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Hamiltonian-Driven Adaptive Dynamic
Programming With Efficient Experience Replay

Yongliang Yang , Member, IEEE, Yongping Pan , Senior Member, IEEE,

Cheng-Zhong Xu , Fellow, IEEE, and Donald C. Wunsch, II , Fellow, IEEE

Abstract— This article presents a novel efficient experience-
replay-based adaptive dynamic programming (ADP) for the
optimal control problem of a class of nonlinear dynamical
systems within the Hamiltonian-driven framework. The quasi-
Hamiltonian is presented for the policy evaluation problem
with an admissible policy. With the quasi-Hamiltonian, a novel
composite critic learning mechanism is developed to combine
the instantaneous data with the historical data. In addition, the
pseudo-Hamiltonian is defined to deal with the performance
optimization problem. Based on the pseudo-Hamiltonian, the
conventional Hamilton–Jacobi–Bellman (HJB) equation can be
represented in a filtered form, which can be implemented online.
Theoretical analysis is investigated in terms of the convergence
of the adaptive critic design and the stability of the closed-
loop systems, where parameter convergence can be achieved
under a weakened excitation condition. Simulation studies are
investigated to verify the efficacy of the presented design scheme.

Index Terms— Hamilton–Jacobi–Bellman (HJB) equation,
Hamiltonian-driven adaptive dynamic programming (ADP),
pseudo-Hamiltonian, quasi-Hamiltonian, relaxed excitation
condition.

I. INTRODUCTION

RECENT development in control theory and machine
learning has promoted reinforcement learning (RL) and

adaptive dynamic programming (ADP) for performance opti-
mization of the decision-making problem with long-term
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cumulative reward. A classical optimal control theory laid the
solid theoretical foundation for the dynamical optimization
problem, where Pontryagin’s maximum principle (PMP) and
Bellman’s dynamic programming (DP) are the centerpieces of
the optimal control theory [1]. Based on PMP, the optimal
control policy over finite horizon depends on solving a
two-point boundary value problem (TPBVP) [2]. However,
solving the TPBVP for general nonlinear dynamical systems
remains to be an open problem. On the other hand, the DP
suffers from the “curse of dimensionality” [3]. In contrast,
RL and ADP are intelligent methods to assist the agent make
intelligent decisions to optimize the cumulative reward based
on online collected data [4], [5], [6], [7], [8], [9]. Successful
application of RL and ADP to control applications can be
found in recent literature [10], [11], [12], [13], [14].

A. Related Work

In ADP and RL-based adaptive optimal controller design,
the fundamental considerations are twofold. First, the sys-
tem during the learning process has to be stable, and the
closed-loop signals should be bounded to guarantee that the
online learning scheme is feasible. As a typical iterative ADP
algorithm, in policy iteration, the initial iterative policy should
be admissible to ensure that the closed-loop stability in each
iteration is stable [15], [16], [17]. However, the initial admissi-
ble policy is difficult to be obtained for complex systems with
unknown dynamics. Second, the learning convergence of ADP
and RL is desired to guarantee that the optimal control policy
can be obtained [18], [19], [20]. For both synchronous and
iterative ADP algorithms [21], [22], [23], [24], the persistent
of excitation (PE) condition on the collected data is critical
to the learning convergence to the optimum [25]. However,
the PE condition is difficult to be satisfied because it requires
the signal to have sufficient rich information over the infinite
horizon [26]. In addition, the PE condition requires the signal
to be frequency-rich, which might lead to undesired oscillation
in the system evolution. Therefore, it is desired to obtain a
convergent and stable ADP online learning algorithm without
the stringent PE condition.

Experience replay is an efficient method in RL, which
repeatedly utilizes the collected historical data for intelligent
decision-making [27]. It has been successfully combined
with neural networks for autonomous agents to directly
learn from the experience based on sequential actions in
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the environment [28], [29]. Recently, the experience-replay
technique has also been employed an adaptive control theory
to obviate the stringent PE condition, which has been suc-
cessfully applied to engineering problems, including adaptive
cruise control [30], wastewater treatment process [31], and
wind farm control [32]. In concurrent learning for model
reference adaptive control [33], the collected data are selected
and stored based on a rank condition on the data matrix, which
is less restrictive than the PE condition and easy to be verified
during the online process. However, the concurrent learning
technique requires state derivative to be measurable [34],
which might not be feasible in applications. In composite
learning, the time-interval integral with filtered signals is
designed to construct a novel residual to avoid the measure-
ment of time derivation of plant states [35], where the concept
of interval excitation (IE) condition is presented to be weaker
than the PE condition and can ensure the parameter estimation
convergence [36]. The IE condition is further applied to the
adaptive optimal control for linear systems in [37] to provide
the adaptive solution with convergence to the solution to
the algebraic Riccati equation. However, the optimal control
problem of nonlinear system requires solving the Hamilton–
Jacobi–Bellman (HJB) equation, which is a nonlinear partial
differential equation and difficult to be solved due to the
inherent nonlinearity. This article aims to develop an efficient
ADP algorithm to solve the HJB equation for nonlinear
systems without requiring the PE condition.

The Hamiltonian-driven framework is developed in [38].
Three subproblems for optimal control are categorized as
policy evaluation problems for a fixed admissible policy,
the performance comparison problem with different admissi-
ble policies, and the performance improvement for a given
admissible policy. It is shown that the Hamiltonian plays a
critical role in the performance optimization problem, and
the classical policy iteration algorithm can be viewed as a
successive minimization of the iterative Hamiltonian [38].
The Hamiltonian-driven framework is later applied to the
performance optimization with intermittent feedback, where
the effect of intermittent feedback on the communication
bandwidth and the control performance of the iterative ADP
algorithms is investigated [39]. In addition, the effect of
the residual resulting from the function approximator on
the convergence of iterative ADP algorithm is investigated
in [40], where a sufficient condition to ensure the closed-loop
stability in each iteration and the convergence to the optimum
is developed. Recent extensions of the Hamiltonian-driven
ADP have been made to solve the differential games [41]
and multiobjective optimization [42]. In this article, the
Hamiltonian-driven ADP is extended with value function
approximation to provide novel defined quasi-Hamiltonian
and pseudo-Hamiltonian, which can efficiently combine the
instantaneous data with the historical data.

1) Contributions: The contributions of this article are three-
fold. First, to solve the policy evaluation problem for nonlinear
systems with a given admissible policy, the quasi-Hamiltonian
is defined to utilize the historical data efficiently. On this basis,
an online filtered signal is designed to yield the filtered Bell-
man equation, which can be solved with a relaxed excitation.

