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Abstract— Every year, wildfires burn out countless hectares
of lands, resulting in ecological, environmental, and economic
damage. This paper presents an energy management system that
consists of an unmanned aerial vehicle (UAV) equipped with
air quality and light detection and ranging (LiDAR) sensors for
monitoring forests and recognizing flames early. We develop a
novel approach for autonomous patrolling system. This approach
has the advantage of effectively detecting wildfire incidents, while
optimizing the energy consumption of the UAV’s battery to cover
large areas. When a wildfire is detected, the UAV is able to
transmit real-time data, such as sensor readings and LiDAR
data, to the nearby communication tower. We formulate an
optimization problem that minimizes the overall UAV’s energy
consumption due to patrolling. Based on the pollutant dispersion
mode, we propose a novel UAV patrolling solution based on
genetic algorithm with the goal of maximizing the patrolling
coverage of the UAV taking into account the UAV’s battery
constraints. More specifically, we optimize the UAV’s flight path
using a plume dispersion model to find the concentration of
common gases of wildfire. Finally, simulations are presented to
show the efficiency and validity of the solution.

I. INTRODUCTION

The severity and quantity of wildfires have grown con-
siderably in the previous decade around the world [1]. In
the United States (U.S.) only, over 8.7 million acres were
burned in 2018, costing approximately 24 billion dollars in
infrastructure damage and firefighting. Latest forest fires in
Western United States and Australia have engulfed various
states, burning areas greater than 50 million acres [1]. The
severity and frequency of wildfires, as well as the hazards
connected with them, are predicted to rise in the future as a
result of climate change [2].

The traditional approach of wildfire detection employs
lookout stations located in high-visibility areas [3]. This
system is labor intensive and has difficulties with worker
safety [3]. Furthermore, this strategy may cause a delay in
the detection of a fire (i.e, slowness in noticing or reporting
the incident). Wildfire detection and forest fire monitoring may
also be accomplished via satellite remote sensing [4]. It can
locate current flames, assess burnt regions, and evaluate fire
emissions [5]. However, satellite imaging has a low spatial
resolution (tens of meters) and needs a cloud-free observation
region, making it challenging to recognize wildfires in their
early stages [6]. Another approach for fire detection and
monitoring is thermal imaging [7], which may be used to
locate hotspots during the mapping and evolution of a fire.

However, thermal cameras have low spatial resolution and are
susceptible to weather influence, as the thermal signal coming
from the fire may be blocked by thick canopies [7].

Air quality detection, particularly tracers of wildfire emis-
sions, can be useful in recognizing wildfire outbreaks. These
sensors are inexpensive and sensitive to the species being
examined [8]. In general, air quality sensors operate in three
stages. In the first stage, the sensors radiate particles in the
air via laser scattering. In the second stage, the sensors then
capture the light scattered over time. Finally, the sensors cal-
culate the concentration, diameter, and number of the particles
using their build-in microprocessors. For example, air quality
Particulate Matter (PM) sensors can map the spatio-temporal
distribution by utilizing Kriging interpolation approach [9].
Other sensors such as low cost Carbon Monoxide (CO) sensors
that are based on triboelectric nanogenerators are available
that are able to monitor CO contents without a battery via
harvesting tree branch movement [10]. However, one issue
with employing air quality sensors in detecting wildfire is
requiring a large number of sensors if they are placed at fixed
sites. Moreover, deploying these sensors in hazardous places
or woods is problematic.

Due to their low cost, minimal maintenance, high mobility
and wide coverage area, including danger areas, unmanned
aerial vehicles (UAVs) have become a practical and feasible
solution for wildfire detection and forest management (i.e., it
can work in regions that people cannot access or that are out of
sight) [11]–[14]. In [15], the authors proposed a vision-based
UAV system that processes collected photos using color and
motion features. However, this method has a negative effect of
the canopy and weather conditions. In this paper, we design a
novel energy-efficient UAV patrol system for the early wildfire
detection based on the pollutant dispersion model. Further,
we propose to integrate the air quality sensors (PM and CO
sensors) with light detection and ranging (LiDAR) sensor [16].
LiDAR is characterized by its capability of producing 3D real-
time maps of pollutant concentrations by emitting several laser
beams throughout a field-of-view (FoV) region and measuring
the distance between the sensor and the item the laser beams
strike. Because LiDAR sensors generate large amounts of
data during scanning their surroundings, the UAV will only
send the LiDAR data when the measured contaminants by
conventional air quality sensors exceed specified thresholds.
This will reduce the amount of data sent from the LiDAR
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sensors and allow the communication tower to process the data
faster. The key contributions of this work can be summarized
by:

