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A new formulation of the Gaussian particle flow filter is presented
using an information theoretic approach. The developed information-
based form advances the Gaussian particle flow framework in two
ways: it imparts physical meaning to the flow dynamics and provides
the ability to easily include modifications for a non-Bayesian update.
An orbit determination simulation with high initial uncertainty is used
to demonstrate the consistent, robust performance of the information
flow filter in situations where the extended Kalman filter fails.
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I. INTRODUCTION

Across a wide array of disciplines, Bayesian estimation
is the foundation for incorporating new information into the
understanding of a given stochastic process. The methods by
which this update is performed vary widely in complexity
and accuracy. For a linear, Gaussian process, the Kalman
filter provides an exact, closed-form solution [1]. In non-
linear estimation, the extended Kalman filter (EKF) uses
a local linear approximation to update the state estimate
through the same Kalman filter framework. Problems with
this approximation arise in cases where the process is not
well-modeled by either a Gaussian or local linear assump-
tion. In practice, straying from this assumption degrades
estimation accuracy, performance, and can result in filter
divergence [1].

Significant research has been conducted on methods
to alleviate nonlinear estimation issues through techniques
such as Gaussian mixture modeling [2] or the particle
filter [3], [4]. These approaches have been used extensively
in nonlinear estimation problems, such as multitarget track-
ing [5], [6] and orbit determination [7]. By representing the
probability density function (PDF) with a sufficiently large
number of samples, particle filters propagate and update a
set of particles and their corresponding weights to provide
PDF moments. In applications where drawing samples di-
rectly from the density is impossible, importance sampling
from a given proposal density can be used [4]. However,
traditional particle filtering methods suffer from what is
commonly referred to as the “curse of dimensionality.”
As the dimension of the state increases, the number of
particles required to effectively approximate the distribution
increases. For low state dimensions, the rate has been shown
to be two orders of magnitude for each additional state
dimension [8], and even in the linear case, the error in the
approximation can grow exponentially [9].

The heart of the dimensionality problem lies in the
concept of particle degeneracy [4]. In applying Bayes’
rule, the prior estimate is updated to the posterior through
the measurement likelihood. While a set of particles may
adequately represent the prior distribution, not all of the
particles are encompassed in the measurement likelihood.
In the event of high precision measurements relative to the
state uncertainty, the number of particles with a meaningful
contribution in approximating the posterior distribution can
be a drastically smaller subset of the total [9]. While the prior
is sufficiently represented, the majority of the particles have
little to no contribution in representing the posterior, i.e.,
their weights degenerate to zero. The instinctive solution
to this problem is to use more particles to represent the
prior in order to have an adequate number encompassed
by the evidence. However, the computational burden is
compounded by higher dimensions, larger uncertainties,
and more precise measurements, all of which necessitate
more particles to accurately represent the distribution.

To address problems in the filter performance, a method
called particle flow has been developed for computing a
Bayesian update [10], [11]. A set of particles is used to
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represent the prior distribution, and the particles are moved
through the state space to represent the posterior distribution
according to Bayes’ rule. In contrast to traditional particle
filters where corresponding weights are updated based on
new measurements and particle locations in the state space
are left unchanged, particle flow equally and invariably
weights the particles, opting instead to update their loca-
tions. By foregoing the weight update, particles undergoing
particle flow need not be periodically resampled. The flow
dynamics are built upon the evaluation of Bayes’ rule formu-
lated by a differential equation rather than the multiplication
of two functions [11]. This probability “flow” from prior
to posterior is governed by a logarithmic-homotopy that
allows for the linear combination of prior and likelihood
components and is applied in the state space to “map”
between distributions. Through a time-like homotopy pa-
rameter that varies from zero to one, the prior distribution
(at “time” zero) is smoothly morphed into the posterior
distribution (at “time” one). Due to the underdetermined
nature of the system, a multitude of flow solutions exist to
describe the motion of the particles through the update. The
most commonly implemented solution [11] uses a Gaussian
assumption to define the flow in terms of two parameters
that can be calculated from quantities familiar to an EKF
update.

Information theoretic research has shown that Bayes’
rule can alternatively be interpreted from an infor-
mation perspective through a simultaneous Kullback–
Leibler (KL) divergence minimization and expected
logarithmic-likelihood maximization [12]. Other informa-
tion/estimation connections have been established for ad-
ditive Gaussian noise channels [13], as well as a bridge
between information and estimation through the Fokker–
Planck equation [14], [15]. In estimation problems where
little-to-no initial knowledge of the state is available, the un-
certainty can be difficult to handle with traditional filtering
techniques, causing unstable behavior and poor estimation
accuracy. An advantageous filter design for high uncertainty
applications must promote robust performance in problems
where little-to-no initial information is available or when
such data is sparse. To that end, this article poses the particle
flow framework from an information theoretic perspective
to motivate the movement of particles through a Bayesian
update based on the flow of new information.

The information theoretic approach established in this
work seeks to expand the Gaussian particle flow filtering
capabilities by addressing two avenues for improvement.
First, the flow parameters governing the motion of the
particles have no clear link to a physical or abstract pro-
cess acting on the set of particles. That is, the method
for deriving the flow parameters provides no immediately
apparent understanding about the underlying motion of an
arbitrary particle. Characterizing the particle motion illumi-
nates the second contribution of this article, the inclusion of
a non-Bayesian update. Several flow solutions exist that are
capable of including something akin to noise or uncertainty
in the particle flow update through mechanisms such as

Gromov’s method for linear underdetermined partial differ-
ential equations [16] or geodesic manifolds [17]. However,
these solutions are often achieved by an added complexity
that negates the computational benefits of particle flow in
the first place.

By circumventing the curse of dimensionality common
to other particle filter formulations, particle flows are ca-
pable of providing equivalent or better filter performance
with lower computational overhead [11]. However, such
savings are highly dependent on the underlying flow design.
Compared to the original Gaussian particle flow approach,
even the local exact variation results in a 20-fold increase
in computation time on a per-recursion basis [18]. For a
linear, Gaussian sensor network example, stochastic parti-
cle flows have been shown to require computation times
two orders of magnitude higher compared to more tradi-
tional particle filters [19]. Flows designed around geodesic
manifolds have been reported to require 30 and 75 times
more computations per particle than sequential impor-
tance resampling methods [17]. These flow designs trade
a significant increase in computation time for improved
performance.

