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A B S T R A C T   

Local thermal history can significantly vary in parts during metal Additive Manufacturing (AM), leading to local 
defects. However, the sequential layer-by-layer nature of AM facilitates in-situ part voxelmetric observations that 
can be used to detect and correct these defects for part qualification and quality control. The challenge is to relate 
this local radiometric data with local defect information to estimate process error likelihood in future builds. This 
paper uses a Short-Wave Infrared (SWIR) camera to record the temperature history for parts manufactured with 
Laser Powder Bed Fusion (LPBF) processes. The porosity from a cylindrical specimen is measured by ex-situ 
micro-computed tomography (μCT). Specimen data from the SWIR camera, combined with the μCT data, are 
used to generate thermal feature-based porosity probability maps. The porosity predictions made by various 
SWIR thermal feature-porosity probability maps of a specimen with a complex geometry are scored against the 
true porosity obtained via μCT. The receiver operating characteristic curves constructed from the predictions for 
the complex sample demonstrate the porosity probability mapping methodology’s potential for in-situ based 
porosity detection.   

1. Introduction 

The expanding presence of metal Additive Manufacturing (AM) in 
industry has increased the need for qualification of parts with geometric 
complexities beyond what are typically produced using traditional 
manufacturing processes. Laser Powder Bed Fusion (LPBF) is an estab
lished AM technology that fabricates intricate part geometries with high 
resolutions by leveraging melt pool sizes, powder diameters, and layer 
thicknesses all on the length scale of tens of microns. Laser Powder Bed 
Fusion manufactured parts experience significant thermal variations at a 
local level due to changing scan pathing and heat transfer boundary 
conditions. Defects (e.g., lack of fusion, keyholing porosity, balling) 
depend on the melting modes and are challenging to completely eradi
cate by laser parameter and beam path optimization due to the complex 
thermal variations experienced throughout a part. The layer-to-layer 
material addition in LPBF permits the ability to interrogate the ther
mal history at every point in a part through in-situ radiometry. The 

information obtained from these non-contact measurements correlates 
with the part’s local thermal history and, thus, its material quality. This 
correlation enables radiometric techniques to identify the locations of 
thermal variances in parts that have a high probability for defects such 
as porosity. The development of local part property prediction maps 
based on thermal measurements allows microstructure state estimation 
to aid the qualification of mission critical parts. 

Porosity has been extensively studied in LPBF due to the difficulties 
in eliminating it entirely from the manufacturing process and the 
negative impacts it has on part mechanical performance. Two types of 
laser parameter driven porosity exist and are classified based on the 
dynamics leading to its formation. These include lack of fusion/incom
plete melting, where porosity occurs due to insufficient energy to melt 
the powder particles, and over melting which is associated with the 
formation of keyholes and their collapse. Gong et al. (2014) defined 
processing regimes for LPBF of Ti-6Al-4V according to the resulting 
porosity/defect type. Generally, a porosity level of less than 0.1 % is 
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considered the fully dense regime (Gordon et al., 2020). Similar studies 
by King et al. (2014) implemented a normalized enthalpy calculation to 
determine where the fully dense regime transitioned to keyholing and 
applied this analysis to single laser track experiments. Wang et al. 
(2021) showed that an analytical Rosenthal type solution with powder 
packing information can be used to estimate melt pool dimensions and 
provide insight into lack of fusion porosity. Promoppatum et al. (2022) 
used a comparable numerical approach to predict porosity and found a 
strong correlation between their predictions and experimental porosity 
measured ex-situ. Recently, several groups, including Hojjatzadeh et al. 
(2020), have used in-situ synchrotron based high speed X-ray imaging to 
study the various phenomenon leading to porosity in LPBF. While these 
studies help to understand the process physics and resulting defect for
mation, in practice it is not economically viable to implement these as 
sensing systems in standard industrial applications. 

Many studies have pursued in-situ inspection of LPBF toward process 
validation. This includes the use of a wide range of radiometric signals 
including visible and infrared imaging, pyrometers, photodiodes, and 
spectrometers to measure various aspects of the LPBF process. The 
apparent melt pool geometry, intensity/temperature, and laser spatter 
measured by these instruments can all be correlated with process 
quality. For example, Craeghs et al. (2012) demonstrated that the melt 
pool area from Near Infrared imaging can be used to indicate part fail
ures and Krauss et al. (2014) evaluated how averaged mapped mea
surements progress layer-wise. Methods implementing thermography 
and pyrometry have identified embedded voids and naturally occurring 
porosity in powder bed fusion AM parts. Mireles et al. (2015) acquired 
infrared camera images to detect various geometry voids down to 600 
μm designed into a part manufactured by Electron Beam Melting (EBM). 
Similarly, Taherkhani et al. (2021) used photodiodes to identify artifi
cial lack of fusion defects down to a minimum designed volume of 120 
μm with a detection rate up to 73 %. In an in-situ measurement and 
thermal model hybrid approach, Yavari et al. (2021) combined photo
diode data with graph theory simulated temperature fields to identify 
pores in parts down to 100 μm. Bartlett et al. (2018) used Long-Wave 
Infrared (LWIR) images captured after the raster in LPBF to identify 
subsurface defects for samples manufactured with baseline and porosity 
promoting parameters. Yoder et al. (2019) demonstrated that features in 
voxel reconstructions based on static Near Infrared (NIR) images 
captured after each layer correlate to porosity resulting from a decrease 
in layer-to-layer time in EBM of Ti-6Al-4V. Mitchell et al. (2020) 
detected voids manufactured within an LPBF part down to 120 μm by 
volumetric reconstructions of thermal data and successfully correlated 
locations of natural porosity with outlier melt pool images through 
two-color pyrometry. Mohr et al. (2020) found a significant overlap 
(~71 %) between micro-computed tomography (μCT) measured 
porosity and anomalies in voxelized thermal feature data. Coeck et al. 
(2019) demonstrated the porosity prediction potential using two pho
todiodes. Perfect defect prediction has proven elusive. For example, the 
framework presented by Coeck et al. (2019) identified 54 out 93 pores 
with 61 false positives based on micro-CT data in a Ti-6Al-4V part 
created with LPBF. Forien et al. (2020) studied the correlation between 
in-situ pyrometry measurements and porosity obtained by ex-situ X-ray 
imaging for single laser scans of 316 L stainless steel. They used the 
pyrometry and the porosity data for various laser parameters to build 
pyrometer signal distributions corresponding to nominal material and 
pores. The distributions define the probability that keyholing porosity 
occurs based on a single laser scan’s pyrometry data. This framework is 
promising for porosity prediction in single laser scans, but the capability 
to apply the methodology for predictions in 3D parts is unknown. 

