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Abstract— Selective Laser Melting (SLM) is an Additive 
Manufacturing (AM) technique with challenges in its 
complexity of process parameters and lack of control schemes. 
Traditionally, people tried time-domain or frequency-domain 
control methods, but the complexity of the process goes beyond 
these methods. In this paper, a novel spatial transformation of 
SLM models is proposed, which transforms the time-domain 
process into a spatial domain model and, thus, allows for 
state-space layer-to-layer control methods. In a space domain, 
this also provides the convenience of modelling laser path 
changes. Finally, a layer-to-layer Iterative Learning Control 
(ILC) method is designed and demonstrates the methodology of 
spatial control for SLM. A simulation demonstrates its 
application and performance.  

I. INTRODUCTION 

Additive Manufacturing (AM) is a fast-developing 
technique of huge interest. The attractive feature of AM is the 
capability of manufacturing complex geometries and the 
reduction of wastes. Powder Bed Fusion (PBF) is one of AM 
techniques with a relatively high geometry accuracy.  In spite 
of much effort devoted to PBF for nearly half a century, PBF 
is still not widely adopted by many industry sectors [1]. Two 
big challenges of PBF are repeatability and controllability of 
the process.  

Selective Laser Melting (SLM) is one of PBF techniques, 
which fuses and solidifies selected regions of powder into 
solid parts layer by layer. Just like other AM techniques, due 
to the lack of quality assurance in open loop systems, 
researchers devoted much effort to the study of monitoring, 
modelling and control of the process, including but not 
limited to SLM.  

The SLM process and its monitoring and control are 
illustrated in Figure 1. The three figures (a), (b) and (c) 
represent three aspects that different researchers pay attention 
to. Figure 1 (a) represents the area of control and monitoring. 
People install optical sensors in SLM systems to collect melt 
pool data for feedback control. In monitoring and control, Hu 
et al. [2] used a coaxial infrared camera to capture images of 
melt pools, and they monitored temporal signals of melt pool 
pixel numbers and tried to control the system based on the 
melt pool features. Kruth [3-7] et al. also captured melt pool 
images using a thermal camera, monitored defects and tried 
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PID control using temporal signals and tried modelling it in a 
frequency domain. Demir et al. (2018) [8] used optical 
sensors with multiple channels of bandwidths to record 
temporal signals of image radiation and its statistics. Shkoruta 
et. al [9-10] used IR temporal signals for Iterative Learning 
Control (ILC) and also for frequency-domain system 
identification, respectively. Most of the work above 
concentrates on the time-domain dynamics. System 
identification and control in time and frequency domains are 
well proven techniques, but they show their weakness in SLM 
for the following reasons:  

(1) The SLM process is very fast and transient, and the 
bandwidths of a control system may not allow a fast reaction 
to laser activities. It is difficult to transplant temporal or 
frequency domain control into SLM from other AM 
techniques, like Laser Metal Deposition (LMD).  

(2) In SLM, the laser path is variant, and this is necessary for 
better homogeneity of fabrications. However, temporal 
signals alone cannot provide location information without 
path information.  

(3) Traditional temporal or frequency analyses often do not 
take the layer-to-layer dynamics into consideration.  

Therefore, it is necessary to solve the SLM control problem 
beyond the perspective of temporal modelling.  

On the other side, Figure 1 (b) represents the concern of 
manufacturing researchers, who are more interested in 
non-destructive quality monitoring of SLM. In manufacturing, 
melt pool data are processed into spatial feature maps so that 
defects can be located. Renken et. al (2018) generated spatial 
color maps from temporal signals of a pyrometer [13]. Krauss 
et al. [14-15] presented more detailed work on visualized 
spatial feature maps of PBF. Lough et. al [16-17] studied the 
correlation between IR feature spatial maps, microdefects and 
engineering properties, which demonstrated IR camera 
imaging as a tool for defect locating and quality prediction. 
From the spatial perspective, researchers process data of AM 
in a spatial domain and render more convenience in 
identifying local defects and the potentiality of local quality 
control. 

Since manufacturing researchers in SLM have been 
devoted to establishing a knowledge base of spatial features 
and defect detection, and layerwise control is more suitable 
for SLM, control researchers began to design layer-to-layer 
control in a state-space and spatial domain. Spector et al. [18] 
proposed a simplified and fast control-oriented model and 
designed layer-to-layer control. Lately, Yavari and Cole et al. 
[19-22] proposed a model that meshed a part into spatial 
nodes and borrowed the concept of the Laplacian matrix from 
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graph theory to represent the nodal connections in geometries. 
Wang et al. built a formulaic framework of spatial models 
[24-25], which is the antecedent of this paper.  