This article approaches the problem from a different
angle, by reformulating an existing and deterministic flow
design to provide more control over the filter performance.
The new particle motion model retains the Bayesian frame-
work and is mathematically equivalent to its predecessor.
However, the new model also provides unique opportunities
to improve the filter performance using quantities defined
for the flow equations. The new design retains the compu-
tational efficiency of the original Gaussian flow, and the
novel modifications allow the filter to provide desirable
performance without necessarily requiring more complex
methods such as stochastic flows.

For challenging estimation problems, such as orbit
determination with high initial state uncertainty or large
periods of time between measurements, consistent, and
accurate performance of the EKF is not guaranteed. A
robust approach to the problem would involve computing
a constrained admissible region of captured orbits and
construction of a Gaussian mixture model [7] to initial-
ize an appropriate filter. Combining the robust and effi-
cient performance of particle flow filters (PFFs) with the
ability to perform non-Bayesian updates allows the in-
formation flow filter (IFF) to serve as a middle ground
between the EKF and methods like Gaussian mixture-type
filters.

The rest of this article is organized as follows. First,
a brief derivation of Gaussian particle flow is given in
Section II, followed by the development of the proposed
information flow in Section III. Methods for modifying
the information flow update through entropic convergence
control are provided in Section IV. Section V compares the
EKF and information flow in a high uncertainty simulation
to demonstrate the capabilities of the method with and with-
out the developed convergence control. Finally, Section VI
concludes this article.
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II. PARTICLE FLOW

The fundamental purpose of the particle flow approach
is to compute Bayes’ rule through the solution of a differ-
ential equation. The uncertainty distribution is first repre-
sented using a set of particles to provide estimates of the
PDF moments. The set can be drawn from an initial PDF
or sampled by other means from the state space. Similar
to the EKF, each particle is propagated in time through the
state dynamics. For the update stage, particle flow assumes
the motion of the particles from the prior to the posterior
distribution follows an ordinary differential equation (ODE)
that, in conjunction with a homotopy of Bayes’ rule, can
be used to generate solutions for the movement of said
particles. The result is a continuous shift of the particles
through the state space from locations according to the
prior to new areas such that the posterior distribution is
represented. The formulation of the logarithmic-homotopy,
ODE, and subsequent Gaussian particle flow solution [11]
is as follows.

Consider Bayes’ rule

p(x) = g(x)�(z|x)

C

where p(x) is the posterior, g(x) is the prior, �(z|x) is the
measurement likelihood, and C is the state-independent
normalization constant necessary to ensure p(x) is a valid
PDF that integrates to one over the entire state space. Taking
the logarithm of both sides yields

log(p(x)) = log(g(x))+ log(�(z|x))− log(C). (1)

Define a homotopy on (1) as

log(π (x(λ), λ)) = log(g(x(λ)))+ λ log(�(z|x(λ)))

− log(C(λ)) (2)

such that, π (x(λ), 0) is the prior distribution and π (x(λ), 1)
is the Bayesian posterior. Since Bayes’ rule operates on an
instantaneous moment in time, λ acts as a pseudotime quan-
tity to propagate the homotopy distribution, π (x(λ), λ),
from the prior to the posterior. As such, λ is referred to
interchangeably as the homotopy parameter or pseudotime.
It should be noted that C(λ), the normalization term in
(2), is functionally dependent on λ such that the homotopy
distribution π (x(λ), λ) is a valid PDF for all λ.

Suppose that a particle x(λ) belonging to the PDF
π (x(λ), λ) evolves in pseudotime according to the ODE

dx(λ)

dλ
= f (x(λ), λ) .

The movement of the particle x(λ), with pseudotime func-
tional dependence assumed hereafter, can be related to the
change in its corresponding PDF via the Fokker–Planck
equation; or, when assuming no stochastic diffusion, par-
ticle pseudotime evolution can be found via the Liouville
equation [14]

∂π (x, λ)

∂λ
= −∇(π (x, λ) f (x, λ)) . (3)

Expanding the gradient on the right-hand side of (3) results
in

∂π (x, λ)

∂λ
= − tr

{
∂ f (x, λ)

∂x

}
π (x, λ)+ ∂π (x, λ)

∂x
f (x, λ)

(4)

where tr{·}denotes the trace operator. The partials ofπ (x, λ)
with respect to λ and x are unknown but can be substituted
for using the logarithmic-homotopy and properties of the
PDF. Differentiating the logarithmic-homotopy in (2) with
respect to λ and rearranging slightly gives

∂π (x, λ)

∂λ
= π (x, λ)

(
log(�(z|x))− ∂C(λ)

∂λ

)
. (5)

Assuming π (x, λ) is smooth and nowhere vanishing, the
relationship

∂ log(π (x, λ))

∂x
= 1

π (x, λ)

∂π (x, λ)

∂x
(6)

can be used in (4) for the unknown partial of π (x, λ) with
respect to x. Utilizing the relationships given in (5) and (6)
in (3), dividing by π (x, λ) and rearranging gives the general
particle flow solution

∂ log(π (x, λ))

∂x
f (x, λ)+ log(�(z|x))− ∂C(λ)

∂λ

= − tr

{
∂ f (x, λ)

∂x

}
. (7)

The system for the partial differential equation govern-
ing the particle flow in (7) is underdetermined and can be
used to produce a multitude of solutions [20]. To arrive at
the most commonly implemented solution, assume the flow
function to be of the form

f (x, λ) = Ax+ b

and assume the prior and measurement likelihood are Gaus-
sian densities. The Gaussian solution [11] can be found
by substituting the Gaussian forms of the densities into
(7). Denote the Gaussian PDF with mean θ and covari-
ance � by pg(·; θ, �). Assuming g(x) = pg(x;m−, P−) and
�(z|x) = pg(z;Hx, R) where m− and P− are the prior mean
and covariance, z is the measurement, H is the mapping
matrix from the state space to the measurement space such
that the expected measurement is ẑ = Hm−, and R is the
measurement noise covariance, (7) becomes