II. SYSTEM MODEL

We consider a single UAV that patrols over a flat, rectangu-
lar forest area for a wildfire detection. The UAV is provided by
a radio transceiver that allows it to exchange data with a nearby
communication tower if a wildfire is detected. The wind
direction in the region is defined by θw (the north is indicated
by θw = 0 as a reference). The UAV has LiDAR and air
quality sensors to track PM (µgm−3) and CO (ppm) levels. We
assume that a wildfire incident is recognized if the measured
concentrations of air pollutants by both sensors (i.e., PM and
CO sensors) exceed the forest threshold backgrounds [17].
When this happens, the UAV sends real-time sensor readings
and LiDAR data to the nearby communication tower.

An early-stage wildfire can occur at a random point in the
patrolled region and constantly released PM and CO pollutants
into the environment via a plume that was carried by the wind
and scattered in all directions. Let the speed of the UAV be
V ; therefore, V T̂ is the maximum distance the UAV may fly
during each time slot t, where T̂ denotes the duration of the
time slot. The UAV’s location is represented as 3D coordinates
within a time period t as Û [t] = (x[t], y[t], z[t]). The following
parameters are optimized for successful wildfire detection and
reporting (1) the UAV’s altitude to guarantee that the UAV
can pass through the plume, and (2) the flight pattern of the
UAV that ensured the UAV samples were in the plume for a
considerable time.

Fig. 1: A schematic diagram of GDM for predicting the air
pollutants concentrations in a plume.

A. Pollutant Dispersion Model

Dispersion models are commonly used to describe plume
transfer [18]. The Gaussian dispersion model (GDM), as
shown in Fig. 1, is the most extensively used model for
predicting the movement of air contaminants in a plume, where

the concentration of air contaminants released from a source
can be measured by [18]:

C(x, y, z) =
Q

2πuσy(x)σz(x)
exp

(
− y2

2σ2
y(x)

)
.[

exp

(
− (z −H)2

2σ2
z(x)

)
+ exp

(
− (z +H)2

2σ2
z(x)

)]
(1)

where C denotes the steady-state concentration at location
(x, y, z), Q indicates the emission rate, and the horizontal
and vertical spread parameters are denoted by σy(x) and
σz(x), respectively, depending on the atmospheric stability and
distance x. Note that z indicates the vertical distance from the
plume center line, and u is the average wind speed, and H
represents the emission point’s effective height. For ease of
usage, we will denote the PM and CO indices as i = {1, 2},
respectively. Equivalently, sensor concentrations of PM and
CO, are denoted as C1 and C2, respectively. The binary
variable ρi[t] is designated to show whether the concentration
of pollutant i exceeds the concentration threshold Cth,i during
period t:

ρi[t] =

{
1, if Ci[t] ≥ Cth,i during time slot t
0, otherwise.

(2)

By defining C̄i as the maximum level of the pollutant
concentration i, the value that can be measured precisely at
the point of fire, (2) can be written as:

(Cth,i − Ci[t])− C̄i(1− ρi[t]) ≤ 0, ∀i,∀t, (3)
and

(Ci[t]− Cth,i)− C̄iρi[t] ≤ 0, ∀i,∀t. (4)

It should be noted that using both constraints (3) and (4)
are required to express (2) in mathematical formulas. Suppose
ρ[t] = ρ1[t] = ρ2[t], where ρ[t] equals 1 if both pollutants’
concentrations are higher than the concentration threshold and
0 otherwise (i.e., one pollutant concentration is below the
threshold).

We assume that wildfire is identified when both PM and CO
concentrations exceed their respective concentration thresh-
olds. As a result, the UAV must broadcast real-time data to the
he nearby communication tower. Based on quality-of-service
(QoS), which is presented as a data rate threshold. We assume
that, in addition to air-quality sensors reading, the UAV can
transmit LiDAR data that deliver 3D detailed maps to improve
decision accuracy. It is worth mentioning that the QoS of
sensor readings differs from the QoS of LiDAR 3D maps.
It also should be noted that different QoS data are referred to
as a distinct data types.

The main objective is to send all data types to the chosen
BS when the concentrations of PM and CO pollutants exceed
the specified threshold (i.e., ρ[t] = 1).

