
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Mar 2022

Heuristic-Based Automatic Pruning of Deep Neural Networks Heuristic-Based Automatic Pruning of Deep Neural Networks

Tejalal Choudhary

Vipul Mishra

Anurag Goswami

Jagannathan Sarangapani
Missouri University of Science and Technology, sarangap@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
T. Choudhary et al., "Heuristic-Based Automatic Pruning of Deep Neural Networks," Neural Computing and
Applications, vol. 34, no. 6, pp. 4889 - 4903, Springer, Mar 2022.
The definitive version is available at https://doi.org/10.1007/s00521-021-06679-z

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s00521-021-06679-z
mailto:scholarsmine@mst.edu

ORIGINAL ARTICLE

Heuristic-based automatic pruning of deep neural networks

Tejalal Choudhary1 • Vipul Mishra1 • Anurag Goswami1 • Jagannathan Sarangapani2

Received: 20 January 2021 / Accepted: 27 October 2021 / Published online: 10 January 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
The performance of a deep neural network (deep NN) is dependent upon a significant number of weight parameters that

need to be trained which is a computational bottleneck. The growing trend of deeper architectures poses a restriction on the

training and inference scheme on resource-constrained devices. Pruning is an important method for removing the deep

NN’s unimportant parameters and making their deployment easier on resource-constrained devices for practical appli-

cations. In this paper, we proposed a heuristics-based novel filter pruning method to automatically identify and prune the

unimportant filters and make the inference process faster on devices with limited resource availability. The selection of the

unimportant filters is made by a novel pruning estimator (c). The proposed method is tested on various convolutional

architectures AlexNet, VGG16, ResNet34, and datasets CIFAR10, CIFAR100, and ImageNet. The experimental results on

a large-scale ImageNet dataset show that the FLOPs of the VGG16 can be reduced up to 77.47%, achieving � 5x inference

speedup. The FLOPs of a more popular ResNet34 model are reduced by 41.94% while retaining competitive performance

compared to other state-of-the-art methods.

Keywords Deep neural network � Efficient inference � Convolutional neural network � Model compression and

acceleration � Filter pruning

1 Introduction

Deep neural networks (DNNs) have been applied in a wide

variety of domains such as computer vision, machine

translation, natural language processing and have achieved

state-of-the-art performance in various applications such as

classification [33, 47] object detection [13, 37, 42] image

generation [15], speech recognition [16], and segmentation

[2] to name a few. The generalization, ability to perform

well on the unseen data [52] and convergence ability of

DNN comes from their millions of weight parameters and

billions of floating-point operations (FLOPs) that has

helped DNNs in achieving superior performance over time.

Over the years, neural network (NN) architectures have

become deeper with an increasing number of layers and

wider meaning more nodes or filters at each layer. Con-

volutional neural network (CNN) is one of the popular

variants of the DNN. Figure 1 shows the architecture of the

VGG16 convolutional architecture. Recently, researchers

have successfully trained a network with more than 150

layers and achieved improved performance on a wide

variety of tasks such as classification, detection, and seg-

mentation [20].

Despite improvements in their performance [20, 47],

however, their usage on resource-constrained devices like

mobile phones, wearables, and other edge-devices has

hindered [28, 36]. For practical applications, it has become

a necessity to bring the capabilities of DNNs in devices

with limited resources [17, 50]. Inference process of

trained networks on devices with inadequate resources

leads to the following challenges: (1) for instance in CNN,

performing convolutional operation requires a lot of com-

putational power [7, 57], and (2) the battery power or

& Vipul Mishra

vipul.mishra@bennett.edu.in

Tejalal Choudhary

tejalal.choudhary@gmail.com

Anurag Goswami

anurag.goswami@bennett.edu.in

Jagannathan Sarangapani

sarangap@mst.edu

1 Bennett University, Greater Noida 201310, India

2 Missouri University of Science and Technology, Rolla,

MO 65409, USA

123

Neural Computing and Applications (2022) 34:4889–4903
https://doi.org/10.1007/s00521-021-06679-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-3649-1388
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06679-z&domain=pdf
https://doi.org/10.1007/s00521-021-06679-z

energy needed [25] to run CNN which performs a lot of

FLOPs operations during inference.

Therefore, model compression and acceleration methods

have attracted significant attention of the researchers from

deep learning community [6, 10, 27, 53]. Alternatively, a

large number of unimportant weight parameters can be

removed without affecting the performance of the model

[22, 48] at the same time reducing the FLOPs, though it is

challenging [9]. In summary, significant research efforts

have been devoted to making DNNs inference-friendly so

that they can be deployed on devices with limited resources

[35, 40].

Out of the many compression and acceleration tech-

niques such as low-rank approximation [30, 46, 55],

quantization and binarization [3, 27, 49], knowledge dis-

tillation [4, 24], pruning has evolved as one of the impor-

tant methods to improve DNNs efficiency for limited

budget applications and devices [39, 48]. In pruning, the

less important parameters of the model are pruned; either

set to zero or completely removed from the network based

on the type of pruning performed. From a DNN, individual

weight connections, a complete node, filters, or layers can

be pruned and referred to as weight pruning [18, 19, 34],

node pruning [44], filter pruning [1, 21, 40], and layer

pruning [5], respectively.

Pruning can be categorized as structured or unstructured.

For example, pruning individual weight connections or

nodes is unstructured as it makes the resulting architecture

sparse [18]. On the other hand, the complete filter or layer’s

pruning is structured [35, 39]. Pruning also reduces the

well-known over-fitting problem of the DNNs [12, 14]. For

a comprehensive study on other compression and acceler-

ation techniques, the readers are suggested to refer to

recent surveys [8, 9].

This paper aims to propose a novel heuristics-based

automatic filter pruning method for accelerating the per-

formance of the DNNs. In particular, the objectives are to

analyze whether the inference-performance of the DNNs

can be improved based on the reduction of the time-con-

suming FLOPs while keeping the accuracy loss within the

acceptable range; and to investigate whether the proposed

method can be generalized for different convolutional

architectures.

The earlier research [22, 35, 40] has shown that many

convolutional layer filters do not contain useful informa-

tion after training, hence become unimportant and can be

pruned. Instead of utilizing a trained model directly on the

target device, we first propose to prune the unimportant

filters, re-train the pruned model, and finally deploy a

pruned and fine-tuned model on the target device as shown

in Fig. 2. Unlike other techniques [1, 26, 35], our proposed

method eliminates the need for any manual tuning to find

the threshold for each layer. Instead, the number of filters

that could be pruned from each layer is determined

automatically.

