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Abstract
The mechanical response of rock bridges plays a key role in the stability of concrete and rock structures. In particular, the 
tensile failure of non-persistent discontinuities can result in their coalescence and the failure of rock or concrete engineering 
structures. The effect of non-persistent joint parameters on rock structures’ failure under tensile mode has not been investi-
gated by many researchers yet. Many non-persistent jointed Brazilian concrete discs are tested under diametral loading in 
this work, to study the influence of joint spacing, joint continuity factor, loading direction with regard to joint angle, and 
bridge angle on their tensile behavior. Heuristic methods like artificial neural network (ANN), adaptive neuro-fuzzy infer-
ence system (ANFIS) and a combination of ANFIS with particle swarm optimization (ANN-PSO) and genetic algorithm 
(ANFIS-GA) were adopted to explore the relationship between tensile strength and stiffness as the response and non-persistent 
joint parameters as input parameters. The results revealed that all the applied intelligent methods have the ability to predict 
tensile strength of non-persistent jointed discs, and their outputs are consistent with laboratory results; however, the ANN 
approach had the best performance with  R2 = 0.966, RMSE = 0.176. In addition, parametric analysis of the proposed model 
showed that the model is highly sensitive to joint continuity factor and loading direction, while it is sensitive to joint spac-
ing and bridge angle.

Keywords Non-persistent joint · Brazilian Disc · Tensile strength · ANN · ANFIS

Nomenclatures
d  Joint spacing (cm)
γ  Bridge angle (degree)
β  Loading direction with respect to joint angle 

(degree)
Lj  Joint length (cm)
Lj  Rock bridge length (cm)
k  Joint continuity factor ( k = Lj

Lj+Lr
)

σ1  Major principal stress
UCS  Unconfined compressive strength
E  Young's modulus (GPa)
σt  Tensile strength (MPa)

ν  Poisson's ratio
MPSA  Multiple parametric sensitivity analysis
fh   Objective Function
�h   Independent relative importance of each 

parameter
�   Sum of independent relative importance of each 

parameter
ANN  Artificial neural network
ANFIS  Adaptive neuro-fuzzy inference system
PSO  Particle swarm optimization
GA  Genetic algorithm

Introduction

Rock blocks and discontinuities, like joints, bedding planes 
and faults, are two main components of any rock masses. The 
stability of rock structures depends on both the properties of 
intact rock and rock discontinuities (Wittke 2014). Discon-
tinues in rock mass can be divided into persistent or non-
persistent one, and they may affect the mechanical behavior 
of rock mass (Jennings 1970; Lajtai 1973). A large number 
of rock engineering structures, such as slopes, mines, and 
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tunnels, may contain non-persistent joints (Bahaaddini et al. 
2016; Azarfar et al. 2018; Vaziri et al. 2022). The tensile 
strength of rock bridges is an important factor controlling 
the mechanical response of rock masses (Bahaaddini et al. 
2013; Asadizadeh et al. 2018a, b, 2019; Karimi et al. 2021; 
Shakeri et al. 2022). Therefore, an in-depth knowledge of the 
crack development in rock mass is essential for the assess-
ment and design of the stability of rock structures. Since 
in situ studding of rock mass cracking behavior is difficult, 
a vast number of studies have been conducted on natural or 
rock-like material containing pre-fabricated joints, and many 
outstanding results have been reported (Asadizadeh et al. 
2018a, b, 2019; Rezaei and Asadizadeh 2020; Karimi et al. 
2021; Shakeri et al. 2022). Much research has been con-
ducted to study the mechanical response of persistent joints 
(Barton 1973; Wang and Huang 2009; Asadizadeh et al. 
2010) and less to study the non-persistent joints (Bahaaddini 
et al. 2013; Yang et al. 2016; Asadizadeh et al. 2018b, 2019; 
Shakeri et al. 2022). However, tensile behavior of samples 
containing non-persistent joints has not been explored thor-
oughly yet (Cheng et al. 2016; Shang et al. 2018; Lin et al. 
2020; Yang et al. 2020).

