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We present a follow-up method based on supervised machine learning (ML) to improve the performance
in the search of gravitational wave (GW) bursts from core-collapse supernovae (CCSNe) using the coherent
WaveBurst (cWB) pipeline. The ML model discriminates noise from signal events by using a set of
reconstruction parameters provided by cWB as features. Detected noise events are discarded yielding a
reduction in the false alarm rate (FAR) and the false alarm probability thus enhancing the statistical
significance. We tested the proposed method using strain data from the first half of the third observing run
of advanced LIGO, and CCSNe GW signals extracted from 3D simulations. The MLmodel is tuned using a
dataset of noise and signal events, and then used to identify and discard noise events in the cWB analyses.
Noise and signal reduction levels were examined in single (L1 and H1) and two detector network (L1H1).
The FAR was reduced by a factor of ∼10 to ∼100 resulting in an enhancement in the statistical significance
of ∼1σ to ∼2σ, while not impacting the detection efficiencies.

DOI: 10.1103/PhysRevD.105.084054

I. INTRODUCTION

The search and characterization of gravitational wave
(GW) bursts with the network of laser interferometers
LIGO [1], VIRGO [2], and KAGRA [3] need to address
issues such as discrimination between GWevents and noise
artifacts, reconstruction of the GW waveforms, and locali-
zation of the source in the sky. In the case of GWs
generated by binary black holes (BBH) and binary neutron
stars (BNS), the existing algorithms benefit from having
highly deterministic signal models, and thus, searches are
based on match-filtering detector strain data with available
template signals (see for example [4,5]).
Core-collapse supernovae (CCSNe) are also a primary

detection target in the upcoming LIGO, VIRGO, and
KAGRA observing runs. CCSNe are of special interest
because the electromagnetic radiation and emission of
neutrinos along with GWs will provide new hints to
understand their formation mechanism and dynamic,
and also will lead to novel insights in multimessenger
astronomy. The morphology of GWs from CCSNe is
predominantly stochastic with some deterministic

components like the growing trend of the central frequency
of the fundamental g-f mode [6] produced by the late
electron capture induced contraction or the GW emission
during the core bounce phase in rapidly rotating progeni-
tors banks [7] which could be described with template
banks [8]. The production of templates from three-dimen-
sional (3D) state-of-the-art numerical simulations is com-
putationally expensive. Furthermore, simulations where
modeling the physical processes or even different numeri-
cal schemes of the same progenitor are expected to have
varying stochastic features. These limitations are the main
reasons why unmodeled or weakly modeled searches are so
far the only approaches considered for CCSNe GWs [9,10].
Coherent WaveBurst (cWB) is a standard method for the

search and characterization of GWs using data collected
by the LIGO, VIRGO, and KAGRA detectors with weak
assumptions about the signal morphology like the fre-
quency band of interest and maximum duration [11]. To
detect unmodeled GW transients, cWB identifies coinci-
dent excess-power between the strain data in the network of
detectors using wavelet-based analyses and a GW mor-
phology consistency test known as the cc coefficient [12].
The coincidence between multiple detectors allows us to
reject many noise events that are present in only one of the*mauricio.antelis@ligo.org
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detectors. The rate of more rare glitches has been largely
reduced with data quality investigations that correlate the
GW candidates with sensors monitoring local disturbances
(see for example Ref. [9]). cWB also reconstructs the
detected GW and estimates some signal processing param-
eters [13–15]. cWB was used in the detection of many GW
transients from binary systems [16–20], and in the all-sky
and targeted searches of CCSNe GW signals in the
previous LIGO and VIRGO observing runs [9,21–24].
Furthermore, cWB will play a critical role in the detection
of CCSNe GWs in the upcoming fourth and fifth observing
runs (O4 and O5) with the LIGO, VIRGO, and KAGRA
(LVK) network [10].
The search of GWs emitted by CCSNe possesses other

difficulties in addition to the inherent uncertainties in the
waveform models. The production of candidate events is
mostly driven by excess energy instances (and predomi-
nantly driven by Gaussian noise) that can be related to
stationary or nonstationary noise components (glitches). At
small signal-to-noise ratio (SNR) the stationary ones domi-
nates, while nonstationary ones dominate at large SNR
values. If we have only one interferometer collecting data,
temporal coincidence and morphological consistency are not
available. This limitation is expected to make achieving large
statistical confidences in detection candidates challenging as
noted in [25]. This is significant because it has been shown
that there are periods of time during the observing runs for
which only one detector in the network is in operational
conditions and collecting science-quality data [25]. Indeed,
∼30% of the collected strain data during the first observing
runs has been from one detector only [26]. Even in the case
of a network of detectors, the population of non-Gaussian
glitches can have a rate sufficiently large as to be a limiting
factor in obtaining a large statistical confidence in the
detection, especially for extragalactic sources.
Morphologically, both type of noise events tend to carry

specific signatures of the physical causes that generated
them. The events formed by cWB at small SNR tend to
show a fairly compact time-frequency structure that would
be independent of the sources; however, for increasing
amplitudes the morphology can become more varied. The
detector characterization group of the LVK network operate
routinely to classify the morphology of different glitches
[27] and some of them, like the so-called blip glitches can
strongly resemble the core bounce waveform for rapidly
rotating progenitors [10]. All the opportunities to improve
either the detection confidence, the detection range or both
need to be taken. These issues encourage to investigate
more morphological metrics to distinguish CCSNe events
from noise events.
Machine learning (ML) methods offer one of these

opportunities and this paper is part of the systematic
exploration of its potential.
In recent times, ML along with the special class of deep