The main contributions of the paper include: (1) a novel

heuristics-based automatic filter pruning method to identify

and prune unimportant filters from the trained CNN with-

out the need for human intervention during the pruning

process; (2) introduction of a novel pruning estimator c
wherein the filters whose absolute sum is less than c are

treated as unimportant and pruned layer-wise. (3) addition

of an additional control parameter (b) to handle the situa-

tions where the model is to be pruned more or less

aggressively.

This paper has been organized into various sections. In

Sect. 2, our proposed method is explained that will help to

achieve our research objectives. Section 3 elucidates the

details of the experiments performed with benchmarks

convolutional architectures on various datasets. Section 4

includes the details of the experimental results, followed by

the discussion. Finally, the conclusion and future directions

are summarized in Sect. 5.

2 Methodology

This section discusses pruning as an optimization problem,

followed by the details of the proposed method to auto-

matically identify and prune unimportant filters from CNN.

In CNN, a filter becomes unimportant if its removal does

not affect the model performance after training. The

Fig. 1 An example of VGG16 CNN

4890 Neural Computing and Applications (2022) 34:4889–4903

123

performance of the model gets affected by the selection of

proper filters for pruning. Therefore, it is necessary to

prune the correct number of filters without affecting the

model performance. If fewer filters are pruned, it will not

help reduce the lesser importance filters. On the other hand,

if the model is pruned aggressively, it becomes difficult for

the pruned model to recover from the accuracy loss.

Therefore, one of the main challenges in pruning is iden-

tifying candidate filters to prune, and the total number of

filters that could be pruned from the model without com-

promising the performance. Pruning filters can be thought

of as an optimization problem to maximize the perfor-

mance of the model and reduce the resource requirements.

In our case, the particular resource we consider minimizing

is the FLOPs by pruning the unimportant filters and their

respective feature maps.

Figure 3 visualizes the main steps of the proposed

method. Our proposed method takes the trained model and

pruning controller (b) as an input and performs pruning of

less important filters for each of the model’s convolutional

layers. In Fig. 3, the pruned filters are highlighted with the

red color. Solving the optimization problem can be con-

sidered as two main goals to be achieved. To solve this, we

employed our proposed Algorithm 1. The proposed algo-

rithm has two main parts pruning and fine-tuning. Pruning

filters achieve the first goal, and the second goal is

achieved by fine-tuning the pruned model. Algorithm 1

summarizes the entire filter pruning and fine-tuning steps

of the proposed method. In Algorithm 1, b is the pruning

controller, M is the original model, and Mp is the pruned

model. Similarly, W
½l�
m ðoldÞ and W

½l�
k ðnewÞ represents the

original and pruned weight of the lth convolutional layer of

the model M and Mp, respectively. Overall, the proposed

method can be categorized as filter selection, pruning lesser

importance filters, and fine-tuning. In the next subsections,

we have discussed each of these in detail.

Fig. 2 Traditional (dotted line) and proposed (solid line) deployment scenario

Fig. 3 Proposed filter pruning and fine-tuning framework

Neural Computing and Applications (2022) 34:4889–4903 4891

123

2.1 Filter selection criteria

The selection of the filters for pruning is an important

question to answer. In earlier research, it was found that

small-magnitude weights are unimportant after training,

and a substantial amount of weight parameters can be

removed from the model [18], we extend the argument to

convolutional layer filters. Filters with smaller absolute

sum are unimportant and do not contain useful information;

hence, pruning these filters will least affect the model

performance. We proposed a novel heuristic pruning esti-

mator (c) to find the filters that could be pruned. In other

words, c is used to differentiate between the important and

unimportant filters. The novel pruning estimator (c) is

defined as the mean absolute sum of all the filters in the

layer (Eq. 5).

The research objective was to find an optimized model

with the minimum number of convolutional filters while

making the least compromise with the model performance.

Let’s assume M is the original model and Mp is the pruned

model. The model M has C convolutional layers. The lth

convolutional layer is represented by l½k�, and

k 2 f1; 2; 3; . . .;Cg. The number of filters of the layer l½k� is
ns and generates the feature maps Amap that is used as input

for the next layer. The set of filters of the model at layer l½k�

is represented by F l½k� = ½f1; f2; f3; . . .; fns �. Further, let’s

assume the weights of the l½k� layer of the original model M

is given by W
l½k�
m ¼ ½w1;w2;w3; . . .;wns �. The weights of the

l½k� layer of the pruned model Mp is given by W
l½k�
p ¼

½p1; p2; p3; . . .; pnq � where ns 6¼ nq. The accuracy of the

original model M is given by am and the accuracy of the

pruned model Mp is given by ap. For a given dataset D ¼
ðxi; yiÞNi¼1 and a pruning threshold level t given by the novel

pruning estimators c, the problem of pruning filters from

the model was formulated as

min
F

LðF ;DÞ ð1Þ

4892 Neural Computing and Applications (2022) 34:4889–4903

123

¼ min
F

1

N

XN

i¼1

LðF ; ðxi; yiÞÞ ð2Þ

where Lð:Þ is the standard cross entropy loss and F is the

set of filters. Let’s represent the absolute sum or ‘1-norm of

the filter fi by s. If s 2 R then its norm is given by jsj, and
defined as.

jsj ¼
Xc

i¼1

Xh

j¼1

Xw

m¼1

jWi;j;mj ð3Þ

For every s following holds,

jsj � 0 for all s 2 R, and

jsj = 0 iff s = 0.

If jsj is an integer greater than or equal to zero, then the

sum of all the filters of the layer l½k� is given by

sF ¼
Xns

s¼1

sfs ð4Þ

and it would also be greater than or equal to zero. We

define a novel pruning estimator c as

c ¼ sF
ns

þ b ð5Þ

If the relative filter indices of the layer l½k� is denoted by

a binary vector V ¼ ½v1; v2; v3; . . .; vns � where each value of
V 2 ð0; 1Þ. The relative filters index in V can be set to zero

if the jsj of the respective filter is less than c otherwise to

one as shown below.

