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Engineering Notes
Neural Network Attitude Control

System Design for the Wallops

Arc-Second Pointer

Pavel Galchenko∗ and Henry Pernicka†

Missouri University of Science and Technology, Rolla,

Missouri 65409-0050

https://doi.org/10.2514/1.G006465

Nomenclature

ACL = closed-loop dynamics
Bw = system bandwidth, Hz
e = error states; �e1 e2 �T
ea = observer estimation error

F x; F̂ x
= true and estimated dynamics

~F x
= dynamics estimation error

fd = desired dynamics
fx�x2� = known system dynamics
gx = control mapping to dynamics
Hβ; Hγ = pitch/yaw angles from gimbal hubs [rad]

J = system inertia matrix, slug ⋅ ft2
Kp;Ki; Kd = proportional �ft ⋅ lb�∕rad, integral ft ⋅ lb∕

�rad ⋅ s�], and derivative ft ⋅ lb∕�rad∕s� gains
Kv;Kz = controller gain matrices
K2 = linear observer gain matrix
L = Lyapunov function
M, N = neural network adaptation gain matrices
r = filtered tracking error
trfg = trace operator
u = roll, pitch, and yaw control torques;

�uα uβ uγ �T , ft ⋅ lb
ur = robustifying control

WT; VT; ŴT; V̂T = true and estimated neural networkweighting
matrices

~W; ~V = neural network weight matrices estimation
error

xd = desired orientation [rad] and angular rates
[rad/s]; �xd1 xd2 �T

x1 = roll, pitch, and yaw rotations; �θα θβ θγ �T ,
rad

x2 = roll, pitch, and yaw angular velocities;

�ωα ωβ ωγ �T , rad/s
Γ = observer neural network adaptation rate
Δ�x� = unmodeled perturbations/dynamics
δ�x� = known disturbance dynamics
ε = bounded neural network estimation error
κ = design parameter
λ = gain coefficient

σ; σ 0 = activation function and its derivative
ϕ�z� = basis vector
ωn; ζ; α = controller natural frequency, damping ratio,

and tuning parameter

I. Introduction

T HEWallops Arc-Second Pointer (WASP) system provides a
platform to point scientific instruments with subarcsecond

accuracy and stability while suspended from a high-altitude
balloon (HAB) to conduct novel science in the Earth’s upper
atmosphere [1,2]. The WASP system is built around an external
gondola structure, which is suspended from a rotator gimbal
attached to the HAB. The rotator provides initial targeting and
coarse azimuth tracking and stabilization for the external gon-
dola. The centerbody is attached to an inner gimbal frame and
the external gondola via torque motor hubs to provide pitch-yaw
articulated axes.
Over the 10-plus years of operations the WASP platform con-

ducted seven science missions, continuously demonstrating per-
formance in the arcsecond to subarcsecond regime [3–6]. While
significant improvements in the pointing performance would
likely require hardware modifications, it is still desirable to deter-
mine if pointing performance could be improved through con-
troller design. This work suggests to augment WASP with the
addition of a neural network control system, which can be acti-
vated in lieu of the traditional proportional–integral–derivative
(PID) system.
This research offers several contributions to the nonlinear control

field for gimbaled pointing systems. Two neural network method-
ologies are introduced, formulated, and tested for a gimbaled control
system in a high fidelity environment. Specific contributions include
the practical application to a physical gimbaled system, simplifica-
tion of the dynamics through modification of the parameterization
matrix, formulating a vector filtered tracking error, and reformulating
the originalMSOmethod to improve robustness as learning gains are
increased.