learning (DL) models tackle several GW data detection

problems [28]. For instance, to discriminate between noise
and GW signals either from binary systems [29–33] or from
CCSNe [34–37], and to identify and remove transient noise
events using strain data or auxiliary channels [38–41].
Notably, ML models have also been used to enhance cWB
performance. Specifically, to distinguish between glitches
and GW signals from BBH [42], to construct a statistical
veto based on the recognition of noise events to improve
the detection efficiencies of GWs from BBH [43], and to
achieve higher detection sensitivity of GW signals from
CCSNe using signal enhancement [44,45]. ML models, in
specific genetic programming algorithms, had been pre-
viously investigated to discriminate CCSNe GW signals
from noise transients for the case of single detector searches
[25]. Along this line, this paper investigates the benefits
of supervised ML as a follow-up method of cWB that
discriminates between noise and signal events in searches
of GWs from CCSNe. We extended the previous approach
[25] by investigating the noise reduction in two detector
network and assess its effects on the detection range for
extragalactic CCSNe; using classification algorithms that
rely on a discriminant function that do not require stochas-
tic initialization of parameters and iterative executions
thus avoiding to perform several training repetitions or
the selection of a suboptimal solution, as in the case of
classifiers based on genetic approaches.
To discriminate between noise and signal triggers, we

use a set of cWB reconstruction signal processing param-
eters such as duration and central frequency as features, and
the supervised classification models linear discriminant
analysis (LDA) and support vector machines (SVM).
We quantified the improvement in the false alarm rate

(FAR) and in the statistical significance with networks of
one or two detectors using strain data from the first half of
the third observing run (O3a), and with several recent
CCSNe GW waveforms from 3D simulations. The selected
families of waveforms from 3D simulations were based on
the fact that the historical approach in the LIGO-Virgo-
KAGRACollaborations has been to employ an evolving set
of GW from numerical simulations that represent the range
of morphologies expected from CCSNe progenitors. The
two most relevant ones are slowly rotating and rapidly
rotating progenitors. The loose criteria have been to update
the simulation set when new ones are available from the
same group. The goal of the all-sky search for GW burst
has been slightly different in that (a) white noise bursts
were included to test for unexpected morphologies (b) only
consider a small token set of CCSNe GW from numerical
simulations. Given that this search is aimed to CCSNe
we do not use in the tuning process of the ML algorithms
morphologies that are not physics driven. We do however
present in the Appendix the results of the ML classification
for generic white noise burst (WNB) signals. We also
performed robustness tests where our ML approach is tuned
with a distribution of noise and signal triggers extracted
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from a stretch of data and then applied on a different
stretch of data.
The paper is organized as follows. Section II describes

the cWB analyses carried out to generate distributions
of noise and signals triggers and the LDA and SVM
classification models used to recognize between noise and
bona fide CCSNe GW events. Section III presents the
results of the studies devoted, first to assess the noise
reduction and signal misclassification rates produced
by the classification models, and second to ascertain
the actual improvement in the FAR and the statistical
significance of the loudest candidates. Section IV presents
conclusions and future directions.

II. METHODS

A. cWB analysis

In this study we used LIGO strain data from the first half
of the third observing run (O3a). cWB analyses were
carried out independently in three stretches of open data
(i.e., three time windows named TW1, TW2, and TW3)
with a duration of three days each. For the case of CCSNe
GWs, the search is typically driven by optical observations
where the time window ranges from hours to days, while it
is a few seconds in the potential case of neutrino-flux driven
searches. Hence, three days was chosen as a representative
window duration of how much we would be able to
constrain the GW emission from electromagnetic observa-
tions and a relatively rapid discovery of the CCSNe. All
cWB analyses were carried out separately with one and two
detectors network (L1, H1, and L1H1) with the aim of
studying the rate of false detection (background analysis),
the detectability of CCSNe GWs (sensitivity analysis),
and to generate datasets of noise and signal events to train
and to test the classification algorithms. Table I shows the
total time of the three time windows for each network of
detectors used in this study.

1. Background

With more that one detector, the data from one detector is
shifted with respect to the other in a time length that has to
be longer than the GW travel time between detectors
(∼10 ms between L1 and H1). This time-shift procedure

is repeated multiple times to obtain a total background
search time (also called nonzero lag time) long enough to
attach a certain statistical significance. All detected events
from this analysis are of nonastrophysical origin and
therefore correspond to false detections or noise events.
Then, the FAR can be estimated simply as the ratio between
the number of detected events and the total background
time. Table I also shows the total background time of the
three time windows considered in this study. Note that
with only one detector available in the network the time
shifting is not possible, neither coincident test to remove
glitches can be performed. This drastically worsens the
FAR in comparison with networks of two or more opera-
tional detectors.
In the cWB background analysis, the FAR is produced

for different values of the network SNR or ρ, yielding to
the FAR versus ρ curves. Note that for the case of a single
interferometer, ρ is equivalent to the SNR of the available
detector. The statistical significance is computed in terms of
the false alarm probability (FAP) as follows [9]:

FAP ¼ 1 − eTon×FAR; ð1Þ

where Ton is the on-source window where a GW signal is
searched for.
Results for the background analysis in the time window

TW1 are presented in Fig. 1. Note how the FAR (Fig. 1(a))
is considerably higher with one detector than with two
detectors. Likewise, the corresponding values of the FAP
(Fig. 1(b), where the ρ threshold was set to 5) for the case of
a search in a on-source window of 1s reveals a statistical
significance barely close to 3σ, and a quite higher signifi-
cance close to 5σ for the two detector network. This
illustrates the need of a follow-up method to identify
and discard noise events (not only in single detector based
searches but also in searches with two detectors) which
reduces the FAR and improves the statistical significance
of the search.

2. Sensitivity

The goal in this analysis is to determine the sensitivity
in the search of known CCSNe GWs, and to obtain a
distribution of signal events. Here, waveforms are

TABLE I. Total time and background time (nonzero lag) of each network of detectors (L1, H1, and L1H1) for the three stretches of
open O3a LIGO data used in this study.