This paper investigates the probabilistic prediction of porosity using 
in-situ Short-Wave Infrared (SWIR) based thermographic imaging. A 
framework similar to what Forien et al. (2020) suggested for single laser 
scan data is established to produce statistical maps between voxelized 
SWIR thermal features and micro-CT measured porosity for 3D parts. 
The SWIR camera used in the work conducted in this paper has a high 

sensitivity at wavelengths corresponding to the peak emission at the 
melting temperature of stainless steel, which is the material used in this 
study, making it suitable to capture porosity formation signatures. 
Recording the spatial and temporal components of the LPBF thermal 
history allows multiple features to be included for porosity prediction. 
This goes beyond the information provided by single point intensities 
from photodiodes, or single images captured from layers post fusion. In 
this paper, data are measured during the fabrication of samples with 
simple geometries using a range of process parameters that span the 
thermal feature space. This produces two-feature process probability 
maps for porosity generated from lack of fusion and keyholing modes. 
These maps are shown to predict the porosity in samples with complex 
geometries created using nominal processing conditions where the de
fects are introduced due to geometry-induced changes in the thermal 
history. A comparison with μCT ground truth data is used to assess the 
porosity probability maps’ predictions for the sample with complex 
geometries. 

2. Experimental methods 

2.1. LPBF system and sample descriptions 

This study uses a Renishaw AM250 LPBF system to process 304 L 
stainless steel powder. The AM250 employs an SPI Lasers fiber laser 
(maximum power Pmax = 200 W and wavelength λ = 1070 nm) to build 
parts with a point-to-point exposure strategy. A cylindrical sample and a 
complex sample with geometries shown in Fig. 1(a) are fabricated for 
this study. The cylindrical sample’s diameter is 4 mm and it has 20 
sections, each 20 layers thick. The layer height is 50 μm. 

Randomized combinations of laser power, P = 100–200 W (25 W 
increments) and exposure time, te = 50–125 μs (25 μs increments) 
process the sample’s various sections. The process parameters are varied 
to quickly produce a comprehensive set of sample properties spanning 
the lack of fusion porosity, keyholing porosity, and fully dense pro
cessing regimes. The laser scans the cylindrical sample’s layers using a 
raster pattern that rotates 67 ◦ every layer and two border scans after the 
raster scan. The raster pattern has a constant point distance, dp = 60 μm, 
and a constant hatch spacing, dh = 85 μm. The different raster vector 
lengths in the cylindrical sample’s layers cause natural thermal varia
tions in addition to laser parameter driven thermal variances. The 
complex sample shown in Fig. 1(a) consists of a 2.5 mm tall rectangular 
cross-section that is 7 × 8 mm2 and a 2.5 mm tall equilateral triangular 
cross-section with 8 mm side lengths (bulk section), and two 4.3 mm tall 
triangular pyramid structures with 8 mm base side lengths and 45 ◦ face 
angles (inverted half of pyramid is denoted overhang section and up
right half of pyramid is denoted supported section). A single fully dense 

Fig. 1. (a) Cylindrical sample and complex sample CAD models, (b) SWIR 
camera observation of the LPBF process, and (c) laser scan path schematic 
showing raster vector stripes and border vectors. Scale bar, 5 mm. 
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regime parameter set (P = 200 W, te = 75 μs) and scan path striping are 
used to manufacture the complex sample. Note the cylindrical sample is 
manufactured without striping. Scan path striping, illustrated in Fig. 1 
(c), is the division of a layer’s cross-sectional area into shorter sets of 
laser raster vectors. As a result, the laser corners in the sample’s interior 
and seams occur where the stripes overlap. The striping orientations and 
seam positions change from layer-to-layer, producing laser raster vector 
length and cornering dwell location differences. This combined with the 
complex sample’s geometry dependent heat transfer boundary condi
tions (i.e., supported or overhang), induces natural thermal history 
variations. 

2.2. In-situ SWIR camera and calibration procedure 

A FLIR SC6201 Short Wave Infrared (SWIR) InGaAs camera images 
the build plate from a staring configuration. The spatiotemporal melt 
pool emission data is recorded layer-by-layer for the samples through a 
custom window (schematic of camera configuration in Fig. 1(b)). A band 
pass filter centered at 1.45 μm (Edmund Optics #85-913) prevents 
saturation of the SWIR camera. The 640 × 512 focal plane array cam
era’s 130 μm/pixel x-direction and 135 μm/pixel y-direction instanta
neous field of view produces an 83 × 69 mm2 total field of view. The 
camera records the spatiotemporal data for the samples with an inte
gration time of 5 μs at a frame rate of 2585 Hz by windowing to 80 × 80 
pixels. 