B. UAV Energy Model

Denote the total communication power for transmission
during the t-th time slot is PC [t]. In addition to transmission
power, the UAV uses flying and hovering powers PF [t], which
are denoted as [19]:
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PF [t] =

(√
(mtotG)3

2ψr2
pωpψ

+ Ps

)
(5)

where Ps represents the amount of power consumed by the
UAV equipment in (W), ψ denotes the air density in (kg/m3),
and mtot represents the mass of the UAV in (kg). The UAV’s
propellers’ number and radius are indicated by the parameters
ωp and rp, respectively. Thus, the overall consumed energy
may be expressed as follows:

Etot = EF + EC = T̂
T∑

t=1

PF [t] + T̂
T∑

t=1

PC [t]. (6)

Note that since EF >> EC (in contrary to transmission,
power which uses only fractional Watts, flight uses several
Watts), the approximate total energy in (6) is given by:

Etot ≈ EF = T̂
T∑

t=1

PF [t], (7)

where T is a dependent variable that has an impact on the
overall amount of energy; for instance, if the patrol UAV
completes the patrol flying trip earlier, then T gets smaller
and the energy is reduced.

III. PROBLEM FORMULATION

This section develops the mathematical formulation for the
UAV patrolling problem. The objective is to minimize the
overall consumed energy and meet the detection threshold,
and budget for UAV battery. The goal is to identify the
optimal UAV trajectory inside a given region. The energy
consumption of the UAV can be minimized by minimizing
the flight time of the UAV when it reaches Cth,i, ∀i = {1, 2}
and detects wildfire. This may be accomplished by optimizing
the trajectory of the UAV. Due to the limited capacity of the
UAV battery, the UAV’s flight path limits the area that the UAV
may patrol. For the sake of simplicity, let us assume that the
UAV follows a rectangular track. Therefore, the horizontal gap
distance between the two parallel legs which is given by ∆x
has a significant impact on the UAV’s overall distance flown.
A greater spacing results in inefficient wildfire tracer detection
and reduced energy use, whereas a smaller gap results in
longer flight distances and quicker battery usage. It should
be noted that this ∆x-optimized rectangular track might be
simply changed to fit different tracks, such square or spiral
tracks. For ease of use, the rectangular track was selected.

In this context, the maximum gap distance of the UAV is
calculated using GDM. The longest distance the UAV could go
and the size of the forest that could be patrolled are determined
by the battery capacity of typical UAVs. To efficiently identify
early-stage fire occurrences, the UAV’s height and trajectory
must be optimized. Consequently, the patrolling optimization
problem can be expressed as

minimize
(z[t],y[t],∆x,)≥0,

Etot (8)

subject to

C(x = ∆x, y[t], z[t]) ≥ Cth,i, ∀i, (9)
where (9) constraint is used to guarantee that the horizontal
spacing is ∆x, and z[t] considers meeting Cth,i for both PM

and CO pollutant species in the event that a wildfire occurs in
the region of interest. This will make sure that any wildfires
in the region of interest are detected. It should be noted that
the ρ[t] value will be dependent on a real-time concentration
measurement of PM and CO sensors.

IV. UAV PATROLLING SOLUTION

In this section, we present our proposed UAV patrolling
solution. In order to maximize the coverage area for the UAV
patrols and to take into account the UAV’s battery constraints.
According to [18], the UAV must transverse the plume at
the height of the plume centerline z[t] = H in order to
efficiently identify early-stage fire incidents. The formula used
for calculating H is given by [18]:

H = h0 +
νsds
u

[
1.5 + 2.68× 10−2Pa.

(
Ks −Ka

Ks

)
ds

]
(10)

where h0 is the height of the burning plume, νs is its upward
velocity, d is its diameter at the emission point, Pa is its
pressure, Ks is its temperature, and Ka is the temperature
of the surrounding air. Additionally, as shown in Figure ??
the peak incidence will occur when y = 0 according to GDM.
As a result, using [20], based on the surrounding environment
and the available data describing fire plumes, the rectangular
UAV motion’s ideal or maximum horizontal spacing distance
∆x can be determined by solving the following optimization
problem. Note that minimizing EF is equivalent to maximiz-
ing of ∆x:

maximize
∆x

∆x (11)

subject to:
C(x = ∆x, y = 0, z = H) ≥ Cth,i, ∀i, (12)

where the purpose of constraint (12) is to ensure that the
horizontal spacing ∆x fulfills Cth,i for all polluting types (i.e.,
PM and CO). The optimization problem stated in (11)-(12)
is non-convex and non-linear. Consequently, it is challenging
to find the optimal solution, according to [21]. Due to its
quick deployment and short convergence time, we propose
using a meta-heuristic technique based on genetic algorithm
(GA) to identify a nearly optimal path for patrolling horizontal
gaps [22]. This method is primarily based on natural-random
evolution. GA begins with creating a random set of population
with a predetermined amount of strings. Strong strings sur-
vive the algorithm generation after generation, whereas weak
strings die. Following that, the GA use mutation and crossover
processes to build new strings from the surviving ones [22].
It should be noted that the crossover process consists of
randomly splitting two surviving parent strings, and swapping
the acquired pieces to form 2 new strings. The mutation
operator, on the other hand, is used by changing a random
string value with a particular probability [23].