(−(x−m−)T P−,−1(Ax+ b)

+ λ(z−Hx)T R−1H (Ax+ b)

− 1

2
(z−Hx)T R−1(z−Hx)+ c = − tr{A} (8)

where c denotes the collection of other terms not dependent
on the state, (·)−1 is the matrix inverse, and (·)T is the matrix
transpose. The coefficients A and b can be solved for by
equating terms that are quadratic and linear in x; that is

xT
(
AT P−,−1m− − P−,−1b+ λAT HT R−1z

−λHT R−1Hb+HT R−1z
) = 0
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xT

(
−P−,−1A− λHT R−1HA− 1

2
HT R−1H

)
x = 0 .

Solving for the coefficients yields

A = −1

2
P−HT

(
λHP−HT + R

)−1
H (9a)

b = (I + 2λA)
[
(I + λA)P−HT R−1z + Am−

]
(9b)

where I is an identity matrix of appropriate dimension.
In the event of a nonlinear measurement model, the

expected measurement is assumed to be given by a nonlinear
function ẑ = h(m−). The measurement, z, is replaced to
reflect the nonlinearity by

z← z− ẑ +Hm− (10)

where H is then given by the Jacobian of the nonlinear
measurement function with respect to the mean. Using the
definition for z in (10) ensures that the term (z−Hx) in (8)
and subsequently, (9b), appropriately reflects a first-order
Taylor series expansion about the prior mean to account for
the nonlinear nature of the measurement function.

III. INFORMATION FLOW

For Gaussian particle flow, the parameters A and b in (9)
are sufficient for modeling the movement of a particle, but
their derivation does not provide a deeper understanding
of the underlying processes driving that motion. Posing
the problem from an information-theoretic perspective pro-
vides such an understanding by following the flow of new
information from prior to posterior.

Incorporating new information or measurements into
the filter framework involves updating the state distribution
parameter estimates. For PFFs, this is accomplished by
moving the particles from their a priori locations, through
the state space, to new locations such that the set then
represents the a posteriori belief. The dynamics of the
information-theoretic particle flow (referred to herein as
information flow) update are defined by a homotopy on the
inclusion of information to the mean and covariance esti-
mates in conjunction with an ODE governing the movement
of individual particles [21].

Development of the underlying information homotopy
begins with an information-theoretic equivalent to Bayes’
rule [12]. It can be shown that the Bayesian posterior dis-
tribution is the one that simultaneously maximizes the ex-
pected measurement logarithmic-likelihood and minimizes
the KL divergence between the prior and posterior, i.e.,

p(x) = arg minπ (x)

{
−
∫

π (x) log(�(z|x))dx

+
∫

π (x) log

(
π (x)

g(x)

)
dx
}

. (11)

If the prior, posterior, and measurement likelihood dis-
tributions are assumed to be Gaussian, the logarithmic-
likelihood and KL divergence have closed-form, analytic
solutions. Substituting the same Gaussian forms defined
in Section II into (11) and assuming π (x) = pg(x;μ, �)

allows a change of the optimization variable from the pos-
terior distribution to its respective mean and covariance, or

{
m+, P+

} = arg minμ,�

{
1

2

[
log |P−�−1| + log |R|

+(μ−m−)T P−,−1(μ−m−)+ c+ tr
{
P−,−1�

}
+(z−Hμ)T R−1(z−Hμ)+ tr

{
HT R−1H�

}]}
(12)

where | · | denotes the matrix determinant, m+ and P+

are the posterior mean and covariance, and c is all other
terms not dependent on the state. Taking derivatives of the
expression in the minimization of (12) with respect to μ and
� and solving for the parameters produces results similar in
form and numerically equivalent to the Kalman filter update

� = (P−,−1 +HT R−1H
)−1

μ = �
(
P−,−1m− +HT R−1z

)
where the last term in both equations governs the incorpora-
tion of new information into the estimates. This division of
prior- and information-based terms allows for the straight-
forward inclusion of a homotopy as

� = (P−,−1 + λHT R−1H
)−1

(13a)

μ = �
(
P−,−1m− + λHT R−1z

)
(13b)

such that when the homotopy pseudotime parameter λ is 0,
μ and � are equal to the prior mean and covariance, and
when λ = 1, the standard form of the update, where μ and
� are the posterior mean and covariance, is recovered.

It should be noted that the solution for the homotopy
mean and covariance in (13a) and (13b) can equivalently
be determined by a homotopy on the expected logarithmic-
likelihood in (11), resulting in

p(x) = arg minπ (x)

{
−λ

∫
π (x) log(�(z|x))dx

+
∫

π (x) log

(
π (x)

g(x)

)
dx
}

. (14)

Leveraging the Gaussian forms for the distributions in (14)
to change the optimization variables to mean and covari-
ance, setting the resulting function of Gaussian parameters
to zero and solving results in the same solution for the
homotopy distribution parameters as given in (13a) and
(13b).