The SWIR camera measures the melt pool’s emission in arbitrary 
units. A Non-Uniformity Correction (NUC) accounts for the emission 
signal’s cosine dependence from measurements at ~15 ◦ off normal and 
vignetting caused by the viewing window. A combination of experi
mental blackbody temperature data and theoretical Planck distribution 
exitance data was used to calibrate the SWIR measurements into units of 
temperature. The Renishaw’s process laser heated an LPBF manufac
tured blackbody for the calibration experiment. Thermocouples 
measured the blackbody’s temperature and the SWIR camera simulta
neously recorded raw radiation. Integrating the Planck distribution over 
the camera’s observation wavelengths provides the theoretical black
body exitance at a given temperature. The theoretical blackbody exi
tance from this integration scales with temperature to the 5.6th power. 
This relationship, combined with the thermocouple measurements, al
lows calculation of the theoretical exitance emitted by the blackbody. 
The results show the SWIR camera’s raw radiation measurements line
arly transform to the theoretical blackbody exitance. The theoretical 
temperature-exitance inverse relationship calibrates the camera’s exi
tance data to temperature. This calibration assumes a constant emis
sivity of one for the 304 L stainless steel, neglecting the temperature and 
phase dependence. The calibrated SWIR data is reported as the equiv
alent blackbody temperature, denoted TBB. 

2.3. SWIR thermal feature extraction 

Fig. 2(a–c) show example temperature calibrated spatiotemporal 
SWIR data from a fully dense regime layer (P = 200 W, te = 75 μs) in the 
cylindrical sample. The data in Fig. 2(a–c) are the temperatures as a 
function of time plotted relative to their times at local maximum tem
perature and the melt pool images at maximum temperature for three 
pixels along a laser scan vector. The plots demonstrate the variances in 
the layer’s temperature history and melt pool profiles measured by the 
SWIR camera as the laser progresses from cornering in Fig. 2(a) to the 
end of a scan vector in Fig. 2(c). The SWIR camera captures megabytes of 
thermal data per layer, resulting in gigabytes of data for the entire 
sample. Thermal features are extracted from the SWIR measurements to 
compress them and produce 3D voxel data for a sample to efficiently 
make decisions. Thermal features are physics-based metrics that quan
titatively describe process phenomena like those observable in Fig. 2 
(a–c) via the reduction of a layer’s spatiotemporal SWIR data to a single 
measure per pixel. 

A number of thermal features have been proposed in the literature 
including temperature-based metrics like the maximum temperature 
(Krauss et al., 2014) and cooling rates (Heigel and Whitenton, 2018), 
and melt pool geometry related features like the melt pool’s dimensions 
(Cheng et al., 2018) and the time above threshold (Mohr et al., 2020). 
The temperature-based metrics and the melt pool geometry related 
features are acquired by either single point/frame measures, or an in
clusion of spatiotemporal effects. For example, the maximum tempera
ture and the maximum cooling rate are both temperature-based metrics, 
but the maximum temperature is a single point measure, and the 
maximum cooling rate relies on temporal information. Additionally, the 
melt pool area is a feature based on a single frame while the time above 
threshold temporally captures the melt pool geometry information. Even 
though the single point features and the spatiotemporal effects features 
are based on different amounts of data, they are all shown to strongly 
correlate with the bulk yield strength and porosity of LPBF fabricated 
304 L stainless steel when extracted from SWIR data (Lough et al., 
2020). This study uses the features of the maximum temperature, Tmax, 
(i.e., a pixel’s temporal maximum during a layer’s fabrication) and the 
time above threshold, τ, (i.e., the total time a pixel measures above a set 
temperature during a layer’s fabrication). These features are selected to 

Fig. 2. Spatiotemporal SWIR measurements from laser scan vector’s (a) 
beginning, (b) middle, and (c) end for cylindrical sample’s layer 400 processed 
with P = 200 W and te = 75 μs with (d) time above threshold (1700 K) and (e) 
maximum temperature thermal feature maps. When the laser is at the pixel, t =
0. Scale bars, 2 mm. 
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evaluate the extension of the capabilities of a feature representing the 
single point measures in Tmax and a feature representing the inclusion of 
spatiotemporal effects in τ extracted at thresholds ranging from 1100 K 
to 2100 K, and their combination, to locally predict the probability that 
porosity occurs in a part. The time above threshold using 1700 K and 
maximum temperature for the fully dense regime layer are plotted in 
Fig. 2(d) and (e), respectively, to demonstrate the thermal features. 

2.4. Micro-computed tomography and thermal feature data registration 

Micro-computed tomography (μCT) scanning establishes the 
porosity ground truth for the samples. The μCT X-ray image slices’ gray 
scale intensities correlate to beam attenuation. The sample’s porosity 
reduces the beam’s attenuation which indicates a relative density 
decrease. The relative density slices combine to form 3D voxel data for a 
sample. The μCT data sets in this study have a voxel resolution of 15 μm/ 
pixel in the x-y plane and 10 μm/pixel in the z-direction. 

Fig. 3 shows the steps used to classify the SWIR thermal feature voxel 
data based on the sample’s porosity measured by μCT. The first step 
down-samples the raw μCT data to the SWIR data resolution by aver
aging and simultaneously produces a respective binary sample state 
map. The binary map’s states include porosity (white) and fully dense 
(black). A down-sampled voxel is porosity in the binary map if more 
than 5 % of the original resolution data within that voxel corresponds to 
porosity, flagging the fine porosity features observable in the original 
μCT data. The second step (not shown in Fig. 3) is manual build direction 
(z-direction) alignment of the data sets. The third step automatically 
registers the SWIR data with the down sampled μCT data in the x-y plane 
through translations layer-by-layer. The final step classifies the regis
tered thermal feature voxels as porosity or fully dense based on the μCT 
data binary state map. For example, if the voxel in the μCT data binary 
map at a given (x,y,z) is porosity, then the SWIR thermal feature at the 
same (x,y,z) is classified as porosity. The registered SWIR voxels are 
separated and labeled according to their classification (i.e., porosity or 
fully dense) for the layer in Fig. 3 to clearly show the classification 
result. Once classified, the thermal feature data are used to produce 
probability density functions for all the voxels. 