Time window TW1 TW2 TW3

Initial time 2019-06-17T00:00:01 2019-06-25T00:00:01 2019-08-26T00:00:01
Final time 2019-06-19T23:59:59 2019-06-27T23:59:59 2019-08-28T23:59:59

Network Total time Background time Total time Background time Total time Background time
L1 1.73 days … 1.62 days … 2.18 days …
H1 1.77 days … 1.66 days … 2.38 days …
L1H1 1.50 days 4.6 years 1.06 days 3.3 years 1.96 days 6.2 years
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systematically added into detector noise data, rescaled to
different amplitudes corresponding to diverse source dis-
tances, and at different time delays between detectors
corresponding to diverse source sky locations. For the
case of single detector network, the injection is carried out
only in the available detector and thus no time delay is
required. Subsequently, the search of GWs is carried out
and the detection efficiency (DE) is simply measured as the
fraction of successfully detected GWs. DE is computed for
each injected type of GWand for each distance to construct
DE versus source distance curves.
All simulation analyses were done at different source

distances from 0.1 kpc up to 10 kpc. Furthermore, several
families of CCSNe GWs were used (see next subsection).
Results for the analysis around time window TW1 are
presented in Fig. 1(c) for the case of the waveform named
“he3.5” from [46]. These DE curves are for a FAR of
2.74 × 10−2 Hz, 2.47 × 10−2 Hz, and 9.30 × 10−6 Hz for
L1, H1, and L1H1, respectively. This result shows how the
efficiency reduces as the distance increases, and quite
similar performance for all network of detectors. Despite
the good and steady sensitivity irrespective of the number
of detectors, the low statistical significance imply not only
to recognize the noise events with high accuracy, but also to
not to affect these detection efficiencies.

3. CCSNe GW waveforms

To carry out simulation analyses, freely-available
CCSNe GWs from recent 3D simulations were selected
to be added into noise data. We selected recent families
of CCSNe GW waveforms that were used in the all-sky
search of short GW bursts in O3 [47], and that were part of
the recent study devoted to investigate the detectability
of GWs from CCSNe in the upcoming fourth and fifth
observing runs of the Advanced LIGO, Advanced Virgo,
and KAGRA [10]. In specific, we used the following

waveform families representing a wide variety of physical
phenomena and modeling methods:

(i) Scheidegger et al. 2010. This a large set of GWs
obtained in 3D-simulations of magnetohydrody-
namic (MHD) driven explosions with diverse rotat-
ing progenitors [48]. For this work we considered
three representative GWs generated by a progenitor
start of 15 M⊙ with different rotational speeds and
with neutrino leakage scheme, R1E1CA_L (slowly
rotating), R3E1AC_L (moderate rotating), and
R4E1FC_L (rapidly rotating).

(ii) O’Connor et al. 2018. This is a family of seven GWs
generated by a zero age main sequence (ZAMS)
of 20 M⊙ [49]. The simulations considered neutrino
physics and the resulting GW signatures exhibit
strong g-modes and standing-shock accretion insta-
bility (SASI) components [50]. The name of the
seven waveforms are mesa20, mesa20_LR, mesa20_
pert, mesa20_pert_LR, mesa20_v_LR, mesa20_2D,
and mesa20_2D_pert. Nonrotation is presented in
this simulation.

(iii) Powell et al. 2019. This is set of two GWs (named
he3.5 and sl8) that were computed from simulations
considering low to regular energies in the explosion
mechanisms [46]. They are nonrotating models with
3.5 M⊙ helium core after the star has lost its outer
layers due to binary interactions for model he3.5
and with a ZAMS of 18 M⊙ for model sl8. The GW
waveforms exhibit the typical frequency rise asso-
ciated with emission of g-modes.

(iv) Powell et al. 2020. This family of three GWs were
obtained from simulations including explosion prop-
erties of the progenitor star [51]. The name of the
waveforms are m39, s18np, y20. The first model is
from a rapidly rotating progenitor of 39 M⊙, while
the other two are from nonrotating progenitors of
18 M⊙ and 20 M⊙. The model s18np has the same
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FIG. 1. cWB search results for the cases of single detector network (L1 and H1) and two detectors network (L1H1) using strain data in
the time window TW1. (a) False alarm rate versus the ρ statistic from the background analysis. (b) False alarm rate versus false alarm
probability for the case of a on-source window of 1 second. (c) Detection efficiency (DE) with respect to the source distance achieved
with the CCSNe GW “he3.5” from Powell et al. 2019 for a corresponding false alarm rate of 2.74 × 10−2 Hz, 2.47 × 10−2 Hz, and
9.30 × 10−6 Hz for L1, H1, and L1H1, respectively.
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progenitor as the model s18 in Powell et al. 2019,
but it does not include perturbations (np). The GW
waveforms exhibit the typical frequency rise asso-
ciated with emission of f- and g-modes and SASI
prompt convection.

(v) Mezzacappa et al. 2020. This is a single GW named
C15-3D generated by a 15 M⊙ progenitor start that
includes a neutrino-driven convection mechanisms
[52]. The GW signature presents low-frequency and
high-frequency components and SASI emission.

A summary with more physical details of these families
of CCSNe GWs such as the numerical methods, GW
characteristics, mass of the star, angular moment, fre-
quency, energy, and others is presented in [10]. It is worth
summarizing that two waveforms from Scheidegger et al.
2010 (R3E1AC_L and R4E1FC_L) and one from Powell
et al. 2020 (m39) represent rapidly rotating progenitors
while the other ones are from slowly rotating.

B. Features

The features used to feed the classification algorithms in
orderto discriminate between noise and signal events are
reconstruction parameters provided by cWB for each event.
We used the same set of parameters proposed in [25] that
represent the duration, frequency, and time-frequency
characteristics of the reconstructed GW burst transients:

(i) ρ: cWB detection statistic.
(ii) Volume: number of time-frequency pixels compos-

ing the event.
(iii) Duration 1 and Duration 2: time length of the event

computed from the energy-weighted and from the
reconstructed waveform.

(iv) Frequency 0 and Frequency 1: central frequency of
the event computed from the energy-weighted and
from the reconstructed waveform.