The motion of the individual particles during the update
is taken to be governed by the ODE

dx
dλ
= A(x− μ)+ dμ

dλ
(15)

where the terms are separated such that A and dμ

dλ
govern

the two modes of motion the particles undergo during
the update. Specifically, contraction of the set relative to
its center of mass (i.e., mean) and translation of the set
through the state space. Defining the particle dynamics via
the contraction and translation terms, respectively, ensures
that the Gaussian covariance and mean are appropriately
represented by the particles as λ goes from 0 to 1. The
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pseudotime rate-of-change of the mean can be found by
taking the derivative of (13b) with respect to λ, resulting in

dμ

dλ
= d�

dλ

(
P−,−1m− + λHT R−1z

)+�HT R−1z (16)

where the pseudotime rate-of-change of the covariance is
also defined by taking the derivative of (13a) with respect
to λ

d�

dλ
= −�HT R−1H� . (17)

The other flow parameter, A in (15), governs the relative
contraction of the particle set in reference to its mean. As the
uncertainty in the estimation is directly related to the entropy
of the distribution, it is natural to define the change in the
uncertainty, represented in information flow by the spread
of the particles, using the change in entropy. The Shannon
entropy [22], or in the case of a continuous distribution with
PDF q(x), the differential entropy, is defined in general as

H
[
q
] = − ∫ q(x) log q(x)dx . (18)

Following the approach of the work in [14], Liouville’s
equation can be used in (18) to relate the pseudotime
rate-of-change of the homotopy distribution’s entropy to
the motion of a corresponding particle as

d

dλ
H [π (x)] = tr

{
E

{
d

dx

{
dx
dλ

}}}
(19)

where E{·} denotes the expected value. If the ODE in (15) is
substituted into (19), the right-hand side can be simplified
to

d

dλ
H [π (x)] = tr{A} . (20)

If the Gaussian assumption is applied, the entropy can also
be defined in terms of the covariance as

H [π (x)] = 1

2
log |2πe�|

resulting in another definition for the pseudotime evolution
of the entropy as

d

dλ
H [π (x)] = 1

2
tr

{
�−1 d�

dλ

}
. (21)

Using the covariance in (13a) and its corresponding pseudo-
time rate-of-change in (17) allows for the pseudotime rate-
of-change of the entropy in (21) to be computed. Equating
the two formulations for the pseudotime rate-of-change of
entropy in (20) and (21) results in

−1

2
tr
{(

P−,−1 + λHT R−1H
)−1

HT R−1H
}
= tr{A} .

While the trace operation implies there are multiple valid
solutions for A, the chosen solution for A is given by
equating the trace inner terms

A = −1

2

(
P−,−1 + λHT R−1H

)−1
HT R−1H (22)

which is equivalent to the Gaussian flow A term given in
(9a). Similarly, it can be shown that the b term given in

(9b) is equivalent to the remaining terms in (15) for the
information flow, i.e.,

(I + 2λA)
[
(I + λA)P−HT R−1z + Am−

]
= −Aμ+ dμ

dλ
.

Equivalency of the Gaussian particle flow and information
flow solutions is demonstrated in a linear Gaussian example
in [21]. Results of the simulation show that the differences
between the state (position and velocity) estimates of the
two Gaussian flows are unbiased and 16 orders of magnitude
smaller than the states themselves; that is, approximately
machine precision. It should also be noted that the informa-
tion flow also makes use of the same modified measurement
as the Gaussian particle flow [given in (10)] in the event of
a nonlinear measurement model.

With the components and considerations for nonlinear
models established, the process for the IFF, assuming non-
linear models, is as follows. First, for a given set of initial
state mean and covariance estimates, the Nx particle set is
sampled from the corresponding Gaussian density. Each
sample is then propagated to the first measurement, at time
k, using the dynamics model. At time step k, the prior mean
and covariance are approximated by sample statistics of the
particle set. The Jacobian H of the nonlinear measurement
model is computed with respect to the prior mean, along
with the modified measurement z following (10). Then,
for each pseudotime step between 0 and 1, the homotopy
mean and covariance are computed from (13), the mean
pseudotime rate of change from (16) using the covariance
rate of change in (17), and the entropy rate of change in
(22). At this point, the ODE in (15) is integrated to move
the particles and the cycle is repeated again at the next
pseudotime step with the computation of the homotopy
mean and covariance from (13). At λ = 1, the update is
complete and the filter can begin again with the particle
propagation to the next measurement time.

The calculation of the information flow components can
also be simplified by incorporating a linear gain. From the
information flow mean update in (13b), define the linear
gain Kλ = �HT R−1. Recognizing that

Kλ = �HT R−1 = P−HT
(
λHP−HT + R

)−1
(23)

and substituting into (13b) results in

μ = m− + λKλrz (24)

where rz = (z− ẑ) is the measurement residual. The pseu-
dotime rate-of-change of the mean can also be determined
by substituting for the updated mean in (13b), the linear gain
in (23), and the pseudotime rate-of-change of the updated
covariance in (17), resulting in

dμ

dλ
= Kλ(rz − λHKλrz) . (25)

Finally, the contraction parameter in (22) can also be defined
in terms of Kλ as

A = −1

2
KλH . (26)
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While the new information flow is equivalent to
the Gaussian flow summarized in Section II, the new
information-theoretic formulation provides a physical un-
derstanding of the motivating forces behind the movement
of an arbitrary particle during a Bayesian update. By sepa-
rating the flow parameters into contributions to translation
and contraction of the set of particles, further examination
and modification of the particle motion can be conducted.

IV. CONVERGENCE CONTROL

Estimation in situations with large state uncertainties
and precise measurements can result in degraded perfor-
mance, or in extreme cases, divergent filter behavior. When
performing an update using a high precision measurement, a
filter with little-to-no knowledge of the state tends to quickly
converge on a solution that fits the limited information
available. Often, the result of this uncertainty “snap-down”
is a filter that is overconfident to some degree in its estimate;
that is, the state estimation errors are no longer consistent
with the filter’s estimate of the corresponding uncertainty.

A primary source of the overconvergence issue lies
in the linearization inherent to filters like the EKF and
Gaussian-based particle flow methods. While the Bayesian
solution provided by the information flow update is optimal,
the magnitude of the demanded change in the estimate
can violate the local linear assumption used to perform the
update, resulting in poor estimation quality. To prevent such
undesirable performance, filters like the EKF can utilize
underweighting (UW) [23], through which the magnitude
of the linear gain is reduced by some prescribed factor.
There are a multitude of methodologies for indicating and
performing an update with UW and examples of its use can
be seen in both the Shuttle [24] and Orion [25] programs.
One such approach, using the UW parameter, 0 < β < 1,
defines the conditions for UW as

||HP−HT || > 1− β

β
||R|| (27)

where || · || is the matrix L2 norm. If the conditions in (27)
are met, the gain reduction is applied through

K = P−HT

(
1

β
HP−HT + R

)−1

. (28)

An equivalent information flow update to that provided by
the gain reduction in (28) can be produced by the exact same
inclusion of β in the linear homotopy gain of (23). How-
ever, a direct incorporation of this or any other established
appropriate UW technique does not leverage the unique
mechanisms provided by the particle flow framework.

