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Abstract—Reconfigurable intelligent surfaces (RISs) are ex-
pected to play a significant role in the next generation of
wireless cellular technology. This paper proposes an uplink
localization scheme using a single-snapshot solution for user
equipment (UE) that is located in the near-field of the RIS.
We propose utilizing the atomic norm minimization method to
achieve super-resolution localization accuracy. We formulate an
optimization problem to estimate the UE location parameters
(i.e., angles and distances) by minimizing the atomic norm. Then,
we propose to exploit strong duality to solve the atomic norm
problem using the dual problem and semidefinite programming
(SDP). The RIS is controlled and designed using estimated
parameters to enhance the beamforming capabilities. Finally, we
compare the localization performance of the proposed atomic
norm minimization with compressed sensing (CS) in terms of
the localization error. The numerical results show a superior
performance of the proposed atomic norm method over the CS
where a sub-cm level of accuracy can be achieved under some
of the system configuration conditions using the proposed atomic
norm method.

Index Terms—Reconfigurable Intelligent Surface (RIS); near-
field; wireless localization; atomic norm minimization; semidefi-
nite programming (SDP);

I. INTRODUCTION

Wireless localization is attracting booming interest in the
last couple of years due to the recent developments in the ca-
pabilities of wireless networks. For instance, the next 5G+ and
6G networks aim to consider high-frequency bands such as the
millimeter-wave (mm-wave) and wider bandwidths. This will
allow conducting a fine and super-resolution localization [1],
[2]. However, with high frequencies, new challenges arise
such as the blockage of the line-of-sight (LOS) communica-
tions [3]–[5]. As a solution to these challenges, reconfigurable
intelligent surfaces (RISs) have been introduced as a promising
energy-efficient solution to solve the high shadowed LOS
communications under high-frequency bands. The RIS is a
low-cost and low-power meta-material surface that can steer
the received signal toward a target direction [6], [7]. With
careful RIS optimization, the high shadowed LOS links can
be enhanced by creating strong non-direct LOS links between
the transmitters and receivers through the RIS.

978-1-6654-3540-6/22 © 2022 IEEE

Localization and communication under short distances
where the wavefront of the received signal has a considerable
curvature violate the planner wavefront assumption that is used
in the far-field. Such a spherical wavefront can promote the
channel model to a more complicated format known as the
near-field model. The Fraunhofer distance that is proportion-
ally function of both the carrier frequency and the aperture
size can be used as a threshold to define the near-field region
where any wireless communications below this threshold are
considered a near-field. Adopting high frequencies in the
next wireless systems will not only push up the near-field
threshold as the Fraunhofer distance implies [8]. However, it
will also lead to high path losses that will promote short-
range communications and hence, communication under the
Fraunhofer threshold [9]. Furthermore, large surfaces such
as the RIS and future massive multiple-input multiple-output
(MIMO) systems can support the near-field claims as they
increase the Fraunhofer threshold [10].

Several works in the literature have investigated RIS-aided
near-field localization. For instance, in [10] the error bounds
for a RIS-aided near-field 3D localization and orientation
estimation were proposed using the Cramér-Rao lower bound
(CRLB). Similar work has been done in [11], where the
authors derived the error bounds for the near-field RIS-aided
model and recommended the best system configurations that
can improve the localization continuity. However, non of
the above-mentioned works consider proposing a practical
localization scheme for near-field models. In that regard, the
authors in [12] proposed a near-field localization for RIS-aided
models. The localization algorithm is based on a two-step
approach in which the time of arrival (ToA) is first estimated
and then followed by the user equipment (UE) localization.
Additionally, in [13] the authors considered a compressed
sensing (CS)-based localization for a near-field and multi-path
model, however, the adopted CS algorithm suffers from high-
localization errors due to the quantization errors. Both [12] and
[13] considered their localization algorithms for a multiple-
snapshots solution only which can be impractical, especially
for dynamically movable systems and low coherence time
channels. To the best of our knowledge, localization with using
a single-snapshot solution for a UE that is located in the near-
field of the RIS is still lacking in the literature.
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In this paper, we propose to exploit the sparsity in the
mm-wave to estimate the location of a UE located in the near-
field of a RIS in terms of its angle of departure (AoD) and
distance with respect to the RIS using only a single-snapshot.
We utilize atomic norm minimization-based technique to
achieve super-resolution localization accuracy and solve the
quantization error problems compares to the conventional CS
sparse recovery techniques. The contributions of this paper can
be summarized as follows:

• We propose a super-resolution localization scheme using
a single-snapshot for a UE that is located in the near-field
of RIS.

• We formulate an optimization problem to estimate the UE
location parameters (i.e., angles and distances) based on
the atomic norm minimization.

• Due to the complexity of the optimization problem, we
drive the dual norm and convert the problem to a convex
semidefinite programming (SDP) problem.

• We propose low complexity algorithms to extract the lo-
cation information from the Lagrangian variable compare
it with the exhaustive search (ES).

Notation: We represent all the matrices as capital and bold
letters X, vectors are represented as bold and lowercase letter
x, and scalars are represented as non-bold letters x or X . The
transpose, conjugate, pseudo-inverse, and Hermitian transpose
operators are given as (.)T , (.)∗, (.)†, and (.)H , respectively.
We use diag(.) to convert a vector into a diagonal matrix,
tr(.) to compute the trace of a matrix, INU to represent and
identity matrix of size NU, ||.||ℓ to represent the operator that
computes the ℓth norm, and Re(.) to compute the real value
of a complex number. For matrix X, we use xl and xb,l to
represent the lth column and bth element, respectively.

II. SYSTEM MODEL

We consider a localization system that consists of a UE, base
station (BS), and RIS which are located at pU = [xU, yU]T ,
pB = [xB, yB]T , and pR = [xR, yR]T , respectively. We consider
MIMO system where the number of antennas in the UE, BS,
and the RIS are given as NU, NB, and NR, respectively. We
assume that all the stations are equipped with uniform linear
arrays (ULAs). Our model focus on uplink poisoning where
the BS retrieves the location of the UE from its uplink signal
arrived through the RIS as shown in Fig. 1. Further, we assume
that the LOS between the BS and the UE is blocked.

The received signal model at the BS is expressed as

Y = H X + Z, (1)

where Y is the received signal, X ∈ CNU×M o
represents the

positioning reference signal (PRS) with M o column pilots that
are orthogonal having power P , i.e, XXH = P

NU INU , and
Z ∈ CNB×Mo

represents the additive white Gaussian noise
(AWGN) where zi,j ∼ CN(0, σ2

z). The overall channel matrix
between the UE and the BS H can be modeled as [14]

H = HBRdiag(Θ)HUR, (2)

𝜙UR

𝑟UR/𝑑UR
𝜃BR

𝑑BR/𝑟BR
𝜙BR

𝜃UR

User Equipment 
(UE)

Reconfigurable Intelligent Surface (RIS)

Base 
Station (BS)

Fig. 1: The proposed system scenario and architecture.

where diag(Θ) ∈ CNR×NR
is a matrix that rep-

resents the phase control of the RIS where Θ ≜[
ζ1e

jθ1 , ζ2e
jθ2 , · · · , ζNRejθNR

]T
where ζr = 1 as we con-

sider ideal RIS, and HBR ∈ CNB×NR
represents the channel

between the RIS and the BS while HRU ∈ CNR×NU
is the

channel between the UE and the RIS. More specifically

HBR = a(θBR, dBR) ρBR aH(ϕBR, rBR), (3)

where a(θBR, dBR) and aH(ϕBR, rBR) represents the steering
vectors at the BS and the RIS respectively, the angles ϕBR

and θBR are the AoD and the angle of arrival (AoA), on the
other hand both rBR and dBR represents the distance between
the RIS and the BS1. We can use the Fresnel approximation to
model the spherical wavefront in the near-field model as [15]

ab(θ
BR, dBR) = exp

(
j [b ωBR + b2 γBR]