With the advent of high-speed computers, artificial 
intelligent approaches have been adopted to explore the 
complexity of geotechnical problems (Sharbati et al. 2022; 
Tsuruta et al. 2019; Asadizadeh and Majdi 2019; Rivera and 
Bonilla 2020; Rezaei and Asadizadeh 2020; Mahmoodzadeh 
et al. 2021). These methods have been used to explore rock 
engineering problems in both mining and civil engineering 
disciplines (Asadizadeh and Hossaini 2016; Haeri et al. 
2016; Asadizadeh and Majdi 2019; Luo et al. 2021; Lawal  
and Kwon 2021). Adopted Mamdani fuzzy system to 
predict the deformation modulus of roof rock strata in 
longwall mining. They employed fuzzy logic to evaluate 
deformation modulus utilizing rock mass properties. In 
another research, predicted deformation modulus of rock 
mass using radial basis function neural network (RBFNN) 
based on in situ dilatometer tests, and they reported excellent 
performance for RBFNN to predict deformation modulus. 
Haeri et al. (2016) investigated crack coalescence in concrete 
utilizing the ANN approach. The model performance was 
evaluated, and the results were compared to those obtained 
using the experimental technique, and the results revealed 
the capability of artificial neural networks to predict failure 
mode in concrete samples. Sarfarazi et  al. (2020) used 
experimental testing and numerical modeling to investigate 
the tensile behavior of a Y-shaped non-persistent junction. 
The results revealed that the minimum tensile strength 
occurs at a 60° angle between the bigger joint and the 
horizontal axis and that increasing the notch length 
decreased the tensile strength. Both approaches indicated 
identical failure patterns and failure strengths. Employed 
a neuro-fuzzy model, which was developed by artificial 

bee colony techniques to assess the rock brittleness index.  
Tensile behavior of rock mass including non-persistent 
joints subjected to static loads has been studied by few 
researchers using artificial intelligent approaches (Feng 
et al. 2018; Nguyen et al. 2020).The tensile strength of 
intermittent joints and intact rock bridges is not well 
explored, and more investigations are needed to boost the 
knowledge. These studies are beneficial to engineers by 
giving them a better understanding of how rock structures 
fail when subjected to static loads in  situations like 
slopes, tunnels, and underground spaces and by assisting 
their stability during the design stage and preventing  
catastrophic failures.

In this paper, through physical experiments and heuris-
tic approaches, many Brazilian concrete discs, including a 
number of non-persistent joints, are under diametral loading 
to study the impact of bridge angle, joint spacing, loading 
direction with respect to the joint angle, and joint continu-
ity factor (see Fig. 1). Several intelligent techniques includ-
ing ANN, ANFIS and ANN-PSO/GA have been applied to 
the experimental data to predict the tensile strength 

(

�t

)

 of 
the samples, and the performance of artificial intelligent 
approaches was evaluated using several statistical indicators.

Fig.1  Non-persistent jointed discs' geometric parameters
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Experimental program

Concrete Brazilian disc samples (diameter = 150 mm, 
height = 75 mm) were made with a 3.5:5:3 weight ratio 
of cement, sand, and water. The samples were submerged 
for 14 days at room temperature to be cured. On cylin-
drical and disc specimens, some uniaxial compression 
and Brazilian tests were conducted to determine their 
mechanical properties. Table 1 shows the mechanical 
parameters of the final product. A geologic material with 

the described mechanical qualities is classified as a weak 
rock sample.

According to (Brady and Brown 2004), plexiglass and 
PVC tube were used to design and produce a specific mold. 
A grid of slots was created to provide a host for the blades 
which are installed vertically at the bottom of the model. 
The blades were fixed at the bottom of model using a pre-
designed grid. A view of mold setup is shown in Fig. 2.