Vns ¼
0 if jsij\c

1; otherwise

�
ð6Þ

We call c as the pruning estimator, as it determines the

number of filters that can be pruned from the each con-

volutional layer. Further, b was introduced to reduce or

increase the set of the filters to be pruned. The earlier

studies [18, 23, 35] have shown that the small magnitude

weights or filters with smaller ‘1-norm generates weaker

activation maps. Therefore, the impact of the weaker

activation maps on the final output of the model is less. In

this context, the filters with smaller ‘1-norm becomes

pruning candidate compared to the filters with larger ‘1-

norm [23]. However, finding the optimal number of filters

that can be pruned from the model is a major bottleneck.

Therefore, the proposed pruning estimator (c) eliminates

the need of defining the manual pruning threshold for each

layer.

In Eq. (5), b is pruning controller b 2 R and its value

varies between - 2 and þ 2. The range of the pruning

controller (b) was determined experimentally. b can be

used for situations where the model needs to be prune more

or less aggressively. It could be set to zero when we want

to prune filters solely based on the mean absolute sum

information. Otherwise, b could be set to some positive

value if we want to prune more aggressively or to some

negative value if we want to reduce the pruning of filters.

We empirically found that pruning filters based on c sub-

stantially perform better than other methods in which the

pruning rate is given manual. To show that the proposed

pruning estimator c works for different models and to find

the best trade-off between accuracy, % parameters pruned,

and % FLOPs reduction, an extended analysis was made by

performing regression statistical test and plotting b. The
results have been added to Sect. 4.3.

2.2 Prune unimportant filters

In CNNs, a set of filters Fðh�w�c�nÞ are applied at each

convolutional layer. Where, h and w is the height and width

of the filter, c is the number of channels and, n is the

number of filters applied in any convolutional layer l 2 L.

Each filter f ðh�w�cÞ 2 F produces one feature map, when

all the feature maps are stacked together, they produce a

feature map of size ðððd�hþ2pÞ
s þ 1Þ � ððd�hþ2pÞ

s þ 1Þ � nÞ,
and it becomes the input for the next lþ 1 layer. Where, p

and s is the padding and stride, respectively, and d is the

dimension of the input. The activation produced by l� 1

convolutional layer is given by ðh½l�1� � w½l�1� � n½l�1�.

Where h½l�1�, w½l�1� is the dimension of the output and n½l�1�

is the depth. This activation will work as an input for the

layer l. Suppose, in any layer l, the filters of size ðh½l� �
w½l� � n½l�1�Þ are applied. After applying convolutional, and

nonlinearity, it will produce an activation/feature map of

size ðh� w� NÞ, N is the number of filters applied.

Where, h and w are given by ððh½l�1� � h½l� þ 2pÞ=sþ 1Þ.
Figure 4 shows pruning of the filters from any layer l. In

Fig. 4, left part shows the original un-pruned architecture.

It should be noted that currently it produces activation for

the lþ 1 layer as ðh� w� NÞ. If at any point in time, it is

found that the two filters out of the four are not contributing

towards improving the model performance in layer l, then

these two filters will be selected for pruning. The right part

of the diagram shows that the two unimportant filters and

their corresponding feature maps are pruned. Pruning of

these filters and their corresponding feature maps will

result in reducing the input for the lþ 1 layer. Now, as it is

visible from Fig. 4 (right part) that after pruning of filters

and their feature maps, the input for the next lþ 1 layer

would be ðh� w� ðN � 2ÞÞ, before pruning it was

ðh� w� NÞ. Before pruning, the dimension of the weight

tensor W was (4, n½l�1�, h½l�, w½l�), after pruning, the new

dimension of the W would be (2, n½l�1�, h½l�, w½l�). W[0]

represent the weights of the first filters, W[1] second filter,

and so on.

Neural Computing and Applications (2022) 34:4889–4903 4893

123

To prune a set of filters from any layer l, all the filters

are ranked according to their absolute sum in the proposed

method. Then, c is calculated for the layer. According to

our approach, filters whose absolute sum is below the value

of c is a pruning candidate. We use a binary mask to mark

whether any filter will be pruned or not from the layer. If

the absolute sum of the filter fi is less than c, then the

corresponding filter index is set to zero, otherwise one. A

value of zero indicates that the filter is less important and is

a pruning candidate. After getting the information of all the

filters to be pruned, we performed one-shot pruning of all

the filters from the layer. This process is repeated for all the

convolutional layers. Whenever any filter is pruned from

the layer l, its corresponding feature map is also pruned.

Pruning of the feature map reduces the number of input

channels in the next layer, so the numbers of channels are

also reduced in the lþ 1 layer.

Once all the unimportant filters are pruned from all the

layers, the new model is created with the remaining set of

filters. The weights of the remaining filters are copied from

the original architecture to a newly created architecture

layer-wise. The pruning of the last convolutional layer

affects the first dense layer. After pruning the last convo-

lutional layer, the input connections in the first dense layer

are changed, and weights are copied accordingly.

2.3 Fine-tuning

After pruning, the original model’s performance degrades,

and to compensate for the performance loss the pruned

model needs to be fine-tuned. For this purpose, we took the

pruned model and performed fine-tuning for more number

of epochs on the original dataset. We conducted a number

of experiments, and the experimental results support that

the pruned model can recover the performance after fine-

tuning. It is also worth noting that, since our proposed

method is based on pruning of filters and does not make the

resulting pruned architecture unstructured, the pruned

model can directly be deployed on the target device

without requiring special hardware or software [39]. Our

method is also orthogonal to other compression and

acceleration methods. The pruned model can further be

processed by other methods such as low-rank factorization,

and weight quantization to further compress and accelerate

the model performance. In the next section, we have pro-

vided the experiments detail by applying the proposed

method to popular convolutional architectures and datasets.

3 Experimental setup

In this section, we elucidate the details of the various

experiments performed to evaluate the proposed method’s

effectiveness. The proposed method is evaluated on a

variety of network architecture and datasets. All the

experiments are performed on NVIDIA DGX V100

supercomputer with 128 GB RAM, 40,960 CUDA cores,

5120 tensor cores, and 960 TFLOPS speed. PyTorch [41]

deep learning framework is used for implementing all the

experiments.

3.1 Models and dataset

During experiments, we selected a fair amount of small and

large DNN architectures such as AlexNet [31], VGG16

[43], and deeper network ResNet34 [20]. We performed

experiments with CIFAR10 [32], CIFAR100 [32], and

ImageNet [11] datasets. For CIFAR10 and CIFAR100

datasets, we used a modified version of the VGG16 model,

and for the ImageNet dataset, we use the original VGG16

model. Standard dataset splits are used while training and

testing the models on various datasets. Table 1 summarizes

the details of models used in the experiments with their

learnable parameters and FLOPs needed for a single image

during inference. Table 1 also summarize the details of the

CIFAR10, CIFAR100, and ImageNet datasets such as the

Fig. 4 Visualizing filter pruning (the left part of the diagram is the original, and right part shows the impact of pruning filters and their

corresponding feature maps), * shows the convolutional operation between input and filters

4894 Neural Computing and Applications (2022) 34:4889–4903

123

number of classes, training and test images, and the

dimension of the images.