II. Background

A typical attitude dynamics model [7,8] can be given by a two-
vector state system as

_x1 � B�θα; θγ�x2
_x2 � fx�x2� � δ�x� � gxu;

where B�θα; θγ� �

2
664
1 − cos θα tan θγ sin θα tan θγ

0 cos θα sec θγ − sin θα sec θγ

0 sin θα cos θγ

3
775 (1)

and where fx�x2� � −J−1�x2×�Jx2, x1 � � θα θβ θγ �T , and

x2 � �ωα ωβ ωγ �T , u � � uα uβ uγ �T , where J is the constant
inertia matrix of the rigid body, x1 and x2 are the rotation and angular
velocity vectors, respectively, of the body with respect to the inertial
frame, δ�x� is some known disturbance dynamics, gx maps the
controller dynamics to the system, andu is the control input. It should
be noted that J−1 is also embedded into the disturbance dynamics
δ�x� and the mapping of the controller dynamics, gx, to simplify the
formulation.
Though a variety of models exist to describe the dynamics of

two-axis gimbal systems [9–12], they can be simplified to the form
given in Eq. (1) with variations in the attitude parameterization
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matrix, B�θα; θγ�, and definitions of fx�x2� and δ�x�. Reductions
in cross-coupling terms in the kinematics are reduced through
mechanical design, where the centerbody roll angle is fixed and
null in the gimbal frame, such that θα � 0. The yaw rotation of the
centerbody is always small within the gimbal frame due to the
rotator, which historically keeps yaw less than 1.0 deg during
pointing operations. Using the null roll angle and small angle
approximation, the parameterization matrix B�θα; θγ� becomes

the identity matrix I3×3 in Eq. (1), such that the simplified dynam-
ics become

_x1 � x2

_x2 � fx�x2� � δ�x� � gxu (2)

and are in Brunovsky canonical form [13]. Although effort has
been taken to present the formulation of the system dynamics, the
new methodology introduced in this research makes no assump-
tions on the details of fx�x2� and δ�x� and only assumes that the
dynamics can be described by the form given in Eq. (2).

A. Error Dynamics and Input–Output Feedback Linearization

The error dynamics are given by

_e1 � e2

_e2 � fx�x� − fd � δ�x� � gxu (3)

where e1 � x1 − xd1 and e2 � x2 − xd2, where xd1 and xd2 are the
desired states, and fd are the desired dynamics. Note that for a
regulatory reference system, xd2 � 0 and fd � 0. By using input–
output feedback linearization [14], the control input becomes u �
�1∕gx��−fx�x� � fd − δ�x� − kpe1 − kde2� where kp and kd are

proportional and derivative controller gain vectors, respectively, and
jgxj > 0. The closed-loop error dynamics in Eq. (3) are reduced to
_e � ACLe, such that the origin of the unperturbed nonlinear system
will be asymptotically stable if ACL is Hurwitz. This method of
nonlinear control is the basis from which the neural network con-
trollers are designed.

B. Heritage Controller Design

TheWASP platform uses a PID controller to achieve subarcsecond
pointing accuracy and stability. Using the system plant P�s� �
J−1i ∕s2, where Ji is the inertia of specified axis, and choosing a
PID control input, the closed-loop characteristic equation becomes

s3 � �J−1i Kd�s2 � �J−1i Kp�s� �J−1i Ki� where Kp, Ki, and Kd are

proportional, integrator, and derivative gains, respectively. Using
the typical �ζ;ωn� parameterization and fixing the third pole at
−αωn, controller gains can be selected by

Kp � �2ζα� 1�ω2
n

J−1i
Ki �

αω3
n

J−1i
Kd � �2ζ � α�ωn

J−1i
(4)

where ωn is the natural frequency of the system, ζ is the damping
ratio, and α is a design parameter. By fixing the design parameter at
α � 1, the values for ζ and ωn are tuned to give desired performance
characteristics.

III. Neural Network Design

It has been shown that, with the formulation of the dynamics and
the input–output feedback linearization controller, the rotational
systems error dynamics have guaranteed asymptotic stability if
fx�x2� and δ�x� are perfectly known. Assume that the true dynamics
are given asF x � fx�x2� � δ�x� � Δ�x�, where Δ�x� is a set of all
other unmodeled dynamics. Using neural networks, estimating the

true dynamics can be attempted using F̂ x. A one-layer neural net-
work is given by