(v) Low and High: minimum and maximum frequency
of the time-frequency map pixels.

(vi) Bandwidth 1 and Bandwidth 2: bandwidth estimated
from the energy-weighted and from the time-
frequency map.

(vii) Norm: effective number of time-frequency resolu-
tions used for GW reconstruction.

Hence, the vector of features is x ∈ RNf×1 where Nf is
the number of reconstruction parameters extracted from
each event.

C. Classification algorithms

The classifier is a computational model that takes as
input a vector of features extracted from a cWB event, and
assigns to it one class label indicating “noise” or “signal”.
Common and robust classification models used in diverse
applications are linear discriminant analysis and support
vector machines. These classifiers allow to identify a linear
or nonlinear separation hypersurface in such a way that the

class assigned to an input vector of features depends on
which region the vector is located [53]. They consist of a
discriminant function defined by wT · fðxÞ ¼ 0, where x ∈
RNf×1 is the vector of Nf features, fð·Þ is a transformation
function, and w ∈ RNf×1 is a vector of classification
weights (i.e., discriminant vector) that have to be calculated
from a training dataset fxi; yig; i ¼ 1;…; N, where yi
indicates whether xi is a feature vector extracted from a
noise or a signal event, and N in the number of instances.
LDA defines the transformation function as fðxÞ ¼ x,

thus it is only able to construct linear separation surfaces
since the discriminant function becomes wT · x ¼ 0 [54].
In this classifier, the discriminant vector w is estimated
by seeking the projection that maximizes the difference
between the means of the classes while minimizes their
variance (leading to a classification model that is optimal
when the two classes are Gaussian with equal covariance).
Thus, the hypersurface is found by solving this optimiza-
tion problem,

ŵ ¼ argmax
w

wTSBw
wTSWw

; ð2Þ

where SB is the between-class covariance matrix and SW is
the within-class covariance matrix [54].
SVM is able to compute linear or nonlinear separation

surfaces in such a way that maximizes the separation
between the hypersurface and the nearest data points of
each class which are called support vectors [55]. This
involves solving the following optimization problem,

ŵ ¼ argmin
w

1

2
kwk2 þ C

Xn

i¼1

ξi; ð3Þ

subject to the condition yiðwTfðxiÞÞ≥1−ξi;∀ i¼1;…;N,
where ξi ≥ 0 measure the error in the misclassification
of xi. The separation hyperplane is linear when fðxÞ ¼ x,
leading to the linear SVM (or SVML). On the contrary,
nonlinear separation boundaries are obtained through a
kernel function. The most common kernel is the radial
basis function (RBF), which leads to a nonlinear SVM with
RBF (or SVMR).
In this work, we first used LDA, SVML, and SVMR

to test the discrimination between noise and signal events,
and then, we selected the one with the higher performance
in order to assess the actual improvement produced
by classification model as a follow-up method in offline
cWB searches.

III. RESULTS

A. Training/testing with data
from the same time window

As a first step to investigate the classification between
noise and signal triggers we perform both the training and
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testing with information from the same stretch of strain
data, i.e., noise and signal triggers used to train and test the
classification model are from the same background and
simulation analyses. To do so, a cross-validation process
was employed to assess classification performance. The
process was implemented as follows: (i) randomly split the
dataset of noise and signal triggers into K nonoverlapping
subsets or folds; ðiiÞ use the data from K − 1 subsets
for training and the data from the remaining subset for
testing (note that data for training and testing are always
mutually exclusive); ðiiiÞ use the training set to calculate
the parameters of the classification model; ðivÞ fed the
classification model with all the triggers from the test set
and compute performance metrics by comparing the output
labels provided by the classifier with the corresponding
true labels; (v) repeat steps ðiiÞ to ðivÞ until all the K
combinations of train and test data are exhausted.
This cross-validation process with K ¼ 5 was repeated

10 times to compute distributions of the classification
performance metrics. Prior to the training of the classi-
fication model, the number of noise and signal triggers in
the training set is balanced to avoid overfitting to one of
the classes, moreover, the training data was normalized
according to xi ¼ ðxi − μiÞ=σi, ði ¼ 1; 2;…; NfÞ where μi
and σi are the mean and standard deviation of the ith
feature which are computed exclusively from training
data. The normalization is later applied to each feature
vector in the test set.
To assess performance the following metrics were

computed: true negative rate (TNR) or specificity (i.e.,
correct classification percentage of noise events) and false
negative rate (FNR) (i.e., percentage of signal triggers
incorrectly classified as noise triggers). TNR is expected to
be large to reduce the FAR, while FNR is expected to be

small to not affect the efficiency. Classification analyses
were carried out separately for each variant of:

(i) Detector network: L1, H1, and L1H1.
(ii) Time window of strain data: TW1, TW2, and TW3

(see table I).
(iii) Distance: 1.00, 1.33, 1.78, 2.37, 3.16, 4.22, 5.62,

7.5, 10 kpc, and all those distances together.
(iv) Family of CCSNe GW: Scheidegger et al. 2010,

O’connor et al. 2018, Powell et al. 2019, Powell
et al. 2020, and Mezzacappa et al. 2020 and from all
those families together.