In this paper, a novel control-oriented model is proposed, 
which is a bridge between temporal models and spatial 
models, and Figure 1 (c) is complemented so that a complete 
model for SLM is formulated mathematically. The flowchart 
will be fulfilled mathematically in the following sections. It 
lays the basis of layer-to-layer control design. In this paper, a 
model is constructed by steps from the fundamental heat 
transfer law and it is the synthesis of three critical factors 
(geometry, laser power and path) of SLM. It leads to the idea 
of spatial monitoring and layerwise control, and it leaves a 
wide space in future for other advanced modelling and system 
identification techniques.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 1: SLM Process in Control and Manufacturing (a) Traditional SLM 

Control (b) Melt Pool Monitoring in SLM Manufacturing (c) Layer-to-Layer 

Spatial Control of SLM 

II. SPATIAL DYNAMIC MODEL FOR SLM 

A.   Finite Difference Model of SLM 

Selective laser melting is a complex synthesis of many 
physical processes, involving heat conduction, convection, 
radiation, phase transition and vaporization. For a practical 
purpose of modelling and control, some assumptions are 
made:  

(1) The dominant heat transfer mode is heat conduction, 
while convection and radiation are ignored.  

(2) The status (solid or powder) of an element is 
represented by its conductivity and diffusivity.  

(3) For each iteration, the laser path and the laser power 
are known.  

(4) The substrate temperature is set to be 0 by shifting all 
temperature by the ambient temperature.  

The heat conduction law, namely, the Fourier-Biot 
equation, is  

 
1

c

q T
T

k t


+ =


Δ ,   (1) 

where Δ is the Laplacian operator, T (K) is the temperature 
field, q (W/m3) is the heat power per volume, kc (W/(m·K)) is 
the conductivity and α (m2/s) is the diffusivity. The finite 
difference form of the Fourier-Biot equation is  
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where (d1, d2, d3) is the 3D index of a block, n is the time 
index and Δt (s) is the time step length. The domain is 
illustrated in Figure 2. Not all elements are solid parts. Some 
of the elements are steel and some are loose powder.  

In Figure 2, the size of a block is given such that Δx is the 
laser pulse distance, Δy is the hatch spacing, and Δz is the 
layer thickness. Therefore, each meshing block contains one 
laser pulse and one sample, namely,  

 x V t =  ,   (3) 

where V is the laser velocity. In practice, the sample locations 
may not match with the blocks. If so, interpolation or 
down-sample can be applied to create sample points matching 
with the grid.  

 

Figure 2: Domain of the Finite Difference Model 

B.   Definitions of State-Space Variables 

Before the introduction of state-space variables, the 
indices of elements are vectorized. The vectorized powder 
bed model is shown in Figure 3, where there are L layers, and 
each layer contains m×p blocks. The 3D spatial indices (d1, d2, 

d3) are mapped into a scalar index v by f: 
3
→  

 ( ) ( ) ( )1 2 3 1 2 3, , 1 1v f d d d d d p d mp= = + − + − .   (4) 
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Figure 3: Vectorized Numbering of Elements in SLM Model 

With the finite difference model, the state-space variables 
are to be introduced. The temperature T of an element is 
denoted by a state xv. For layer-to-layer control, an iteration 
number l is added to the arguments so that (n) is augmented to 
(n, l). Then the vectorization from T to x is  

 
( ) ( ) ( )

1 2 31 2 3
, ,, ,

, ,d d df d d d
x n l T n l= ,  (5) 

where (n, l) is the nth time step of the lth iteration. In this way, 
the state vector for the whole system at the end of the nth pulse 
during the lth iteration is  

 ( ) ( ) ( ) ( )
T

1 2, , , ,pmLn l x n l x n l x n l =  x   

 ( ) ( ) ( )
T

1,1,1 2,1,1 , ,, , ,p m LT n l T n l T n l =   .   (6) 

As a remark, l is the iteration number of layer processing and 
L is total number of layers included in the model, which are 
different concepts, because sometimes only a limited number 
of top layers are considered in a model for simplicity.  

