spectral properties of an over-
lapping sample have been explored by Hayes et al. (2021). Their
findings (larger blue-to-red ratio as well as less shifted and narrower
red peaks with luminosity and equivalent width) can be understood
with the correlations we find here. Specifically, our finding versus
the column density detailed above fit this scenario of less radiative
transfer effects for fainter sources well.

7 SUMMARY AND CONCLUSIONS

In this work we have introduce zELDA (redshift Estimator for Line
profiles of Distant Lyman-Alpha emitters), an open source Python
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Figure 19. Spearman correlation coefficients with their 10 (corresponding to the 84th and 16th percentiles) uncertainty for the 1000 parameters perturbations.
In the bottom left from the diagonal (grey) we show the (anti)correlation coefficient using the MC DNN output (blue). In the top right corner we display the

same but for the MCMC output (green).

module to improve the understanding of the Ly o radiation based
on LyaRT (Orsi et al. 2012) and FLaREON (Gurung-Lopez et al.
2019b). zELDA has two principle functionalities: (i) a fast compu-
tation of Ly « line profiles and (ii) several techniques to fit observed
Ly « line profiles to the outflow/inflow shell model usually used in the
literature (e.g. Zheng & Miralda-Escudé 2002; Ahn 2004; Verhamme
et al. 2006; Orsi et al. 2012; Gronke 2017). The first functionality is
designed to produce large amounts of accurate Ly « line profiles to
populate cosmological volumes (Gurung-Lépez et al. 2020, 2021), to
make qualitative analysis of observed Ly « line profiles (e.g. Guaita
et al. 2017, 2020) and to produce big data-sets of mock Ly o lines
for neural network analysis. The second functionality is developed to
find the most probable outflow model that reproduce a given observed
Ly « line profile. Several work in the literature have performed fitting
analysis to Ly o line profiles. However, they relied in different outflow
models and fitting techniques. We make zELDA publicly available
so that the scientific community has a common methodology to
interpret Ly o line profiles and therefore, to make results between
different works easier to compare.

For the computation of Ly « line profiles we use a similar approach
to FLaREON, in which the line profile are calculated from a pre-
computed grid of models where the full radiative transfer is computed
using LyaRT. We have upgraded one of the outflow gas geometries
already present at FLaREON, the shell model. Now, this new model
has two components: (i) the macroscopic gas properties such as the
bulk radial velocity Vi, the H 1 column density Ny and the optical
depth of dust 7, and (ii) the intrinsic Ly « line profile, which is
a Gaussian with width Wj, over a continuum with equivalent width
EW;,. For the first part we run the full radiative transfer using LyaRT
in a regular grid for configurations with 0 <V ,[km s~!1 < 1000,
10"7 < Ny[em™2] < 10*!3 and 10~* < 7, < 1. Then, the different
intrinsic spectrum are implemented in a post-processing fashion in
the range of 0.01 <W, [A] < 6and 0.1 < EW;, [A] < 1000.

Then, in order to estimate the Ly & spectrum for a given set of
{Vexp> N Tay EWin, Win } inside the parameter range of the grid we
use linear interpolation in five dimensions. In order to estimate the
accuracy of this procedure we compute sample of Ly « line profiles
using LyaRT in random locations inside the grid volume. We find
that the interpolation approximation works really well, with typical
Kolmogorov—Smirnov test values of 0.05.

For the interpretation of observed line profiles we have developed
a novel deep neural network approach. Specifically, we use mock

Ly« line profiles as the input of a deep neural network and the
output is composed by the outflow/inflow properties and the location
of the Ly o wavelength. The mock Ly « line profiles are embedded
with the typical observational limitations; finite spectral resolution
of full width half maximum W,, wavelength binning AXpy and
noise with a ratio between signal and noise in the maximum of the
line profile of S/N,,.

Then we have presented the Monte Carlo Deep Neural Network
methodology (MC DNN), which consists in performing MC per-
turbation of the Ly « line profile for which we want to extract the
outflow properties. Then, each of these perturbation passes as input
to the DNN for produces a set of outflow variables. The solution
parameters are then defined as the percentile 50th of their respective
probability distribution function. We find that this methodology
increases the accuracy of the DNN approach. Another advantage is
that we can assigned accurate uncertainties to the outflow parameters
by computing the corresponding percentiles of the PDFs. These
uncertainties exhibit relative biases less than the 10 per cent.