2.5. Thermal feature porosity probability map generation 

The probability density functions obtained from the cylindrical 
sample’s classified SWIR data are used to construct thermal feature 

porosity probability maps. Thermal feature porosity probability maps 
define the probability that porosity forms in a sample based on the 
sample’s thermal feature measurements. The probability of porosity 
mapping, denoted φ, given a time above threshold, τ, is 

P(φ|τ) = P(φ ∩ τ)
P(τ) , (1)  

where P(φ ∩ τ) is the probability density function of the porosity and the 
time above threshold intersection and P(τ) is the probability density 
function of the time above threshold. The bin size for the time above 
threshold probability density functions is 0.5 ms. The probability of 
porosity mapping given a maximum temperature, Tmax, is 

P(φ|Tmax) =
P(φ ∩ Tmax)

P(Tmax)
, (2)  

where P(φ ∩ Tmax) is the probability density function of the porosity and 
the maximum temperature intersection and P(Tmax) is the probability 
density function of the maximum temperature. The bin size for the 
maximum temperature probability density functions is 15 K. Combining 
time above threshold and maximum temperature measurements pro
duces 2D thermal feature space porosity probability maps. The proba
bility of porosity mapping given a time above threshold and maximum 
temperature is 

P(φ|τ ∩ Tmax) =
P(φ ∩ τ ∩ Tmax)

P(τ ∩ Tmax)
, (3)  

where P(φ ∩ τ ∩ Tmax) is the probability density function of the porosity, 
time above threshold, and the maximum temperature intersection and 
P(τ ∩ Tmax) is the probability density function of the time above 
threshold and the maximum temperature intersection. 

While not all plotted in this paper for brevity, the thermal feature 
extraction, registration, and probability map generation procedures 
produced single feature porosity probability maps and 2D feature space 
porosity probability maps based on the cylindrical sample’s time above 
threshold extracted at various temperatures (1100− 2100 K) and the 
maximum temperature. Spatial filtering separates the cylindrical sam
ple’s interior and border data to construct unique thermal feature 
porosity probability maps for each region. The unique maps are con
structed because of the differences in the process dynamics where the 
laser corners during rastering and border scans. The three outermost 
voxels in the cylindrical sample’s thermal feature data correspond to the 

Fig. 3. Procedure for voxel-by-voxel classification of time above 1700 K thermal feature measurements as porosity or fully dense based on μCT data. Scale bars, 
1 mm. 
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laser cornering and border scan location and, thus, define the part 
border. The interior and border regions are highlighted on the maximum 
temperature plot in Fig. 2(e). 

2.6. Porosity probability prediction 

The porosity probability maps are applied to make predictions for 
the complex sample to analyze the methodology’s performance. The 
probability map-based predictions assume that the thermal history 
experienced during a sample’s layer is the most critical factor in porosity 
formation and, thus, neglects layer-to-layer effects. This approach is 
supported by Gould et al. (2021) finding that a layer’s in-situ ther
mography data relates to the resulting pores via simultaneous thermo
graphic and synchrotron radiation inspection. The thermal feature 
porosity probability maps make predictions for the complex sample 
voxel-by-voxel by computing the expected porosity given its thermal 
feature measurements. Both the interior and the border thermal feature 
porosity probability maps predict the complex sample’s porosity, where 
the border map only applies to the three outermost voxels within the 
sample’s layers. The prediction framework saturates voxels with mea
surements that fall outside of the maps’ thermal feature space (i.e., the 
full thermal feature range seen in the cylindrical sample’s 
measurements). 

An operating point transforms the porosity probability predictions 
into binary measurements for voxel-by-voxel scoring with the ground 
truth from μCT data. Predictions falling below the operating point are 
fully dense, and predictions above are porosity. Comparing the con
verted prediction data with the binary μCT data ground truth provides 
the true positives, Tp, (i.e., prediction and truth are both porosity), false 
positives, Fp, (i.e., prediction is porosity, but truth is no porosity), true 

negatives, Tn, (i.e., prediction and truth are both no porosity), and false 
negatives, Fn, (i.e., prediction is no porosity, but truth is porosity). 
Calculations based on those metrics yield the true positive and false 
positive rates. The true positive rate, Rt, is 

Rt =
Tp

Tp + Fn
, (4)  

and the false positive rate, Rf, is 

Rf =
Fp

Fp + Tn
. (5) 

Sweeping the operating point over a range and calculating the 
respective prediction rates generates a Receiver Operating Character
istic (ROC) curve for a porosity probability map. The ROC curve is a plot 
of the true positive rate against the false positive rate. A common way to 
quantify the overall prediction performance is by calculating the area 
under the ROC curve (AUC). 