The input power per volume dimensionalized into K is 
defined as  

 ( ) ( ) ( )
1 21 2
, ,1, ,1

, ,d df d d

c

t
u n l q n l

k


= ,   (7) 

and the input vector of the system is  

 ( ) ( ) ( ) ( )1 2, , , ,
T

pmn l u n l u n l u n l =  u     

 ( ) ( ) ( )
T

1,1,1 2,1,1 , ,1, , ,p m

c

t
q n l q n l q n l

k


 =   .  (8) 

To separate spatial information and temporal information, the 
spatial mapping of the input is defined as  

 ( ) ( ) ( ) ( )s s,1 s,2 s,

T

mpl u l u l u l =  u ,   (9) 

where us, v is the amplitude of the pulse at the element index v, 
namely the amplitude of uv. In this way, the vector us is only 
the spatial information of the laser. The laser power sequence 
along the time is  

 ( ) ( ) ( ) ( )t t ,1 t ,2 t ,

T

mpl u l u l u l =  u ,   (10) 

where ut, w is the power at the w th step. Now 3 types of input 
definitions are introduced, and researchers may use different 
ones. To eliminate the ambiguity, an example is shown.  

Example 1 (Input Definitions): Consider a system with only 
4 elements in Figure 4. The laser follows the element index (v) 
1 → 2 → 4 → 3 with dimensionalized input power 0.4 → 0.5 
→ 0.6 → 0.7 (×104 K) in the lth iteration. Then the system 

input vectors are  

 

( )  

( )  

( )  

( )  

T

T

T

T

1, 0.4 0 0 0

2, 0 0.5 0 0

3, 0 0 0 0.6

4, 0 0 0.7 0

l

l

l

l

 =

 =


=


=

u

u

u

u

.   (11) 

The spatial input is  

 ( )  
T

s 0.4 0.5 0.7 0.6l =u .   (12) 

The temporal input is  

 ( )  
T

t 0.4 0.5 0.6 0.7l =u .   (13) 

 

Figure 4: Example of a 4-Element System 

These 3 types of input definitions have different 
applications:  

(a) A system input is used for state-space matrix equations.  

(b) A spatial input is used for spatial control (See the next 
section).  

(c) A temporal input is used for laser power commands and 
traditional control of SLM.  

The spatial input vector and the temporal input vector 
have different index systems. The laser path transform matrix 
for the top layer is defined as following:  

 y 1 2

T

mp
 =  P p p p ,   (14) 

where  

  0 0 1 0 0
T

w =p ,   (15) 

where w is the pulse step index along the path and 1 is placed 
at its location v. Using this definition, the relationship 
between the temporal input signal and the spatial input map is  

 
t y s=u P u .   (16) 

Example 2 (Laser Path Transform Matrix): In Example 1, 
the transform matrix between spatial and temporal inputs is  

 y

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 
 
 =
 
 
 

P .   (17) 

A temporal output is a measurement of the surface states  
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 ( ) ( ) ( ) ( )t t ,1 t ,2 t ,

T

mpl y l y l y l =  y ,   (18) 

where  

 ( ) ( ) ( ) ( )( )t, 1 2, , , , , ,w M mpy l f x w l x w l x w l= ,  (19) 

where fM may be any measurement function. The spatial 
output is  

 1

s y t

−=y P y .   (20) 

If the output is a linear combination of the states, then ew is the 
linear sampling operator, yielding  

 ( ) ( )T

t, ,w wy l w l= e x .   (21) 

Example 3 (Linear Sampling Operator): Consider the max 
temperature  

 ( ) ( ) t,
1
max ,w v

v mp
y l x w l

 
= ,   (22) 

which is often used in SLM monitoring. For simplification, 
assume that the maximal temperature in an image is just at the 
laser point. The estimate of maximal temperature in an image 
is  

 ( ) ( ) ( )t , ,
L

w v w
y l x w l ,   (23) 

where vL(w) is the laser position at the time step w. Then the 
linear sampling operator is  

 
T

T T

w w
 =  e p 0 .   (24) 

Consider another measurement of the sum of surface 
temperature 

 ( ) ( )t ,

=1

,
mp

w v

v

y l x w l=  .   (25) 

Then the linear sampling operator is  

 
( )

T

1 1 1
=w mp L mp  −

 
 

e 1 0 .   (26) 

C. Summary of Temporal and Spatial Models 

From Eq. (2), the finite difference form of heat conduction 
equation is [24]  

 ( ) ( ) ( ) ( ) ( )1, , 1,n l l n l l n l+ = + +x A x B u .   (27) 

Assume that the initial state of each iteration is a constant 0. 
Then the input-output relation is  

 ( ) ( ) ( )t t tl l l=y G u ,   (28) 

 

11 1

t

1

N

N NN

g g

g g

 
 