3.2 Experiment procedure and evaluation
criteria

In general, we apply the following steps to achieve our

research objectives discussed in Sect. 1.

• Train the model from scratch (CIFAR10 and

CIFAR100 dataset) or use pre-trained model (ImageNet

dataset).

• Apply the proposed filter pruning method (Algorithm 1)

discussed in Sect. 2 to identify and prune unimportant

filters from the model.

• Fine-tune the pruned model on the respective dataset to

compensate for the accuracy loss due to the filter’s

pruning.

The performance of the original and pruned model is

measured based on their top1 test accuracy (Eq. 7), %

reduction in the FLOPs (Eq. 8), and % learnable parame-

ters pruned (Eq. 9). The three evaluation criteria are given

as

acc ¼ classificationcorrect

#images
� 100 ð7Þ

flops ¼ ðFLOPsorig � FLOPsprunedÞ
FLOPsorig

� 100 ð8Þ

para ¼ ðParaorig � ParaprunedÞ
Paraorig

� 100 ð9Þ

classificationcorrect is the number of images correctly clas-

sified by the model, #images is the total number of images

in the test set. FLOPsorig is the total number of FLOPs in

the original model, FLOPspruned is the total number of

FLOPs in the pruned model. Similarly, Paraorig and

Parapruned is the number of learnable parameters in the

original and pruned model, respectively.

3.3 Experiments on the CIFAR10 and CIFAR100
dataset

VGG16 model has 13 convolutional layers, and it has been

used in various classification and detection problems. We

used a variant of the VGG16 model with batch normal-

ization [29] and without dropout [45] for CIFAR10 and

CIFAR100 experiments. The modified architecture has two

dense layers, one with 512 nodes that receive input directly

from the last convolutional layer and one output layer. We

modified the number of nodes in the last dense layer to 10

and 100 to match with the CIFAR10 and CIFAR100

datasets, respectively. The base architecture is trained from

scratch to get top1 accuracy of 92.25% and 69.37%,

respectively, for CIFAR10 and CIFAR100 experiments.

The base model is trained for 160 epochs with an SGD

optimizer and 0.9 momentum. The learning rate was set to

0.1, and the weight decay of 1e-4 is applied. The learning

rate is decayed by ten after every 30 epochs. For the

CIFAR100 experiment, all the training parameters were the

same as used while working with CIFAR10. The pruned

model is fine-tuned for 80 epochs with a 0.01 learning rate.

3.4 Experiments on the ImageNet dataset

To test the method’s generalization ability and effective-

ness, we further evaluate the proposed method on a large-

scale ImageNet dataset. The method is evaluated on three

convolutional architectures AlexNet, VGG16, and

ResNet34, and presented a comparative study for VGG16

and ResNet34 in the next section. For ImageNet experi-

ments, we use the pre-trained models from PyTorch [41]

deep learning framework as base architectures. The pruned

models are fine-tuned with an SGD optimizer with a

momentum of 0.9. The batch size was 128, the learning

rate was set to 0.001, and the weight decay of 1e-4 is

applied. Images are resized to 256� 256 and randomly

center cropped at 224� 224. Random horizontal flip is

used as data augmentation during training, and in the

testing center crop is used. No other data augmentation

techniques are used.

Table 1 Details of the convolutional architecture and datasets used in the experiments

Exp. Model Dataset #Para Classes Image size Train images Test images FLOPs

1 VGG16 CIFAR10 14.98M 10 32� 32� 3 50K 10K 313M

2 VGG16 CIFAR100 15M 100 32� 32� 3 50K 10K 314M

3 AlexNet ImageNet 61.1M 1000 224� 224� 3 1.2M 50K 1.43B

4 VGG16 ImageNet 138.3M 1000 224� 224� 3 1.2M 50K 30.97B

5 ResNet34 ImageNet 21.8M 1000 224� 224� 3 1.2M 50K 3.68B

Neural Computing and Applications (2022) 34:4889–4903 4895

123

The initial experiments are performed with the AlexNet

model. The pre-trained PyTorch AlexNet [31] model has

61.1M parameters and has 1.43B FLOPs without batch

normalization layers. The top1 and top5 accuracy of the

original pre-trained model are 56.45% and 79.09%,

respectively. For VGG16 experiment, we use the original

model with 13 convolutional and three dense layers with-

out batch normalization from PyTorch. VGG16 has

138.3M learnable parameters and 30.97B FLOPs for a

single inference. For the sake of comparison, we consider

multiplication and addition as two separate FLOPs for

VGG16 model.

The original VGG16 model is tested on the 50K Ima-

geNet validation set and recorded 71.26% and 90.22% top1

and top5 accuracy, respectively. The pruned model is fine-

tuned for 75 epochs. VGG16 is a simple network archi-

tecture in which the layers are stacked on top of each other.

Next, we evaluate our method on an even more complex

network. One such network is the ResNet34 [20] which is

one of the ResNet network variants. ResNet34 is a 34-layer

network with skip connections. It has four stages of

residual blocks and uses projection shortcuts during the

down-sampling of the feature maps. We test the original

model on the ImageNet 50K validation set and recorded

72.04% top1 accuracy. The pruned model is fine-tuned for

50 epochs.

4 Results and discussion

4.1 CIFAR10 and CIFAR100 experiment

Table 2 shows the VGG16 pruned model details and its

comparison with state-of-the-art methods on the CIFAR10

dataset. It is worth noting from Table 2 that the proposed

method pruned more than 80% parameters and reduces

71.82% FLOPs with marginal 0.04% drop in the top1

accuracy. Another observation is that the best performing

method [26] reduces FLOPs by 64.5%; however, the

accuracy loss is more than ours. Also, the original VGG16

model has 4224 filters, whereas the pruned model has only

1887 filters. In Table 2, [38] count multiplication and

addition as two separate FLOPs. We count multiplication

and addition as 1 FLOP (MAC) operation.