To free the air bubble in the mortar, it was shaken for 2 min, 
and after four hours the blades were smoothly removed from 
the mortar to generate the non-persistent joints in the model. 
A view of model before and after testing is shown in Fig. 3.

Testing procedure

Uniaxial loading setup available in the rock mechanics labo-
ratory of Hamadan University of Technology was used to 
apply diametral load to the non-persistent jointed Brazilian 
disc (Bieniawski and Hawkes 1978). To achieve this goal, 72 
Brazilian disc samples were created and tested. The speci-
men was subjected to an axial displacement rate equal to 
0.005 mm/s. Furthermore, the LVDT displacement sensor 
was utilized in this experiment to study and calculate the 
values of stress and strain, which is shown in Fig. 4, a view 
of the uniaxial loading setup and how the samples are placed 
under loading. Note that in this article, all experiments were 
performed on 14-day-old samples.

Experimental program

The effect of four parameters including k, d, γ and β on 
the tensile behavior of non-persistent jointed discs has been 
studied (Fig. 1). The input and output parameters of experi-
ments are presented in Table 2.

Table 1  Brazilian concrete discs' material properties

σt (MPa) UCS (MPa) E (GPa) ν

1.88 12.96 2.44 0.25

Fig. 2  A view of a plexiglass mold

Fig. 3  a Before and b after the 
test of a Brazilian concrete disc 
sample
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Applied methods

In this research in order to explore the tensile behavior of 
samples, four heuristic approaches have been adopted. Each 
method is shortly explained in the following sections.

PSO Particle Swarm Optimization.

Artificial neural network

ANNs are widely recognized as one of the most effective 
and widely used prediction systems. ANNs have been used 
in a number of studies to investigate rock engineering issues 
(Rezaei 2017, 2019). Any ANN model consists of input, hid-
den and output layers (Rajabi et al. 2017). One of the most 
prevalent varieties of ANN is the multilayer perceptron 
(MLP), which consists of a series of layers connected by neu-
rons. The most important parts of multilayer networks include 
non-trivial calculation, learning, and generalization. The 
number of neurons is determined by the problem's complex-
ity and the nature of the data. The hidden layers, which are 
located in the middle, are not directly connected to the input 
or output data (Rezaei 2016). MLP transforms Xn inputs into 
outputs using nonlinear operators (Shojaeian and Asadizadeh 
2020; Rezaei and Asadizadeh 2020). The literature contains 
in-depth information about MLP (Armaghani et al. 2015; 
Rezaei 2019). A view of MLP ANN with a hidden layer is 
shown in Fig. 5.

Adaptive neuro‑fuzzy inference system

A feed-forward ANN, which uses fuzzy logic to find the best 
layer weights, converts inputs to outputs is called adaptive 
neuro-fuzzy inference system (ANFIS) and was introduced 
by Jang 1993. This algorithm is basically adopted for train-
ing purposes to tune the Sugeno-FIS parameters in order to 
find the best relation between input and output parameters 
with the minimum error.

As a learning algorithm, ANFIS employs the gradient 
descent and the least squares estimate approaches (Saberi 
et al. 2022). The initial input–output pairs have been generated 
using a group of fuzzy "If–Then" rules with appropriate 
membership functions. Some nodes with specific functions, 
which are organized in layers, may generate a network. 
Lensing phase involves input variables propagating and 
applying least mean square in an iterative way to evaluate 
the optimized parameters and then follows by pattern 
repetition adopting propagation algorithm to tune the 
ancestor parameters (Asadizadeh and Majdi 2019; Shojaeian 
and Asadizadeh 2020). Figure 6 depicts the ANFIS system's 
structure. The ANFIS is made up of a neural network with five 
layers: input nodes are in the first layer, nodes of membership 
rules or functions are in second the layer, first segment of 
fuzzy rules to explore the ratio of normalized rules is located 
in the third layer, as shown in this diagram. The fourth layer 
comprises the fuzzy rules' result nodes, whereas the fifth layer 
is the fuzzy decoupling phase, or output node, which explore 
the final response as the sum of all the input variables (Jang  
1993).