Separation of the information flow parameters accord-
ing to their role in either translation or convergence of the set
provides a convenient mechanism for implementing a novel
modification to reduce overconvergence in the update. Con-
sider the information flow parameter A in (22), defined by
the pseudotime rate-of-change of the entropy. Introducing
a new contraction efficiency, η, allows for direct control of
the magnitude of the convergence [21]. The motion of a

particle in information flow then becomes

dx
dλ
= ηA(x− μ)+ dμ

dλ
. (29)

Values of η less than one reduce the contraction of the
particles while values greater than one increase the con-
traction for a particular pseudotime step. As the purpose
of an entropic convergence control is explicitly to prevent
overconvergence, values of η greater than one are not used,
as they would only exacerbate the problem.

It should be noted that although the parameter A is
identical in Gaussian particle and information flow, its
contribution in the former is also tied to the other flow
parameter, b in (9b), making it impossible to directly modify
the particle flow convergence rate without first changing
how the two parameters are defined. The ability to slow
the uncertainty convergence during an update allows for
better information flow filter performance by “softening”
the update in situations with high uncertainty and precision
measurements where the Bayesian update would in fact
provide undesirable performance in subsequent time steps.

In the interest of furthering the robust filtering capa-
bilities of information flow, a mathematically grounded
basis for selecting the contraction efficiency parameter is
presented. While η can be a constant, a more effective
use is to define it as dependent on pseudotime and other
flow-dependent quantities to provide variable convergence
control when necessary and so as not to impede the flow oth-
erwise. As the underlying purpose of convergence control is
to lessen the aforementioned uncertainty snap-down, η can,
therefore, most effectively be selected to control the pseu-
dotime rate-of-change of the uncertainty, i.e., d�

dλ
. While

this term can be computed using the homotopy via (17),
the realized pseudotime rate-of-change of the uncertainty is
determined solely by the particle motion.

In [26], the temporal evolution of the entropy in a
linearized system is used to detect nonlinear effects in the
propagation of the uncertainty. Following that concept, the
entropy, or more precisely its pseudotime evolution, can
be used to detect particle contraction rates that produce
undesirable, overconvergent behavior. One of the current
problems in particle flow that is discussed is the need for
a constant or approximately constant speed flow [27]. The
flow ODE itself can exhibit severe stiffness, resulting in
particle “velocities” at the beginning of the flow that can be
several times larger than those toward the end of the flow.
In the case of high uncertainties and precise measurements,
the particle velocities at the beginning of the flow are further
increased, resulting in potentially overconvergent behavior.
Combining the findings of the work in [26] and the pro-
posed capabilities of the work in [27], a convergence-rate
constraint is applied through the entropy and contraction
efficiency parameter.

Consider the two definitions for entropy evolution in
(20) and (21), that is

tr{A} = 1

2
tr

{
�−1 d�

dλ

}
. (30)

1382 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 58, NO. 2 APRIL 2022

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:01 UTC from IEEE Xplore.  Restrictions apply. 



As stated previously, although the covariance rate-of-
change is ultimately the quantity that needs to be throttled,
its realized rate-of-change is governed by the particles’
contraction, or more specifically, A. This gives rise to two
avenues to define a suitable contraction efficiency based
on constant covariance (CC) rate-of-change and constant
entropy (CE) rate-of-change.

To produce a CC rate-of-change threshold at the current
pseudotime step, λn, values of � and d�

dλ
in at points λCC

and λn, respectively, in the homotopy can be used in (30) to
define the contraction efficiency parameter

η(λn) = min

⎧⎨
⎩ tr{Aλn}

1
2 tr

{
�−1

λCC

(
d�
dλ

)
λn

} , 1.0

⎫⎬
⎭ (31)

where �−1
λCC

is given by evaluating (13a) at λ = λCC and
( d�

dλ
)λn and Aλn AT λ = λn in (17) and (26), respectively.

For example, if λCC = 1, this defines Aλn as the required
entropy rate-of-change to produce the posterior covariance
(at λCC = 1) assuming a constant rate-of-change for the
covariance equal to that of the current pseudotime step,
i.e., ( d�

dλ
)λn . The threshold for the convergence rate can

be increased or decreased by selection of a different λCC.
That is, using values of λCC less than one would allow for
higher convergence rates while λCC > 1 would lower the
maximum allowable converge rate. Selection of λCC < 1
can produce values of η greater than 1 for λn > λCC, neces-
sitating the minimum check to constrain η on the interval
(0, 1].

Another, perhaps less abstract means of defining the
contraction efficiency parameter is to directly limit the
entropy rate-of-change at λn based on a CE rate-of-change
at λCE. A limit based on this direct entropy rate comparison
is given by

η(λn) = min

⎧⎨
⎩

1
2 tr

{
�−1

λCE

(
d�
dλ

)
λCE

}
tr{Aλn}

, 1.0

⎫⎬
⎭ (32)

such that when λn < λCE, ηAλn = AλCE . The contraction
efficiency formulation in (32) directly limits the rate of
convergence at the beginning of the flow, where the entropy
rates can be very high, to that of a later pseudotime step,
resulting in slower convergence.

As is also the case with UW in an EKF application,
the a posteriori mean and covariance estimates when us-
ing convergence control are not the same as their strictly
Bayesian counterparts. However, the contraction efficiency
parameter effectively constrains the particle velocities to
prevent overconvergent behavior and produce more con-
sistent velocities over a desired pseudotime interval. The
result is a more conservative estimate, in terms of the
uncertainty magnitude, compared to the results obtained
without modifying the Bayesian approximate solution.