F̂ x � ŴTϕ�z� while F x � WTϕ�z� � ε (5)

and a two-layer neural network is given as

F̂ x � ŴTσ�V̂Tϕ�z�� while F x � WTσ�VTϕ�z�� � ε (6)

whereσ is some activation function,ϕ�z� is the basis vector,WT andVT

are the true weights that give the value of F x with some bounded

approximation error ε through the universal function approximation

properties of neural networks [13], and ŴT
and V̂T

are the approximated

weights.
The two-vector state systems from Eq. (2) can now be rewritten as

_x1 � x2

_x2 � F x � gxu (7)

and the error dynamics in Eq. (3) as

_e1 � e2

_e2 � F x − fd � gxu (8)

forming the foundation of the two neural network methodologies

studied in this research. In the first method, learning is driven by the

tracking error dynamics, Eq. (8), whereas the second method intro-

duces an observer for the state dynamics, Eq. (7), and learning is

driven by the estimation error dynamics.

A. SNNARC Formulation

The first method, originally developed for robotic manipulators

[13], is the Subarcsecond Neural Network Attitude Reference Con-

troller (SNNARC). The error dynamics from Eq. (8) are written as a

filtered tracking error where

r � e2 � λe1

_r � F x − fd � λe2 � gxu (9)

where λ is some positive gain coefficient and r is now a vector of

scalar errors for each control axis. It is now possible to use the

estimated dynamics F̂ x in the controller design such that

u � 1

gx
�−F̂ x � fd − Kvr − λe2 � ur�

where ur � −Kz�kΘ̂k � Θm�r (10)

whereKv andKz are some positive controller gainmatrices, jgxj > 0,
and the weighting matrices are defined as

Θ �
�
V 0

0 W

�
and Θ̂ �

�
V̂ 0

0 Ŵ

�
and kΘk ≤ Θm

where Θm is a bound on the weighting matrices. The closed-loop

system becomes

_r � −Kvr� ~F x � ur (11)

where ~F x is the estimation error defined by ~F x � F x − F̂ x.

Using a two-layer neural network, Eq. (6), weight update laws

are selected as

_̂
W � M�σ̂ − σ̂ 0V̂Tϕ�z��rT − κkrkMŴ

_̂
V � Nϕ�z�rTŴT σ̂ 0 − κkrkNV̂ (12)

where M and N are positive definite matrices, σ̂ � σ�V̂Tϕ�z��,
σ̂ 0 � σ 0�V̂Tϕ�z��, and κ is a design parameter such that κ > 0.
To prove the stability of the system, the candidate Lyapunov

function is selected as
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L � 1

2
rTr� 1

2
trf ~WTM−1 ~Wg � 1

2
trf ~VTN−1 ~Vg (13)

where trfg is the trace operator. By taking the time derivative of

the Lyapunov function in Eq. (13) and using the definitions of r
and _r in Eqs. (9) and (11), respectively, and the weight update

law in Eq. (12), stability in a compact set about the origin can be

shown [15]. Though the full proof is omitted for brevity, it

follows similar methods in literature [13,16], showing stability

in a compact set about the origin if either krk > δr or k ~Θk > δΘ,
where δr and δΘ are positive constants. This demonstrates that

the Lyapunov function is ultimately upper bounded (UUB) in

both krk and k ~Θk and thus showing Lyapunov stability of the

proposed SNNARC method.

B. MSO Formulation

The second method, originally developed for estimating unmod-

eled dynamics [17–19], uses a modified state observer (MSO) and

an input–output feedback linearization controller. The kinematics

in Eq. (7) are ignored and the system is rewritten as single-vector

system as

_x2 � F x � gxu (14)

where _x2 is identical to the previous formulation. An observer can

be designed as

_̂x � F̂ x � gxu� K2�x − x̂� (15)

where x̂ is the estimated state and K2 is some gain matrix. In

previous literature, a single layer neural network, Eq. (5), has been

used to estimate the nonlinear dynamics F̂ x for the observer. The

state, Eq. (14), and observer, Eq. (15), are rewritten in terms of

observer error, ea � x − x̂, such that the observer error dynamics

are given as

_ea � −K2ea � ~WTϕ�z� � ε (16)