=
 
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G .   (29) 

It can be derived from Eq. (2) with zero initial states that  

 
T , 0

0, 0

i j

i j

ij

i j
g

i j

− − 
= 

− 

e A Βp
.   (30) 

If the input-output relation is transformed into the spatial 
domain, then  

 s s s=y G u ,   (31) 

 1

s y t y

−=G P G P .   (32) 

Now the concepts at the beginning in Figure 1 are fulfilled 
in  Figure 5. Traditionally, people tried to identify, model and 
control SLM systems in a time domain (or frequency domain), 
but the effect of laser path is difficult to be integrated into a 
model explicitly. In path-variant cases, a spatial model is 
preferred for these reasons:  

(a) In applications of SLM, where defects appear is more 
important than when defects appear.  

(b) The spatial model takes the laser path into consideration.  

 

Figure 5: Relation Between Temporal Model and Spatial Model 

III. LAYER-TO-LAYER CONTROL DESIGN: AN EXAMPLE 

A.   Path-Dependency of Matrix G 

The input-output relation of the system is given by Eq. 
(30), where e and p are operators representing the laser path, 
and A and B are system matrices only dependent on geometry. 
The two factors, path and geometry, are separable. Although 
A and B are hard to estimate due to the nonlinearity in the real 
world, the path factors are absolutely known. For simplicity, a 
linear model is assumed in this paper.  

Example 4 (Path Dependency of Spatial Output Maps) 
Consider the geometry in Figure 6, with a size of 40 × 80 × 10 
elements. The element size is 50 μm × 50 μm × 50 μm. The 
conductivity and diffusivity are kc = 300 W/(m·K) and α = 5.1

×10-5 m2/s, respectively. The input power is 200 W constantly. 

For simplicity of the model, the peak temperature is chosen as 
the output. The output temperature unit is K. For simplicity, a 
linear model is used for simulation. The output maps and 
temporal signals from the simulation are shown in Figure 7 
and Figure 8.  

 

(a) 

 
(b) 

 
(c) 

Figure 6: Simulation Case (a) Layer Geometry (b) Path 1 (c) Path 2 
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(a) 

 
(b) 

 

(c) 

Figure 7: Simulation of Spatial Output from Constant Input (a) Output of 

Path 1 (b) Output of Path 2 (c) Absolute Difference Between (a)(b) 

 
(a)  

 
(b)  

Figure 8: Simulation of Temporal Output from Constant Input (a) Output of 

Path 1 (b) Output of Path 2 

In addition to the geometry effect, the laser path effect is 
also illustrated. Path 2 has a greater output at the upper-right 
corner than Path 1, because in Path 2 the laser stays 
persistently in the corner region for a longer time. Although 
the simulation model is linear and it is an ideal case of heat 
conduction, it illustrates the critical influential factors in 
SLM.  

B. Layer-to-Layer SLM Control 

Typically, Iterative Learning Control (ILC) solves a 
repeatable control problem in the form  

 ( ) ( )s s sl l=y G u ,   (33) 

 ( ) ( ) ( )s s s1l l l+ = +u u Γe ,   (34) 

 ( ) ( )s r sl l= −e y y ,   (35) 

where yr is the reference output. The convergence condition is  

 s 1− I G Γ ,   (36) 

However, Gs is variant when the path changes. To solve this 

problem, assume that there exists an estimate sĜ  of the 

system Gs. A control law is  

 ( ) ( ) ( ) ( )s s s1l l l l+ = +  u Q u Γe ,   (37) 

 ( ) ( ) ( )1

s s
ˆ ˆ1l l l−= +Q G G .   (38) 

Suppose the estimate of Gs is bounded by  

 s s
ˆ − G G .   (39) 

Then  

 ( ) ( ) ( )s s s
ˆ1 2 ul l l b+  − +e I G Γ e ,   (40) 

 ( )s

2

1

ub


 

−
e ,   (41) 

where  

 ( )s
ˆmax

l
l = −I G Γ ,   (42) 

 
s ubu .   (43) 

By adding an estimator, it is possible to correct the control law 
in the presence of system variance. To this point, a 

well-trained estimator 
sĜ  is a prerequisite. Once an 

estimation of 
sĜ  exists before applying ILC control, the 

boundedness of the estimator error implies the boundedness of 
the output error. The capability of the spatial modelling and 
layer-to-layer control relies on the performance of the 
estimation method.  

