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Sizing battery energy storage and PV system in an extreme fast charging 
station considering uncertainties and battery degradation 

Waqas ur Rehman , Rui Bo *, Hossein Mehdipourpicha , Jonathan W. Kimball 
Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA   

H I G H L I G H T S  

• Novel mixed integer linear programming formulations are proposed and solved. 
• Energy storage and PV system are optimally sized for extreme fast charging station. 
• Robust optimization is used to account for input data uncertainties. 
• Results show a reduction of 73% in demand charges coupled with grid power imports. 
• Annual savings of 23% and AROI of ~70% are expected for 20 years planning period.  

A R T I C L E  I N F O   
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A B S T R A C T   

This paper presents mixed integer linear programming (MILP) formulations to obtain optimal sizing for a battery 
energy storage system (BESS) and solar generation system in an extreme fast charging station (XFCS) to reduce 
the annualized total cost. The proposed model characterizes a typical year with eight representative scenarios 
and obtains the optimal energy management for the station and BESS operation to exploit the energy arbitrage 
for each scenario. Contrasting extant literature, this paper proposes a constant power constant voltage (CPCV) 
based improved probabilistic approach to model the XFCS charging demand for weekdays and weekends. This 
paper also accounts for the monthly and annual demand charges based on realistic utility tariffs. Furthermore, 
BESS life degradation is considered in the model to ensure no replacement is needed during the considered 
planning horizon. Different from the literature, this paper offers pragmatic MILP formulations to tally BESS 
charge/discharge cycles using the cumulative charge/discharge energy concept. McCormick relaxations and the 
Big-M method are utilized to relax the bi-linear terms in the BESS operational constraints. Finally, a robust 
optimization-based MILP model is proposed and leveraged to account for uncertainties in electricity price, solar 
generation, and XFCS demand. Case studies were performed to signify the efficacy of the proposed formulations.   

1. Introduction 

The emission of greenhouse gases (GHG) from fossil fuel energy re-
sources elevated concerns about climate change and global warming. 
Global temperature variation due to human engagements is estimated to 
be 1 ◦C [1]. Road transportation using internal combustion engine ve-
hicles accounts for over 70% of the GHG emissions [2]. Transportation 
electrification can prove pivotal in reducing the effects of GHG emis-
sions and carbon footprints on the environment. However, extended 
charging time and the range anxiety associated with electric vehicles 
(EVs) is still a major challenge to surmount. These limitations affect the 
EV adoption by city drivers (due to extended charging times) and 

highway drivers (due to range anxiety). In the recent few years, efforts 
were made to lower recharge time by developing and installing direct 
current (DC) fast charging stations—a category of fast chargers that 
recharge EVs by supplying the DC power directly and have charging 
time of >1 h with a power level of up to 50 kW for a 200-mi range 
[3–8]—in public places, but the time is still not comparable to refueling 
time at a conventional gasoline station. The extreme fast charging 
technology, conversely, is capable of recharging EVs in 10 min—which 
is comparable to refueling gasoline vehicles—with a peak power level of 
350 kW for the 200-mi range [4,9–11]. Per [4,10,12,13], the charging 
stations with rated charging power of 350 kW and above are categorized 
as extreme fast charging stations. Therefore, the deployment of extreme 
fast charging stations (XFCS) in urban areas, rural areas, and on 
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Nomenclature 

Indices 
i Index of all EVs considered for XFCS demand modeling 
j Index of scenarios to consider seasonal variations of the 

input data for both weekdays and weekends 
k Index for power imported from power distribution network 

(PDN) averaged over ξ-mins window 
t Index for time 
s Index for BESS cycle life curve segment 
s Index of considered seasons in a year (i.e., winter, spring, 

summer, and fall) 
a Index for EVs driven mileage 

Parameters 
CEcap

BESS Annualized capital cost of BESS energy rating [$/kWh] 
CEinst

BESS Annualized BESS installation cost [$/kWh] 
CPcap

BESS Annualized capital cost of BESS power rating [$/kW] 
CO&M

BESS Annualized BESS O&M cost [$/kW] 
CPcap

PV Annualized capital cost of PV system power rating [$/kW] 
CO&M

PV Annualized PV system O&M cost [$/kW] 
CBESS /CBESS Lower/upper limit of BESS energy capacity [kWh] 
C

EV
i Battery capacity of EV i 

DoD /DoD Lower/upper limit of BESS depth of discharge [%] 
̂EXFCS,j (t) XFCS daily charging demand forecast for scenario j at time 

t [kWh] 
Ed

XFCS,j(t) Uncertain XFCS daily charging demand for scenario j at 
time t [kWh] 

Emax
XFCS XFCS maximum energy demand [kW] 

Ecpm
i Per mile energy consumption of EV i [kWh/mi] 

EEV
i* (t) Energy needed to charge EV i* at time t 

EWD(t)/EWND(t) Aggregated energy demand profile of the XFCS for a 
typical weekday and weekend day at a time t 

F (Q a) Probability of driving Q a average mileage [%] 
h(q) Exponential distribution representing daily driven mileage 
IRG,j(t) Global irradiance data on a fixed plane for scenario j at 

time t [W/m2] 
T

* Total number of EVs that got recharged at the station 
K Total number of ξ-mins time intervals in a day 
L Project lifetime 
M A large number used in Big-M method to avoid 

simultaneous charging/discharging of BESS 
NOCT Normal operating cell temperature [◦C] 
N (μ,σ2 ) Normal probability distribution with mean μ and variance 

σ2 

P̂VG,j(t) Estimate of per unit PV system generation power for 
scenario j at time t 