Second, for the policy optimization problem for nonlinear
systems, the pseudo-Hamiltonian is presented to parameterize
the HJB equation, which is named the filtered HJB equation,
and efficiently takes the instantaneous data and the online
collected data into consideration. Finally, to solve the filtered
Bellman equation and filtered HJB equation, a relaxed excita-
tion on the filtered signals is considered to ensure the online
learning convergence without the requirement of the stringent
PE condition.

2) Structure: The remainder of this article is organized as
follows. The optimal control problem of nonlinear dynamical
in continuous time with its background knowledge is pre-
sented in Section II. In Section III, the quasi-Hamiltonian is
presented for efficient data utilization for policy evaluation,
where the filtered Bellman equation is developed. A composite
critic learning algorithm is presented to solve the filtered
Bellman equation with a relaxed excitation condition. More-
over, the filtered HJB equation is derived in Section IV,
where the pseudo-Hamiltonian is defined to provide the
quadratic parameterization for the filtered HJB equation.
On this basis, novel actor–critic learning is developed to
solve the filtered HJB equation without the requirement of
the PE condition. The simulation study with the presented
efficient Hamiltonian-driven ADP algorithm is investigated in
Section V. The concluding remarks are made in Section VI.

B. Preliminaries

The following definitions are required for subsequent dis-
cussions.

Definition 1 (PE [43]): A vector signal y(t) ∈ R
p is PE

in R
p with an excitation level β1 > 0, provided that for all

t ∈ R
+, there exist constants TPE ∈ R

+ and β2 > β1 such that

β1 Ip×p ≤
� t+TPE

t
y(τ )yT(τ )dτ ≤ β2 Ip×p.

Definition 2 (Relaxed Excitation Condition): A vector sig-
nal y(t) ∈ R

p is exciting over interval [ta, tb] with an
excitation level β1 > 0, provided that there exist constants
β1 ∈ R

+ and β2 ∈ R
+ such that

β1 Ip×p ≤
� tb

ta

y(τ )yT(τ )dτ ≤ β2 Ip×p

where β2 > β1 > 0.

II. PROBLEM STATEMENT

We consider the following continuous-time nonlinear
dynamical system:

ẋ = f (x)+ g(x)u, x(t0) = x0 (1)

where x ∈ R
n denotes the system state, u ∈ R

m denotes the
control input, and the initial condition x0 is given. In addition,
f (·) : R

n → R
n and g(·) : R

n×m → R
n are the system

dynamics. On a compact set �x , the functions f (x) and g(x)
are locally Lipschitz functions and satisfy � f (·)� ≤ η f �·� and
�g(·)� ≤ ηg with positive constants η f and ηg . Moreover, it is
assumed that f (0) = 0, which implies that the origin is an
equilibrium of the system.
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For the optimal control problem, the performance function
under consideration takes the following form:

Vu(x0) =
� ∞

t0

r(x(τ ), u(τ ))dτ (2)

with the reward function r(x, u) = Q(x) + uT Ru, where
Q(x) is a positive semidefinite function and R is a symmetric
positive definite matrix.

Definition 3 (Admissible Policy [44]): For the nonlinear
dynamical system (1), a feedback policy u : R

n → R
m is

said to be admissible on the compact � ⊂ R
n , denoted as

u ∈ R
n , provided that the following conditions hold.

1) u(·) is continuous on �.
2) u(0) = 0.
3) The closed-loop system is stable.
4) The performance V (x0) is finite.
Define the Hamiltonian as

H

�
u, x,

∂Vu(x)

∂x

�
= r(x, u)+

�
∂Vu(x)

∂x

�T

[ f (x)+ g(x)u].

(3)

The value function Vu(x) can be obtained by solving the
Bellman equation

0 = H

�
u, x,

∂Vu(x)

∂x

�
. (4)

Define the optimal value function and optimal control policy
as

V∗(x) = min
u(·)

� ∞

t0

r(x(τ ), u(τ ))dτ

u∗(x) = arg min
u(·)

� ∞

t0

r(x(τ ), u(τ ))dτ . (5)

According to the optimal control theory [44], the optimal
value function and the optimal control policy satisfy the HJB
equation

0 = min
u(·)

H

�
u, x,

∂V∗(x)
∂x

�

= H

�
u∗, x,

∂V∗(x)
∂x

�
. (6)

Applying the stationary condition to the Hamiltoinan, one can
obtain the optimal policy with the optimal value gradient as

u∗(x) = −1

2
R−1gT(x)

∂V∗(x)
∂x

. (7)

Inserting u∗(x) back into (6), the HJB equation can be
equivalently expressed as

0 = Q(x)+
�
∂V∗(x)
∂x

�T

f (x)

− 1

4

�
∂V∗(x)
∂x

�T

g(x)R−1gT(x)
∂V∗(x)
∂x

. (8)

Remark 1: For linear system with the dynamics
ẋ = Ax+Bu and the reward function r(x, u) = xT Qx+uT Ru,
according to the linear quadratic optimal control theory, the
value function with a stabilizing feedback policy u = K x

takes the quadratic form Vu(x) = xT Pu x . Accordingly, the
Hamiltonian for linear quadratic optimal control is defined as

H

�
u, x,

∂Vu(x)

∂x

�
= xT Qx + uT Ru + xT AT Pu x + uT BT Pu x

+ xT Pu Ax + xT Pu Bu. (9)

The optimal value function V∗(x) = xT Px can be obtained
by solving the algebraic Riccati equation

AT P + P A − P B R−1 BT P + Q = 0. (10)

Applying the stationary condition, the optimal control can be
calculated as u∗(x) = −R−1 BT Px . �

As investigated by the Hamiltonian-driven ADP frame-
work [38], the fundamental issues in the optimal control prob-
lem are the policy evaluation and policy optimization. For the
policy evaluation problem, an admissible policy is given and
the design object is to learn the corresponding value function
satisfying the Bellman equation. For the policy optimization
problem, in addition to the adaptive critic network which
approximates the optimal value function, the online actor is
added to learn the optimal control policy simultaneously. In the
following, the traditional Hamiltonian is extended as quasi-
Hamiltonian and pseudo-Hamiltonian for policy evaluation
and policy optimization problems with efficient experience
replay.