V. SIMULATION, ORBIT DETERMINATION

In order to demonstrate the high-uncertainty capabil-
ities of the new IFF, an orbit determination simulation

TABLE I
Observation Schedule

is used to compare performance with the EKF. Observa-
tions of a navigation-type satellite are simulated from the
Maui Ground-based Electro-Optical Deep Space Surveil-
lance (GEODSS) site over the course of eleven nights. A
total of 432 optical (i.e., right ascension and declination)
measurements are simulated with varying per-night totals,
the details of which are given in Table I. The standard
deviations of the measurement noises are 3 arcseconds
each, and the initial state uncertainties (1σ ) are 10 km
and 0.25 m/s in position and velocity, respectively. The
true initial state is taken as [14525, −9478, 18714] km
for the Earth-centered inertial frame x, y, and z positions,
respectively, and [3.248, 0.904, −2.062] km/s in the cor-
responding velocities. Two-body equations of motion [28]
are used to describe the orbit dynamics. For each simulation,
a total of 1000 trials is used to compute Monte Carlo (MC)
statistics, with each trial’s initial mean estimate drawn from
a Gaussian distribution using the initial uncertainty and
true initial state. A set of 1000 information flow initial
particles is then drawn from a Gaussian distribution using
the initial uncertainty and trial-specific mean estimate and is
not resampled at any subsequent point during an individual
trial.

To balance precision and computational burden in the
information flow, discrete integration is used to perform
the update with a pseudotime step of 0.01. Although the
intuitive solution to integration of a stiff ODE such as the
one used in the information flow update would be to use a
stiff ODE solver, previous research [29] has indicated that
discrete Euler integration with a sufficiently small step-size
can, in general, produce desirable results with a significantly
smaller computational burden compared to a stiff ODE
solver.

A total of 12 simulations, 7 information flow, 2 EKFs, 2
Gaussian particle flows, and a single-trial extended Kalman
particle filter (EKPF) are applied and compared to char-
acterize the performance of the new filter and subsequent
convergence control capabilities. The EKPF filter follows
the approach outlined in [30]. In accordance with the find-
ings of [31], a total of 106 particles are used in the EKPF
approximation. The EKF simulations are comprised of a
nominal EKF with no UW and one with UW following the
approach outlined in (27) and (28) using β = 5/6. The PFFs
follow the Gaussian exact (GEPFF) and Gaussian local
exact (GLEPFF) formulations detailed in [18]. However,
instead of using a parallel EKF to provide the prior and
posterior covariances, the PFFs, like the IFFs, use the parti-
cle sample covariance. All other PFF simulation parameters
(e.g., number of particles, flow integration) follow that of
the nominal IFF. As stated in Section IV, the presented
convergence control methods are not applicable to these
Gaussian particle flows following the form of Section II,
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TABLE II
Simulation Schedule

due to the blending of contraction and translation related
terms in the definition of b in (9b).

Table II gives the listing for the PFFs, EKPF, EKF, and
IFFs simulations with UW, CC [see (31)] and CE [see (32)]
rate-of-change convergence control selections. Values of
λCC and λCE are chosen to develop an understanding of
the IFF response to a wide range of valid selections for the
parameters. Reflecting the CC definition, λCC selections are
chosen in the neighborhood of 1. While λCC = 1.2 (Sim.
5) is not representative of a realizable pseudotime value in
the flow, the homotopy covariance produced by that value is
smaller, by definition, than the nominal final value, resulting
in further increased throttling of the flow across the entire
update. Due to the minimum check for both λCC and λCE in
(31) and (32), respectively, both parameters can take on any
values greater than zero. The selections chosen in Table II
are intended to establish trends in performance relative
to both the nominal and larger or smaller values of the
parameters themselves in the neighborhood of reasonable
choices for the parameters. To directly compare the filter
behavior with both convergence control methods, a 0.5 case
is examined for λCC and λCE.

To establish a baseline for comparison of the different
simulations, the results for the nominal IFF are first exam-
ined. Average filter and MC error uncertainties (3σ ) for the
position states are given in Fig. 1 for the nominal IFF. Due to
the large changes in uncertainty between different portions
of the simulations, the left column of Fig. 1 gives results
for the first 100 measurements while the right provides
results for measurements 100 to 432. The results show
several large spikes in uncertainty during the first night
(measurement number <64) corresponding to the growth
in uncertainty between observation arcs. Several smaller
spikes in uncertainty can also be seen after the first night,
again due to uncertainty growth between data collection
times. As a result of the long gaps in time between some
measurements, the results are given in reference to mea-
surement time steps. Therefore, what is in fact an entire day
of uncertainty growth looks like a near instantaneous spike
when the scale changes. Results for the nominal IFF velocity
states in Fig. 2 show similar instances of large spikes due to
long propagation times between measurement sets followed
by rapid convergence down to a steady state. Again, to

Fig. 1. Position results, filter average (solid) and MC error (dashed)
±3σ for Sim. 3: nominal IFF. Left: measurements 1–100. Right:

measurements 100–432.

alleviate the obscuring effects of large differences in un-
certainty magnitude, the left column of Fig. 2 is given up to
measurement 100 and the right column shows measurement
100 through 432. For both the position and velocity results in
Figs. 1 and 2, the combination of large uncertainty reduction
and similarity in the filter average and MC results makes it
difficult to glean any other useful information from a direct
±3σ comparison.

As noted in Section III, the information flow parameters
are equivalent to those of the Gaussian flow presented in
[11]. However, in contrast to the IFF, which only linearizes
about the prior mean at λ = 0, the Gaussian PFFs included
for comparison here linearize about the current particle set
mean (GEPFF) or each particle (GLEPFF), for each λ.
Differences in the MC error and filter average standard
deviations for the GEPFF and GLEPFF with respect to
the nominal IFF values are given in Fig. 3. By and large,
the differences between the filters are small and without
significant trends. The only exceptions being that the IFF
has a slightly larger average filter standard deviation than the
GLEPFF, and for the majority of the first two nights (mea-
surement number <64), the IFF has a slightly smaller MC
error standard deviation across the states. Otherwise, the
three filters provide nearly indistinguishable performance
with no filter outperforming the others over all 11 nights.