We have tested the performance of the MC DNN methodology
on observed Ly « line profiles gather in the Lyman alpha Spectral
Database (LASD; Runnholm et al. 2021). In particular we have
focused on line profiles from sources with a systematic measured
a Ly« independent approach. We find that zELDA’s MC DNN
approach manage to reproduce quite well the shape and systemic
redshift of this sample. In particular, we find that typical error in
determining the systemic Ly o wavelength is about 0.3 A in the rest
frame of the source. This is a really good accuracy in comparison to
other methodologies in the literature.

Also, we illustrate the potential of zELDA to understand the Ly o
physics within galaxies. We have looked for possible correlations
between the outflow properties derived by zELDA and the observed
Ly a luminosity Ly, and measured rest frame equivalent width
EWpy,. We find several trends with a relatively good significant
(Spearman correlation parameter > 0.4). For example, we find an
anticorrelation between Ny and Ly, that might be due to the fact
that galaxies with higher Ny might be more prone to a larger number
of Ly « scattering events, which would reduce the Ly « flux emerging
from the galaxy as more photons would be absorbed by dust.

Future steps, building up on the pipeline presented here could be
to introduce additional parameters (such as the effective temperature
T which can include effects of turbulent motion, or a parametrization
of IGM transmission curves), or the inclusion of other geometries

MNRAS 510, 4525-4555 (2022)

€20z fieniga4 |z uo Jasn ABojouyoa | B 8oualog 10 AlisIaAlun LNOSSIN AQ | €/6519/S2S/S/0 1 S/8101e/SeluW/Wwod dno olwapeoe//:sdiy Wolj papeojumo(]


art/stab3554_f19.eps

4548  S. Gurung-Lopez. et al.

(such as a multiphase or anisotropic medium) or aperture effects to
take into account the spatial extension of the Ly o emission. Such
additions can be implemented straightforwardly into zELDA.

We have verify the performance of zELDA on observed Ly«
line profiles by comparing the MC DNN methodology results to an
Monte Carlo Markov Chain analysis which is commonly used in the
literature (Gronke et al. 2015). We find that the outflow and redshift
estimated using both methodologies are compatible. An important
perk of the MC DNN methodology is its low computational cost.
Currently, computational time is not limiting as there are only a few
hundreds of observed Ly « line profiles with good enough quality
to perform this kind of analysis. However, in the nearby future, with
the launch the James Web Space Telescope (Gardner et al. 2006) and
other ground breaking experiments, the number of Ly « emitters and
Ly « line profiles will increase several orders of magnitudes. In this
scenario zELDA will be a extremely useful tool to analyse future
data sets and to increase our knowledge about the Ly o emitters
population.

ACKNOWLEDGEMENTS

Authors acknowledge the anonymous referee’s comments that im-
proved the scientific content overall.

This research made use of MATPLOTLIB, a PYTHON library for
publication quality graphics (Hunter 2007), NUMPY (Harris et al.
2020), and ScIPY (Virtanen et al. 2020).

Authors acknowledge support from the Generalitat Valenciana
project of excellence Prometeo/2020/085.

This work has made used of CEFCA’s Scientific High Performance
Computing system which has been funded by the Governments of
Spain and Aragén through the Fondo de Inversiones de Teruel, and
the Spanish Ministry of Economy and Competitivenes (MINECO-
FEDER, grant AYA2012-30789) and also Project of excellence
Prometeo/2020/085 from the Conselleria d’Innovacid, Universitats,
Ciencia i Societat Digital de la Generalitat Valenciana.

Authors acknowledge support from the Generalitat Valenciana
project of excellence Prometeo/2020/085.

The authors acknowledge the support of the Spanish Ministerio
de Economia y Competividad project No. AYA2015-66211-C2-P-2.

SS was supported in part by World Premier International Research
Center Initiative (WPI Initiative), MEXT, Japan. SS was also sup-
ported in part by the Munich Institute for Astro- and Particle Physics
(MIAPP) which is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy (EXC-2094-390783311).

MG was supported by NASA through the NASA Hubble Fellow-
ship grant HST-HF2-51409 and acknowledges support from HST
grants HST-GO-15643.017-A, HST-AR15039.003-A, and XSEDE
grant TG-AST180036.