3. Results and discussion 

3.1. Cylindrical sample micro-computed tomography and thermal feature 
data 

Fig. 4 compares the cylindrical sample’s μCT data with the corre
sponding SWIR imaging results. The μCT data and time above threshold 
(1700 K) for the cylindrical sample’s cross-section are plotted in Fig. 4 
(a) and (b), respectively, and highlight sections that correspond to the 
fully dense, keyholing, and lack of fusion processing regimes. The cor
relations between thermal features and porosity are analyzed locally for 
the three processing regimes in Fig. 4(c–e), where μCT data and time 

Fig. 4. Cylindrical sample (a) μCT data and (b) time above 1700 K thermal feature slices with representative layers and time series data for (c) fully dense, (d) 
keyholing, and (e) lack of fusion processing regimes. Scale bars, 1 mm. (For interpretation of the references to colour in this figure text, the reader is referred to the 
web version of this article.) 
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above 1700 K maps for representative layers are plotted with time series 
temperature data for two pixels, one without porosity (blue circles and 
corresponding temperature curves) and one with/near porosity (red 
circles and corresponding time series temperature curves). Fig. 4(c) has 
fully dense regime data from a layer manufactured with P = 200 W and 
te = 75 μs. This layer has 0 % interior porosity; however, the layer’s μCT 
data in Fig. 4(c) shows porosity at the periphery where the laser corners. 
This is keyholing porosity caused by the laser’s increased dwell time at 
points where the laser corners (Martin et al., 2019) and corresponds to 
an 11 % increase in the average time above 1700 K at the border region 
when excluding the border scans’ contributions. 

Fig. 4(d) shows the keyholing regime results from a layer processed 
with P = 200 W and te = 125 μs. The layer has stochastic keyholing 
porosity throughout it with a quantified interior porosity of 0.3 %. The 
expectation for this layer’s thermal data is that the voxels that stay 
hotter longer will likely correspond to the keyholing porosity. However, 
Fig. 4(d) shows a case where the opposite occurs by the thermal history 
that corresponds to fully dense material staying hotter for a longer time 
after 50 ms. This result demonstrates the difficulty in distinguishing the 
fully dense thermal history from the thermal history where a keyholing 
pore was produced. Qualitative observation of the time above 1700 K 
thermal feature map further shows that high time above threshold 
values do not always correlate to keyholing pores. These results may be 
due to the fact that the keyholing pore occurred and stayed at the bottom 
of the melt pool which is two or more layer thicknesses down from the 
current layer. For example, the keyholing pore indicated by anomalies in 
layer 294’s SWIR map would not be visible in the layer’s μCT slice but 
instead in the μCT data for layer 292. 

The μCT data and thermal data for a lack of fusion regime layer 
processed using P = 125 W and te = 75 μs are plotted in Fig. 4(e). This 

layer’s porosity is also stochastic, and it has a porosity of 0.9 %. As seen 
for the keyholing regime layer, the time series data corresponding to the 
lack of fusion pore is difficult to distinguish from the fully dense thermal 
history. Also, the thermal feature map has various areas of higher time 
above 1700 K (in this case greater than 3 ms) with some of those areas 
corresponding to pores and some appearing fully dense in the μCT data. 
This may be explained by the effects of re-melting from subsequent 
layers driving differences between the μCT data’s porosity and time 
above 1700 K’s anomalies. The difficulties in locally correlating the 
porosity with thermal history shown in Fig. 4 for the fully dense, key
holing, and lack of fusion processing regimes demonstrate the need for a 
method to generate thermal feature-based porosity probability maps. 

3.2. Single thermal feature porosity probability maps 

Fig. 5 contains the probability density functions calculated from the 
cylindrical sample’s classified thermal features and the resulting ther
mal feature porosity probability maps for the time above threshold 
(1700 K) and the maximum temperature. The cylindrical sample’s time 
above 1700 K probability density functions are plotted in Fig. 5(a) and 
(b). Fig. 5(a) shows P(τ) for the sample’s interior in red and for its border 
in blue. A comparison of the P(τ) probability density functions shows the 
time above 1700 K border mean (5.29 ms) is larger than the interior data 
mean (3.96 ms). The larger time above 1700 K mean at the border is 
caused by the increased dwell time when the laser corners and scans the 
border, thus, re-melting the sample’s edges. Fig. 5(b) plots the interior 
P(φ ∩ τ) in red and the border P(φ ∩ τ) in blue. Note the difference in the 
y-axis ranges for the plots in Fig. 5. It can be seen that 91 % of the 
interior P(φ ∩ τ) occurs below a time above 1700 K of 3.96 ms. This low 
time above threshold suggests most of the interior porosity correlates to 

Fig. 5. (a) Time above 1700 K probability density function, (b) time above 1700 K and porosity intersection probability density function, (c) time above 1700 K 
porosity probability map calculated by Eq. 1, (d) maximum temperature probability density function, (e) maximum temperature and porosity intersection probability 
density function, and (f) maximum temperature porosity probability map calculated by Eq. 2 determined from the cylindrical sample’s registered interior and border 
thermal feature data. (For interpretation of the references to colour in this figure text, the reader is referred to the web version of this article.) 
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lack of fusion from insufficient energy input. The border P(φ ∩ τ) has 43 
% of the data above a time above 1700 K of 5.29 ms. This high time 
above threshold suggests that keyholing causes a significant amount of 
porosity at the border region (4.7 % total border porosity). 

Fig. 5(c) plots the time above 1700 K porosity probability maps, 
P(φ|τ), for the interior (red) and border (blue) regions. From low to high 
time above 1700 K, the porosity probabilities start high, decrease to a 
minimum, and then increase. The slope magnitude for the decreasing 
region is higher than that for the increasing region. Also, the curves for 
the interior and border maps are similar in the decreasing region. From 
the results in Fig. 5(b), lack of fusion causes the high porosity proba
bilities for time above 1700 K less than 5 ms, and this occurs for both the 
border and interior data. Most of the lack of fusion occurring over a 
narrow time above 1700 K range (0.5 ms–3.96 ms) produces the high 
slope magnitudes. The maps’ low porosity probability regions corre
spond to the fully dense processing regime. As discussed for Fig. 5(b), 
keyholing causes the increases in porosity probability past a time above 
1700 K of 5 ms, and this occurs with a higher rate for the borders due to 
the increased laser dwell time during cornering increasing the keyhole 
depth and instability. 