III. HAMILTONIAN-DRIVEN EFFICIENT

POLICY EVALUATION

A. Instantaneous Bellman Equation

Using the function approximators, such as neural network,
the value function and value gradient for the fixed policy u(x)
can be denoted as the critic network, i.e.,

Vu(x) = W T
u φ(x)+ σu(x)

∂Vu(x)

∂x
=

�
∂φ(x)

∂x

�T

Wu + ∂σu(x)

∂x
(11)

where Wu ∈ R
	 is the critic network weight, φ(x) ∈ R

	

and ((∂φ(x))/∂x) ∈ R
	×n are the basis function and basis

gradient, respectively, and σu(x) ∈ R and ((∂σu(x))/∂x) ∈ R
	

are the value function approximation residual and its gradient,
respectively. Based on the universal approximation theorem,
the ideal critic weight is defined as

Wu = arg min
W

��Vu(x)− W Tφ(x)
��

and the ideal value function approximation residual

σu(x) = min
W

��Vu(x)− W Tφ(x)
��

is bounded in the sense that there exists a positive constant σ̄u

such that supx∈� �σu(x)� ≤ σ̄u .
Using the value function parameterization (11), the Bellman

equation (4) can be rewritten using the critic network as

0 =
�
∂σu(x)

∂x

�T

[ f (x)+ g(x)u]

+ W T
u

∂φ(x)

∂x
[ f (x)+ g(x)u] + r(x, u). (12)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:23:00 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Definition 4: Consider the dynamical system (1) with the
reward function r(x, u) and the filtered signals in (15). The
quasi-Hamiltonian is defined as

Hq(W, ϕ, r) = W Tϕ + r (13)

for all (W, ϕ, r) ∈ R
	 × R

	 × R.
Consider the following notations:

δu(x(t)) = −
�
∂σu(x(t))

∂x(t)

�T

[ f (x(t))+ g(x(t))u(t)]

ϕu(x(t), u(t)) = ∂φ(x(t))

∂x(t)
[ f (x(t))+ g(x(t))u(t)].

For notations simplicity, in the following, we denote
ϕu(x(t), u(t)), r(x(t), u(t)), and δu(x(t)) as ϕu(t), ru(t), and
δu(t), respectively. Then, the Bellman equation (12) implies
that

Hq(Wu, ϕu(t), ru(t)) = W T
u ϕu(t)+ ru(t)

= δu(t). (14)

In (14), the signals ϕu(t) and ru(t) depend on current system
state x(t) and control input u(t). Therefore, (14) is referred to
as the instantaneous Bellman equation.

B. Filtered Bellman Equation

To begin with, define the following filtered signals:

�u(t) =
� t

0
e−κ(t−τ )δu(x(τ ))dτ

�u(t) =
� t

0
e−κ(t−τ )ϕu(x(τ ), u(τ ))dτ

Yu(t) =
� t

0
e−κ(t−τ )r(x(τ ), u(τ ))dτ (15)

which can be equivalently obtained using the online filters as
follows:

�̇u(t) = −κ�u(t)+ δu(x(t)), �u(0) = 0

�̇u(t) = −κ�u(t)+ ϕu(x(t), u(t)), �u(0) = 0

Ẏu(t) = −κYu(t)+ r(x(t), u(t)), Yu(0) = 0. (16)

From the signals definition in (15) and the instantaneous
Bellman equation (14), one has

�u(t) =
� t

0
e−κ(t−τ )�W T

u ϕu(τ )+ ru(τ )
	
dτ

= W T
u

� t

0
e−κ(t−τ )ϕu(τ )dτ +

� t

0
e−κ(t−τ)ru(τ )dτ

= W T
u �u(t)+ Yu(t). (17)

In (17), the terms �(t) and Yu(t) depend on the information
of state and control input on the interval [0, t]. In addition,
for admissible policy u, the boundedness of ϕu(t) and ru(t)
further implies the boundedness of �(t) and Yu(t). In this
article, (17) is referred to as the filtered Bellman equation.

With the filtered signals in (17), the quasi-Hamiltonian is
defined as

Hq(Wu,�u(t),Yu(t)) = W T
u �u(t)+ Yu(t).

Accordingly, the filtered Bellman equation can be expressed
as �u(t) = Hq(Wu,�u(t),Yu(t)).

Remark 2: The quasi-Hamiltonian can be viewed as
a finite-dimensional parameterization of the Hamiltonian
H (u, x, ((∂Vu(x))/∂x)). The advantage of such parameteri-
zation can be summarized as follows.

1) The Hamiltonian H (u, x, ((∂Vu(x))/∂x)) depends on
instantaneous data {x(t), u(t)}, as shown in (3).
As investigated in [38], the Hamiltonian (3) can serve
as the temporal difference learning error for continuous-
time systems.

2) The quasi-Hamiltonian is defined based on the filtered
signals {�u(t),Yu(t)}, which are filters of historic
data during the interval [0, t]. In this article, the
quasi-Hamiltonian is viewed as the novel temporal
difference error for critic learning.

Therefore, the quasi-Hamiltonian stands for more data collec-
tion and is used in the following design.

C. Efficient Critic Learning

For the policy evaluation with a given admissible policy, the
critic learning aims to adapt the critic output

Vu(x) = Ŵ T
u φ(x) (18)

to minimize the critic learning objective

Ju


Ŵu(t)

� = 1

2
�eu(t)�2 (19)

where eu(t) is the instantaneous critic learning error defined
as

eu(t) = Ŵ T
u (t)ϕu(t)+ ru(t). (20)

One can observe that eu(t) → δu(t) as Ŵu(t) → Wu according
to the instantaneous Bellman equation (14). The conventional
critic learning is designed based on the gradient descent, i.e.,

˙̂W u(t) = −γu
∂ Ju



Ŵu(t)

�
∂Ŵu(t)

= −γuϕu(t)
�
Ŵ T

u (t)ϕu(t)+ ru(t)
	
. (21)

The convergence of the critic learning depends on the PE
condition on the signal ϕu(t) [21], which is stringent for
adaptive systems.

In the following, we consider the efficient critic learning
based on the filtered Bellman equation (17). First, we define
the composite critic learning error as

εu(τ, t) = Ŵ T
u (t)�u(τ )+ Yu(τ ) (22)

which combines the current critic weight estimation Ŵu(t)
and historical information {�u(τ ),Yu(τ )}. In contrast to the
instantaneous learning objective (19), the efficient critic learn-
ing aims to minimize the composite learning objective

Ju(t) = 1

2

� t

0

�εu(τ, t)�2�
1 +�T

u (τ )�u(τ )
	2 dτ . (23)
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Note that Ŵu(t) is independent of {�u(τ ),Yu(τ )}. Applying
the chain rule, one can obtain the composite learning objective
gradient as

∂ Ju(t)

∂Ŵu(t)
=

� t

0

εu(τ, t)�u(t)�
1 +�T

u (τ )�u(τ )
	2 dτ

=
� t

0

�u(τ )�
T
u (τ )�

1 +�T
u (τ )�u(τ )

	2 dτ · Ŵu(t)

+
� t

0

�u(τ )Yu(τ )�
1 +�T

u (τ )�u(τ )
	2 dτ . (24)

Denote

Eu(t) =
� t

0

�u(τ )�
T
u (τ )�

1 +�T
u (τ )�u(τ )

	2 dτ (25)

Fu(t) =
� t

0

�u(τ )Yu(τ )�
1 +�T

u (τ )�u(τ )
	2 dτ (26)

which can be obtained using the filter design

Ėu(t) = �u(t)�T
u (t)�

1 +�T
u (t)�u(t)

	2 , Eu(0) = 0

Ḟu(t) = �u(t)Yu(t)�
1 +�T

u (t)�u(t)
	2 , Fu(0) = 0.