DATA AVAILABILITY

Most of the codes and data used in this work is publicly available.
zELDA’s software can be found at https://github.com/sidgurun/Ly
a_zelda and the documentation with an installation guide and several
tutorials are at http://zelda.rtfd.io. Also, LyaRT software (Orsi et al.
2012) is stored at https://github.com/aaorsi/LyaRT. The mock Ly «
line profiles used to train and assess the quality of our different
techniques is available upon request. Finally, the observed Ly « line
profiles were extracted from Lyman Alpha Spectral Database (LASD,
https://lasd.lyman-alpha.com, Runnholm et al. 2021)

MNRAS 510, 4525-4555 (2022)

REFERENCES

Ahn S., 2003, J. Korean Astron. Soc., 36, 145

Ahn S., 2004, ApJ, 601, L25

Bacon R. et al., 2010, in McLean lan S., Ramsay S. K., Takami Hideki,
eds, Proc. SPIE Conf. Ser. Vol. 7735, Ground-based and Airborne
Instrumentation for Astronomy III. SPIE, Bellingham, p. 8

Bresolin F., 2019, MNRAS, 488, 3826

Byrohl C., Gronke M., 2020, A&A, 642,16

Byrohl C., Saito S., Behrens C., 2019, MNRAS, 489, 3472

Caruana J., 2018, MNRAS, 473, 30

Dijkstra M., 2017, preprint (arXiv:1704.03416)

Dijkstra M., Haiman Z., Spaans M., 2006, ApJ, 649, 14

Dijkstra M., Gronke M., Venkatesan A., 2016, ApJ, 828, 71

Erb D. K., Steidel C. C., Chen Y., 2018, ApJ, 862, L10

Farrow D. J. et al., 2021, MNRAS, 507, 3187

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125,
306

Gardner J. P. et al., 2006, Space Sci. Rev., 123, 485

Garel T., Blaizot J., Guiderdoni B., Schaerer D., Verhamme A., Hayes M.,
2012, MNRAS, 422, 310

Granato G. L., Lacey C. G., Silva L., Bressan A., Baugh C. M., Cole S., Frenk
C. S., 2000, ApJ, 542, 710

Green J. C. et al., 2012, ApJ, 744, 60

Gronke M., 2017, A&A, 608, A139

Gronke M., Bull P, Dijkstra M., 2015, ApJ, 812, 123

Gronke M., Dijkstra M., McCourt M., Oh S. P, 2017, A&A, 607, A71

Guaita L. et al., 2017, A&A, 606, A19

Guaita L. et al., 2020, A&A, 640, A107

Gurung-Lopez S., Orsi A. A., Bonoli S., Baugh C. M., Lacey C. G., 2019a,
MNRAS, 486, 1882

Gurung-Lopez S., Orsi A. A., Bonoli S., 2019b, MNRAS, 490, 733

Gurung-Lopez S., Orsi A. A., Bonoli S., Padilla N., Lacey C. G., Baugh C.
M., 2020, MNRAS, 491, 3266

Gurung-Lopez S., Saito S., Baugh C. M., Bonoli S., Lacey C. G., Orsi A. A.,
2021, MNRAS, 500, 603

Harris C. R. et al., 2020, Nature, 585, 357

Hayes M. et al., 2014, ApJ, 782, 6

Hayes M. J., Runnholm A., Gronke M., Scarlata C., 2021, ApJ, 908, 36

Heckman T. M. et al., 2011, ApJ, 730, 5

Heckman T. M., Alexandroff R. M., Borthakur S., Overzier R., Leitherer C.,
2015, ApJ, 809, 147

Henry A., Scarlata C., Martin C. L., Erb D., 2015, ApJ, 809, 19

Herenz E. C. et al., 2017, A&A, 606, A12

Hill G.J. et al., 2008, in Kodama T., Yamada T., Aoki K., eds, ASP Conf. Ser.
Vol. 399, Panoramic Views of Galaxy Formation and Evolution. Astron.
Soc. Pac., San Francisco, p. 115—

Hooker S., Erhan D., Kindermans P-J., Kim B., 2018, preprint
(arXiv:1806.10758)

Hunter J. D., 2007, Comput. Sci. Eng., 9, 90

Izotov Y. L., Schaerer D., Thuan T. X., Worseck G., Guseva N. G., Orlitova
1., Verhamme A., 2016, MNRAS, 461, 3683

Izotov Y. 1., Worseck G., Schaerer D., Guseva N. G., Thuan T. X., Fricke
Verhamme A., Orlitova I., 2018, MNRAS, 478, 4851

Izotov Y. 1., Schaerer D., Worseck G., Verhamme A., Guseva N. G., Thuan
T. X., Orlitova 1., Fricke K. J., 2020, MNRAS, 491, 468

Izotov Y. 1., Worseck G., Schaerer D., Guseva N. G., Chisholm J., Thuan T.
X., Fricke K. J., Verhamme A., 2021, MNRAS, 503, 1734

Jaskot A. E., Oey M. S., 2014, ApJ, 791, L19

Jaskot A. E., Oey M. S., Scarlata C., Dowd T., 2017, ApJ, 851, L9

Kakuma R. et al., 2021, ApJ, 916, 22

Kuleshov V., Fenner N., Ermon S., 2018, preprint (arXiv:1807.00263)