)
, (4)

where ωBR ≜ f(θBR) and γBR ≜ g(θBR, dBR) with

f(ϕ) = −2πδ

λ
sin (ϕ), g(ϕ, r) =

πδ2

λ r
cos2 (ϕ), (5)

where λ is the wavelength as λ = c/fc, fc is the carrier
frequency and c is the speed of light, δ is a fixed distance
between each of adjacent elements in the ULA, ρRB ∈ C,
represents the propagation gain between the RIS and BS which
can be expressed as

ρBR =

(
c

4π(rBR + dBR)fc

)µ
2

F, (6)

where F is a random variable representing the fading and
modelled as a standard complex Gaussian, µ is the path loss
exponent. The channel model between the UE and the RIS
HUR is modeled in a similar way.

III. RIS-AIDED SUPER-RESOLUTION LOCALIZATION

The goal is to estimate the UE location using the aid of the
RIS. We utilize the atomic norm minimization to estimate the
localization parameters (ϕUR, rUR, θBR, dBR) using the received
signal; we then exploit the estimated parameters to design the
RIS control matrix. We now re-estimate the parameters after
adjusting RIS control to enhance the localization accuracy.

1This is a special case of the multi-path case where rBR and dBR are the
distances between (BS and scatterees) and (RIS and scatterees) respectively.
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A. Estimation of the Localization Parameters

Let us define the atomic set in HUR as
A ≜ {aUR (

ϕUR, rUR) |ϕBR ∈ [−π
2
,
π

2
), rUR ∈ [0, R)}. (7)

The set A in (7) is refers to the atomic set as it is a set on the
continuous domain that has all the possible atoms. Knowing
the exact atoms leads to knowing the angles that this atom is
made of and, hence, estimating the location. Define ||ĥ||A,0 to
be the atomic l0 norm such that

||ĥ||A,0 ≜inf
L
{L : ĥ =

L∑
l=1

aUR (
ϕUR
l , rUR

l

)
αl,

aUR (
ϕUR
l , rUR

l

)
∈ A}, (8)

where ĥ = vec
(

Ĥ
)
= vec

(
YX†) is a vectorized version of

the least square (LS) estimate of the channel [16], and αl

is the complex amplitude. The infimum function implements
minimizing the number of angles L such that we get the
sparsest solution. The sparsest solution is the solution that
contain only the exact angle ϕUR and distance rUR. This
problem can be thought of as if we constructed a dictionary
matrix that contain all possible combinations of ϕUR and rUR.
Note that only the sparsest solution is valid and all the other
solutions are redundant. Note that the problem formulated
in (8) is considered an NP-hard problem that cannot be solved
using traditional methods. Therefore, we relax the problem as
follows: [17]

||ĥ||A ≜inf
α

{ Ltot∑
l=1

|αl| : ĥ =

Ltot∑
l=1

aUR (
ϕUR
l , rUR

l

)
αl,

aUR (
ϕUR
l , rUR

l

)
∈ A

}
. (9)

The new ||ĥ||A given in (9) is called the atomic norm. The
atomic norm can be used to solve the localization problem
with the following objective function

minimize
α,z

||ĥ||A

subject to ĥ = Uα+ z,
||z||2 ≤ ϵ, (10)

where ϵ is noise threshold, and U is a matrix that contains
all the possible combinations of ϕUR and rUR which yield a
semi-infinite programming problem. Solving the problem in
(10) will result in a high-resolution estimation of the location.