Then, the composite learning objective gradient can be rewrit-
ten as

∂ Ju(t)

∂Ŵu(t)
= Eu(t) · Ŵu(t)+ Fu(t). (27)

The critic learning is designed as

˙̂W u(t) = −γu
∂ Ju(t)

∂Ŵu(t)
= −γu

�
Eu(t) · Ŵu(t)+ Fu(t)

	
. (28)

Theorem 1: Denote �̄u(t) = ((�u(t))/(1 +�T
u (t)�u(t)))

and suppose that there exists Tu and βu such that �̄u(t) satis-
fies the relaxed excitation condition. Then, for an admissible
policy u, the following holds.

1) All the closed-loop signals L∞-stable on [0, Tu).
2) The critic weight learning error W̃u(t) converges to

a small neighborhood of the origin exponentially on
[Tu,+∞).

Proof: The first proposition is a standard result in adaptive
control and can be referred to existing literature [45].

Next, we consider the second proposition. For the
critic learning (28), we consider the Lyapunov candi-
date Lu(W̃u(t)) = (1/2)W̃ T

u (t)γ
−1
u W̃u(t). Differentiating

Lu(W̃u(t)) yields

L̇u


W̃u(t)

� = −W̃ T
u (t)γ

−1
u

˙̂W u(t)

= W̃ T
u (t)

�
Eu(t) · Ŵu(t)+ Fu(t)

	
. (29)

From (17), one has

Eu(t) · Wu(t)+ Fu(t) = Gu(t) (30)

where

Gu(t) =
� t

0

�u(τ )�u(τ )�
1 +�T

u (τ )�u(τ )
	2 dτ . (31)

Then,

Eu(t) · Ŵu(t)+ Fu(t)

= Eu(t) · Ŵu(t)+ Fu(t)

+ Gu(t)− Eu(t) · Wu(t)− Fu(t)

= Gu(t)− Eu(t) · W̃u(t). (32)

Inserting (32) into (29) yields

L̇u


W̃u(t)

�
≤ 1

2
γG

��W̃u(t)
�� − λmin(Eu(t))

��W̃u(t)
��2

= −(1 − βu)λmin(Eu(t))
��W̃u(t)

��2 + βuλmin(Eu(t))

×
�

γG

2βuλmin(Eu(t))

��W̃u(t)
�� − ��W̃u(t)

��2
�
. (33)

Based on Young’s inequality 2ab − a2 ≤ b2, one has

γG

2βuλmin(Eu(t))

��W̃u(t)
�� − ��W̃u(t)

��2

≤ γ 2
G

4β2
uλ

2
min(Eu(t))

. (34)

Finally, one has

L̇u


W̃u(t)

� ≤ −cLu


W̃u(t)

� + d

c = 2γu(1 − βu)λmin(Eu(t))

d = γ 2
G

4β2
uλ

2
min(Eu(t))

(35)

which implies that the critic weight learning error W̃u(t)
converges to a small neighborhood of the origin exponentially
according to the Lyapunov stability extension theorem [46].
This completes the proof.

Remark 3: As shown in (28), the critic learning depends on
the signals Eu(t) and Fu(t) to tune the critic weight Ŵu(t).
This novel critic learning is a combination of both instanta-
neous data and historic data. First, as shown in (25), the signals
Eu(t) and Fu(t) are defined based on the filtered signals Yu(t)
and �u(t). Second, based on (16), Yu(t) and �u(t) are filtered
signals of ϕu(x(t), u(t)) and r(x(t), u(t)) during the interval
[0, t]. Therefore, the presented critic learning (28) also takes
the historic data into account.

To this end, the Hamiltonian-driven ADP with efficient
replay for the policy evaluation problem with a given admis-
sible policy is shown in Fig. 1, where the quasi-Hamiltonian
plays an important role in the critic learning.

IV. HAMILTONIAN-DRIVEN EFFICIENT

POLICY OPTIMIZATION

A. Instantaneous HJB Equation

Using the neural network, the value function and value
gradient for the fixed policy u(x) can be denoted as the critic
network, i.e.,

V∗(x) = W T
∗ φ(x)+ σ∗(x)

∂V∗(x)
∂x

=
�
∂φ(x)

∂x

�T

W∗ + ∂σ∗(x)
∂x

(36)
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Fig. 1. Hamiltonian-driven ADP with efficient replay for critic learning.

where W∗ ∈ R
	 is the critic network weight, φ(x) and

((∂φ(x))/∂x) are the basis function and basis gradient, respec-
tively, and σ∗(x) and ((∂σ∗(x))/∂x) are the value function
approximation residual and its gradient, respectively. Based on
the universal approximation theorem, the ideal critic weight is
defined as

W∗ = arg min
W

��V∗(x)− W Tφ(x)
��

and the ideal value function approximation residual

σ∗(x) = min
W

��V∗(x)− W Tφ(x)
��

is bounded in the sense that there exists a positive constant σ̄∗
such that supx∈� �σ∗(x)� ≤ σ̄∗.

With the value function approximation, the HJB equation
can be expressed as

0 = Q(x)+ W T
∗ μ(x)−

1

4
W T

∗ �(x)W∗

− 1

4

�
∂σ∗(x)
∂x

�T

g(x)R−1gT(x)
∂σ∗(x)
∂x

− 1

2

�
∂σ∗(x)
∂x

�T

g(x)R−1gT(x)

�
∂φ(x)

∂x

�T

W∗

+
�
∂σ∗(x)
∂x

�T

f (x) (37)

with the following notations:
μ(x) = ∂φ(x)

∂x
f (x)

�(x) = ∂φ(x)

∂x
g(x)R−1gT(x)

�
∂φ(x)

∂x

�T

. (38)

Definition 5: Consider the dynamical system (1) with the
signals {μ(x),�(x)} in (38). The pseudo-Hamiltonian is
defined as

Hp(W, Q, μ,�) = Q + W Tμ− 1

4
W T�W (39)

for all {W, Q, μ,�} ∈ R
	 × R × R

	 × R
	×	.

Then, the HJB equation (37) can be expressed using the
pseudo-Hamiltonian as

Hq(W∗, Q(x), μ(x),�(x))

= Q(x)+ W T
∗ μ(x)−

1

4
W T

∗ �(x)W∗
= δ∗(x) (40)

with

δ∗(x) = 1

4

�
∂σ∗(x)
∂x

�T

g(x)R−1gT(x)
∂σ∗(x)
∂x

+ 1

2

�
∂σ∗(x)
∂x

�T

g(x)R−1gT(x)

�
∂φ(x)

∂x

�T

W∗

−
�
∂σ∗(x)
∂x

�T

f (x). (41)

Note that in (41), the signals Q(x), μ(x), and �(x) depend
on the current state x(t). Therefore, (41) is referred to as the
instantaneous HJB equation.