where ϕ�z� is the basis vector and ~W is the error between the true

weights and estimated weights such that ~W � W − Ŵ. The neural

network weight update law is given as

_̂
W � Γϕ�z�eTa − κkeakΓŴ (17)

where Γ is the adaptation rate and κ is themodification factor, which

bound the weights and provides robustness. The stability of the

system in Eq. (16) can be shown with the candidate Lyapunov

function

L � 1

2
eTaea �

1

2
tr
�
~WTΓ−1 ~W

�
(18)

where trfg is the trace operator. By taking the time derivative of the

Lyapunov function in Eq. (18) and using the definitions of ea and _ea
in Eq. (16), and the weight update law in Eq. (17), stability in a

compact set about the origin can be shown [15]. Though the full

proof is omitted for brevity, it follows similar methods in literature

[20], showing stability in a compact set about the origin if either

keak > δea or k ~Wk > δW, where δea and δW are positive constants.

This demonstrates that the Lyapunov function is UUB in both keak
and k ~Wk and thus shows Lyapunov stability of the observer in the

proposed MSO method.
Once the nonlinear dynamics F̂ x are estimated by the neural

network, an input–output feedback linearization controller given by

u � 1

gx

�
−F̂ x � fd − Kpe1 −Kde2

�
(19)

can be applied to the two-vector system in Eq. (8) such that the
closed-loop system dynamics become

_e � ACLe� d where ACL �
�

0 1

−Kp −Kd

�

and d �
�

0

~WTϕ�z� � ε

�
(20)

where d is bounded by kdk ≤ kdmk. By using the candidate Lyapu-
nov function

L � 1

2
eTPe (21)

and taking its time derivative using the definition of _e in Eq. (20) and
where P satisfies the equation ATP� PA � −Q, stability in a com-
pact set about the origin can be shown if

kek ≥ 2
λmax�P�dm
λmin�Q�

Though the full proof is omitted for brevity, it follows similar
methods in literature, demonstrating that the Lyapunov functions in

Eqs. (18) and (21) are UUB in kek, keak, and k ~Wk and thus shows
Lyapunov stability of the proposed MSO method.

IV. WASP Implementation

Verification and validation of the pointing system was performed
through software-in-the-loop (SWIL) testing using NASA’s high-
fidelity Portable Object Simulation (PortOSim) flight-control simu-
lation framework. PortOSim interfaces with the flight software and
provides data as if in flight, using JPL ephemeris models in con-
junction with custommodels for the individual sensors and actuators
aboard WASP. The simulation begins at float conditions with the
centerbody uncaged and pointing at an inertial target using the
heritage PID control system.
Three cases were tested in preparation for the next WASP

mission, focusing on pointing performance and stability. A nomi-
nal case was run with the assumed WASP and centerbody inertia
values (J1 � 92, J2 � 572, and J3 � 554) and the disturbance
environment anticipated for the mission. Each controller was
tuned for the nominal case, and then tuning was held constant
for two additional cases with various changes in the disturbance
environment.

A. PID Setup

The heritage PID system was tuned using historical tuning param-
eters such that the pointing error remains sub-arcsecond while keep-
ing system bandwidth sufficiently low so as to not interfere with the
science optics control system.TheWASPbandwidth is approximated
asBw � �ωn∕2π�, with the typical bandwidth set toBw � 0.4Hz and
the damping ratio set to ζ � 0.9. The final gains for all the para-
meters are given as approximately Kp � 14;200, Kd � 5630, and

Ki � 12;700.