(v) Classification models: LDA, SVML, SVMR.
Figure 2(a) shows the correct noise classification rate

(TNR) and the incorrect signal classification rate (FNR)
obtained with the dataset from the time window TW1
separately with detector networks L1, H1, and L1H1. These
results are for the case of signal triggers from all distances
and from all families of CCSNe GW, which represents the
most difficult situation for a classification model because
they combine signal triggers with different SNR and with
different GW signatures. The percentage of noise triggers
that are correctly classified is on average 97.6� 0.6%,
97.2� 0.5%, and 99.4� 0.6% for detector networks
L1, H1, and L1H1, respectively. This indicates very high
specificity (nearly 100%) with very low variability (less
than 0.6%) irrespective of the number of detectors in the
network. On the contrary, signal triggers are lost, on
average, 16.6� 1.2%, 17.2� 1.4%, and 2.2� 0.9% for
detector networks L1, H1, and L1H1, respectively. These
results shows a very high noise reduction irrespective of
the detector network and low signal lost especially for the
detector network with two interferometers.
To examine the effect of the distance, Fig. 2(b) shows

the classification results obtained with signal triggers from

0 0.05 0.1 0.15 0.2

FNR (Signal reduction)

0.96

0.97

0.98

0.99

1

T
N

R
 (

N
oi

se
 r

ed
uc

tio
n)

        TW1 - GW family: ALL - Distance: ALL

L1
H1
L1H1

1.00 1.33 1.78 2.37 3.16 4.22 5.62 7.50 10.00

Distance (Kpc)

0

0.2

0.4

0.6

0.8

1

R
at

e

TW1 - GW family: ALL

 TNR (Noise reduction)

 FNR (Signal reduction)

L1
H1
L1H1

(a) (b)

FIG. 2. Classification results from the cross-validation analysis obtained with the dataset of triggers extracted from the time window
TW1 in detector networks H1, L1, and L1H1. (a) Distribution of classification rates (TNR and FNR) for the case of signal triggers from
all families of GW and from all distances combined. (b) Mean and standard deviation values of classification rates (TNR and FNR) for
the case of signal triggers from all families of GW and for each distance individually. All these results were obtained when using the
classification algorithm SVMR.
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each distance separately. As the distance increases,
correct noise classification (TNR) decreases while signal
misclassification (FNR) increases and the proportion of lost
signals increases faster than the decrease in correct noise
classification. This is due to the fact that as the distance
increases the SNR of the GW signals decreases, and
therefore it becomes more difficult to discriminate between
noise and signal triggers because they tend to have similar
characteristics.
The results presented in Figs. 2(a) and 2(b) include

signal triggers from all GW families considered herein,
which represent the case with the more variability in
the characteristics of signal triggers. Similar results and

observations were drawn with analysis carried out with
datasets of noise and signal triggers obtained from time
windows TW2 and TW3. Altogether, these results shows
that a better classification between noise and signal triggers
with the network of two detectors L1H1, and the lower
performance with the network of one detector H1.
Figure 3 shows the classification results from the

cross-validation analysis for the three time windows, each
family of CCSNe GW, and for the three classification
algorithms. First, with regard to the three stretches of
strain data (Fig. 3(a)), high-noise detection, and low signal
misclassification was obtained in the three cases, and
there is a similar distribution of the performance metrics.
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FIG. 3. Distribution of classification metrics (TNR and FNR) obtained with (a) the three different time windows, (b) each family
of CCSNe GW, and (c) the three classification algorithms. These results are for the case of the single detector network L1 (upper panel),
H1 (central panel), and L1H1 (lower panel).
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Second, there is some variable classification performance
considering the family of CCSNe GW [Fig. 3(b)]. In
particular, using signal triggers from O’Connor et al.
2018 yielded to a lower noise detection and higher signal
lost, while triggers from Scheidegger et al. 2010, Powell
et al. 2019, and Powell et al. 2020 resulted in the best
performance with the higher TNR and lower FNR.
Importantly, note that for the case of using signal triggers
from all families combined the performance metrics
are distributed within all families. Finally, regarding
the comparison between classification algorithms, all
classifiers achieved similar and high rates of noise
reduction, however, the rate of signal lost varied across
them, in particular, SVMR presented the lower signal
lost. In consequence, the nonlinear SVMR classifier was
selected to be used is the subsequent analyses. The same
behavior of the noise reduction and signal lost is observed
in all detector networks (L1, H1, and L1H1), but the
network of two detectors always presents the best
performance.
A summary of the cross-validation results with the

percentage of noise and signal reduction for each network
of detectors (L1, H1, and L1H1), for each family of CCSNe
GW, for different distances, and for the first time window
of data is presented in Table II. These results shows

that classification performance degrades as the distance
increases, shows no large differences across families of
CCSNe GW and is higher for the two detector network.

B. Training/testing with data
from different time windows

This second study aimed to assess the actual improve-
ment (i.e., noise reduction) and the potential drawback
(i.e., signal reduction) given by the incorporation of the ML
model as a follow-up method in cWB offline searches of
GWs from CCSNe. Here, the classification model is tuned
with a dataset obtained from a given cWB analysis, and
then, used in a different cWB analysis. This allows us to
effectively quantify the improvement in FAR and FAP,
while also measuring the impact in the DE. In addition, to
assess the robustness to unknown GWs, the ML model is
tuned using all but one of families of GW signals, and then,
is tested with the remaining family.
Once the classification model is applied to a offline cWB

analysis, the following performance metrics are computed:
(i) noise reduction rate (TNR), and signal reduction rate
(FNR); ðiiÞ FAR and FAP before and after the application
for the ML model; ðiiiÞ DE before and after the application
for the ML model. Note that FAR, FAP, and DE “before”

TABLE II. Percentage of noise and signal reduction obtained by the three detector networks for each familiy of CCSNe GW
waveforms and for several distances of signal triggers. These results are dataset of noise and signal triggers extracted from the time
window TW1. For the two detector network there are missing results because it was not possible to train and test the classification model
since no signal triggers were obtained in the simulation analysis.