Based on the value function approximation (36), denote the
approximate optimal control as

ū∗(x) = −1

2
R−1gT(x)

�
∂φ(x)

∂x

�T

W∗ (42)

which satisfies

δ∗(x) = Q(x)+ W T
∗ μ(x)−

1

4
W T

∗ �(x)W∗

= W T
∗ ϕ∗(x, ū∗)+ r(x, ū∗)

= Hq(W∗, ϕ∗(x, ū∗), r(x, ū∗))
= Hp(W∗, Q(x), μ(x),�(x)) (43)

where ϕ∗(x, ū∗) is defined as

ϕ∗(x, ū∗) = ∂φ(x)

∂x
[ f (x)+ g(x)ū∗]

= μ(x)− 1

2
�(x)W∗. (44)

B. Filtered HJB Equation

Define the following filtered signals:

Q f (t) =
� t

0
e−κ(t−τ )Q(x(τ ))dτ

� f (t) =
� t

0
e−κ(t−τ )�(x(τ ))dτ

μ f (t) =
� t

0
e−κ(t−τ )μ(x(τ ))dτ . (45)

The pseudo-Hamiltonian with the above filtered signals is

Hq


W∗, Q f , μ f ,� f

�
= Q f (t)+ W T

∗ μ f (t)− 1

4
W T

∗ � f (t)W∗. (46)

Based on the instantaneous HJB equation (40), one can obtain
the following filtered HJB equation as:

δ f (t) =
� t

0
e−κ(t−τ )δ∗(x(τ ))dτ

= Hq


W∗, Q f , μ f ,� f

�
. (47)
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C. Efficient Actor-Critic Learning
Note that in the filtered HJB equation (47), the terms

{Q f (t), μ f (t),� f (t)} contain both the instantaneous and his-
torical information of the system. In the following, we design
the efficient actor–critic learning to solve the filtered HJB
equation (47).

The adaptive critic network is designed as

V̂c(x(t)) = Ŵ T
c (t)φ(x(t)). (48)

The actor network is designed as

ua(x(t)) = −1

2
R−1gT(x(t))

�
∂φ(x(t))

∂x(t)

�T

Ŵa(t). (49)

The critic learning is defined as

ec(t) = Ŵ T
c (t)

∂φ(x(t))

∂x(t)
[ f (x(t))+ g(x(t))ua(t)]

+ r(x(t), ua(t))

= Ŵ T
c (t)μ(x(t))− 1

2
Ŵ T

c (t)�(x(t))Ŵa(t)

+ Q(x(t))+ 1

4
Ŵ T

a (t)�(x(t))Ŵa(t) (50)

which completely depends on the instantaneous system data.
In contrast, based on the pseudo-Hamiltonian (39), we present
the composite critic learning error as

εc(τ, t) = Hq


Ŵc(t), Q f (τ ), μ f (τ ),� f (τ )

�
= Ŵ T

c (t)μ f (τ )− 1

2
Ŵ T

c (t)� f (τ )Ŵa(t)

+ Q f (τ )+ 1

4
Ŵ T

a (t)� f (τ )Ŵa(t). (51)

Denote

ra(τ, t) = Q f (τ )+ 1

4
Ŵ T

a (t)� f (τ )Ŵa(t)

ϕa(τ, t) = μ f (τ )− 1

2
� f (τ )Ŵa(t). (52)

Then,

εc(τ, t) = Ŵ T
c (t)ϕa(τ, t)+ ra(τ, t). (53)

The critic learning objective is considered as

J̄c


Ŵc(t)

� = Jc


Ŵc(t)

�
Bc(t)

(54)

with

Jc


Ŵc(t)

� = 1

2

� t

0
�εc(τ, t)�2dτ

Bc(t) = 1 +
� t

0

�
ϕT

a (τ, t)ϕa(τ, t)
	2

dτ . (55)

Using the gradient descent rule, the critic weight update is
designed as

˙̂W c(t) = −γc
∂ J̄c



Ŵc(t)

�
∂Ŵc(t)

= −γc
1

Bc(t)

∂ Jc


Ŵc(t)

�
∂Ŵc(t)

. (56)

The details about calculation of ((∂ Jc(Ŵc(t)))/(∂Ŵc(t))) are
provided in Appendix A.

For the actor network (49), we design

˙̂W a(t) = γa

�
−KaaŴa(t)+ Kca Fc(t)

Bc(t)
+ Fa(t)

4[Bc(t)]2


(57)

with

Fa(t) =
� t

0
� f (τ )Ŵa(t)ϕ

T
a (t, τ )Ŵc(t)dτ

Fc(t) =
� t

0
ϕT

a (t, τ )Ŵc(t)dτ . (58)

The details about the calculation of Fa(t) and Fc(t) are
provided in Appendix B.

Theorem 2: Suppose that there exists Ta and βa such that� Ta

0
ϕa(τ, t)ϕT

a (τ, t)dτ 	 βa · IN×N . (59)

Then, with the actor–critic learning in (56) and (57), the
system state x(t), the critic weight learning error W̃c(t), and
the actor weight learning error W̃a(t) are uniformly ultimately
bounded.

Proof: First, the boundedness of closed-loop signals
during the interval [0, Ts] can be obtained based on a clas-
sical adaptive learning analysis and interested readers can be
referred to [21] and [45].

In the following, we investigate the convergence of
closed-loop signals on the interval [Ts,+∞]. Consider the
Lyapunov candidate

L


x, W̃c, W̃a

� = V∗(x)+ Lc


W̃c

� + La


W̃a

�
Lc



W̃c

� = 1

2
W̃ T

c γ
−1
c W̃c, La



W̃a

� = 1

2
W̃ T

a γ
−1
a W̃a .