B. the dual problem

Minimizing the primal problem in (10) is equivalent to
maximizing the dual problem as strong duality hold. The
first step to formulate the dual problem is to set up the
Lagrangian as a weighted sum of the constraints with the
objective function as

L(α, z,β,γ) =||ĥ||A + Re
[
βH

(
ĥ− Uα− z

)]
+ γ

(
zHz− ϵ2

)
, (11)

where β and γ are Lagrange multipliers. The dual function
d(β,γ) is the infimum of the Lagrangian and that is

d(β,γ) = inf
α,z

L(ĥ,β,γ) = inf
α,z
{Re

[
βH ĥ− βHz

]
+γ

(
zHz− ϵ2

)
+ ||y||A − Re

[
βHUα

]
}. (12)

To solve (12), we first minimize over z as

∂d(β,γ)

∂z
= −β + 2γz = 0, (13)

that yields z⋆ = β
2γ . Similarly, the dual function maximized

over the dual variable γ we get

∂d(β,γ)

∂γ
=
||βH ||22
4γ2

− ϵ2 = 0, (14)

that yields γ⋆ = ||βH ||2
2ϵ . Now the dual function reduces to

d(β)=Re
[
βH ĥ

]
−ϵ||β||2+inf

α

(
||ĥ||A−Re

[
βHUα

])
. (15)

In order to solve for the infimum in (15), consider
that for every element αi, we have Re

[
(βHU)iαi

]
=

Re
[
(UHβ)Hi αi

]
= |(UHβ)i||αi| cos(ψ). Now using the defi-

nition of the atomic norm in (9) we get

|αi| − Re
[
(UHβ)Hi αi

]
= |αi|

[
1− |(UHβ)i| cos(ψ)

]
≥ |αi|

[
1− |(UHβ)i|

]
. (16)

For |(UHβ)i| ≤ 1 the lower bound is non-negative and the
infimum is zero, otherwise the infimum is −∞. As a result,
we can express (15) as

d(β) = Re
[
βH ĥ

]
− ϵ||β||2, s.t. ||UHβ||∞ ≤ 1. (17)

The dual problem of (10) can be reformulated as

maximize
β

Re
[
βH ĥ

]
− ϵ||β||2

subject to ||UHβ||∞ ≤ 1. (18)

The constraints in (18) are again semi-infinite programming.
Referring to [18], we define a trigonometric polynomial as

V(τ ) =
L−1∑
l=0

βle
−jτl = a(τ )Hβ. (19)

According to Theorem 4.26 in [18], if the following inequality

|V(τ )| < |R(τ )|, (20)

is satisfied, then the following is true[
Q β

βT 1

]
⪰ 0, (21)

where Q = ββH . This can be proved using Schur’s comple-
ment. According to Corollary 4.27 in [18], if we took a spacial
case of |R(τ )| = k then the following approximation is true[

Qk β

βT 1

]
⪰ 0, (22)
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where Qk is a diagonal matrix of of all the diagonal elements
equal to k2. Now we can relax the constrains in (18) as

||UHβ||∞ = minimize
k

k s.t.|UHβ| ≤ k. (23)

In our case k = 1. As a result, (18) can be re-written as a
SDP

maximize
β,Qk

Re
[
βH ĥ

]
− ϵ||β||2

subject to
[

Qk β

βH 1

]
⪰ 0. (24)

Similar to (22), Qk is a diagonal matrix such that tr(Qk) = 1.

C. User Localization
After solving the dual problem in (24), the localization

parameters are to be estimated. We can use the following null
spectrum to search for ϕUR and rUR as

P (ϕUR, rUR) =
1

|a(ϕUR ⊗ rUR)ββHa(ϕUR ⊗ rUR)H |
. (25)

In order to estimate ϕUR and rUR, the objective function in
(25) requires 2D grid search.