Figure 5 shows the number of filters before and after

pruning the model for the CIFAR10 and CIFAR100 data-

set. It can be seen from Fig. 5 that all the convolutional

layers contain unimportant weights filters, and a substantial

number of filters are pruned from all the layers. Figure 5

also depicts layers with more filters containing more can-

didate filters for pruning. From the last six layers, more

than 50% filters are pruned without significantly hurting

the model’s performance.

The percentage of FLOPs pruned for CIFAR10 dataset

and VGG16 model is visualized in Fig. 6. The reduction in

FLOPs is higher for the layers from 8 to 12, more than 80%

FLOPs are reduced in these layers. The last layer is directly

connected to the dense layer; still, 67% FLOPs are reduced

in this layer. It is also important to note that the pruned

model is able to get competitive accuracy with b ¼ 0,

pruning filters are determined only based on the mean

absolute sum.

Table 3 shows the VGG16-CIFAR100 pruned model

details and its comparison with other state-of-the-art

methods. It is worth noting from Table 3 that the proposed

method is able to prune more than 75% parameters and

reduce 72.83% FLOPs with 1.79% drop in the top1 accu-

racy. Further improvement in the accuracy could be

achieved by testing b for negative values. The method

performs better than [38], and [54] in terms of the number

of parameters pruned, and FLOP reduction. Moreover, a

total of 2045 out of 4224 filters are pruned from various

convolutional layers. Like the CIFAR10 experiment, the

CIFAR100 experiment also shows that VGG16 contains

many unimportant filters, and more than 50% filters can be

pruned from the model. The percentage of FLOPs pruned

for CIFAR10 and CIFAR100 dataset with the VGG16

model is visualized in Fig. 6.

The CIFAR10 and CIFAR100 dataset experiments show

that many filters can be pruned without significantly

affecting the model performance. The pruned model will

have to perform fewer FLOPs during inference, and it

directly improves the inference performance of the model

in terms of latency, computational and battery power

Table 2 Comparison of the

VGG16-CIFAR10 pruned

model with other state-of-the-art

methods, b ¼ 0

Method Top1 acc (±) #Para left %Para pruned #FLOPs left %FLOPs reduction

[38] 0.14 2.30M 88.5 3.91 �108 51

[35] 0.15 5.4M 64 2.06 �108 34

[54] - 0.07 3.92M 73.34 1.9 �108 39.1

[26] - 1.9 – – – 64.5

Ours - 0.04 2.86M 80.91 8.8 �107 71.82

4896 Neural Computing and Applications (2022) 34:4889–4903

123

required. CIFAR10 and CIFAR100 experiments confirm

and relate with our first research objective that the infer-

ence performance of the DNN can be improved by

reducing the time-consuming FLOPs.

4.2 ImageNet experiments

Table 4 shows the detail of the FLOPs of the convolutional

and dense layer of the original and pruned AlexNet model.

It can be seen from Table 4, 91.81% of the total FLOPs

come from computationally intensive convolutional layers,

and the contribution of the dense layer is only 8.19%. After

Fig. 5 Number of filters left in

the convolutional layers before

and after pruning (VGG16 on

CIFAR10 and CIFAR100

dataset)

Fig. 6 Layer-wise percentage of

FLOPs reduction for VGG16 on

CIFAR10 and CIFAR100

dataset

Table 3 Comparison of the

VGG16-CIFAR100 pruned

model with other state-of-the-art

methods, b ¼ 0

Method Top1 acc (±) #Para left %Para pruned #FLOPs left %FLOPs reduction

[38] 0.22 5M 75.1 5.01 �108 37.1

[54] 0.07 9.14M 37.87 2.56 �108 18.05

Ours - 1.79 3.6M 75.86 8.5 �107 72.83

Neural Computing and Applications (2022) 34:4889–4903 4897

123

fine-tuning the model with b ¼ 0, the top1 accuracy drop

was 6%, and with b ¼ �3, the model is able to reduce the

accuracy drop to 1.95%. AlexNet is a comparatively small

model and cannot gain accuracy if pruned more aggres-

sively. However, our method pruned 316 filters out of 1152

and reduce the FLOPs from 1.43B to 0.69B. The results of

the AlexNet further motivated us to conduct experiments

on an even deeper model; VGG16 and ResNet34.

Table 5 shows the number of FLOPs of the VGG16

model before and after pruning, along with the percentage

of parameters pruned away, as shown in the last column. It

is important to note that, with the proposed method, the

number of FLOPs is reduced from 30.97B to 6.97B,

pruning 77.47% of the total and bringing 4.45x accelera-

tion in the model performance. It also resulted in lowering

40.42% parameters of the model. The last convolutional

layer filters are reduced from 512 to 289, resulting in 44%

parameter saving and 43.45% reductions in the FLOPs in

the first dense layer. More than 75% of the FLOPs are

reduced in the last six convolutional layers. It implies that

these layers contain more than 50% lesser importance fil-

ters, and can be pruned from the layers 8, 9, 10, and 11.

The comparison of the proposed method with other

state-of-the-art methods is given in Table 6. It can be seen

from Table 6 that the proposed method performed better

than [56], which causes - 3.3% accuracy drop, while in

our case the accuracy drop is - 2.41%. The authors did not

provide the number of FLOPs reduced; instead, it is

reported that 5x reduction is achieved. We calculated the

FLOPs based on the reported 5x reduction out of the total

VGG16 FLOPs. Our method also performs superior to

[40]. In [40], the number of FLOPs reduced to 9.34B with

- 3.81% drop in the top1 accuracy. It is worth noting that,

for the VGG16-ImageNet experiment, the b was set to 0,

Table 4 The number of FLOPs of AlexNet-ImageNet model before

and after pruning (b ¼ �3)