Particle swarm optimization

PSO is a metaheuristic and population-based technique that 
uses an optimization process to iteratively search for a bet-
ter viable solution (Huang et al. 2020). Particles go forward 
through a search space with multidimension to locate the 
optimal solution in this method. As a result, many particles 
should be formed and scattered in the search space in each 
optimization problem (Hajihassani et al. 2015). The fun-
damental disadvantage of PSO is its sluggish convergence, 
although it is ideal for finding local extremums (Victoire 
and Jeyakumar 2004). In the search space, the location of 
the particles changes depending on their history and the 
position of their neighboring particles. The particles would 
generate a population, which is referred to as a swarm in the 
literature. Figure 7 depicts the PSO algorithm's basic flow.

Genetic algorithm

The GA is a search algorithm and stochastic optimiza-
tion approach invented by (Holland 1992). This approach 
was developed based on biological species evolution 

Fig. 4  A view of the uniaxial loading configuration
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and natural selection mechanism, and it has been widely 
adopted to solve optimization problems. The GA, which 
belongs to a broad category of evolutionary algorithms 
(EA), can solve optimization problems by employing strat-
egies based on natural evolution ideas including inher-
itance, mutation, selection and crossover (Martin et al. 
2011). As shown in Fig. 8, the algorithm begins with the 
beginning population, and the optimal size of the popula-
tion is determined by the problem's complexity (Höglund 
2017). The chromosomes produced by chance as the first-
generation size (starting population) are determined. A 
roulette wheel is used to pick the major chromosomes for 
the manufacturing process.

Two chromosomes will join together to produce two 
new ones using a cross-mechanism. It is then chosen and 
repeated until a new generation of children is produced. 
Crossover is the next step in the manufacturing process, 
and it involves a genetic algorithm combining genetic data 
from two parents to make new children (Shojaeian and 
Asadizadeh 2020). The mutation rate is another important 
element in the genetic algorithm, which is employed to 
keep genetic truth from one chromosomal generation to 
the next. The mutation process can modify the values of 
one or more genes on a chromosome. The fitness function 
for the chromosomes is tested when the new population is 
generated, and the selection process begins. After that, the 

Table 2  Tensile strength 
predictions are based on all 
available data

Sample cod k d (cm) γ (°) Β (°)
(

�
t

)

(MPa) Sample cod k d (cm) γ (°) β (°)
(

�
t

)

(MPa)