Fig. 5(d) shows the cylindrical sample’s maximum temperature 
probability density functions, P(Tmax). The maximum temperature 
border data mean is 2400 K and the interior data mean is 2280 K. The 
border data’s maximum temperature mean is larger because the high 
energy input form the border scan’s laser parameters (P = 150 W, te = 75 
μs, dp = 20 μm). Fig. 5(e) contains the P(φ ∩ Tmax) probability density 
functions. It can be seen that 95 % of the interior P(φ ∩ Tmax) data occur 
below a maximum temperature of 2280 K, while only 49 % of the border 
P(φ ∩ Tmax) data occur below a maximum temperature of 2400 K. The 
maximum temperature porosity probability maps, P(φ|Tmax), for the 
interior and border regions are plotted in Fig. 5(f). The maximum tem
perature porosity probability maps’ trends in Fig. 5(f) follow those 
discussed for the time above 1700 K maps in Fig. 5(c). From low to high 
maximum temperature, both the interior and border maps start at a high 
porosity probability, decrease to a minimum around 2400 K, and then 
increase. This corresponds to the processing regime transition from lack 
of fusion to fully dense to keyholing. In both Fig. 5(c) and (f), the interior 
and border porosity probabilities are similar for the lack of fusion region 
because the porosity occurs independent of scan path effects at low 
energy inputs. The keyholing region maps are different because the ef
fects of the laser cornering for the high energy inputs increase the key
holing depth and the likelihood for porosity formation. 

3.3. 2D thermal feature space porosity probability maps 

Fig. 6 contains 2D thermal feature space porosity probability maps 
obtained by combining information from the cylindrical sample’s 
registered time above 1700 K and maximum temperature data. The plots 
in Fig. 6 permit a better determination of the porosity probability since 
the map generation data is now spread over an additional thermal 
feature space instead of being collapsed to a single thermal feature 
dimension. The time above 1700 K and maximum temperature space 
porosity probability map, P(φ|τ ∩ Tmax), for the sample’s interiors is 
plotted in Fig. 6(a). From Fig. 6(a), there is a clear region for Tmax >

2300 K and τ1700 < 7.5 ms with less than 2 % porosity probability. This 
region defines the interior’s fully dense thermal feature space. As the 
maximum temperature decreases, the process enters the lack of fusion 
space and, as the time above 1700 K increases, the system enters the 
keyholing space. 

Fig. 6(b) is the time above 1700 K and maximum temperature space 
porosity probability map, P(φ|τ ∩ Tmax), for the sample’s borders. The 
border porosity probability map’s fully dense thermal feature space re
gion is much smaller than the corresponding interior space. The region is 
defined by Tmax > 2350 K and τ1700 < 5 ms. As the time above 1700 K 
increases, the process enters a large keyholing space with higher 
porosity probabilities than the corresponding interior space. This is 

expected for the border map since that location is where a majority of 
keyholing porosity occurs. As the maximum temperature decreases from 
the narrow fully dense region, the process enters the lack of fusion space 
similar to the corresponding space in the interior map. 

3.4. Complex sample porosity prediction 

The complex sample is built with P = 200 W and te = 75 μs, which is a 
fully dense regime parameter set. The complex sample’s time above 
1700 K and maximum temperature data produced the 2D thermal 
feature histograms plotted in Fig. 7(a) and (b) by using the data from the 
sample’s entire geometry which is shown by the time above threshold 
voxel reconstruction in Fig. 7(c). The interior data in Fig. 7(a) is clus
tered in the region corresponding to the minimum porosity probability 
in Fig. 6(a) as expected for a sample built by a fully dense regime 
parameter set. Fig. 7(b) shows there are some voxels in the complex 
sample’s border data that have time above thresholds outside of the map 

Fig. 6. Porosity probability maps for (a) interior and (b) border of cylindrical 
sample in time above 1700 K and maximum temperature space. 

Fig. 7. (a) Interior and (b) border area time above 1700 K and maximum 
temperature 2D thermal feature histograms for entire volume of complex 
sample with (c) time above 1700 K based 3D voxel reconstruction. Scale bar, 
2 mm. 
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generation space. This is due to the complex part’s overhang boundary 
condition where its overhang portions experience a higher time above 
threshold. 

The time above 1700 K and maximum temperature space porosity 
probability maps in Fig. 6 are used to demonstrate the capability to 
predict the complex sample’s porosity. Fig. 8 compares the time above 
1700 K and maximum temperature space porosity probability maps’ 
prediction results of the complex sample with its μCT data starting with 
the sample’s cross-section in Fig. 8(a). The porosity probability pre
dictions and μCT data for three layers from the sample’s various ge
ometry section types are plotted below the cross-section data as Fig. 8 
(b–d). The sample’s three section types are supported pyramid (top half 
of pyramid structures), overhang pyramid (bottom half of pyramid 

structures), and bulk (i.e., the rectangular and triangular cross-sections), 
and are plotted in Fig. 8(b)–(d), respectively. Color coding highlights the 
z-direction (i.e., build direction) locations of the layers on the sample’s 
μCT data cross-section. The μCT data shows the sample’s porosity pri
marily occurred at its borders, which is characteristic of the keyholing 
porosity that occurs during fully dense regime processing as discussed 
for Fig. 4(c). 