Original model Pruned model

Layers #FLOPs #FLOPs left %FLOPs reduction

Conv1 1E?08 7.5E?07 46.87

Conv2 4E?08 1.4E?08 68.42

Conv3 2E?08 9.8E?07 56.22

Conv4 3E?08 1.5E?08 49.32

Conv5 2E?08 1.2E?08 38.50

FC1 8E?07 6.8E?07 10.54

FC2 3E?07 3E?07 0

FC3 8E?06 8E?06 0

Table 5 Details of the VGG16

original and pruned model with

ImageNet dataset, b ¼ 0

Original model Pruned model

Layers FLOPs Filters FLOPs Filters %FLOP reduction %Para pruned

Conv1 1.8E?08 64 7.9E?07 28 56.25 56

Conv2 3.7E?09 64 7.6E?08 30 79.42 79

Conv3 1.8E?09 128 3.9E?08 58 78.72 79

Conv4 3.7E?09 128 6.3E?08 48 82.98 83

Conv5 1.9E?09 256 3.5E?08 129 81.08 83

Conv6 3.7E?09 256 9.7E?08 133 73.81 74

Conv7 3.7E?09 256 8.6E?08 115 76.65 77

Conv8 1.9E?09 512 8.2E?08 243 78.67 79

Conv9 3.7E?09 512 8.2E?08 240 77.75 78

Conv10 3.7E?09 512 8.3E?08 245 77.56 78

Conv11 9.3E?08 512 2.2E?08 250 76.62 77

Conv12 9.3E?08 512 2.3E?08 265 74.72 75

Conv13 9.3E?08 512 2.7E?08 289 70.48 71

FC1 2.1E?08 – 1.2E?08 – 43.55 44

FC2 3.4E?07 – 3.4E?07 – 0 0

FC3 8E?06 – 8E?06 – 0 0

Total 30.97B 4224 6.97B 2073 77.47 40.42

Table 6 Comparison of the VGG16-ImageNet pruned model with

other methods, b ¼ 0

Method FLOPs left Top1 acc (±)

[56] 6.2B - 3.3

[40] 9.34B - 3.81

Ours 6.97B - 2.41

4898 Neural Computing and Applications (2022) 34:4889–4903

123

further improvement in accuracy can be achieved with

negative values of b.
Table 7 shows the results of the ResNet34 pruned model

and comparison with other methods. It can be seen from

Table 7, our method outperformed [35] with b ¼ 0. To

further get the competitive performance we set b ¼ 1, and

b ¼ 2 as shown in Table 7. It is worth noting that, with

b ¼ 1 our method outperformed other state-of-the-art

methods and achieved 0.83% improvements in the top1

accuracy. Similarly, for b ¼ 2, the method is able to reduce

41.94% FLOPs and achieved 0.37% improvement in the

top1 accuracy.

4.3 Extended analysis

The regression statistical test was performed between the

varied values of the pruning controller b and the %pa-

rameters pruned, %FLOP reduction, and accuracy to show

the significance of the proposed pruning estimator c. Here,
b was taken as the independent variable and other param-

eters were taken as dependent variables. These tests were

performed on the ResNet34 and VGG16 pruned model on

the ImageNet dataset. The regression statistical test finds

the relationship between the independent and the depen-

dent variables. In this regard, the null and the alternate

hypotheses were established. The null hypothesis (H0 : the

pruning estimator c does not finds an optimal trade-off

between the accuracy, %parameters pruned, and %FLOPs

reduction. The alternate hypothesis H1: the pruning esti-

mator c does finds an optimal trade-off between the accu-

racy, %parameters pruned, and %FLOPs reduction. The

significance level a was set to 0.05. The p-value below 0.05

signifies that there is sufficient evidence to reject the null

hypothesis.

Different experiments were performed on the ResNet34

and VGG16 model with varied values of b (- 2 to þ 2). In

each experiment, the original models were pruned

according to the pruning estimator c and the pruned models

were fine-tuned on the ImageNet dataset. For the ResNet34

model, with a ¼ 0:05, the p-value for b and %parameters

pruned, %FLOP reduction, and accuracy was 0.000135,

0.000173, and 0.002089, respectively. The smaller p values

indicate that there is sufficient evidence to reject the null

hypothesis. For the VGG16 model, with a ¼ 0:05, the p

value for b and %parameters pruned, %FLOP reduction,

and accuracy was \0, 0.001178, and 0.003983, respec-

tively. Here, also the smaller p values supports that there is

a sufficient evidence to reject the null hypothesis. For b
less than zero, the %parameters pruned, %FLOPs reduction

were less and the accuracy loss was also less. For b greater

than zero, the %parameters pruned, %FLOPs reduction

were more and the accuracy loss was also more. From this,

it can be concluded that the optimal values of the b for both

the models is close to zero, and it finds an optimal trade-off

between the accuracy and the %parameters pruned and the

%FLOPs reduction.

To further show that the proposed pruning estimator c
finds an optimal trade-off between reduction (parameters,

FLOPs) and the accuracy, we plotted the value of b and the

Table 7 Comparison of the ResNet34 pruned model with other

methods

Method Top1 acc (±) %Para pruned %FLOPs reduction

[35]—A - 0.67 7.69 15.50

[35]—B - 1.06 10.80 24.20

[1] - 0.31 26.53 28.12

Yu et al. [51] - 0.28 27.14 27.32

Ours, b ¼ 0 1.37 13.01 25.73

Ours, b ¼ 1 0.83 17.32 35.18

Ours, b ¼ 2 0.37 20.16 41.94

Fig. 7 ResNet34-ImageNet experiment: The left diagram shows the the plot of b versus %FLOP reduction and accuracy. The right diagram

shows the plot of b versus %parameters pruned and accuracy

Neural Computing and Applications (2022) 34:4889–4903 4899

123

%parameters pruned, %FLOPs reduction, and accuracy for

the ImageNet experiments. Figure 7 shows the graph for

the ResNet34 model. It can be seen from Fig. 7 that the

optimal trade-off is achieved when b is close to zero in

terms of the %parameters pruned, the %FLOPs reduction,

and the accuracy. Similarly, Fig. 8 shows the graph for the

VGG16 model. It can also be seen from Fig. 8 that the

optimal trade-off exists when b is close to zero in terms of

the %parameters pruned, the %FLOPs reduction, and the

accuracy.

4.4 Discussion

There is no doubt that filter pruning is a popular way to

accelerate convolutional architecture’s inference perfor-

mance. However, manual pruning methods require a lot of

tuning to find out the correct pruning rate for each layer. In

the proposed method, the selection of filters for pruning

does not require any manual tuning. Besides, our approach

has a single parameter that can be further tuned to control

the pruning process if needed. Figure 9 shows the com-

parison of the original and pruned models in terms of the %

of FLOPs reduced from different models on different

datasets. It should be noted from Fig. 9, the proposed

method is significantly able to reduce FLOPs (research

objective 1), and the proposed method is also generalized

across various network architectures (research objective 2).