Example 5 (Control Simulation) 

Apply the control function in Eq. (37) to Example 4. The 
initial power is 200 W and the target reference output is 3600 
K. The laser scan Path 1 and Path 2 are applied by turns. For 
simplicity and fast computation, a linear model is assumed 
and the output is the peak temperature.  

When the two gains Gs1 and Gs2 are known without any 
error, the control simulation results are shown in Figure 9. At 
the beginning, a uniform input results in a non-uniform output. 
As the learning process proceeds, the input decreases at the 
previous hot positions, so Figure 9 (e) has a roughly inverse 
color of Figure 9 (b).  

 
(a) Input, Iteration 1 

 
(b) Output, Iteration 1 

 
(c) Input, Iteration 3 

 
(d) Output, Iteration 3 

 
(e) Input, Iteration 5 

 
(f) Output, Iteration 5 

Figure 9: Input and Output Maps in Control Simulation 

When the estimation errors of elements in Gs are 
simulated by evenly-distributed random errors with the 
ranges of 0%, ±5% and ±10% in each element of Gs, the 
simulation results are in Figure 10. The performance depends 
on the accuracy of Gs.  
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Figure 10: Error in the Control Simulation 

IV. CONCLUSIONS 

In this paper, a novel spatial transformation of an SLM 
model is proposed as a bridge between spatial monitoring and 
temporal SLM control. Not only does the model include 
geometry dependency and path dependency explicitly, but 
also tries to design a layer-to-layer controller. Once an 
estimate of the system matrix exists, the control law can make 
the output error converge. A simulation demonstrates the 
spatial layer-to-layer control in the presence of path variance 
and its performance depends on the accuracy of the estimator.  

REFERENCES 

[1] Haghdadi, Nima, Majid Laleh, Maxwell Moyle, and Sophie Primig. 
"Additive manufacturing of steels: a review of achievements and 
challenges." Journal of Materials Science 56, no. 1 (2021): 64-107.  

[2] Hu, Dongming, and Radovan Kovacevic. "Sensing, modeling and 
control for laser-based additive manufacturing." International Journal 
of Machine Tools and Manufacture 43, no. 1 (2003): 51-60.  

[3] Kruth, Jean-Pierre, Peter Mercelis, Jonas Van Vaerenbergh, and Tom 
Craeghs. "Feedback control of selective laser melting." In Proceedings 
of the 3rd international conference on advanced research in virtual and 
rapid prototyping, pp. 521-527. Taylor & Francis Ltd, 2007.  

[4] Berumen, Sebastian, Florian Bechmann, Stefan Lindner, Jean-Pierre 
Kruth, and Tom Craeghs. "Quality control of laser-and powder 
bed-based Additive Manufacturing (AM) technologies." Physics 
procedia 5 (2010): 617-622.  

[5] Clijsters, Stijn, Tom Craeghs, Sam Buls, Karolien Kempen, and J-P. 
Kruth. "In situ quality control of the selective laser melting process 
using a high-speed, real-time melt pool monitoring system." The 
International Journal of Advanced Manufacturing Technology 75, no. 
5-8 (2014): 1089-1101.  

[6] Craeghs, Tom, Florian Bechmann, Sebastian Berumen, and Jean-Pierre 
Kruth. "Feedback control of Layerwise Laser Melting using optical 
sensors." Physics Procedia 5 (2010): 505-514.  

[7] Berumen, Sebastian, Florian Bechmann, Stefan Lindner, Jean-Pierre 
Kruth, and Tom Craeghs. "Quality control of laser-and powder 
bed-based Additive Manufacturing (AM) technologies." Physics 
procedia 5 (2010): 617-622. 

[8] Gökhan Demir, Ali, Chiara De Giorgi, and Barbara Previtali. "Design 
and implementation of a multisensor coaxial monitoring system with 
correction strategies for selective laser melting of a maraging steel." 
Journal of Manufacturing Science and Engineering 140, no. 4 (2018).  

[9] Shkoruta, Aleksandr, William Caynoski, Sandipan Mishra, and 
Stephen Rock. "Iterative learning control for power profile shaping in 
selective laser melting." In 2019 IEEE 15th International Conference 
on Automation Science and Engineering (CASE), pp. 655-660. IEEE, 
2019.  

[10] Shkoruta, Aleksandr, Sandipan Mishra, and Stephen Rock. "An 
experimental study on process modeling for selective laser melting." In 
2020 American Control Conference (ACC), pp. 467-473. IEEE, 2020.  

[11] Tang, Lie, and Robert G. Landers. "Melt pool temperature control for 
laser metal deposition processes—Part I: Online temperature control." 
Journal of manufacturing science and engineering 132, no. 1 (2010).  