1) Iterative Method: : To reduce the computational com-
plexity, we propose utilizing an iterative solution in which we
relax (25) into a 1D grid search for ϕUR

1 given a random rUR
0

followed by another 1D grid search for the rUR
1 given ϕUR

1 .
We repeat the same process for k of iterations to search for
the optimal ϕ̂UR = ϕUR

k given rUR
k−1 followed by a search for

the optimal r̂UR = rUR
k given ϕUR

k .
2) Particle Swarm Optimization Algorithm: : We propose

using particle swarm optimization (PSO) to solve (25). For
the PSO, we create a set of particles such that every particles
represents a certain angle and distance and we evaluate (25)
at every particle location. We update the location of every
individual particle based on its own location, its own optimal
evaluation of (25), and the global optimal of (25) among all
the particles. More specifically, let xi represents the current
location of a certain particle i, let pi represents the best
location of that certain particle i, and let g represents the
best location among all the particles. Now we can update the
particle i location using

xi(t+ 1) = xi(t) + vi(t+ 1), (26)

Algorithm 1 Particle swarm optimization (PSO) algorithm

Input: The Lagrangian multiplier β.
1: Initialize: All particles positions xi(0), all particles veloc-

ities vi(0), acceleration coefficients c1 and c2, the random
numbers r1 and r2.

2: for t = 1 : maximum generation do
3: for i = 1 : population size do
4: if P (xi) < P (pi) then pi(t) = xi(t) end
5: Update the velocity vectors using (27)
6: Update the position vectors using (26)
7: end for
8: end for

Output P ⋆(ϕBR, rBR) = P (pi)

where vi(t+1) is the updated velocity vector of particle i that
can be described using

vi(t+ 1) =wvi(t) + r1c1 (pi(t)− xi(t))
+ r2c2 (g(t)− xi(t)) , (27)

where c1 and c2 are acceleration coefficients, r1 and r2 are
random numbers distributed uniformly between 0 and 1, and
w is inertia coefficient. Algorithms 1 summarize the PSO
algorithm.

By taking the Hermitian transpose of the received signal in
(1), i.e., YH , The other angle and distance θBR and dBR can
be estimated by applying the same methodology.

The UE location can be estimated from the pre-estimated
location parameters (ϕ̂UR and r̂UR). Given a known RIS loca-
tion, the location of the UE pU = [xU, yU], can be estimated
as

x̂U = x̂R + d̃UR cos
(
θ̃UR

)
,

ŷU = ŷR + d̃UR sin
(
θ̃UR

)
. (28)

IV. RIS CONTROL
For this section, we utilize an iterative phase design in which

we first estimate the localization parameters as described in
the previous sections using a random phase design, then we
use the estimated parameters to control the RIS phase matrix.
In that regard, we aim to minimize the localization error by
maximizing the signal-to-noise ratio (SNR). We derive the
optimal phase design as [13]:

θ⋆r =

(
NUNB

)−1 ∑
b,u

[
b ω̂BR + b2γ̂BR

+r α̂BR + r2β̂BR + r ω̂RM + r2γ̂RM

+u α̂RM + u2β̂RM
]
, ∀r ∈

{
1, 2, · · · , NR} , (29)

where αBR ≜ f(ϕBR) and βBR ≜ g(ϕBR, rBR). Now we re-
estimate the localization parameters utilizing the new phase
design, and we use the new estimated parameters to re-control
the RIS. We repeat this process until convergence. Algorithm
2 summarizes the overall proposed algorithm.

Algorithm 2 RIS-aided near-field localization via the atomic
norm minimization

Input: The received signal Y, the PRS X, the RIS
location pR.

1: Initialize: Θ← random phase design.
2: for j = 1 to J do
3: Estimate ĥ using ĥ = vec

(
YX†).

4: Estimate β using (24).
5: Estimate ϕUR and rUR using (25).
6: Use (29) to compute for Θ.
7: end for
8: Compute the UE location p̂U using (28).

Output p̂U
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V. NUMERICAL RESULTS

We present selected numerical results in this section. We
model the noise as a thermal noise such that σ2

z = Bt Tk K
where Bt represents the bandwidth, K is Boltzmann constant,
and Tk = 290 is the room temperature measured in Kelvin.
We consider the temporal multiple sparse Bayesian learning
(T-MSBL) algorithm to solve the CS problems which [19], we
use [20] to solve for (24) and we use MATLAB to implement
the PSO. The simulation parameters are presented in Table.
I. Table. II shows the hardware specifications for the work-
station that is used for simulation.