(60)

With the online actor (49), the system dynamics is

ẋ = f (x)− 1

2
g(x)R−1gT(x(t))

�
∂φ(x(t))

∂x(t)

�T

Ŵa(t). (61)

Considering the value function approximation (36) and
applying the chain rule, one has

V̇∗(x) =
�
∂V∗(x(t))
∂x(t)

�
ẋ

= W T
∗
∂φ(x(t))

∂x(t)
f (x)− 1

2
W T

∗
∂φ(x(t))

∂x(t)
g(x)R−1

× gT(x(t))

�
∂φ(x(t))

∂x(t)

�T

Ŵa(t)+ δa

= W T
∗ μ(x)−

1

2
W T

∗ �(x)Ŵa(t)+ δa (62)

with

δa =
�
∂φ(x)

∂x

�T
�

f (x)− 1

2
g(x)R−1gT(x)

�
∂φ(x)

∂x

�T

Ŵa(t)

�

satisfying

�δa� ≤ LdφL f �x� + 1

2
λmin(R)L

2
g L2

dφ


��W̃a(t)
�� + �W∗�

�
.
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Adding and subtracting (1/2)W T∗ �(x)W∗ to (62) yields

V̇∗(x) = W T
∗ ϕ∗(x, ū∗)+ 1

2
W T

∗ �(x)W̃a(t)+ δa

= δ∗(x)− Q(x)− 1

4
W T

∗ �(x)W∗

+ 1

2
W T

∗ �(x)W̃a(t)+ δa . (63)

As shown in (56) and (77), the critic learning can be
rewritten as

˙̂W c(t) = −γc
1

[Bc(t)]2

� t

0
ϕa(t, τ )εc(t, τ )dτ . (64)

From (53) and (47), the critic learning error satisfies

εc(τ, t) = Q f (τ )+ 1

4
Ŵ T

a (t)� f (τ )Ŵa(t)

+ Ŵ T
c (t)ϕa(τ, t)

= Q f (τ )+ 1

4
Ŵ T

a (t)� f (τ )Ŵa(t)

+ Ŵ T
c (t)ϕa(τ, t)+ δ f (τ )− W T

∗ ϕ∗(τ )

− Q f (τ )− 1

4
W T

∗ � f (τ )W∗

= 1

4
Ŵ T

a (t)� f (τ )Ŵa(t)− 1

4
W T

∗ � f (τ )W∗

+ Ŵ T
c (t)ϕa(τ, t)− W T

∗ ϕ∗(τ )+ δ f (τ )

= 1

4
Ŵ T

a (t)� f (τ )Ŵa(t)− 1

4
W T

∗ � f (τ )W∗

− 1

2
Ŵ T

c (t)� f (τ )Ŵa(t)+ 1

2
W T

∗ � f (τ )W∗

− W̃ T
c (t)μ f (τ )+ δ f (τ )

= 1

2
W̃ T

c (t)� f (τ )Ŵa(t)+ 1

4
W̃ T

a (t)� f (τ )W̃a(t)

− W̃ T
c (t)μ f (τ )+ δ f (τ )

= δ f (τ )− W̃ T
c (t)ϕa(τ, t)+ 1

4
W̃ T

a (t)� f (τ )W̃a(t).

Inserting the above equation into the critic learning (64) yields

˙̂W c(t) = γc

� t
0 ϕa(t, τ )ϕT

a (τ, t)dτ

[Bc(t)]2 W̃c(t)

− γc

� t
0 ϕa(t, τ )W̃ T

a (t)� f (τ )W̃a(t)dτ

4[Bc(t)]2

− γc

� t
0 ϕa(t, τ )δ f (τ )dτ

[Bc(t)]2 . (65)

Then,

L̇c


W̃c

� = −W̃ T
c (t)γ

−1
c

˙̂W c(t)

= −W̃ T
c (t)

� t
0 ϕa(t, τ )ϕT

a (τ, t)dτ

[Bc(t)]2 W̃c(t)

+ W̃ T
c (t)

� t
0 ϕa(t, τ )δ f (τ )dτ

[Bc(t)]2 + �(t, τ )

4[Bc(t)]2 (66)

where

�(t, τ ) =
� t

0
W̃ T

c (t)ϕa(t, τ )W̃
T
a (t)� f (τ )W̃a(t)dτ . (67)

Consider the fact that

W∗ = Ŵc(t)+ W̃c(t) = Ŵa(t)+ W̃a(t). (68)

Then, the term �(t, τ ) can be further written as

�(t, τ ) = −
� t

0
W̃ T

a (t)� f (τ )W∗ϕT
a (t, τ )W∗dτ

+
� t

0
W̃ T

a (t)� f (τ )W∗ϕT
a (t, τ )W̃c(t)dτ

+
� t

0
W̃ T

a (t)� f (τ )W̃c(t)ϕ
T
a (t, τ )W∗dτ

+ W̃ T
a (t)Fa(t). (69)

In addition, for the actor learning (57), one has

L̇a


W̃a

� = −W̃ T
a (t)γ

−1
a

˙̂W a(t)

= W̃ T
a (t)KaaŴa(t)− W̃ T

a (t)
Fa(t)

4[Bc(t)]2

− W̃ T
a (t)Kca

� t
0 ϕ

T
a (t, τ )Ŵc(t)dτ

Bc(t)
. (70)

Recall the fact in (68), and then,

L̇a


W̃a

� = W̃ T
a (t)KaaŴa(t)− W̃ T

a (t)
Fa(t)

4[Bc(t)]2

− W̃ T
a (t)Kca

� t
0 ϕ

T
a (t, τ )dτ

Bc(t)
W∗

+ W̃ T
a (t)Kca

� t
0 ϕ

T
a (t, τ )dτ

Bc(t)
W̃c(t). (71)

Collecting the results in (63), (66), and (71), one has

L̇(Z) ≤ −Z T

⎡
⎣ Pxx 0 0

0 Pcc Pca

0 Pac Paa

⎤
⎦Z + Z Td + c

= −Z T PZ Z + Z Td + c (72)

with

Pxx = q In×n, Paa = Kaa

Pcc =
� t

0 ϕa(t, τ )ϕT
a (τ, t)dτ

[Bc(t)]2

Pac = PT
ca = − Kca

� t
0 ϕ

T
a (t, τ )dτ

2Bc(t)

−
� t

0 � f (τ )W∗ϕT
a (t, τ )dτ

8[Bc(t)]2

−
� t

0 � f (τ )ϕ
T
a (t, τ )W∗dτ

8[Bc(t)]
2

dx = LdφL f , dc =
� t

0 ϕa(t, τ )δ f (τ )dτ

[Bc(t)]2

da = −
� t

0 � f (τ )W∗ϕT
a (t, τ )W∗dτ

4[Bc(t)]2 + KaaW∗

− Kca
� t

0 ϕ
T
a (t, τ )dτ

Bc(t)
W∗ + 1

2
�(x)W∗

+ 1

2
λmin(R)L

2
g L2

dφ

c = δ∗(x)− 1

4
W T

∗ �(x)W∗

+ 1

2
λmin(R)L

2
g L2

dφ�W∗�. (73)
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Fig. 2. Hamiltonian-driven ADP with efficient replay for actor–critic learning.