ImageNet trained VGG16, and ResNet34 have been used

for real-time object detection and classification applica-

tions. The pruned model can also be used as a base clas-

sifier in object detection tasks to improve the object

detection model’s inference performance for real-time

applications. ResNet34 is an efficient model than VGG16

in terms of the number of parameters and FLOPs. How-

ever, it is worth noting that the pruned ResNet34 has

41.94% fewer FLOPs than the original model with 0.37%

Fig. 9 Percentage of FLOPs reduction in different model and datasets

Fig. 8 VGG16-ImageNet experiment: The left diagram shows the plot of b versus %FLOP reduction and accuracy. The right diagram shows the

plot of b versus %parameters pruned and accuracy

4900 Neural Computing and Applications (2022) 34:4889–4903

123

accuracy gain. The ImageNet experiments on the VGG16,

ResNet34 and their improved performance compared to

other methods show that the proposed method effectively

reduces the inference-cost of the deep learning models.

Our other observation is that depending upon the

application’s requirement or the target device, the proposed

method can be customized. For situations where a little

accuracy loss can be compromised, our method can be used

to prune the model more aggressively. Simultaneously, for

applications where accuracy is more critical, our method

can be customized to maintain the accuracy loss within an

acceptable range. Figure 10 shows the overall improvement

in the model’s inference performance by comparing the

original and pruned model FLOPs. The initial performance

of the un-pruned model is shown as 1x. It can be seen from

Fig. 10, the performance of the pruned model has increased

by 3.55x and 3.7x, respectively, for CIFAR10 and

CIFAR100 dataset. Also, on the large-scale ImageNet

dataset, the performance of the VGG16, and ResNet34 is

improved by 4.45x and 1.72x, respectively.

5 Conclusion

Nowadays, DNNs are getting deeper, requiring high com-

putational and battery power during inference. Pruning has

evolved as an essential method to remove the model’s

unimportant parameters while least hurting the perfor-

mance. In some cases, it also improves the performance of

the model. In this paper, we proposed a heuristic-based

novel automatic filter selection and pruning method to

accelerate the convolutional architecture’s inference per-

formance. The experimental results suggest that the pro-

posed method significantly improves the inference

performance for real-time applications and devices with

limited resources. On the popular ResNet34 architecture

trained with the ImageNet dataset, our method is able to

reduce FLOPs by 41.94% with 0.37% improvements in the

top1 accuracy. One of our method’s main advantages is

that the model pruned with the proposed method can fur-

ther be compressed and accelerated by applying other

compression and acceleration techniques. The experiments

on various model architecture and datasets show the

superiority of the proposed method over state-of-the-art

methods. Future work can include exploiting the similarity

between the filters in a trained model because similar filters

extract similar features and create redundancy in the fea-

ture maps.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Ayinde BO, Inanc T, Zurada JM (2019) Redundant feature

pruning for accelerated inference in deep neural networks. Neural

Netw 118:148–158

2. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep

convolutional encoder–decoder architecture for image segmen-

tation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

3. Cai Z, He X, Sun J, Vasconcelos N (2017) Deep learning with

low precision by half-wave gaussian quantization. In: Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pp 5918–5926

4. Chen G, Choi W, Yu X, Han T, Chandraker M (2017) Learning

efficient object detection models with knowledge distillation. In:

Advances in neural information processing systems, pp 742–751

Fig. 10 Inference performance comparison of the original and pruned models based on the number of FLOPs reduction

Neural Computing and Applications (2022) 34:4889–4903 4901

123

5. Chen S, Zhao Q (2018) Shallowing deep networks: layer-wise

pruning based on feature representations. IEEE Trans Pattern

Anal Mach Intell

6. Cheng J, Wu J, Leng C, Wang Y, Hu Q (2017) Quantized CNN: a

unified approach to accelerate and compress convolutional net-

works. IEEE Trans Neural Netw Learn Syst

7. Cheng Y, Wang D, Zhou P, Zhang T (2017b) A survey of model

compression and acceleration for deep neural networks. arXiv

preprint arXiv:1710.09282

8. Cheng Y, Wang D, Zhou P, Zhang T (2018) Model compression

and acceleration for deep neural networks: the principles, pro-

gress, and challenges. IEEE Signal Process Mag 35(1):126–136

9. Choudhary T, Mishra V, Goswami A, Sarangapani J (2020) A

comprehensive survey on model compression and acceleration.

Artif Intell Rev 53:5113–5155

10. Courbariaux M, Bengio Y, David JP (2015) Binaryconnect:

Training deep neural networks with binary weights during

propagations. In: Advances in neural information processing

systems, pp 3123–3131

11. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Ima-

genet: A large-scale hierarchical image database. In: IEEE con-

ference on computer vision and pattern recognition. IEEE,

pp 248–255

12. Denil M, Shakibi B, Dinh L, De Freitas N, et al (2013) Predicting

parameters in deep learning. In: Advances in neural information

processing systems, pp 2148–2156

13. Girshick R (2015) Faster r-CNN: Towards real-time object

detection with region proposal networks. In: Advances in neural

information processing systems, pp 91–99

14. Gong Y, Liu L, Yang M, Bourdev L (2015) Compressing deep

convolutional networks using vector quantization. Under review

as a conference paper at ICLR

15. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,

Ozair S, Courville A, Bengio Y (2014) Generative adversarial

nets. In: Advances in neural information processing systems,

pp 2672–2680

16. Graves A, Ar Mohamed, Hinton G (2013) Speech recognition

with deep recurrent neural networks. In: 2013 IEEE international

conference on acoustics, speech and signal processing (ICASSP).