1 kpc 2.37 kpc 4.22 kpc 7.5 kpc 10 kpc All

Noise Signal Noise Signal Noise Signal Noise Signal Noise Signal Noise Signal

L1

Scheidegger et al. 2010 99.6 5.4 99.6 9.5 99.4 13.4 99.0 16.5 98.7 18.5 99.0 7.0
O’connor et al. 2018 97.0 20.9 93.4 35.7 91.9 39.0 90.9 39.3 91.5 39.0 97.5 24.3
Powell et al. 2019 99.4 16.2 98.4 18.5 96.7 22.1 93.7 29.6 92.5 34.5 99.5 15.8
Powell et al. 2020 98.8 8.2 97.5 12.8 96.7 16.5 95.8 20.3 95.5 22.4 97.9 10.4
Mezzacappa et al. 2020 99.2 18.1 97.2 23.7 94.0 35.8 93.5 39.5 93.0 39.1 98.9 20.8
All 97.6 16.1 96.7 23.0 95.3 25.7 93.4 29.7 93.8 32.2 97.5 16.6

H1

Scheidegger et al. 2010 99.0 4.3 98.9 9.1 98.8 12.6 98.5 15.2 98.2 16.5 98.6 6.4
O’connor et al. 2018 96.6 23.3 93.4 32.7 93.8 33.2 93.5 33.0 93.8 33.7 97.8 22.9
Powell et al. 2019 99.4 15.1 97.8 18.7 96.2 24.5 93.5 31.4 92.3 33.0 98.9 15.9
Powell et al. 2020 97.9 7.7 96.3 14.0 94.4 16.6 93.7 19.2 93.7 20.9 97.3 10.9
Mezzacappa et al. 2020 99.2 18.2 96.2 27.3 93.5 33.2 93.8 33.3 93.1 33.5 98.6 20.1
All 97.1 17.4 95.6 22.1 94.1 25.0 93.2 27.4 93.1 28.2 97.2 17.2

L1H1

Scheidegger et al. 2010 98.6 2.2 99.7 1.0 99.9 0.9 99.7 0.1 99.7 0.2 99.5 1.9
O’connor et al. 2018 98.7 1.3 … … … … … … … … 99.4 1.1
Powell et al. 2019 100.0 0.3 99.3 0.3 99.0 0.3 95.9 0.8 … … 99.8 0.1
Powell et al. 2020 99.8 0.1 99.3 1.5 98.5 3.2 98.7 5.0 98.2 7.0 99.4 1.9
Mezzacappa et al. 2020 100.0 0.4 99.3 0.5 … … … … … … 100.0 0.4
All 99.5 0.9 99.0 1.3 98.7 3.3 98.2 7.5 96.1 8.5 99.0 2.2
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refer to the original search results provided by cWB, while
FAR, FAP, and DE “after” refer to the results obtained with
cWB in combination with the ML model. As in the first
study, analyses were carried out separately with each
detector network (L1, H1, L1H1), signal triggers from
each distance and from all distances combined.
The results presented below are for the specific case of

training the ML model with triggers extracted from the
cWB analysis in the time window TW1, whereas the model
is applied to the cWB analysis carried out in the time
window TW2 using exclusively CCSNe GWs from Powell
et al. 2019. Firstly, Fig. 4 shows the distribution of noise
and signal events before and after the application of the ML
model. Noise events are significantly reduced with only a
small proportion remaining after classification, indeed,
noise reduction is 99.4%, 99.2%, and 100.0%, for L1,
H1 and L1H1, respectively. At the same time, most of the
signal events remains after the application of the classifier
since there is low signal reduction of 15.7%, 14.3%, and
0.3%, for L1, H1, and L1H1, respectively. This shows that
irrespective of the detector network, a high proportion of
the noise triggers are removed while a small proportion
of signal triggers are lost. In addition, the higher noise
reduction and the lower signal lost were obtained with the
two detector network.
Secondly, Fig. 5 shows the FAR versus ρ (or SNR for

the case of single interferometer), and the FAP versus FAR

before and after the application of the classifier. These
are crucial results to determine the actual improvement
produced by the incorporation of the classifier as a fol-
low-up method. On the one hand, Fig. 5(a) shows a clear
FAR reduction, especially in low values of ρ. For the specific
operating point of the cWB search (i.e., network ρ ¼ 5),
the FAR before the ML model is 2.97 × 10−2 Hz,
2.53 × 10−2 Hz, and 9.76 × 10−6 Hz for L1, H1, and
L1H1, respectively (red dots in the lower plots of Fig. 5),
while after the ML model, it is reduced to 1.78 × 10−4 Hz,
1.95 × 10−4 Hz, and 9.58 × 10−9 Hz for L1, H1, and L1H1,
respectively (green dots in the lower plots of Fig. 5). This
indicates that the FAR is effectively lowered in a factor of up
to ∼170, ∼130, and ∼1019. On the other hand, Fig. 5(b)
shows the false alarm probability before and after for on-
source windows of 1s (representing a potential neutrino
driven search) and of 1 day (representing a optically targeted
search). For the single detector network, the FAP improve-
ment is about 1.5σ in the case of a on-source window of 1s,
while no improvement was achieved in the case of a on-
source window of 1 day. In contrast, with the two detector
network there is FAP improvement is about 1σ. We stress
that these results represent the most difficult situation to tune
and to test the classification model since it involves signal
triggers of different distances, and because, the ML model
is recognizing unknown GW waveforms that were not
employed in the training.

(a) (b) (c)

FIG. 4. Distribution of noise and signal triggers before and after the application of the classification model with CCSNe GWs from
Powell et al. 2019. These results are for the cWB analysis in the timewindow TW2 for each detector network (a) L1, (b) H1, and (c) L1H1.
For each detector, the classification model was tuned with the corresponding dataset of noise and signal triggers extracted from time
window TW1 with signal triggers from all distances. Top panel shows the noise triggers while bottom panel shows the signal triggers.
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Figure 6 shows the DE versus distance before and after
the application of the classification model for the CCSNe
GW he3.5 from Powell et al. 2019 which enables to
quantify the actual impact of the classifier. There is a