TABLE I: The simulation parameters.

description parameter value
frequency fc 28 GHz
Number of UE antennas NU 10
Number of RIS elements NR 100
path loss exponent µ 2
Number of PRSs streams Mo 20
BS location pB [0 0]
RIS location pR [2.5 2.5]
UE location pU [5 0]
Bandwidth Bt 5 MHz
Power P 0.5 Watt
Noise Thresould ϵ 0.001

In Fig. 2, we compute the localization error for different
SNRs at the BS. We vary the SNR value by changing σ2

z .
It can be seen from the figure that a lower localization error
can be achieved by increasing both the SNR and the number
of BS antennas. The results shows that the sub-cm level of
localization error can be achieved using higher values of SNR
and NB.

5 10 15 20 25 30
10−1

100

101

Number of BS antennas

L
oc

al
iz

at
io

n
E

rr
or

in
[c

m
]

SNR = 20

SNR = 30

SNR = 40

SNR = 50

Fig. 2: Localization error aginst the numbers of BS antennas.

In Fig. 3, we compare the localization performance of the
proposed atomic norm minimization with CS as a benchmark.
We fix NB = 35 and we vary the number of RIS elements
NR and the number of the PRS streams M o. The results

show the superior performance of the proposed atomic norm
minimization in comparison to the CS. For instance, with
Mo = 20 and NR = 100, the localization error can be reduced
by 99.8% by achieving 0.1 cm localization error instead of
50 cm localization error when using our proposed algorithm
compared to the CS methods. This can be justified as the CS
utilizes a finite number of atoms on a discrete grid leading to
a quantization error, while the proposed atomic norm uses a
continuous set of atoms rather than a discrete one. The figure
also shows that we can achieve better performance using a
RIS with a large number of elements, as with larger NR the
RIS can make a narrow beam toward the UE location.

101 102

10−2

10−1

100

101

102

103

Number of RIS elements

L
oc
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io

n
E

rr
or

in
[c

m
]

CS with Mo = 20

CS with Mo = 40

proposed with Mo = 20

proposed with Mo = 40

Fig. 3: Localization error comparison between the CS and the
proposed scheme.

In Fig. 4, we compare the localization error for different
optimization algorithms for solving (25), and we compare the
exhaustive search (ES), particle swarm optimization (PSO),
and the iterative solution described in section III-C. The figure
shows a similar performance between the ES and the PSO
while a slightly higher error for the iterative solution. To
judge the performance of the three optimization algorithms, we
compute the computational efforts for the three cases. Table.
III represents the required time to solve for the UE location.
The table shows that the iterative method can significantly
reduce the required simulation time, however, it can produce
a larger localization error. On the other hand, the PSO can
produce the same localization accuracy as the ES but with
lower computational effort.

TABLE II: Workstation specifications.

Aspect Specification
CPU Intel(R) Core(TM) i5-10500 CPU @ 3.10GHz 3.10 GHz
GPU Intel(R) UHD Graphics 360

Memory 16.0 GB DDR4-SDRAM
OS Windows 10 Education 64-bit
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Fig. 4: Extracting the location parameters using different
approaches.

TABLE III: Computational efforts.

Number of RIS
elements NR

Number of BS
antennas NB

Algorithm
PSO ES Iterative

Time in [s]

64 15 3.3115 3.9251 2.5414
35 19.4865 26.4548 9.47864

128 15 4.4866 4.4698 3.4564
35 21.4869 27.4856 10.4564

VI. CONCLUSIONS

In this paper, we propose a super-resolution RIS-aided
localization scheme for single-snapshot localization in near-
field environments. The localization relies on the atomic norm
minimization and the numerical results show that a sub-cm
error in localization can be achieved for some of the system
configurations. These results can be used to extend this work
in the future to address the localization problem for the near-
field multi-path environments.
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