Fig. 8 shows the map from Fig. 6(a) generally predicts low porosity 
probabilities for the sample’s interior regardless of cross-sectional ge
ometry and overhang case. The average porosity probabilities predicted 
for the bulk sections’ interiors, the supported pyramids’ interiors, and 
the overhang pyramids’ interiors are 0.2 %, 0.4 %, and 0.9 %, respec
tively. The low porosity values predicted for the complex sample’s in
teriors match the expectations for the fully dense processing regime. 
Also as expected, the average predicted porosity probabilities increase 
for the sample sections’ borders. The average predicted border porosity 
probabilities for the rectangular and triangular cross-sections, supported 
pyramids, and overhang pyramids are 4 %, 5 %, and 11 %, respectively. 
The increase in porosity probability for the overhang pyramids’ border 
area is due to differences in the thermal boundary conditions. The 
overhang pyramids’ exterior surfaces are melted over powder, which 
causes slower cooling (correlating to higher time above thresholds) and 
geometry deviations as revealed by the μCT data in Fig. 8(a). These ef
fects are expected to negatively impact the prediction success for the 
overhang pyramids’ border regions like shown in Fig. 8(c) since the 
porosity probability maps are only generated with data from bulk ma
terial. Future porosity probability map generation should include data 
from overhang boundary conditions. 

3.5. Porosity prediction scoring 

Fig. 9 demonstrates the ROC development process over an operating 
point (i.e., threshold for assigning voxels as porosity or fully dense) 
range from 0 % to 40 % porosity probability for the maximum tem
perature only map’s porosity prediction results. The true positive rate 
(blue) and false positive rate (red) are plotted as a function of the 
operating point in Fig. 9(a). Both the true and false rates start at one and 
then follow different curves as they decrease to zero at higher operating 

Fig. 8. Complex sample μCT data with corresponding porosity probability 
predictions using 2D time above 1700 K and maximum temperature maps for 
(a) sample cross-section and selected layers from (b) supported, (c) overhang, 
and (d) bulk geometries. Scale bars, 2 mm. 

Fig. 9. (a) Complex sample porosity probability prediction false positive and 
true positive rates at various operating points for maximum temperature map 
with (b) corresponding ROC curve. (For interpretation of the references to 
colour in this figure text, the reader is referred to the web version of 
this article.) 
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points. For very low operating points, nearly every voxel in the pre
dictions will be assigned as porosity, producing high true and false 
positive rates. The rates fall with increasing operating point because less 
good data and more bad data are flagged as defective. The spread be
tween the true positive rate and false positive rate corresponds to the 
performance of the prediction map, and it is quantified through the ROC 
plot in Fig. 9(b). The ROC curve describes the performance of the 
porosity probability map, with more accurate predictions producing 
curves shifted up and to the left. A perfect detector will produce an ROC 
curve that only contains true positive rates of one and false positive rates 
of zero, regardless of the operating point. Real detectors produce an ROC 
with an inflection point, i.e., the point that maximizes the difference 
between true and false positive rates. Here, the inflection point for the 
maximum temperature porosity probability map occurs at a 2.0 % 
porosity operating point and corresponds to a true positive rate of 0.89, 
and a false positive rate of 0.32. The Area Under the Curve (AUC) for the 
maximum temperature porosity map’s ROC curve is 0.82. The maximum 
temperature porosity map’s AUC is 64 % better than tests having no 
ability to make predictions (i.e., AUC = 0.5) and 22 % away from being a 
perfect test (i.e., AUC = 1). 

Fig. 10 compares the prediction performance of the various porosity 
probability maps. The ROC curves for the time above threshold only 
maps’ predictions are plotted in Fig. 10(a) with a shared legend in 
Fig. 10(b). The ROC curves in Fig. 10(a) show that prediction perfor
mance increases for higher thresholds up to 2100 K. This is because 
increasing the temperature threshold for time above threshold extrac
tion produces porosity probability maps with increased sensitivity for 
the keyholing regime and less sensitivity to boundary condition effects 
like the overhangs. Predictions are not made for time above thresholds 
past 2100 K because the porosity probability maps’ thermal feature 
space collapses to 0 ms. The 1100 K and 1300 K maps perform the worst 
with the false positive exceeding the true positive rate for all operating 
points, i.e., the curves fall below the line with a slope of unity. This is 
because the process noise’s contribution to the time above threshold 
measurements extracted at low temperatures decreases the feature’s 
quality, which drastically reduces the resulting porosity probability 
map’s sensitivity. As an example of noise, laser spatter that occurs 
during processing can significantly affect the time above threshold 
calculation at low extraction temperatures. The laser spatter randomly 
causes an artificial increase in the time above threshold that carries 

forward to negatively impact the porosity probability maps. 
The ROC curves for the predictions made by the 2D porosity prob

ability maps in time above threshold and maximum temperature space 
are plotted in Fig. 10(b). The combined maps provide predictions with 
similar ROC curves regardless of the temperature threshold. The ROC 
curves’ AUC values are plotted in Fig. 10(c) where their results are 
compared to the maximum temperature only porosity probability map’s 
AUC. The data are plotted as a function of the time above threshold 
extraction temperature. The time above threshold only maps pre
dictions’ AUC approach the maximum temperature result with 
increasing threshold. As the threshold increases, the AUC increases 
because the higher temperature extraction threshold produces porosity 
probability maps with higher sensitivities as discussed for Fig. 10(a). 
The 2D feature space maps predictions’ AUC are insensitive to temper
ature extraction threshold for their time above threshold component and 
slightly outperform the maximum temperature only prediction’s AUC by 
an average of 3 %. This is because all the 2D porosity probability maps 
like in Fig. 6 have clearly defined regions of fully dense regime thermal 
feature space, lack of fusion space, and keyholing space regardless of the 
temperature extraction threshold for the time above threshold, which is 
not the case for all the time above threshold only maps. The results in 
Fig. 10 indicate that the maximum temperature is a dominant feature for 
predicting porosity. Including the time above threshold in the 2D feature 
space predictions adds additional information that slightly increases the 
maps’ performance. These results also reveal the capability of the 
porosity probability mapping framework to evaluate the ability of a 
thermal feature to predict porosity. 