minimum signal reduction for single detector network and
almost null effect for two detector network. Horizontal
lines allow to identify the distances with 90%, 50%, and
10% of efficiency. For L1 and H1, there is no effect in the
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FIG. 5. Results of the cWB background search in the time window TW2 before (red) and after (green) the application of the
classification model. Top panel shows the FAR versus the signal-to-noise ratio (ρ), and bottom panel shows the FAP versus FAR for the
two representative cases in the search of GWs from CCSNe (on-source of 1s resembling a neutrino-driven search, and a on-source of
1 day representing a optical-targeted search). These results are for each detector network, (a) L1, (b) H1, and (c) L1H1. For each detector
network, the classification model was trained with the corresponding dataset of triggers extracted from the time window of TW1 and
with signal triggers from all distances.
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FIG. 6. Results of the cWB simulation analysis for the time window TW2 before (red) and after (green) the application of the
classification model. These results are the detection efficiency (DE) versus distance for each detector network, (a) L1, (b) H1, and
(c) L1H1, obtained with the CCSNe GW he3.5 from Powell et al. 2019. The FAR before/after the classification model is
2.97 × 10−2=1.78 × 10−4, 2.53 × 10−2=1.95 × 10−4, and 9.76 × 10−6=9.58 × 10−9 for L1, H1, and L1H1, respectively. Again, for each
detector network the classification model was trained with the corresponding dataset of triggers extracted from the time window DC1
and with signal triggers from all distances.
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TABLE III. Percentage of noise and signal reduction obtained by the three detector networks and for several distances of signal
triggers. These results are for the time window TW2 and for each familiy of CCSNe GWwaveforms. The classification model is trained
from the dataset of noise and signal triggers obtained from the cWB analysis in the time window TW1. For the two detector network
there are missing results because it was not possible to train and test the classification model since no signal triggers were obtained in the
simulation analysis.

1 kpc 2.37 kpc 4.22 kpc 7.5 kpc 10 kpc All

Noise Signal Noise Signal Noise Signal Noise Signal Noise Signal Noise Signal

L1

Scheidegger et al. 2010 99.6 4.9 99.8 8.4 99.8 12.7 99.3 16.4 98.7 17.7 99.4 8.3
O’connor et al. 2018 96.8 19.7 93.3 31.7 92.0 35.7 91.7 35.3 91.0 35.2 97.4 17.8
Powell et al. 2019 99.3 15.3 98.3 18.8 97.1 21.7 93.6 28.1 91.9 33.1 99.4 15.7
Powell et al. 2020 98.8 8.7 97.3 12.5 95.4 15.4 94.5 19.2 93.9 21.2 97.7 11.2
Mezzacappa et al. 2020 99.2 16.9 96.8 21.9 94.2 32.3 93.9 36.3 93.2 36.0 99.1 16.8

H1

Scheidegger et al. 2010 99.6 4.8 99.4 8.2 99.3 11.9 99.1 15.9 99.1 16.8 99.3 8.0
O’connor et al. 2018 97.9 22.4 96.2 39.2 95.8 40.2 95.5 40.4 95.5 40.2 98.4 17.8
Powell et al. 2019 99.7 15.3 98.7 18.6 97.8 25.4 95.9 37.8 95.3 40.2 99.2 14.3
Powell et al. 2020 98.2 6.9 97.3 12.1 96.3 16.3 96.3 20.4 96.2 22.2 98.1 11.6
Mezzacappa et al. 2020 99.4 16.0 97.6 27.5 95.4 39.4 95.2 40.3 95.5 40.8 99.1 15.9

L1H1

Scheidegger et al. 2010 99.3 1.0 100.0 1.5 99.9 0.8 99.9 0.0 99.9 0.1 99.9 1.7
O’connor et al. 2018 99.4 0.8 … … … … … … … … 99.7 0.7
Powell et al. 2019 100.0 0.1 99.9 0.1 99.4 0.6 98.2 0.6 … … 100.0 0.3
Powell et al. 2020 99.8 0.1 99.2 0.5 98.3 2.8 98.4 6.0 98.1 5.9 99.6 1.9
Mezzacappa et al. 2020 100.0 0.2 99.7 0.3 … … … … … … 100.0 0.3

TABLE IV. Improvement factor in the FAR (i.e., FAR before/FAR after) achieved for the cWB analysis in the time window TW2. The
classification model is trained from the dataset of noise and signal triggers obtained from the cWB analysis in the time window TW1.
Missing values indicate that no classification model was tuned since no triggers were available.

1 kpc 2.37 kpc 4.22 kpc 7.5 kpc 10 kpc All

L1

Scheidegger et al. 2010 260.7 595.9 417.1 139.0 74.5 173.8
O’connor et al. 2018 30.9 14.8 12.6 12.1 11.1 38.6
Powell et al. 2019 149.0 57.9 34.5 15.7 12.4 166.8
Powell et al. 2020 80.2 37.2 22.0 18.1 16.4 43.9
Mezzacappa et al. 2020 122.7 31.4 17.1 16.4 14.7 115.9

H1

Scheidegger et al. 2010 242.7 173.4 140.0 107.1 117.5 134.8
O’connor et al. 2018 48.5 26.2 23.6 22.1 22.1 60.7
Powell et al. 2019 364.1 77.5 45.0 24.6 21.2 130.0
Powell et al. 2020 55.2 37.2 27.4 27.0 26.6 53.5
Mezzacappa et al. 2020 158.3 41.4 21.9 20.7 22.1 113.8

L1H1

Scheidegger et al. 2010 145.6 1019.0 1019.0 1019.0 1019.0 1019.0
O’connor et al. 2018 169.8 … … … … 339.7
Powell et al. 2019 1019.0 1019.0 169.8 56.6 … 1019.0
Powell et al. 2020 509.5 127.4 59.9 63.7 53.6 254.8
Mezzacappa et al. 2020 1019.0 339.7 … … … 1019.0
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distance with 10% of DE, while there is minimum
reduction in the distance for 90% and 50% DE. For
L1H1, no effect in the distances is observed. We conclude
that for single detector networks there is marginal impact in
the detection efficiency whereas there is no effect at all for
the two detector network.
For the cWB analysis in time window TW2, Table III

shows the noise and signal reduction whereas Table IV
shows FAR improvement factor. As in the previous
study, noise detection reduces and signal lost increases
for larger distances and varies across the families of
CCSNe GW. Also, the two detector network provides
the better performance with the higher noise reduction
rates and lower signal reduction rates. Equivalently, FAR
improvement factor is higher for lower distances, and
there are cases in which all noise triggers are completely
identified and therefore the FAR after the classification is
applied reaches its minimum value of the one over the
background time.