Note that Pxx and Paa are positive definite matrices. From
condition (59), the matrix Pcc is also positive definite. In addi-
tion, the Shur complement of Pcc is positive definite, i.e.,
Pcc − Pca P−1

aa Pac > 0, provided that Kca 
 Kaa. Then,
the matrix PZ can be guaranteed to be positive definite.
In addition, with the normalization term Bc(t), the terms d
is bounded. Based on the Lyapunov extension theorem [46],
the augmented state Z is uniformly ultimately bounded. This
completes the proof.

To this end, the Hamiltonian-driven ADP with efficient
replay for the policy optimization problem is shown in Fig. 2,
where the pseudo-Hamiltonian lays the foundation for the
actor–critic learning.

Remark 4: In Sections III and IV, we extend the traditional
Hamiltonian to quasi-Hamiltonian and pseudo-Hamiltonian,
respectively. With the quasi-Hamiltonian, the Bellman equa-
tion is parameterized as a linear equation of the unknown critic
weight Wu . For the HJB equation, the pseudo-Hamiltonian
is presented to produce the filtered HJB equation, which is
quadratic in the optimal weight W∗, which is compared to the
linear parameterized model [33], [35], [36], [37]. In addition,
the presented learning does not require probing noise to
guarantee the convergence to the optimum, which can obviate
the unnecessary oscillation in the closed-loop signals. �

Remark 5: In existing ADP methods [47], [48], the
experience-replay technique is based on concurrent learn-
ing [34], of which the historic data are collected and updated
based on a matrix rank condition. However, the matrix rank
condition has to be checked throughout the implementation to
guarantee that the collected data are sufficiently excited, which
might increase the computational complexity. In contrast, the
experience-replay technique in this article is based on the
online filters design (15) and (45), which can be efficiently
obtained and has lower computational complexity.

V. SIMULATION STUDY

In this section, we investigate the simulation example
of optimal stabilization problem with nonlinear dynamical
system to demonstrate the efficacy of the presented efficient
Hamiltonian-driven ADP. To be specific, the van der pol’s
oscillator is considered with the dynamics�

ẋ1

ẋ2

�
=

�
x2

−x1 − 1

2



1 − x2

1

�
x2

�
+

�
0
x1

�
u (74)

Fig. 3. State evolution and online actor–critic learning for policy optimization
problem using conventional approach [21] without probing noise. The optimal
critic weight is denoted as W∗ = [W∗,1 W∗,2]T = [1 1]T, as illustrated by
the black dashed lines. The adaptive critic learning is denoted as Wc(t) =
[Wc,1(t) Wc,2(t)]T, as illustrated by the blue solid lines. The online actor
learning is denoted as Wa(t) = [Wa,1(t) Wa,2(t)]T and illustrated by the red
solid lines.

where x = [ x1 x2 ] ∈ R
2 is the system state and u ∈ R

is the control input. According to [49], with the perfor-
mance Vu(x0) = � ∞

t0
r(x(τ ), u(τ ))dτ and the reward function

r(x, u) = x2
1 + u2, the optimal value function satisfying the

HJB equation

0 = x2
1 +

�
∂V∗(x)
∂x

�T�
x2−x1 − 1

2



1 − x2

1

�
x2

�

− 1

4

�
∂V∗(x)
∂x

�T�
0
x1

��
0 x1

	∂V∗(x)
∂x

(75)

can be determined as V∗(x) = x2
1 + x2

2 . On this basis, the
optimal control policy can be further obtained as u∗ = −x1x2.
In addition, the optimal value function can be parameterized as
V∗(x) = W T∗ φ(x) using the basis function φ(x) = [ x2

1 x2
2 ]T

and optimal weight W∗ = [ 1 1 ]T. Note that with the
above value function parameterization, the value function
approximation residual σ∗(x) is identically equal to zero.

The critic learning rate γc should be bigger than the
actor learning rate γa to guarantee the closed-loop stabil-
ity and actor–critic learning convergence, as investigated in
Theorems 1 and 2. In addition, the filter parameter κ should
be small enough to guarantee that the relaxed excitation is
satisfied.

Case 1 (Conventional Actor-Critic Learning Without Prob-
ing Noise): With the conventional actor–critic learning [21],
the evolution of system state and actor–critic weights is shown
in Fig. 3. One can observe that in the absence of PE condition,
the convergence of the actor–critic learning to the optimal
weight cannot be guaranteed.

Case 2 (Conventional Actor-Critic Learning With Probing
Noise): To satisfy the PE condition, we add the probing noise
nu(t) into the actor network, i.e.,

nu(t) = e− t
10 [sin(t)+ 2 sin(2t)]. (76)
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Fig. 4. State evolution and online actor–critic learning for policy optimization
problem using conventional approach [21] with probing noise. The optimal
critic weight is denoted as W∗ = [W∗,1 W∗,2]T = [1 1]T, as illustrated by
the black dashed lines. The adaptive critic learning is denoted as Wc(t) =
[Wc,1(t) Wc,2(t)]T, as illustrated by the blue solid lines. The online actor
learning is denoted as Wa(t) = [Wa,1(t) Wa,2(t)]T and illustrated by the red
solid lines.

Fig. 5. State evolution and online actor–critic learning for policy optimization
problem using presented efficient Hamiltonian-driven ADP. The optimal critic
weight is denoted as W∗ = [W∗,1 W∗,2]T = [1 1]T, as illustrated by the
black dashed lines. The adaptive critic learning is denoted as Wc(t) =
[Wc,1(t) Wc,2(t)]T, as illustrated by the blue solid lines. The online actor
learning is denoted as Wa(t) = [Wa,1(t) Wa,2(t)]T and illustrated by the red
solid lines.

Accordingly, the system response is shown in Fig. 4. One
can observe that the satisfaction of PE condition contributes
to the actor–critic learning convergence. However, the probing
noise also brings undesired oscillation in the evolution of both
system state and online actor–critic learning. In addition, the
probing noise also results in a bias in the actor–critic learning
and the actor–critic weights converges to a neighborhood set
around the origin.

Case 3 (Hamiltonian-Driven ADP With Experience-
Replay): To relax the stringent PE condition while ensuring
the actor–critic learning convergence, we apply the presented
Hamiltonian-driven ADP with efficient experience-replay

technique to the system, where the results are shown in
Fig. 5. Finally, one can observe that the actor–critic weights
converge exponentially to the optimal critic weights within
1.5 s. In addition, compared to the case using probing noise,
one can observe that there is no undesired oscillation in the
closed-loop signals.

VI. CONCLUSION

In this article, we extend the classical Hamiltonian based
on the value function approximation to develop efficient
data-based ADP learning. The quasi-Hamiltonian and the
pseudo-Hamiltonian are proposed to cope with the policy eval-
uation and policy optimization problems, respectively. With
the quasi-Hamiltonian and pseudo-Hamiltonian, the historical
and instantaneous data are simultaneously utilized through
additional filters design. Compared with the stringent PE
condition, the presented efficient Hamiltonian-driven ADP
ensures the learning convergence with a relaxed excitation
condition. In addition, the probing noise is also obviated to
cancel the undesired oscillation in the closed-loop responses.
Simulation examples are investigated to verify the presented
design in the end. Future works aim to extend the presented
design to distributed optimization and control problems.