S1 0.67 2.8 121.5 45 1 S37 0.29 2.8 121.5 45 1.61
S2 0.67 2.8 121.5 45 0.56 S38 0.29 2.8 121.5 45 1.67
S3 0.67 2.8 121.5 45 1.33 S39 0.29 2.8 121.5 45 1.67
S4 0.4 2.8 121.5 45 1.72 S40 0.29 2.8 130.5 45 2
S5 0.4 2.8 121.5 45 1.61 S41 0.29 2.8 130.5 45 2.05
S6 0.4 2.8 121.5 45 1.61 S42 0.29 2.8 130.5 45 1.67
S7 0.29 2.8 121.5 45 1.67 S43 0.29 2.8 150 45 1.67
S8 0.29 2.8 121.5 45 1.72 S44 0.29 2.8 150 45 1.67
S9 0.29 2.8 121.5 45 1.72 S45 0.29 2.8 150 45 1.72
S10 0.22 2.8 121.5 45 1.83 S46 0.29 1.4 121.5 45 1.5
S11 0.22 2.8 121.5 45 2.05 S47 0.29 1.4 121.5 45 1.72
S12 0.22 2.8 121.5 45 2.28 S48 0.29 1.4 121.5 45 1.5
S13 0.18 2.8 121.5 45 1.72 S49 0.29 2.1 121.5 45 1.67
S14 0.18 2.8 121.5 45 1.72 S50 0.29 2.1 121.5 45 1.5
S15 0.18 2.8 121.5 45 1.5 S51 0.29 2.1 121.5 45 1.61
S16 0.29 2.8 121.5 0 1.72 S52 0.29 2.8 121.5 45 1.78
S17 0.29 2.8 121.5 0 1.61 S53 0.29 2.8 121.5 45 1.5
S18 0.29 2.8 121.5 0 1.89 S54 0.29 2.8 121.5 45 1.5
S19 0.29 2.8 121.5 20 1.72 S55 0.29 3.5 121.5 45 1.89
S20 0.29 2.8 121.5 20 1.33 S56 0.29 3.5 121.5 45 1.5
S21 0.29 2.8 121.5 20 1.89 S57 0.29 3.5 121.5 45 1.17
S22 0.29 2.8 121.5 45 1.44 S58 0.29 4.2 121.5 45 1.83
S23 0.29 2.8 121.5 45 1.17 S59 0.29 4.2 121.5 45 1.83
S24 0.29 2.8 121.5 45 1.44 S60 0.29 4.2 121.5 45 1.89
S25 0.29 2.8 121.5 70 1.83 S61 0.67 2.1 135 45 1.22
S26 0.29 2.8 121.5 70 1.55 S62 0.67 2.1 135 45 1.33
S27 0.29 2.8 121.5 70 1.89 S63 0.67 2.1 135 45 0.94
S28 0.29 2.8 121.5 90 1.11 S64 0.42 2.1 135 90 0.83
S29 0.29 2.8 121.5 90 1.11 S65 0.42 2.1 135 90 0.78
S30 0.29 2.8 121.5 90 1 S66 0.42 2.1 135 90 0.56
S31 0.29 2.8 90 45 1.61 S67 0.42 2.8 135 45 0.83
S32 0.29 2.8 90 45 1.67 S68 0.42 2.8 135 45 1.17
S33 0.29 2.8 90 45 1.55 S69 0.42 2.8 135 45 0.89
S34 0.29 2.8 112.5 45 1.83 S70 0.17 2.1 135 45 1
S35 0.29 2.8 112.5 45 1.89 S71 0.17 2.1 135 45 1.28
S36 0.29 2.8 112.5 45 1.83 S72 0.17 2.1 135 45 1.39
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Fig. 5  MLP ANN with a hidden 
layer (Shojaeian and Asadizadeh 
2020)

Fig. 6  a Fuzzy inference; b equivalent infinity structure (Jang 1993)
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evolutionary process continues until the best solution to the 
problem is found (Momeni et al. 2014).

Database

Input variables play an important role in creating a success-
ful forecasting model. To select the effective parameters in 
predicting the amount of tensile strength, based on "expert 
opinions", four input parameters shown in Table  3 are 
considered.

The total number of data is 73. In all models, 70% of the 
data was used randomly for training and 30% of the data was 
used for model validation and testing. An in-depth statistical 
analysis of data was performed, and the histogram of input 
and output data is shown in Fig. 9.

Result and discussion

ANN approach

By having adequate data for model training phase and using 
the appropriate training method, the ANN is able to learn the 
sophisticated relationships between inputs and outputs well. 
In this study, a multilayer network of perceptron known as 
MLP-ANN was adopted to estimate the amount of the tensile 

Fig. 7  The particle swarm's flow diagram (Aydin et al. 2013)

Fig. 8  GA flowchart in its simplest form (Martin et al. 2011)

Table 3  Parameters for model’s 
input and output.