Laursen P., Sommer-Larsen J., Razoumov A. O., 2011, ApJ, 728, 52

Leclercq F. et al., 2017, A&A, 608, A8

Li Z., Steidel C. C., Gronke M., Chen Y., Matsuda Y., 2021a, preprint
(arXiv:2104.10682)

LiZ., Steidel C. C., Gronke M., Chen Y., 2021b, MNRAS, 502, 2389

Lundberg S., Lee S.-1., 2017, preprint (arXiv:1705.07874)

€20z fieniga4 |z uo Jasn ABojouyoa | B 8oualog 10 AlisIaAlun LNOSSIN AQ | €/6519/S2S/S/0 1 S/8101e/SeluW/Wwod dno olwapeoe//:sdiy Wolj papeojumo(]


https://github.com/sidgurun/Lya_zelda
http://zelda.rtfd.io
https://github.com/aaorsi/LyaRT
https://lasd.lyman-alpha.com
http://dx.doi.org/10.5303/JKAS.2003.36.3.145
http://dx.doi.org/10.1086/381750
http://dx.doi.org/10.1093/mnras/stz1947
http://dx.doi.org/10.1051/0004-6361/202038685
http://dx.doi.org/10.1093/mnras/stz2260
http://dx.doi.org/10.1093/mnras/stx2307
http://arxiv.org/abs/1704.03416
http://dx.doi.org/10.1086/506243
http://dx.doi.org/10.3847/0004-637X/828/2/71
http://dx.doi.org/10.3847/2041-8213/aacff6
http://dx.doi.org/10.1093/mnras/stab1986
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1007/s11214-006-8315-7
http://dx.doi.org/10.1111/j.1365-2966.2012.20607.x
http://dx.doi.org/10.1086/317032
http://dx.doi.org/10.1088/0004-637X/744/1/60
http://dx.doi.org/10.1051/0004-6361/201731791
http://dx.doi.org/10.1088/0004-637X/812/2/123
http://dx.doi.org/10.1051/0004-6361/201731013
http://dx.doi.org/10.1051/0004-6361/201730603
http://dx.doi.org/10.1051/0004-6361/201935855
http://dx.doi.org/10.1093/mnras/stz838
http://dx.doi.org/10.1093/mnras/stz2591
http://dx.doi.org/10.1093/mnras/stz3204
http://dx.doi.org/10.1093/mnras/staa3269
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1088/0004-637X/782/1/6
http://dx.doi.org/10.3847/1538-4357/abd246
http://dx.doi.org/10.1088/0004-637X/730/1/5
http://dx.doi.org/10.1088/0004-637X/809/2/147
http://dx.doi.org/10.1088/0004-637X/809/1/19
http://dx.doi.org/10.1051/0004-6361/201731055
http://arxiv.org/abs/1806.10758
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1093/mnras/stw1205
http://dx.doi.org/10.1093/mnras/sty1378
http://dx.doi.org/10.1093/mnras/stz3041
http://dx.doi.org/10.1093/mnras/stab612
http://dx.doi.org/10.1088/2041-8205/791/2/L19
http://dx.doi.org/10.3847/2041-8213/aa9d83
http://dx.doi.org/10.3847/1538-4357/ac0725
http://arxiv.org/abs/1807.00263
http://dx.doi.org/10.1088/0004-637X/728/1/52
http://dx.doi.org/10.1051/0004-6361/201731480
http://arxiv.org/abs/2104.10682
http://dx.doi.org/10.1093/mnras/staa3951
http://arxiv.org/abs/1705.07874

Madsen G. J., Reynolds R. J., Haffner L. M., 2006, ApJ, 652, 401

Martin C., Moore A., Morrissey P., Matuszewski M., Rahman S., Adkins S.,
Epps H., 2010, in McLean I. S., Ramsay S. K., Takami H., eds, Proc.
SPIE Conf. Ser. Vol. 7735, Ground-based and Airborne Instrumentation
for Astronomy III. SPIE, Bellingham, p. 77350M

Miranda L. J. V., 2018, J. Open Source Softw., 3, 2

Muzahid S. et al., 2020, MNRAS, 496, 1013

Neufeld D. A., 1990, ApJ, 350, 216

Orlitova 1., Verhamme A., Henry A., Scarlata C., Jaskot A., Oey M. S.,
Schaerer D., 2018, A&A, 616, A60