B. SNNARC Setup

For the SNNARC algorithm, the filtered tracking error r con-
sisted of pitch, θeβ, and yaw, θeγ , pointing errors and the respective
angular velocities ωβ and ωγ . The basis vector ϕ�z�was selected as
ϕ�z�� �θeβ θeγ ωα ωβ ωγ Hβ Hγ �T , where Hβ;γ are the gimbal

angles within the motor pitch/yaw hubs. The neural network

weights for Ŵ and V̂ were initialized as null matrices and consisted
of 40 hidden nodes. The sigmoid activation function was chosen,
where σ�x� � �1∕�1� e−x��.
By using the gain tuning algorithms defined in Eq. (4) and select-

ing the design parameter α � 0, a proportional–derivative (PD) con-

trol system is given where Kp � �ω2
n∕J−1i � and Kd � �2ζωn∕J−1i �.
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The relationship between Kv∕λ and Kp∕Kd is given by J−1i Kp �
Kvλ and J

−1
i Kd � Kv � λ, where it can be shown that a real solution

forKv and λ only exists for ζ ≥ 1. The relationship is given byKv �
ωnζ�

�������������
ζ2 − 1

p
and λ � ωnζ −

�������������
ζ2 − 1

p
, where Kv � λ for ζ � 1.

This methodology was chosen for a more intuitive approach to gain
tuning such that tuning can be understood in terms of system band-
width. Because the damping ratio is typically near being critically
damped, the tuning for when ζ < 1 is given byKv � λ � ωnζ, which
gives a close approximation for the equivalent Kp∕Kd values. Final

tuning gains for all the parameters were determined asKv � 5.0265,
λ � 5.0265, M � 1.2, N � 1.2, κ � 0.1, Θm � 0.01, and Kz �
0.001, where the equivalent PD gains are Kp � 14;000 and

Kd � 2760.

C. MSO Setup

The observer states are given as x̂ � � ω̂α ω̂β ω̂γ �T and when
the MSO algorithm is first enabled, the estimated states are set to
the current measured state vector. TheMSO algorithm is set up in a
similar manner to SNNARC so that a fair comparison can be made,
using the same basis vector ϕ�z� and initializing the neural net-

work weights Ŵ as null. For tuning of the linear controller gains,
as with SNNARC, the design parameter in Eq. (4) is set as α � 0

and gains are tuned using ωn and ζ such that Kp � �ω2
n∕J−1i � and

Kd � �2ζωn∕J−1i �. Final tuning gains for all the parameters
are given as Kp � 14000, Kd � 2760, K2 � 10, Γ � 120, and

σ � 0.001.

V. Simulation Results

Simulating the cases in PortOsim, the elevated disturbance envi-
ronment moved the center of mass of the centerbody relative to the
gimbal center such that there was a 0.25 ft-lbs imbalance along each
axis, whereas for the severe disturbance environment the imbalance
was 0.5 ft-lbs. Disturbances in the shaft rotation motors cause a
sinusoidal disturbance in pointing, whereas disturbances in the upper
atmosphere winds increase the pendulous motion imparted to the
platform. Compared to the nominal case, the elevated disturbance
environment doubles the magnitude of the disturbances, whereas the
severe disturbance environment increases the disturbance by an order
of magnitude.

A. PID Results

For the nominal configuration, the PID control system maintained
a root-mean-square (RMS) error of 0.254 arcsec in pitch (θeβ) and
0.266 arcsec in yaw (θeγ), as seen in Fig. 1a. This performance is on a

par with previous SWIL testing of other missions. In the elevated

disturbance case, theRMSerror increased to 0.387 arcsec in pitch and
0.402 arcsec in yaw, whereas the severe disturbance environment
increased theRMSerror values to 0.725 arcsec in pitch and 0.735 arc-
sec in yaw, as seen in Fig. 1b.

B. SNNARC Results

In the nominal configuration, the SNNARC control system per-
formed marginally better compared to the PID system, being able to
maintain an RMS error of 0.198 arcsec in pitch and 0.212 arcsec in
yaw, as seen in Fig. 2a. In the elevated disturbance case, the RMS
error was 0.200 arcsec in pitch and 0.211 arcsec in yaw, whereas for
the severe disturbance environment the RMS error values increased
to 0.332 arcsec in pitch and 0.348 arcsec in yaw, as seen in Fig. 2b.

C. MSO Results

In the nominal configuration, the MSO control system performed
slightly better compared to the SNNARC system, being able to
maintain an RMS error of 0.182 arcsec in pitch and 0.200 arcsec in
yaw, as seen in Fig. 3a. In the elevated disturbance case, the RMS
error actually improved to 0.162 arcsec in pitch and 0.170 arcsec in
yaw, whereas for the severe disturbance environment the RMS errors
remained near the nominal case at 0.201 arcsec in pitch and 0.232 arc-
sec in yaw, as seen in Fig. 3b.