Type Parameter Symbol Range Min Max Mean Std. Deviation Variance

Input Joint continuity factor k 0.5 0.17 0.67 0.322 0.120 0.014
Joint spacing (cm) d 2.8 1.4 4.2 2.713 0.511 0.261
Bridge angle (degree) γ 60 90 150 123.625 10.455 109.315
Loading direction (degree) β 90 0 90 46.880 17.491 305.942

Output Tensile strength (MPa) �
t

1.72 0.56 2.28 1.520 0.362 0.131
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strength of the samples. Several neural network models were 
investigated to fulfill this goal, and the best models are listed 
in Table 4. As previously said, the data are divided into 
three categories: educational data, validation data, and test 

Fig. 9  Input and output data 
box diagram: a joint continuity 
factor, b joint spacing (cm), c 
bridge angle (degree), d loading 
direction (degree), e tensile 
strength (MPa)

Table 4  Information of neural network parameters for tensile strength 
(

�
t

)

 prediction

ANN Parameters model

Input neurons 7
Hidden layers 1
Hidden neurons 12
Output neurons 1
Total data 72
Train data 50
Validation data 11
Test data 11
Training epochs 1000
Optimization approach Levenberg–Marquardt
Transfer function TANSIG
Learning rate 0.1

Table 5  R2, RMSE, MSE, MAE, VAF and CE of the ANN models 
for tensile strength data

Models

Index ANN1 ANN2 ANN3 ANN4

Train R2 0.877 0.890 0.888 0.851
RMSE 0.186 0.163 0.151 0.17
MSE 0.035 0.027 0.023 0.029
MAE 0.141 0.115 0.114 0.119
VAF 76.932 79.286 78.775 72.464
CE 0.684 0.743 0.732 0.613

Validation R2 0.787 0.906 0.849 0.918
RMSE 0.172 0.129 0.24 0.127
MSE 0.03 0.017 0.057 0.016
MAE 0.139 0.106 0.169 0.108
VAF 61.813 81.509 72.05 83.763
CE 0.303 0.721 0.581 0.774

Test R2 0.942 0.909 0.954 0.966
RMSE 0.183 0.187 0.115 0.174
MSE 0.033 0.035 0.013 0.03
MAE 0.129 0.152 0.102 0.141
VAF 70.217 82.209 90.93 89.693
CE 0.786 0.714 0.904 0.771
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data, with a 70, 15 and 15% ratio, respectively. The range of 
changes of the input and output variables of neural networks 
should be considered because the more the network can gen-
eralize and understand the link between these parameters, 
the closer the range of changes of these parameters is. The 
grid only deals with the numerical values of the parame-
ters, not their measurement units. Furthermore, the number 
of concealed neurons was determined by a trial-and-error 
method. Table 4 shows the properties of the trained network 
for the best ANN model.

In a regression model, R-squared (R^2) is a statistical 
measure of fit that shows how much variance in a depend-
ent variable is explained by the independent variable(s). 
The standard deviation of prediction errors or residuals is 
referred to as the root-mean-square error (RMSE). It shows 
how widely the data are dispersed around the line of greatest 

fit. The mean of absolute error (MAE) is a statistic that 
assesses the average magnitude of errors in a group of fore-
casts without taking into account their direction. It assesses 
the precision of continuous variables. In other words, the 
MAE is the average of the absolute values of the discrepan-
cies between the forecast and the relevant observation over 
the verification sample. The MAE is a linear score, which 
implies that in the average, all individual differences are 
equally weighted. Variance account for (VAF) calculates 
the variance between two signals. It is possible to assess 
the quality of quantitative estimates derived from design-
based stereological approaches. This essentially means that 
we can gain some insight into the precision of a stereological 
process estimate. The coefficient of error (CE) is a metric 
for how accurate an estimate is. The results of using ANN 
to evaluate the tensile strength of the samples based on 

Fig. 10  The difference between 
experimental tensile strength 
results and ANN model results. 
a  R2 (squared correlation 
coefficient), b RMSE (root-
mean-square error), c MAE 
(mean absolute error), d MSE 
(mean square error), e variance 
account for (VAF), f coefficient 
of efficiency (CE)
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Fig. 11  Correlation between 
actual and predicted tensile 
strength values for the best 
ANN model