Orsi A., Lacey C. G., Baugh C. M., 2012, MNRAS, 425, 87

Ouchi M. et al., 2018, PASJ, 70, S13

Ouchi M., Ono Y., Shibuya T., 2020, ARA&A, 58, 617

Rauch M., Becker G. D., Haehnelt M. G., 2016, MNRAS, 455, 3991

Rivera-Thorsen T. E. et al., 2015, ApJ, 805, 14

Rudie G. C., Steidel C. C., Pettini M., 2012, ApJ, 757, L30

Runnholm A., Gronke M., Hayes M., 2021, PASP, 133, 034507

Salzer J. J. et al., 2001, AJ, 121, 66

Schaerer D., Verhamme A., 2008, A&A, 480, 369

Schaerer D., Hayes M., Verhamme A., Teyssier R., 2011, A&A, 531, A12

Schultz G. V., Wiemer W., 1975, A&A, 43, 133

Song H., Seon K.-I., Hwang H. S., 2020, ApJ, 901, 41

Songaila A., Hu E. M., Barger A. J., Cowie L. L., Hasinger G., Rosenwasser
B., Waters C., 2018, ApJ, 859, 91

Spinoso D. et al., 2020, A&A, 643, A149

Steidel C. C., Erb D. K., Shapley A. E., Pettini M., Reddy N., Bogosavljevi¢
M., Rudie G. C., Rakic O., 2010, ApJ, 717, 289

Steidel C. C., Bogosavljevi¢ M., Shapley A. E., Kollmeier J. A., Reddy N.
A., Erb D. K., Pettini M., 2011, ApJ, 736, 160

Steidel C. C., Bogosavljevi¢ M., Shapley A. E., Reddy N. A., Rudie G. C.,
Pettini M., Trainor R. F,, Strom A. L., 2018, ApJ, 869, 123

Tumlinson J., Peeples M. S., Werk J. K., 2017, ARA&A, 55, 389

Urrutia T. et al., 2019, A&A, 624, A141

Verhamme A., Schaerer D., Maselli A., 2006, A&A, 460, 397

Verhamme A., Schaerer D., Atek H., Tapken C., 2007, in Afonso J., Ferguson
H. C., Mobasher B., Norris R., eds, ASP Conf. Ser. Vol. 380, Deepest
Astronomical Surveys. Astron. Soc. Pac., San Francisco, p. 97

Verhamme A., Orlitova 1., Schaerer D., Hayes M., 2015, A&A, 578, A7

Ly o line profile fitting 4549
Verhamme A. et al., 2018, MNRAS, 478, L60

Vielfaure J. B. et al., 2020, A&A, 641, A30

Virtanen P. et al., 2020, Nat. Methods, 17, 261

Weiss L. H. et al., 2021, ApJ, 912, 100

Wisotzki L. et al., 2016, A&A, 587, A98

Wofford A., Leitherer C., Salzer J., 2013, ApJ, 765, 118

Yang H., Malhotra S., Rhoads J. E., Wang J., 2017, ApJ, 847, 38

Zheng Z., Miralda-Escudé J., 2002, ApJ, 578, 33

APPENDIX A: COMPARISON OF MEASURED
ACCURACY IN DIFFERENT MOCK LINE
PROFILE SAMPLES

In this section, we demonstrate that the accuracy for the DNN
approaches in inflows (Ve < 0) is the same than in outflows
(Vexp > 0). In Section 3, we have measured the accuracy of you
DNN approaches with the samples described in Section 2.3, which
is composed by the line profiles of outflows directly produced by
LyaRT. We will refer to this sample as Outflow:R.

In Fig. A1, we compare the accuracy of the MC DNN approach
in different samples. All with quality W;, = 0.5 A, Adpix= 0.1
A and S/N,=10. In the first place, Outflow:Ris shown in green.
Then, Outflow:M (red) is a sample of 2000 line profiles from out-
flows populating the same parameter space volume than Outflow:R.
Outflow:M line profiles are produced by the interpolation scheme
described in 2, in contrast with Outflow:R that uses the full RT
computation of LyaRT. We find that the PDF of the difference
between the true parameter value (e.g. Vixp,in) and the predicted
by the MC DNN approach (Vexp, oue) are similar. This shows that the
accuracy of this methodology in line profiles produced by LyaRT
and those predicted by zELDA is almost the same. We have checked
that this is the case also for the other quality configurations, but we
decided to focus on one for clarity.

Then, in order to asses the accuracy in inflows we produced a
sample of line profiles for inflows that is the same as Outflow:M, but
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Figure Al. Accuracy of DNN predictions. 2000 mock line profiles computed making interpolation in the grid with random outflow parameters and from

redshift 0.0001 to 4.0 with quality W, = 0.5 A, AApix = 0.1 A, and S/N,= 10.
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using inverting the sign of V.,. We call this sample Inflow:M (shown
in blue). We find that the accuracy is the same in Outflow:M as in
Inflow:M. In conjunction with the fact that the MC DNN approach
behaves similarly in line profiles from LyaRT and from zELDA, this
shows that the accuracy in of the MC DNN is the same in outflows
than in inflows.