The ROC curve construction is performed on a section-by-section 
basis for the complex sample. The bulk, overhang pyramid, and sup
ported pyramid sections are analyzed using the maximum temperature 
map and the time above 1500 K combined maps since they perform best 
for the entire sample. Fig. 11 contains the sectioned ROC curves for 
those maps’ predictions with the sample’s sections highlighted on the 
maximum temperature prediction slice inset in Fig. 11(a). The bulk, 
overhang, and supported sections’ ROC curves are plotted in red, green, 

Fig. 10. ROC curves for (a) time above threshold only and (b) 2D time above 
threshold and maximum temperature porosity probability maps (key in (b) 
shared with (a)) with (c) AUC for maximum temperature only, time above 
threshold only, and 2D maps as functions of threshold. 

Fig. 11. ROC curves from (a) maximum temperature and (b) 2D maximum 
temperature and time above 1500 K porosity probability maps. Scale bar, 4 
mm. (For interpretation of the references to colour in this figure text, the reader 
is referred to the web version of this article.) 
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and blue, respectively. Fig. 11(a) shows the maximum temperature only 
map’s ROC results. Fig. 11(b) consists of the 2D thermal feature space 
ROC curves. 

The curves in Fig. 11(a) and (b) demonstrate that both maps perform 
better for the bulk and supported pyramid data than for the overhang 
pyramid data. The maps’ performances are best for the bulk section 
because that geometry type has scan pathing and heat transfer boundary 
conditions that match the generation data. The supported sections have 
the next best ROC performance because that geometry type has thermal 
boundary conditions that match the map generation data. However, the 
changing cross-sectional area does negatively impact the predictions for 
the complex sample’s supported sections when the area decreases below 
that of the cylindrical sample. This is because the short scan vectors for 
the complex sample’s layers with the smaller areas drive thermal vari
ations that are not well accounted for in the map generation data. The 
ROC results for the bulk and supported pyramid sections in Fig. 11 
clearly show the 2D feature space map provides more accurate pre
dictions than the maximum temperature only map due to the additional 
information provided by the time above threshold. These results are 
further quantified by calculating the AUCs for each curve in Fig. 11, 
which are listed in Table 1. 

There is an average increase of 8 % in the AUC for the 2D feature 
space map’s predictions for the bulk and supported pyramid sections 
compared to the maximum temperature only predictions. Both porosity 
probability maps perform worse for the overhang pyramids when 
compared to the bulk sections due to the absence of map generation data 
for the overhang boundary condition. For example, the maximum 
temperature only prediction’s AUC for the overhang sections is 22 % 
smaller than the bulk sections. The 2D feature space’s AUC is 27 % 
smaller for the overhang pyramid sections when compared to that map’s 
predictions for the bulk sections. These results demonstrate that the 
difference in thermal boundary condition significantly affects the ther
mal features which causes the overhang data to reduce the performance 
for all maps analyzed in this study. This can be overcome in the future by 
using the methods presented in this paper because they are readily 
adaptable to generate porosity probability maps from SWIR thermal 
data and μCT data acquired for complex geometry cases. Additionally, 
keyhole pore offsetting in the z-direction due to the trapping of pores at 
the bottom of the melt pool is a common phenomenon that may reduce 
the maps’ performances. This is because the current porosity probability 
maps do not consider layer-to-layer effects like keyhole pore offsetting. 
Accounting for the keyhole forming one or more layers down by 
incorporating thermal features and μCT data from adjacent layers during 
map generation should produce maps that are more sensitive to that 
porosity type, thus, increasing their performance. 

4. Summary and conclusions 

This paper developed a porosity probability mapping methodology 
based on SWIR imaging thermal features and μCT data. The methodol
ogy produced porosity probability maps that span the lack of fusion, 
keyholing, and fully dense processing regimes for LPBF of 304 L stainless 
steel by using SWIR data and μCT data. The porosity captured in the 
maps were generated by solely adjusting the laser parameters (i.e., the 
power and the exposure time/scan speed) in a very simple geometry. 
Because certain process parameters are far more likely to generate de
fects, this allowed a rapid compilation of maps between thermal features 
and porosity. While the interaction between the process parameters and 
the geometry in more complicated specimens leads to defects under 
different conditions, the porosity probability maps prove to be repre
sentative. For the complex geometry fabricated with nominal properties, 
an AUC of 0.94 is achieved for internal regions. This drops to an AUC of 
0.69 for overhanging regions and 0.81 for supported regions. These 
results show both the potential as well as the limitations of extrapolating 
thermal feature maps in the absence of geometric information. This 
paper also demonstrated that while the maximum temperature, Tmax, 

thermal feature significantly outperformed the time above the threshold 
feature, τ, the effectiveness of the algorithm was appreciably improved 
(AUC from 0.88 to 0.94) by including τ with the appropriate threshold. 

In an industrial application, the best forming porosity probability 
map can potentially identify porosity with a true positive rate of 0.9 at a 
false positive rate of 0.15 for bulk material. While this result is prom
ising, it suggests that the overall performance can be increased by 
incorporating additional geometric dependent maps (e.g., thin wall 
structures, interior/exterior border subregions, and up/down-facing 
boundaries). The data to generate these mappings may be obtained in 
a production setting for real geometries. This would build up sufficient 
data to establish the correlations following the procedure in this paper. 
The techniques can also be expanded to incorporate additional thermal 
features which may further improve the state estimation. These steps 
will continuously improve the methodology’s robustness to the point 
that it can be used for industrial validation. 
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