A more descriptive measure of the filter results, in terms
of its consistency, is given in Figs. 4 and 5 for the position
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Fig. 2. Velocity results, filter average (solid) and MC error (dashed)
±3σ for Sim. 3: nominal IFF. Left: measurements 1–100. Right:

measurements 100–432.

and velocity states, respectively. The figures present three
times the standard deviation for the ratio of single trial error
to filter 3σ in each trial, for each simulation. For state j over
the total Nt trials, the ratio at measurement � is given by

σ �
avg, j = 3

√√√√ 1

Nt

Nt∑
i=1

(
e�

i, j

3σ �
i, j

− 1

Nt

Nt∑
k=1

e�
k, j

3σ �
k, j

)2

(33)

where e�
i, j is the error at measurement � in the trial i filter’s

posterior estimate for state j and σ �
i, j is the corresponding

filter standard deviation. It should be noted that the 3 mul-
tipliers in (33) are simply included to emphasize the ratio
is examining the relationship between the error distribution
and the filter 3σ interval. That is, for each state, (33) gives
the number of filter standard deviations, on average that
would be needed to capture the MC error 3σ . For consistent
filter performance, the value in (33) should be equal to
or just slightly less than three. Values greater than three
indicate overconfident or smug (i.e., overconvergent) filter
performance while values less than three denote cautious, or
conservative, filter performance. While neither drastically
smug or cautious filter performance is desirable, ideally the
filter would exhibit slightly cautious to consistent perfor-
mance on average across all measurements.

The position results in Fig. 4 for the nominal IFF and two
EKF simulations show that the IFF gives comparatively con-
sistent performance with values in the neighborhood of 3.0,

Fig. 3. GEPFF and GLEPFF PFFs: percent difference in MC error
(dashed) and filter (solid) standard deviations with respect to the

nominal IFF.

while the two EKFs show some cautious behavior before the
second night of observations (measurement number <64)
but then become successively more overconvergent through
night 8 (measurement number <208). While the two EKFs
exhibit a better filter performance in terms of consistency
after night 8 (compared to nights 2–8), neither filter recovers
a consistent or cautious estimate of the uncertainty across all
states. As the velocity estimates are not directly related to the
measurements and must be improved through correlations
with the position states, the velocity results in Fig. 5 follow
similar trends as their corresponding position channels. For
all states, the EKF with UW shows slightly more consistent
performance across the board compared to the EKF without,
but the difference is small compared to the magnitude of the
overconvergence exhibited by both EKFs. It should be noted
that of the 1000 trials for the EKF simulations with and
without UW, 112 and 92 trials failed, respectively. Failure
in this context means the magnitude of a state error exceeded
10 times the filter estimated standard deviation for any
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Fig. 4. Position results, average number of filter σ needed to capture
MC error 3σ .

Fig. 5. Velocity results, average number of filter σ needed to capture
MC error 3σ .

Fig. 6. Simulation scores for deviation from consistent estimation
performance.

given state. Trials that are flagged as failures are removed
from consideration in this analysis meaning the EKF MC
statistics without and with UW are computed using 908 and
888 trials, respectively. It should also be noted that no trial
for any IFF simulation met the failure criteria.

Results for the IFF simulations are given in Figs. 8 and
9 for the position and velocity σ ratios, respectively. As
seen in the previous comparison with the EKFs in Figs. 4
and 5, the nominal IFF remains closely in the neighborhood
of 3.0, straying slightly above or below depending on the

Fig. 7. Average position (top) and velocity (bottom) RSS values for
each filter given in log-scale.

specific measurement number. The IFF with UW closely
follows the nominal IFF with the exception of a handful
of measurements over the course of the first two nights. At
these exceptions, the UW conditions in (27) are met and UW
is applied for that particular update resulting in very cautious
filter performance until the next measurement where UW is
not indicated, at which point the filter returns to consistent
estimation performance.

The IFF simulations with either CC or CE rate-of-
change show remarkably different behavior than that of the
nominal or underweighted simulations. As with the tradi-
tional UW equivalent flow formulation, the convergence
constrained filters show large drops in the number of filter
estimate standard deviations required to fully capture the
MC 3σ . While the UW simulation immediately returns
to consistent estimation (i.e., values in the neighborhood
of 3.0), the convergence control methods show a more
gradual return to consistent estimation performance. The
depth of the initial drop in the ratio value and the number
of subsequent measurements processed before returning to
consistent estimation scales directly with the λCC or λCE

convergence threshold. That is, larger values of λCC or λCE

result in more cautious filter performance and take more
time to return to consistency than smaller values.

While some level of cautious performance is desirable,
especially in situations of precise measurements coupled

1386 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 58, NO. 2 APRIL 2022

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:01 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. Position results, average number of filter σ needed to capture MC error 3σ .

with high state uncertainty seen in this application, an over-
abundance of caution can also be harmful. The tradeoff nec-
essary to produce such caution in the filter response means
that less information about the state is provided to the filter.
As the amount of information withheld at a given update
increases, so too does the number of subsequent updates
required for the filter to return to consistent performance. To
illustrate the consequences of this information deprivation,
a consistency “score” is established for each simulation
and estimated state. For the average ratio σ �

avg, j results [the
simulation-specific lines in Figs. 8 and 9, computed using
(33)], the sign-preserving squared offset from consistent
performance in state j is summed for a simulation across
the total M = 432 measurements and given by

S j =
M∑

�=1

sign(σ �
avg, j − 3.0)(σ �

avg, j − 3.0)2 .