APPENDIX A
CALCULATION OF ((∂ Jc(Ŵc(t)))/(∂Ŵc(t)))

Applying the chain rule to the critic learning object (54)
and considering (52), one has

∂ Jc


Ŵc(t)

�
∂Ŵc(t)

=
� t

0
ϕa(t, τ )εc(t, τ )dτ

=
� t

0
ϕa(t, τ )

�
ϕT

a (t, τ )Ŵc(t)+ ra(t, τ )
	
dτ .

Define

Mc(t) =
� t

0
ϕa(t, τ )ϕ

T
a (t, τ)dτ

Nc(t) =
� t

0
ϕa(t, τ )ra(t, τ )dτ . (77)

Then, the objective gradient can be further expressed as

∂ Jc


Ŵc(t)

�
∂Ŵc(t)

= Mc(t) · Ŵc(t)+ Nc(t). (78)

From (52), one has

Mc(t) = 1

4

� t

0

�
� f (τ )Ŵa(t)Ŵ

T
a (t)� f (τ )

	
dτ

+
� t

0

�
μ f (τ )μ

T
f (τ )

	
dτ

−1

2

� t

0

�
μ f (τ )Ŵ

T
a (t)� f (τ )

	
dτ

− 1

2

� t

0

�
� f (τ )Ŵa(t)μ

T
f (τ )

	
dτ . (79)
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Using the Kronecker property, one has

� t

0

�
� f (τ )Ŵa(t)Ŵ

T
a (t)� f (τ )

	
dτ

= vec−1
M,M

�
ψ��(t) · vec



Ŵa(t)Ŵ

T
a (t)

�	
� t

0

�
μ f (τ )Ŵ

T
a (t)� f (τ )

	
dτ

=
� t

0
vec−1

M,M

�
ψμ�(t) · vec



Ŵ T

a (t)
�	

dτ� t

0

�
� f (τ )Ŵa(t)μ

T
f (τ )

	
dτ

= vec−1
M,M

�
ψ�μ(t) · vec



Ŵa(t)

�	
(80)

where

ψ��(t) =
� t

0

�
� f (τ )⊗� f (τ )

	
dτ

ψμ�(t) =
� t

0

�
� f (τ )⊗ μ f (τ )

	
dτ

ψ�μ(t) =
� t

0

�
μ f (τ )⊗� f (τ )

	
dτ . (81)

Denote ψμμ(t) = � t
0 μ f (τ )μ

T
f (τ )dτ . Then,

Mc(t) = 1

4
vec−1

M,M

�
ψ��(t) · vec



Ŵa(t)Ŵ

T
a (t)

�	
− 1

2

� t

0
vec−1

M,M

�
ψμ�(t) · vec



Ŵ T

a (t)
�	

dτ

− 1

2
vec−1

M,M

�
ψ�μ(t) · vec



Ŵa(t)

�	
+ψμμ(t). (82)

Second, inserting (52) into (77) yields

Nc(t) =
� t

0

�
μ f (τ )Q f (τ )

	
dτ

+1

4

� t

0

�
μ f (τ )Ŵ

T
a (t)� f (τ )Ŵa(t)

	
dτ

−1

2

� t

0

�
� f (τ )Ŵa(t)Q f (τ )

	
dτ

−1

8

� t

0

�
� f (τ )Ŵa(t)Ŵ

T
a (t)� f (τ )Ŵa(t)

	
dτ .

Using the Kronecker property, one has

� t

0

�
μ f (τ )Ŵ

T
a (t)� f (τ )Ŵa(t)

	
dτ

= vec−1
M,M

�
ψμ�(t) · vec



Ŵ T

a (t)
�	 · Ŵa(t)� t

0

�
� f (τ )Ŵa(t)Q f (τ )

	
dτ

= vec−1
M,1

�
ψ�Q(t) · vec



Ŵa(t)

�	
� t

0

�
� f (τ )Ŵa(t)Ŵ

T
a (t)� f (τ )Ŵa(t)

	
dτ

= vec−1
M,1

�
ψ��(t) · vec



Ŵa(t)Ŵ

T
a (t)

�	 · Ŵa(t)

where ψ�Q(t) = � t
0 [� f (τ )Q f (τ )]dτ . Denote ψμQ(t) =� t

0 [μ f (τ )Q f (τ )]dτ . Then, Nc(t) can be calculated as

Nc(t) = ψμQ(t)− 1

2
vec−1

M,1

�
ψ�Q(t) · vec



Ŵa(t)

�	
+ 1

4
vec−1

M,M

�
ψμ�(t) · vec



Ŵ T

a (t)
�	 · Ŵa(t)

− 1

8
vec−1

M,1

�
ψ��(t) · vec



Ŵa(t)Ŵ

T
a (t)

�	 · Ŵa(t).

(83)

APPENDIX B
CALCULATION OF Fa(t) AND Fc(t)

Based on the definition of ϕa(t, τ ) in (52), the term Fa(t)
can be rewritten as

Fa(t) =
�� t

0
� f (τ )Ŵa(t)μ

T
f (τ )dτ

�
· Ŵc(t)

− 1

2

�� t

0
� f (τ )Ŵa(t)Ŵ

T
a (t)� f (τ )dτ

�
· Ŵc(t).

Recalling the facts in (80), one has

Fa(t) = vec−1
M,M

�
ψ�μ(t) · vec



Ŵa(t)

�	 · Ŵc(t)

− 1

2
vec−1

M,M

�
ψ��(t) · vec



Ŵa(t)Ŵ

T
a (t)

�	 · Ŵc(t).

Similarity, inserting the definition of ϕa(t, τ ) (52) into Fc

in (58) yields

Fc(t) =
� t

0

�
μT

f (τ )− 1

2
Ŵ T

a (t)� f (τ )

�
Ŵc(t)dτ

=
� t

0
μT

f (τ )Ŵc(t)dτ − 1

2

� t

0
Ŵ T

a (t)� f (τ )Ŵc(t)dτ

=
�� t

0
μT

f (τ )dτ

�
Ŵc(t)− 1

2
Ŵ T

a (t)

�� t

0
� f (τ )dτ

�

× Ŵc(t).

Denote the signals �ff(t) = � t
0 � f (τ )dτ and μff(t) =� t

0 μ f (τ )dτ .

To this end, Fc(t) can be online calculated as

Fc(t) = μT
ff(t)Ŵc(t)− 1

2
Ŵ T

a (t)�ff(t)Ŵc(t).
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