Table 6  The best ANFIS-/GA/PSO values

Parameter (ANFIS) Description/value

Fuzzy structure Sugeno-type
Input membership function Gaussian (“gaussmf”)
Output membership function Linear
The cluster influence center 0.7
No. of inputs 4
No. of outputs 1
Optimization method GA/PSO
Iteration 1000
Training data 50
Test data 22
Initial step size 0.5
The decrease rate step size 0.9
The increase rate step size 1.4
Fuzzy rules 6
GA parameters Description/value
Population size 40
Mutation rate 0.06
Crossover 0.5
PSO parameters Description/value
Population size 50
W 0.5
C1 2
C2 2

Table 7  R2, RMSE, MSE, MAE, VAF and CE of the ANN, ANFIS, 
ANFIS-GA and ANFIS-PSO models for tensile strength data

Models

Index ANFIS ANFIS-GA ANFIS-PSO ANN

Train R2 0.868 0.82 0.908 0.888
RMSE 0.164 0.203 0.159 0.151
MSE 0.027 0.041 0.025 0.023
MAE 0.123 0.16 0.125 0.114
VAF 75.356 67.294 82.423 78.775
CE 0.673 0.523 0.785 0.732

Test R2 0.919 0.93 0.893 0.954
RMSE 0.171 0.139 0.205 0.115
MSE 0.029 0.019 0.042 0.013
MAE 0.13 0.091 0.132 0.102
VAF 83.831 86.321 69.099 90.93
CE 0.765 0.85 0.712 0.904

All R2 0.893 0.875 0.901 0.921
RMSE 0.168 0.171 0.182 0.133
MSE 0.028 0.03 0.034 0.018
MAE 0.127 0.125 0.129 0.108
VAF 79.593 76.808 75.761 84.852
CE 0.719 0.687 0.749 0.818
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different approaches such as R^2, RMSE, MAE, VAF and 
CE are presented in Table 5. These studies were performed 
on different models of neural network, and finally, the final 
four models of neural network are listed in Table 5.

In order to compare the accuracy of the different methods, 
the outcome of the four approaches as  R2, RMSE, MAE, 
MSE, VAF and CE is shown in Fig. 10, respectively. The 
VAF index shows how different the variances of observed 
and anticipated data sets are. VAF values near 100 percent 
indicate reduced variability and, as a result, stronger predic-
tion capabilities. The RMSE index is a metric for measuring 
the difference between measured and anticipated data. The 
model works better when the RMSE is low. An excellent 
performance is that the value of RMSE and MAE should be 

zero and that of CE should be one. Therefore, according to 
the results obtained in Fig. 10, and what was said about the 
indices, among the four neural network models in Table 5, 
model 4 is considered as the final model for predicting the 
amount of tensile strength.

The correlation between train, test and validation models 
for the final model ANN model is presented in Fig. 11.

AAN vs. other heuristic approaches

In this section, three novel methodologies are employed 
to estimate the tensile strength of the samples, including 
ANFIS and ANFIS-GA/ PSO, and their performance is 
compared to the ANN method. All of the models in this 

Fig. 12  The difference in tensile 
strength experimental results 
and ANN, ANFIS, ANFIS-GA, 
and ANFIS-PSO model results, 
a squared correlation coefficient 
 (R2), b root-mean-square error 
(RMSE), c mean absolute error 
(MAE), d mean square error 
(MSE), e variance account for 
(VAF), f coefficient of effi-
ciency (CE)
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section and the previous section have the same input param-
eters. Learning techniques for high precision and accuracy 
are used individually in the ANFIS-GA/PSO method for 
teaching the ANFIS model. To accomplish so, GA and PSO 
algorithms are used to evaluate the ANFIS model's optimal 
parameters,GA/PSO-based. Table 6 shows the best values 
for the GA/PSO-based ANFIS model parameters for predict-
ing their tensile strength.