APPENDIX B: EXCLUDED LINE PROFILES

Here, we describe the observed spectrum that were excluded from
the analysis performed in Section 6. The LASD data base contains a
total of 107 local line profiles with the systemic redshift calculated
using a Ly o independent analysis. From this set, 97 were used in
Section 6. The remaining 10 line profiles are shown in Fig. B1 (grey)
and the source name and systemic redshift are listed on Table B1. The
best fit of the MCMC (green) and MC DNN (blue) is also displayed.
Overall, we find that for these line profiles zELDA fits lack accuracy.

Depending on the line profile, the cause behind the low quality fit
change. First, for Ex-7, EX-9, and EX-10, the line profiles exhibit low
[T, values (5.40, 4.89, and 5.16 respectively). Secondly, line profiles
with more complex components, in particular, EX-2, EX-4, and EX-
5. These sources exhibit the typical double peak line profiles, but they
also show an extra peak with lower amplitude (marked with a red
arrow) between the main red peak and blue peak. This fainter peak

Table B1. Name, systemic redshift, Ly @ luminosity, observed equivalent
width and S/N;, for the excluded observed galaxies. The column Label
indicates the number that appears with the spectra in Figs 13, 14, and 15.

Label Name 5 S/Np
EX-1 SDSST1113+2930 0.1751 8.2
EX-2 SDSSJ0921+4509 0.235 1059
EX-3 SDSSJ1525+0757 0.0758 50.51
EX-4 7103244919 0.0442 1027
EX-5 1000740226 0.0636 111
EX-6 GALEX1717+5944 0.1979 12.6
EX-7 GP0749+3337 0.2732 54
EX-8 GP1032+2717 0.1925 6.92
EX-9 GP1205+2620 0.3426 4.89
EX-10 GP1543+3446 0.1873 5.16

is not reproduced by the shell model. The presence of this feature
might be due to the fact that the spectrum might contain information
of more than one source, each with their unique Ly « line profile.
Then, EX-3 has high S/N,, but there are clearly there emission lines
in the regions where Ly « should be given the systemic redshift.
The source EX-1 exhibit a steep continuum with increasing flux
towards redder wavelengths. As described in Section 2.1, the intrinsic
Line profile that we inject in the Thin Shell is a Gaussian centred in
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Figure B1. Line profiles excluded from the analysis performed in Section 6. In grey, we display the observed spectrum while in blue and in green we show the

best fits of the MC DNN and MCMC methodologies, respectively. In the top left we label each spectrum. In the case of EX-2, EX-4, and EX-5 we drew a red

arrow to mark an extra component in the line profile.
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Figure B2. Out layer line profile EX-6, fitted by the outflow (left) and inflow (right) models. The model lines given by the MC DNN (MCMC) methodology
are shown in blue (green) and the value of the outflow/inflow parameters and the 1o uncertainties are indicated in the same colour in the top right (middle
right). The vertical dashed lines and shaded regions mark the value and the 1o uncertainty of the true Ly « wavelength of the observation (grey) and the Ly o
wavelength predicted by the MC DNN (blue) and MCMC (green). The KS estimator is given on the left of each panel. On top, for the MC DNN and on the

bottom for the MCMC approach.

Ly « on top of a flat continuum. As neither the MCMC or the MC
DNN methodologies find a suitable Ly « in our Thin Shell model, the
steep continuum of EX-1 might be intrinsic to the galaxy continuum
and not associated with the Ly @ RT. Therefore, we exclude this
galaxy from our studied sample.

Next, EX-8 exhibits a double peak line profile in which the blue
peak is wider than the red peak. In the Thin Shell model, normally,
the width of the peaks is very similar, which could caused the low
quality of the fit. We also tried to fit EX-8 line profile using an inflow
instead of an outflow but the fit still lacked accuracy, probably for
the same reason.

In Fig. B2, we show the observed line profile (grey) of EX-6
and the best-fitting models for the outflow (left) and inflow (right)
geometries. The results for the MCMC are shown in green while
those for the MC DNN approach are shown in blue. Also the KS
estimator values for the fits are shown in the left of each panel (top
for MC DNN and bottom for MCMC). For this particular case, we
decided to repeat the analysis assuming that the line profile was
caused by an inflow due to the fact that, we observed that the Ly o
frequency given by the non-Ly « redshift estimators was redder than
the majority of the flux of the emission line.