IV. CONCLUSIONS

This work investigated the use of supervised machine
learning methods to recognize between noise and signal
events using a set of reconstruction parameters from cWB.
This constitutes a follow-up method devised to recognize
and discard noise events while preserving signal events,
which is essential to reduce the FAR and to increase the
range of detection.
The proposed follow-up ML method to enhance cWB

searches was analyzed in two different studies. The first
aimed to ascertain the classification accuracy between noise
and signal events (i.e., noise and signal reduction rates),
while the second aimed to quantify the actual improvement
in the statistical significance (i.e., reduction in FAR and
FAP for the cases of on-source windows of 1 second
and 1 day which represent a potential neutrino flux and
optically targeted searches, respectively) and the impact in
the detection efficiency. The two studies considered differ-
ent conditions as the number of detectors in the network
(L1, H1, and L1H1); three stretches of open O3a train data,
diverse distances of signal events, various CCSNe GW
families with diverse characteristics, and three classifica-
tion algorithms. Overall, the results of these studies and
variety of conditions with the SVMR classifier showed
high noise reduction rates greater than 90% and 97% with
one and two detectors, respectively, and signal misclassi-
fication rates lower than 30% and 3% with one and two
detectors, respectively.
Importantly, in our analyses we quantified the impact

bring by the ML model in cWB offline searches. The
recognition and discharging of noise triggers from cWB
outputs reduces the FAR in a factor of ∼10 for one detector
(or even more for some families of GWs), and in a factor
of >100 for two detectors in the network. Notably, these
FAR reductions are equivalent to an improvement in the

statistical significance of ∼1.5σ with one detector and even
more with two detectors for the case of a on-source
windows of 1 second. For the case of optically targeted
searches with on-source windows of 1 day, on the other
hand, the FAR reduction yields to a > 1σ improvement
with a two detector network.
The variety of explored conditions allowed to study

several important aspects. First, comparing the classifi-
cation performance when tuning the ML model with a
single or with various families of CCSNe GW showed no
large differences in performance. This shows the robust-
ness of the ML approach with respect to different types of
CCSNe GW signatures, and points out that the morphol-
ogy of noise and signal triggers are effectively distin-
guishable irrespective of the GW signals used to train and
to test the classifier. This is noteworthy since in practice
the ML model must be tuned with a pool of synthetic GWs
obtained for example through numerical simulations (as is
done in this work), but its usage in a real situation implies
correctly identifying signal events generated by actual
GWs that will not exactly match GWs used to train the
model. Secondly, there are high noise reduction rates
with low signal reduction rates irrespective of the number
of detectors in the network, though the classification
performance is better with two detectors. This is simply
because with two detectors the algorithm is tuned with a
uniform distribution of noise triggers with low and
moderate SNR since high SNR noise triggers do not
survive coherence tests between detectors. Also, regarding
the different classification models, the results indicated a
consistent superior performance with the support vector
machine with radial basis function as kernel (SVMR).
This model provides nonlinear separation surfaces
allowing to account for nonlinearities in the feature space.
Despite other methods can also be used for this problem,
we recommend the use of SVMR since it has been proved
to be stable and robust.
With regard to the training of the classification model, it

is important to indicate that the training data in all analyses
was always balanced, hence, there is an equal probability
for each class (noise and signal). However, during the
training procedure of the classifiers there is the possibility
to assign more probability to one class. This would allow to
increase the noise reduction at the expense of the signal
reduction, or vice versa. This is an important aspect to
be able to trade off between statistical significance and
efficiency. It is also possible to train the classification
model using only a subset with loudest noise events, or
with a subset of signal events with certain characteristics
(duration, bandwidth, etc.). This can be used to bias the
follow-up ML model to prioritize specific aspects during
the search by recognizing better one specific type of noise
or signal event.
To sum up, this work presented a follow-up machine

learning method for cWB based searches of GWs from
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CCSNe which can be use with one or multiple detec-
tors. The method identifies and discharges nonastro-
physical noise transients allowing to reduce the false
alarm rate, to improve the statistical significance and to
increase the detection range of the searches. The model
is simply tuned with a set of noise and signal triggers
and then can be easily incorporated into the search
pipeline.
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APPENDIX: RESULTS WITH WHITE NOISE
SIGNALS

In this paper, we explore the performance of the ML
implementation to perform targeted searches for CCSNe
signal. One possible question is how well is the CCSNe
based tuning developed in this work performs on white noise
signals as those that have been considered in generic all sky
burst searches. In Fig. 7 we show, for each detector network,
the distributions of noise and WNB signal triggers before
and after the application of the classification. Note that the
distribution of noise triggers is highly reduced with one
detector and completely reduced with two detectors, while
the majority ofWNB signal triggers remain.We also tried, as
a test, to quantify how distinguishable are WNBs from cWB
noise events if someone would just do the tuning on WNB
signals. For that purpose in Fig. 8 we show the classification
results from the cross-validation analysis for each detector
network. Notice that The vast majority of noise triggers are
correctly identified (TNR greater than 98%with one detector
networks and of 100% for two detectors network) with a
low signal lost (FNR of 20% with one detector and only of
0.37% with two detectors). Altogether, these results show
that generic signals such as white noise bursts can be
effectively recognized and separated from noise.

(a) (b) (c)

FIG. 7. Distribution of noise and signal triggers before and after the application of the classification model with white noise burst
(WNB) type signals. These results are for the cWB analysis in the time window TW2 for each detector network (a) L1, (b) H1, and
(c) L1H1. Top panel shows the noise triggers while bottom panel shows the signal triggers.
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