IEEE, pp 6645–6649

17. Guo Y, Yao A, Chen Y (2016) Dynamic network surgery for

efficient DNNs. In: Advances In neural information processing

systems, pp 1379–1387

18. Han S, Pool J, Tran J, Dally W (2015) Learning both weights and

connections for efficient neural network. In: Advances in neural

information processing systems, pp 1135–1143

19. Han S, Mao H, Dally WJ (2016) Deep compression: compressing

deep neural networks with pruning, trained quantization and

Huffman coding. Published as a conference paper at ICLR

20. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 770–778

21. He Y, Zhang X, Sun J (2017) Channel pruning for accelerating

very deep neural networks. In: Proceedings of the IEEE inter-

national conference on computer vision, pp 1389–1397

22. He Y, Kang G, Dong X, Fu Y, Yang Y (2018) Soft filter pruning

for accelerating deep convolutional neural networks. arXiv pre-

print arXiv:1808.06866

23. He Y, Dong X, Kang G, Fu Y, Yan C, Yang Y (2019) Asymptotic

soft filter pruning for deep convolutional neural networks. IEEE

Trans Cybern 50(8):3594–3604

24. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a

neural network. arXiv preprint arXiv:1503.02531

25. Horowitz M (2014) 1.1 computing’s energy problem (and what

we can do about it). In: 2014 IEEE international solid-state

circuits conference digest of technical papers (ISSCC). IEEE,

pp 10–14

26. Huang Q, Zhou K, You S, Neumann U (2018) Learning to prune

filters in convolutional neural networks. In: 2018 IEEE winter

conference on applications of computer vision (WACV). IEEE,

pp 709–718

27. Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y

(2016) Binarized neural networks. In: Advances in neural infor-

mation processing systems, pp 4107–4115

28. Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y

(2017) Quantized neural networks: training neural networks with

low precision weights and activations. J Mach Learn Res

18(1):6869–6898

29. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep

network training by reducing internal covariate shift. In: Inter-

national conference on machine learning, pp 448–456

30. Jaderberg M, Vedaldi A, Zisserman A (2014). Speeding up

convolutional neural networks with low rank expansions. In:

Proceedings of the British machine vision conference. BMVA

Press

31. Krizhevsky A (2014) One weird trick for parallelizing convolu-

tional neural networks. arXiv preprint arXiv:1404.5997

32. Krizhevsky A, Hinton G (2009) Learning multiple layers of

features from tiny images. Tech. rep, Citeseer

33. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-

fication with deep convolutional neural networks. In: Advances in

neural information processing systems, pp 1097–1105

34. LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In:

Advances in neural information processing systems, pp 598–605

35. Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2017) Pruning

filters for efficient convnets. Published as a conference paper at

ICLR

36. Liu S, Lin Y, Zhou Z, Nan K, Liu H, Du J (2018). On-demand

deep model compression for mobile devices: a usage-driven

model selection framework. In: Proceedings of the 16th annual

international conference on mobile systems, applications, and

services, pp 389–400

37. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg

AC (2016) Ssd: Single shot multibox detector. In: European

conference on computer vision. Springer, pp 21–37

38. Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C (2017) Learning

efficient convolutional networks through network slimming. In:

Proceedings of the IEEE international conference on computer

vision, pp 2736–2744

39. Liu Z, Sun M, Zhou T, Huang G, Darrell T (2019) Rethinking the
value of network pruning. Published as a conference paper at

ICLR

40. Luo JH, Zhang H, Zhou HY, Xie CW, Wu J, Lin W (2018)

Thinet: Pruning CNN filters for a thinner net. IEEE Trans Pattern

Anal Mach Intell https://doi.org/10.3390/electronics9081209

41. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin

Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differen-

tiation in pytorch

42. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards

real-time object detection with region proposal networks. In:

Advances in neural information processing systems, pp 91–99

43. Simonyan K, Zisserman A (2015) Very deep convolutional net-

works for large-scale image recognition. Published as a confer-

ence paper at ICLR

44. Srinivas S, Babu RV (2015) Data-free parameter pruning for deep

neural networks. arXiv preprint arXiv:1507.06149

45. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdi-

nov R (2014) Dropout: a simple way to prevent neural networks

from overfitting. J Mach Learn Res 15(1):1929–1958

4902 Neural Computing and Applications (2022) 34:4889–4903

123

http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1808.06866
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1404.5997
https://doi.org/10.3390/electronics9081209
http://arxiv.org/abs/1507.06149

46. Swaminathan S, Garg D, Kannan R, Andres F (2020) Sparse low

rank factorization for deep neural network compression. Neuro-

computing. https://doi.org/10.1016/j.neucom.2020.02.035

47. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,

Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with

convolutions. In: Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pp 1–9

48. Tung F, Mori G (2018) Deep neural network compression by in-

parallel pruning-quantization. IEEE Trans Pattern Anal Mach

Intell. https://doi.org/10.1109/TPAMI.2018.2886192

49. Wu X, Wu Y, Z Y (2016) Binarized neural networks on the

imagenet classification task. arXiv preprint arXiv:1604.03058

50. Yang TJ, Chen YH, Sze V (2017) Designing energy-efficient

convolutional neural networks using energy-aware pruning. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 5687–5695

51. Yu R, Li A, Chen CF, Lai JH, Morariu VI, Han X, Gao M, Lin

CY, Davis LS (2018) Nisp: Pruning networks using neuron

importance score propagation. In: Proceedings of the IEEE con-

ference on computer vision and pattern recognition,

pp 9194–9203

52. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O (2016a)

Understanding deep learning requires rethinking generalization.

arXiv preprint arXiv:1611.03530

53. Zhang X, Zou J, He K, Sun J (2016) Accelerating very deep

convolutional networks for classification and detection. IEEE

Trans Pattern Anal Mach Intell 38(10):1943–1955

54. Zhao C, Ni B, Zhang J, Zhao Q, Zhang W, Tian Q (2019)

Variational convolutional neural network pruning. In: Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pp 2780–2789

55. Zhou A, Yao A, Guo Y, Xu L, Chen Y (2017) Incremental net-

work quantization: towards lossless CNNs with low-precision

weights. arXiv preprint arXiv:1702.03044

56. Zhou Y, Zhang Y, Wang Y, Tian Q (2019) Accelerate CNN via

recursive bayesian pruning. In: Proceedings of the IEEE inter-

national conference on computer vision, pp 3306–3315

57. Zhu M, Gupta S (2017) To prune, or not to prune: exploring the

efficacy of pruning for model compression. arXiv preprint arXiv:

1710.01878

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2022) 34:4889–4903 4903

123

https://doi.org/10.1016/j.neucom.2020.02.035
https://doi.org/10.1109/TPAMI.2018.2886192
http://arxiv.org/abs/1604.03058
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1702.03044
http://arxiv.org/abs/1710.01878
http://arxiv.org/abs/1710.01878

	Heuristic-Based Automatic Pruning of Deep Neural Networks
	Recommended Citation

	Heuristic-based automatic pruning of deep neural networks
	Abstract
	Introduction
	Methodology
	Filter selection criteria
	Prune unimportant filters
	Fine-tuning

	Experimental setup
	Models and dataset
	Experiment procedure and evaluation criteria
	Experiments on the CIFAR10 and CIFAR100 dataset
	Experiments on the ImageNet dataset

	Results and discussion
	CIFAR10 and CIFAR100 experiment
	ImageNet experiments
	Extended analysis
	Discussion

	Conclusion
	References