Overall, we find that both, the inflow and outflow models, with both
methodologies, reproduce relatively well the line profile shape (KS
< 0.2). Also, neither the best-fitting model for the outflow nor inflow
provide a Ly o wavelength close to that given by observations. In fact,
within the models model (inflow or outflow) the predicted redshift is
compatible between the MCMC and the MC DNN methodologies.
In particular, the redshift predicted for the outflow model is ~0.195,
for the inflow ~0.196 and in the observation ~0.198 with typical
uncertainty of 107, The inflow model predicts a Ly o wavelength
closer to the provided by observations. However, it is still ~2.3 A
(~1.9 A) displaced from the true Ly o wavelength in the observed
(rest) frame (470 kms~"). For the outflow model this difference is

even larger, and the displacement is ~3.5 A in the observed frame
and in rest frame ~2.9 A (715 kms~!). The wavelength shift in
the outflow model is about 2.5 times the maximum displacement
found for the other line profiles (see Fig. 16). In contrast with the
fact that the inflow model gives a better redshift estimation, the
outflow model reproduces better the shape of the line profile. In
fact, both, the MCMC (KS = 0.08) and MC DNN (KS = 0.04)
methodologies fit the line profile better than any of the methodologies
in the inflow model (KS = 0.12 for the MCMC and KS = 0.16 for the
MC DNN).

The disparity between the observed systemic redshift and the
predictions given by zELDA might come from several facts. One
scenario could be that the systemic redshift given by the Ly«
independent redshift estimator is not properly constrained. How-
ever, usually, these estimators give a good redshift accuracy. Other
possibility is that the thin shell model might be incomplete and not
able to produce these kind of line with large shifts between the Ly o
wavelength and the bulk of the line profile. Although, we find that
the outflow model reproduces quite well the shape of the line (KS ~
0.06). Another possible explanation is that the Ly o radiation might
come from a different galaxy component than the radiation used for
measuring the systemic redshift.

Overall, the reason behind the tension between the systemic
redshift given by the Ly « independent redshift estimator and zELDA
remains unknown. Therefore, we decided to exclude this particular
line profile from the analysis performed in Section 6.

APPENDIX C: BEST-FITTING PARAMETERS
OF THE OBSERVED LINE PROFILES

In Table C1 and C2, we list the systemic redshift obtained by studying
different features than the Ly o line 75, the name of the sources,
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Liyq and EWy . These last two were also obtained from the Lyman
alpha Spectral Database (LASD; Runnholm et al. 2021). In addition,
we display the name and the ‘Label’ of each source. This ‘Label’
matches with the numbers shown in the bottom right of Fig. 17 and
in the top left of Figs 14 and 15.

In Table C3, C4, and C5, we list all the best-fitting parameters
for the 97 observed line profiles analysed in Section 6 for both, the

Table C1. Name, systemic redshift, Ly « luminosity and observed equivalent
width for the observed galaxies. The column Label indicates the number that
appears with the spectra in Figs 13, 14, and 15.

Label Name 758 logLy o logEWpy o
fergs™"] [A]
1 SDSSJ0213+1259 0.219 41.7 0.84
2 SDSSJ1025+3622 0.1265 42.31 1.39
3 SDSSJ015041308 0.1467 41.37 0.59
4 SDSSJ0055-0021 0.1674 41.45 0.67
5 SDSSJ1112+45503 0.1316 41.88 1.02
6 SDSSJ1144+4012 0.127 40.71 0.32
7 SDSSJ14144-0540 0.0819 40.5 0.5
8 SDSSJ0808+4-3948 0.0912 42.01 1.17
9 SDSSJ14294-0643 0.1735 42.73 1.56
10 SDSSJ1416+1223 0.1232 41.2 0.24
11 SDSSJ152140759 0.0943 41.63 0.73
12 SDSST1428+1653 0.1817 42.46 1.29
13 SDSSJ16124-0817 0.1491 423 1.26
14 SDSSI0926+-4427 0.1807 42.78 1.57
15 GP0303-0759 0.1649 41.94 0.95
16 J0159+0751 0.0611 41.59 2.17
17 SDSSJ0938+-5428 0.1021 41.35 0.55
18 SDSSJ00214+0052 0.0984 42.59 1.41
19 SDSSJ2103-0728 0.1369 4221 1.25
20 HAROI11 0.0206 41.26 0.93
21 GP0911+1831 0.2622 42.8 1.68
22 GP1219+1526 0.1956 43.19 2.12
23 GP1133+6514 0.2414 42.58 1.51
24 GP1054+5238 0.2526 42.54 1.15
25 GP1137+3524 0.1944 42.62 1.53
26 GP1244+0216 0.2394 42.56 1.69
27 GP1249+1234 0.2634 43.07 1.96
28 GP1424+4217 0.1848 42.93 1.88
29 10925+-1403 0.3012 42.83 1.82
30 J0820+-5431 0.0386 40.47 1.81
31 J1205+4551 0.0654 41.65 2.41
32 J13554+4651 0.0278 40.95 2.15
33 1124244851 0.0623 41.44 2.28
34 J1152+4-3400 0.3419 43.0 1.82
35 J15034-3644 0.3557 42.86 1.75
36 1133346246 0.3181 42.75 1.88
37 J1442-0209 0.2937 43.16 1.94
38 1090142119 0.2993 42.48 2.16
39 J1154+4-2443 0.3689 42.87 2.01
40 J10114-1947 0.3322 42.64 2.17
41 7124344646 0.4317 43.08 1.89
42 1125644509 0.353 42.54 2.01
43 7124844259 0.3629 42.8 2.41
44 SDSSJ145742232 0.1486 41.24 1.04
45 SDSSJ0815+2156 0.141 42.34 1.79
46 GALEX1417+5228 0.2083 42.06 2.03
47 J02134-0056 0.0399 41.33 1.77
48 GALEX1001+0233 0.3824 42.36 2.09
49 GALEX1417+5305 0.2671 41.39 1.79
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Table C2. Name, systemic redshift, Ly o luminosity and observed equivalent
width for the observed galaxies. The column Label indicates the number that
appears with the spectra in Figs 13, 14, and 15.