[12] Liu, Yangbo, Liuping Wang, and Milan Brandt. "Model predictive 
control of laser metal deposition." The International Journal of 
Advanced Manufacturing Technology 105, no. 1 (2019): 1055-1067.  

[13] Renken, Volker, Lutz Lübbert, Hendrik Blom, Axel von Freyberg, and 
Andreas Fischer. "Model assisted closed-loop control strategy for 
selective laser melting." Procedia CIRP 74 (2018): 659-663.  

[14] Krauss, Harald, Thomas Zeugner, and Michael F. Zaeh. "Layerwise 
monitoring of the selective laser melting process by thermography." 
Physics Procedia 56 (2014): 64-71.  

[15] Krauss, Harald, Thomas Zeugner, and Michael F. Zaeh. 
"Thermographic process monitoring in powderbed based additive 
manufacturing." In AIP Conference Proceedings, vol. 1650, no. 1, pp. 
177-183. American Institute of Physics, 2015.  

[16] Lough, Cody S., Xin Wang, Christopher C. Smith, Robert G. Landers, 
Douglas A. Bristow, James A. Drallmeier, Ben Brown, and Edward C. 
Kinzel. "Correlation of SWIR imaging with LPBF 304L stainless steel 
part properties." Additive Manufacturing 35 (2020): 101359. 

[17] Lough, Cody S., Xin Wang, Christopher C. Smith, Olaseni Adeniji, 
Robert G. Landers, Douglas A. Bristow, and Edward C. Kinzel. "Use of 
swir imaging to monitor layer-to-layer part quality during slm of 304l 
stainless steel." In Proceedings of the 29th Annual International Solid 
Freeform Fabrication Symposium, Austin, TX, USA, pp. 13-15. 2018.  

[18] Spector, Michael JB, Yijie Guo, Souvik Roy, Max O. Bloomfield, 
Antoinette Maniatty, and Sandipan Mishra. "Passivity-based iterative 
learning control design for selective laser melting." In 2018 Annual 
American Control Conference (ACC), pp. 5618-5625. IEEE, 2018.  

[19] Yavari, Reza, Richard Williams, Kevin Cole, Paul Hooper, and 
Prahalad Rao. "Thermal modeling in metal additive manufacturing 
using graph theory: Experimental validation with in-situ infrared 
thermography data from laser powder bed fusion." In International 
Manufacturing Science and Engineering Conference, vol. 84256, p. 
V001T01A028. American Society of Mechanical Engineers, 2020.  

[20] Yavari, Reza, Kevin D. Cole, and Prahalad Rao. "A graph theoretic 
approach for near real-time prediction of part-level thermal history in 
metal additive manufacturing processes." In International 
Manufacturing Science and Engineering Conference, vol. 58745, p. 
V001T01A030. American Society of Mechanical Engineers, 2019.  

[21] Yavari, M. Reza, Kevin D. Cole, and Prahalada Rao. "Thermal 
modeling in metal additive manufacturing using graph theory." Journal 
of Manufacturing Science and Engineering 141, no. 7 (2019): 071007. 

[22] Cole, Kevin D., M. Reza Yavari, and Prahalada K. Rao. 
"Computational heat transfer with spectral graph theory: Quantitative 
verification." International Journal of Thermal Sciences 153 (2020): 
106383.  

[23] Tapia, Gustavo, and Alaa Elwany. "A review on process monitoring 
and control in metal-based additive manufacturing." Journal of 
Manufacturing Science and Engineering 136, no. 6 (2014).  

[24] Wang, Xin, Cody S. Lough, Douglas A. Bristow, Robert G. Landers, 
and Edward C. Kinzel. "A Layer-to-layer Control-Oriented Model for 
Selective Laser Melting." In 2020 American Control Conference 
(ACC), pp. 481-486. IEEE, 2020.  

[25] Wang, Xin, Douglas A. Bristow, and Robert G. Landers. "A Switched 
Adaptive Model for Layer-to-Layer Selective Laser Melting With 
Varying Laser Paths." In Dynamic Systems and Control Conference, 
vol. 84287, p. V002T24A002. American Society of Mechanical 
Engineers, 2020. 

2891

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 17,2023 at 21:14:28 UTC from IEEE Xplore.  Restrictions apply. 


	Spatial Transformation of a Layer-To-Layer Control Model for Selective Laser Melting
	Recommended Citation

	Spatial Transformation of a Layer-to-Layer Control Model for Selective Laser Melting