Table 7 shows the  R2, MSE, RMSE, MAE, VAF and CE 
for train, test, and all data for the three different intelligence 
approaches as well as the ANN approach to forecasting ten-
sile strength. It can be concluded that the ANN model has 
the best performance, followed by ANFIS-based models 
with nearly identical performance.

The statistical indexes of test data in Table 7 indicate that 
ANN has the best performance to predict tensile strength of 
non-persistent jointed Brazilian discs. A visual comparison 
between statistical parameters, which indicates the model 
performance, is presented in Fig. 12.

Multiple parametric sensitivity analysis 
(MPSA)

The outputs of the models were subjected to a parametric 
analysis to determine which input factors have the great-
est impact on the average output variables. The techniques 
shown in Fig. 13 can be used to apply MPSA to a model 
output for a specific set of parameters.

The objective function was evaluated using the sum of 
square errors between observed and modeled values:

where fh is the objective function value for a particular �t 
variable h; x0,h is the observed value at this variable; xc,h(i) is 
the computed value xc for variable h for each input series; and 
k is the number of variables contained in the random series. 
Table 8 shows the range of values that were utilized to evalu-
ate each parameter. To produce 72 random numbers for each 
parameter, a Monte Carlo simulation was used. The trained 
models were given the generated numbers for one variable 
in each model run. Equation is used to calculate the relative 
relevance of each parameter separately (Correa et al. 2005):

Each pair of inputs is introduced by h. For each examined 
parameter, the results were obtained by applying the given 
approach to the �t model. These outcomes were achieved by 
the application of (2). Equation 1 is used to determine the 
relative relevance of each parameter (Correa et al. 2005):

(1)fh =
∑k

i=1

[

x0,h − xc,h(i)
]2

(2)�h =
fh

x0,h

where the �t is calculated from h = 1 (the first set of data) 
to the maximum value 

(

i
�t,max

)

 , for this model, which is 
72 (Correa et al. 2005). The greater the Υ index value for 
each parameter, the more sensitive the �t model is to that 

(3)� =
∑i

�t,max

h=1
�h

Fig. 13  Algorithm for multiple parametric sensitivity analysis

Table 8  The Υ index measures the sensitivity of model parameters 
(Correa et al. 2005)

Υ index Model parameter sensitivity

� ≤ 1 Insensitive
1 < � ≤ 100 Sensitive
� > 100 Highly sensitive
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parameter. The following criteria for model parameter sen-
sitivity have been offered based on the Υ index:

Figure 14 shows the evaluated Υ index for the �t model. 
Tensile strength is quite sensitive to k and β, but not so much 
to d and γ (see Fig. 14).

Conclusion

In this paper, diametral loading was applied to a number 
of Brazilian concrete disc samples containing a set of open 
non-persistent joints to investigate the effect of joint continu-
ity factor, joint spacing, bridge angle, and loading direction 
on their tensile strength. ANN, ANFIS, and a combination 
of ANFIS with PSO and GA were used to propose a compre-
hensive model for the indirect tensile strength of Brazilian 
discs. To assess the performance of the models, statistical 
indices such as  R2, RMSE, MSE, MAE, VAF, and CE were 
used. The results are summarized as follows:

1. ANN has high capability to predict tensile strength of 
non-persistent jointed Brazilian discs. It has the best per-
formance for the test data with  R2 = 0.966, RMSE = 0.176, 
MSE = 0.018, MAE = 0.108, VAF = 84.852, and CE = 0.818.

2. The test data indicated that ANFIS-GA has priority to 
ANFIS-PSO to predict tensile strength.

3. The multiple parametric sensitivity analysis (MPSA) 
revealed that k has the highest impact on the tensile 
strength and after that the model is highly sensitive to β.

4. The MPSA analysis also shows that the model is also 
sensitive to d and γ parameters, while the latter has the 
minimum effect on the model.

However, future work for this study will include extensive 
numerical study to evaluate the effect of joint parameters 

on the tensile strength and failure pattern of non-persistent 
jointed Brazilian discs under diametral loading.
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