Label Name 75 logLy o logEWLy o
lergs™'] [A]
50 J0240—0828 0.0822 42.32 2.27
51 GALEX1423+5246 0.3431 41.68 1.76
52 JO808+1728 0.0442 41.4 1.44
53 GALEX1418+5217 0.2398 40.81 1.25
54 GALEX1419+5315 0.2637 41.25 1.54
55 GALEX1418+5307 0.2034 41.63 1.58
56 GALEX1418+5218 0.2388 41.21 1.82
57 GALEX1420-+5243 0.247 41.07 1.07
58 GALEX1434+3532 0.1946 41.27 1.51
59 JO851+5840 0.0919 41.64 1.7
60 GALEX1436+3456 0.2684 41.72 1.65
61 GALEX1437+3445 0.3237 41.88 1.44
62 J1200+-2719 0.0819 42.43 1.98
63 KISSR1084 0.0321 39.46 0.52
64 J1226+-0415 0.0942 42.02 1.88
65 KISSR1578 0.028 41.16 1.0
66 KISSR1567 0.0426 39.05 0.93
67 J1311-0038 0.0811 42.03 1.86
68 J1509+3731 0.0325 41.0 1.57
69 J1608+3528 0.0327 41.17 2.39
70 J1735+5703 0.0472 42.17 1.88
71 1230240049 0.0331 41.3 1.85
72 GP0822+2241 0.2162 42.36 1.66
73 GP07514-1638 0.2647 41.59 1.2
74 GP0917+3152 0.3004 42.59 1.26
75 GP1009+4-2916 0.2219 42.34 1.79
76 GP0927+1740 0.2883 41.62 1.07
77 GP1018+44106 0.237 41.89 1.48
78 GP1122+6154 0.2046 42.26 1.73
79 GP1339+1516 0.192 41.83 1.42
80 GP1440+4619 0.3008 42.83 1.48
81 GP1514+4-3852 0.3326 42.74 1.49
82 GP1454+4528 0.2685 42.25 1.45
83 GP1559+0841 0.297 42.57 1.77
84 GP2237+1336 0.2935 42.26 1.13
85 KISSR242 0.0378 41.37 1.34
86 LARS04 0.0325 39.96 0.66
87 LARSO02 0.0298 41.03 1.61
88 LARSO03 0.0307 39.9 0.77
89 LARSO8 0.0382 40.14 0.53
90 LARSI1 0.0844 40.7 0.76
91 GALEX0330—2816 0.2813 41.65 1.2
92 LARSO5 0.0338 41.28 1.19
93 GALEX0333—2821 0.2471 41.51 1.34
94 GALEX0332—-2801 0.2155 41.5 1.52
95 GALEX0331-2814 0.2803 42.02 2.03
96 GALEX0332—-2811 0.2043 42.07 1.56
97 GALEX1000+0157 0.2647 42.11 1.38

MCMC and the MC DNN approaches. The model parameters are
the systemic redshift z”%, the outflow expansion velocity Veyp, the
neural hydrogen column density Ny, the dust optical depth 7,, the
rest-frame injected equivalent width of the Ly o line EWj, and its
rest-frame intrinsic width W;,.
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