V. SIMULATION RESULTS

This section illustrates selected simulation results to demon-
strate the benefits of the proposed patrolling approach. We take
into account the reference emission rates Q0,i of PM and CO
that follow, respectively, Gaussian distributions N (17.4, 7.2)
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and N (64.5, 16.7) [17]. Cth,1 and Cth,2 are assumed to be
75µg/m3 and 150ppm respectively (in view of three times
of the controlled concentration to recognize the fire occa-
sion) [18], [24]. Table I provides a summary of the remaining
simulation settings [18], [25]. Based on the dispersion model
presented in (1), two stability scenarios (very unstable and
neutral) are taken into consideration. In other words, σy and
σz are determined in light of sensible approximated fit and
given, respectively, as [18]:

σy = axb, (13)

σz = cxd + f, (14)
where Table II lists the parameters a, b, c, d, f . Examples of
a 2D Gaussian pollutants concentrations dispersion model in
a plume for very unstable and neutral atmospheric stability
conditions are shown in Figure 2-Figure 3, respectively .

Table I: Patrolling simulation parameters [18].

Constant Value Constant Value Constant Value
V [m/s] 5 h0 [m] 15 vs [m/s] 1.55
ds [m] 4.75 Ka [K] 308.15 Ks [K] 1106.15
Pa [mb] 1000 Ps [W] 0.5 mtot [kg] 1
ψ [kg/m3] 1.225 ωp 4 rp 0.2

Figure 4 depicts the horizontal gap ∆x as a function of
wind speed u. It is demonstrated that when the wind speed
rises, the horizontal gap of all the various stability factors
decreases. This is due to the inverse proportional relationship
between pollutant concentration C and wind speed u is inverse
propositional, as shown in (1). It is noteworthy that as C rises
at the same position (x, y, z), so does ∆x rise since the UAV
can detect the Cth beyond this point. At low wind speed levels,
the differences among various kinds of stability conditions
are substantial. When u = 20[m/s], for example, ∆x for
neutral and severely unstable conditions are roughly 220m and
160m, respectively, with an estimated difference of 80m. When
u = 2[m/s], ∆x for neutral and severely unstable conditions
are about 880m and 400m, respectively, with approximately
500m difference. As u rises, the distance between the various
stability scenarios decreases.

Table II: Stability coefficients based on the GDM.

∆x ≤ 1 km ∆x > 1 km
Stability a b c d f c d f
V.Unstable 213 0.894 440.8 1.941 9.27 459.7 2.094 -9.6
Neutral 68 0.894 33.2 0.725 -1.7 44.5 0.516 -13.0

Figure 5 shows the relationship between the horizontal gap
∆x and the emission rate factor κ. As specified by the formula
Qi = κiQ0,i, ∀i = {1, 2}, the parameter κ is used to represent
the emission rate in terms of the reference emission rate.
Notice that the emission rate factors for PM2.5 and CO are

indicated by the symbols κ1 and κ2, respectively. This can
demonstrate how the horizontal gap is affected by increasing
or decreasing emission rates. According to Figure 5, the
horizontal gap grows as κ increases for the same emission rate
factor κ = κ1 = κ2. The proportional relationship between C
and Q in (1) was thus validated. Therefore, when Q increases,
∆x also increases.
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Fig. 2: 2D Gaussian pollutants concentrations dispersion
model in a plume for very unstable stability situation.
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Fig. 3: 2D Gaussian pollutants concentrations dispersion
model in a plume for neutral stability situation.

VI. CONCLUSION

This work proposed a unique approach for integrating UAVs
with air quality and LiDAR sensors, as well as communica-
tion transceivers, to identify wildfires early. This developed
framework can outperform thermal imaging and other current
methods by detecting pollutants rapidly, recognizing the source
of the fire, and providing more information about pollutant
dispersion. Moreover, the concept of autonomous patrol op-
timization (i.e., optimizing the flight route of the UAV) can
identify wildfire incidents effectively, while maintaining the
UAV battery for a broader coverage area. This will result
in a more reliable and energy-efficient wildfire detection
approach. Future and active work will adopt novel approaches
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to develop new strategies that lead to enhance the performance
of the systems. One idea is to explore several wildfire hotspot
regions. These regions may be identified using historical data,
and it is worthwhile to patrol the UAV above these hotspot
regions in spirals or other motion patterns. This will come at
the cost of increased UAV energy consumption and increased
track complexity.
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