For simulations that are primarily cautious or smug in a
given state, S j will be negative or positive, respectively,
with larger deviations from consistency further increasing
the score magnitude. Ideally, filter scores should, therefore,
be zero or slightly less than zero indicating, on average, con-
sistent to slightly cautious estimation performance. Fig. 6
shows the scores for each IFF across the position and
velocity states. The nominal IFF (Sim. 3) scores reflect its
on-average consistent performance with small positive or
negative scores depending on the specific state. Due to the
amount of information withheld by the large convergence
threshold, the IFF with λCC = 1.2 (Sim. 5) shows scores

with consistently larger magnitudes than the other filter
configurations across all states. The scores also reflect the
trend of decreasing deviations from consistency as λCC or
λCE decreases, with λCE = 0.2 (Sim. 9) showing slightly
cautious performance across all states. Note this does not
mean that any given simulation was smug or cautious across
all measurements, just in general. The IFF with UW (Sim.
4) varies in its scores relative to the convergence control-
based filters depending on the state but does show cautious
performance across all states. For the λCC and λCE = 0.5
simulations (Sims. 7 and 8, respectively), the scores are
nearly identical across all states with λCC = 0.5 always of
a slightly larger magnitude. This indicates the two methods
provide similar consistency results for the same pseudotime
convergence threshold despite the different formulations for
computing the contraction efficiency.

The tradeoff for these more cautious or consistent filter
designs comes at the cost of a slowed convergence rate.
Fig. 7 demonstrates this penalty in terms of the average filter
error root-sum-square (RSS) for the position and velocity
states. During the first night of measurements (measurement
number ≤ 63), the two EKF filters show lower RSS values
than the IFFs for the majority of the time interval. Of course
by the third night of measurements (measurement number
≥ 127), this is no longer the case as the EKFs struggle
to maintain the solution after long periods of propagation.
Comparison of the RSS trends across the IFFs reveals the
cost of the more cautious behavior seen in Figs. 8 and 9,
slower convergence toward consistent estimation directly
corresponds to a slower rate of reduction in RSS values.
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Fig. 9. Velocity results, average number of filter σ needed to capture MC error 3σ .

While all IF filters eventually steady state to the same RSS
values, the number of measurements needed to achieve that
steady state is determined by how much information is with-
held from the filter when each measurement is processed.
That is, the RSS values for each IFF at a given measurement
decrease with the magnitude of the contraction efficiency,
followed by the RSS values for the IF with β = 5/6 and then
the nominal IF. RSS values for the GEPFF and GLEPFF are
not shown as they are visually indistinguishable from the
nominal IFF at this scale and a more detailed picture of the
differences is already given in Fig. 3.

The EKPF RSS values are also given in Fig. 7. By and
large, through the first eight nights (measurement number
≤ 268), the EKPF RSS values follow the same trends of
those for the IFFs. Starting around measurement number
269, the EKPF demonstrates lower and lower RSS values
for both position and velocity, compared to the other filters.
Final position RSS values are 50 m and 49 m for the EKFs
with and without UW, 43 m average for the IFFs (σ =
1.1 m), and 38 m for the EKPF. Final velocity RSS values
are 6.9 mm/s and 7.0 mm/s for the EKFs with and without
UW, 5.5 mm/s average for the IFFs (σ = 0.16 mm/s), and
5.0 mm/s for the EKPF.

The approximately 10% reduction in the position and
velocity final RSS values of the EKPF compared to the
average of the IFFs comes at the cost of a drastically higher
computational burden. Using an i9-9900 K 3.60 GHz CPU
with 32 GB RAM, the average MATLAB run time of the
IFFs is 22.8 s for a single trial (σ = 0.133 s) with no dis-
tinguishing trends between the seven configurations. That

is, the presented convergence control methods do not add a
significant computational burden compared to the nominal.
The GEPFF, which relinearizes about the current particle
set mean at each λ, results in a slightly higher average
run time of 25.74 s (σ = 0.2162). The cost of frequent
relinearization is even more pronounced in the GLEPFF
with an average run time of 350.8634 s (σ = 38.2790).
Conversely, the average run time for an EKF single trial
is 1.70 s (σ = 0.023 s), resulting in a 13.4-fold increase in
computation time from the EKF to the IFF. The single-
trial EKPF run time, leveraging the MATLAB Parallel
Computing Toolbox where appropriate for propagation and
determining the unnormalized posterior weights, is 5 days
16.5 h. With the given computing conditions, this means that
after nights with a higher number of measurements (e.g.,
nights 1, 2, 8, and 9), the EKPF would not finish processing
the previous night’s data before the next observations are
received.

VI. CONCLUSION

A new method for robust and accurate estimation per-
formance using an information-theoretic interpretation of
the PFF has been presented. By motivating the movement
of particles through the state space in accordance with a
Bayesian update, particle flow methods have been shown to
provide estimation accuracy similar to traditional particle
filtering approaches at a reduced computational complexity.
Deriving the flow using information theoretic measures
allows for separation of the different modes that govern the
motion of a particle through the update. Having distinct
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parameters related to the modes of motion also allows
for convenient implementation of a non-Bayesian update
without significantly modifying the flow equations.

A novel pseudotime dependent contraction efficiency
parameter is introduced by leveraging the distinction be-
tween the particle set contraction and translation over the
course of an update. Based on either covariance or entropy
rate-of-change, this parameter allows the filter to adapt the
amount of information ingested at a given point in the
update. Thresholding, and therefore slowing the rate of
information inclusion into the estimate, prevents overcon-
vergent behavior that can occur in situations with high state
uncertainty and precise measurements.

The high uncertainty capabilities of the IFF with con-
vergence control are demonstrated and compared to the
EKF with and without UW, two Gaussian particle flow
approaches, and the EKPF. The behavior is demonstrated
under conditions that frequently overwhelm the EKF when
the large state uncertainties encompass captured and non-
captured orbits. The inclusion of a modifiable non-Bayesian
update results in more desirable filter performance even
with large initial uncertainties and gaps in time between
measurements. Results indicate that the proposed IFF is
capable of handling uncertainties that prove unmanageable
for the EKF using a non-Bayesian update that is not readily
implemented in other Gaussian particle flows. While the
IFF has slightly higher error RSS values through the latter
portion of the simulation compared to the EKPF, it is able
to produce similar results with tunable levels of robust
estimation in seconds, rather than days.
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