D. Results Discussion

Under nominal conditions, all control systems performed as
expected with only marginal improvements in the performance of
the SNNARC and MSO control systems as compared to PID. The
expected benefit of the two methodologies, however, lies in their
ability to compensate for unpredicted nonlinear dynamics. This
capability is clearly seen when the disturbance environment is
changed from the nominal. While the performance of the PID system
began to degrade, both SNNARC and MSO maintained similar
performance under elevated disturbances. The MSO algorithm
actually produced a slight improvement in performance, which is
likely related to increasedmeasured dynamics leading to an improve-
ment in the nonlinear estimation. As the disturbance environment
continued to increase, the PID performance continued to degrade
until the performancewas no longer adequate. The SNNARC control
system performance had only amarginal degradation of performance
at the maximum disturbance tested, whereas the MSO algorithm had
almost no degradation.
The difference in performance between the three control systems is

readily apparent by examining an empirical cumulative distribution
function (CDF), as seen in Fig. 4 for the pitch channel (yaw exhibits
similar behavior). The empirical CDF, F�x�, is the proportion of the
values in x less than or equal to q, where x is the pointing error in

Fig. 1 Performance of the PID controller for the nominal case (a) and severe disturbance case (b).
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Fig. 3 TheMSO controller for the nominal case (a) demonstrated a total RMS error value of 0.270 arcsec, whereas for the severe disturbance case (b) a
total RMS error value of 0.307 arcsec.

Fig. 2 Performance of the SNNARC controller for the nominal case (a) and severe disturbance case (b).

Fig. 4 The empirical cumulative distribution function shows thatMSOand SNNARChaveminimal changes in pitch pointing performance, whereas the
PID control system degrades quickly.

J. GUIDANCE, VOL. 45, NO. 7: ENGINEERING NOTES 1369

D
ow

nl
oa

de
d 

by
 M

IS
SO

U
R

I 
U

N
IV

 O
F 

SC
IE

N
C

E
 &

 T
E

C
H

 o
n 

Fe
br

ua
ry

 2
2,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
64

65
 



arcseconds and q is a value in x. It can be seen that the CDF is nearly
constant for the MSO case and changes minimally for SNNARC as
the disturbance environment is increased. However, the CDF moves
significantly to the right for the PID system, illustrating the degra-
dation in pointing performance.
While it is understood that the neural network learning leads to

significant improvements in pointing as compared to the PID system,
the differences between the two neural network methods are a little
more nuanced. The MSO method is at a slight advantage as its
estimation occurs outside the control space and is able to estimate
at all three angular velocity channels and their dynamics, whereas the
SNNARC method can only estimate the disturbances in the control
channels. Along with this extra channel, the estimation through an
observer produces a filtering effect as the tracking error does not drive
the learning. Together, this has given the MSO method a slight
advantage in pointing performance as compared to SNNARC.

VI. Conclusions

This research has implemented two new control methodologies to
the WASP system for high-altitude balloon (HAB) platforms. The
SNNARCmethodology used a filtered tracking error and a two-layer
neural network to estimate nonlinear dynamics within the control
space. The MSO methodology used an observer and a one-layer
neural network to estimate the nonlinear dynamics outside the control
space and then used input–output feedback linearization to control
the system. Lyapunov-based proofs show that both control systems
were ultimately upper bounded. Software-in-the-loop simulations
were conducted using the NASA PortOSim simulation environment,
testing the heritage PID control system and the two new method-
ologies in a nominal case and two disturbance cases. It was found
that, although all three performed similarly for the nominal case, the
two new methodologies were able to maintain their performance,
whereas the PID system performance degraded significantly as dis-
turbances increased. This research has shown that the addition of a
neural network to a gimbal-controlled inertial pointing system sus-
pended from a HAB platform can provide improved performance as
compared to traditional heritage pointing systems.
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