PVp

G,j(t) Uncertain per unit PV system generation power for 
scenario j at time t 

PXFCS Rated charging power of single charging power at the XFCS 
Q a Average driven mileage [miles] 
Q a Average driven mileage for which EV’s SoC does not reach 

to its SOCthr
i [miles] 

Q *
a Average driven mileage for which EV’s SoC reaches to its 

SOCthr
i [miles] 

Q d ,Q d +1 Distance values used to discretize the daily driven mileage 
and obtain the average driven mileage (Q a) in interval 
[Q d ,Q d +1] [miles] 

r Number of charging ports inside the XFCS 
w Number of waiting spots inside the XFCS 
SFM Factor to scale monthly costs to yearly cost 

SoCEV
i,a (t) State of charge of EV i at time t after driving total distance 

of Q a miles 
SoCthr

i SoC threshold for EV i at which it should start recharging at 
the XFCS 

ŜoC
arr
i* Weighted average of the arrival SoC of EV i* arriving at the 

station after traveling Q *
a miles 

SOCtarget
i* Desired target SoC for recharging EV i* 

t̂ arr
i* Weighted average of the arrival time of EV i* arriving at the 

station after traveling Q *
a miles 

tst
i* Start time to charge EV i* 

tch
i* Duration for which EV i* gets recharged till its battery 

reaches to SOCfinal
i* 

T Total minutes in a day [min] 
TAmb,j(t) Daytime ambient temperature for scenario j at time t [◦C] 
z interest rate [%] 
S Total number of BESS cycle life curve segments 
ϖ Coefficient of exponential distribution h(q)
π BESS ramp rate limit [kWh/min] 
γ /γ Minimum/maximum ratios of BESS energy and power 

rating 
J Total number of considered scenarios to represent a typical 

year 
D Total number of days in a year 
S Total number of considered seasons in a year (i.e., winter, 

spring, summer, and fall) 
ξ Averaging window for power import from the PDN [min] 
Ψ /Ψ Lower/upper limit of BESS charge/discharge cycles 
λADC/λMDC Annual/monthly demand charges [$/kW] 
λ̂E,j(t) Hourly wholesale electricity market price forecast for 

scenario j at time t [$/kWh] 
ηAC− DC AC/DC conversion efficiency [%] 
ηDC− DC DC/DC conversion efficiency [%] 
ηch/ηdch BESS charging/discharging efficiencies [%] 
ƥ Power temperature coefficient 
ρ(s) Non-negative continuous weight variable associated with 

BESS cycle life curve segment s 

J(DoD(s)) Number of BESS cycles associated with depth of 
discharge DoD(s)

φEV(t) Probability of driving an EV at time t 
Φ,ϱ,ε Maximum deviation from forecasted values of λ̂E,j(t), 

̂EXFCS,j (t), P̂VG,j(t), respectively 
Γλ,ΓD,ΓPV Uncertainty budgets for electricity market price forecast, 

XFCS charging demand forecast, and per unit PV 
generation forecast, respectively 

Uλ,UD,UPV Uncertainty sets for electricity market price forecast, 
XFCS charging demand forecast, and per unit PV 
generation forecast, respectively 

Δt Simulation time step [1/60 h] 

Variables and functions 
CFann Annualized cost factor 
CBESS BESS energy capacity [kWh] 
DoD Depth of discharge of BESS 
DoD(s) DoD associated with BESS cycle life curve segment ‘s’ 
Ech,j(t) Energy flow to charge the BESS for scenario j at time t 

[kWh] 
Edch,j(t) Energy flow due to BESS discharging for scenario j at time t 

[kWh] 
EBESS,j(t) BESS stored energy for scenario j at time t [kWh] 
PPV PV system rated power [kW] 
Ppv,j(t) PV system power generation profile for scenario j at time t 
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highways can prove essential for the proliferation of EVs and electrified 
transportation. 

Extreme fast charging of EVs may cause various issues in power 
quality of the host power grid, including power swings of ±500 kW [14], 
subsequent voltage sags and swells, and increased network peak power 
demands due to the large-scale and intermittent charging demand 
[15,16]. If the XFC charging demand is not managed prudently, the 
increased daily peak demand and a shift in daily peak due to EV charging 
may cause transformer and feeder overload, accelerating transformer 
aging, and increasing power losses [11,17]. Consequently, grid rein-
forcement and expansion planning would become essential to meet the 
increasing charging demand and enable XFC, especially on the distri-
bution level where XFCS are directly connected. A battery energy stor-
age system (BESS) can act as a power buffer to mitigate the transient 
impact of the extreme fast charging on the power distribution network 
(PDN) power quality [18]. It can also act as an energy buffer to charge 
energy during low-price hours and discharge it during high-price hours 
to earn revenue, thereby not only reducing the overall operational cost 
of the XFCS but also avoiding huge investment costs on the grid rein-
forcement and expansion planning [16]. This process is called energy or 
price arbitrage [19,20]. Renewable generation resources, such as PV 
systems, can generate low-cost energy compared to the energy pur-
chased from the PDN to fulfill the local demand; excess energy can be 
sold to the power grid [21,22]. Therefore, the installation of a PV system 
in an XFCS can yield extra savings in the XFCS operation cost. In addi-
tion, the installation of a PV system and a storage system can reduce the 
PDN peak demand increment caused by charging station operation. 
Currently, the number of EV charging stations that rely only on the 
electric grid to recharge EVs is higher than those that are assisted by 
renewable resources and BESS. Nevertheless, there have been rapid 
advancements in the proliferation of the latter in recent few years: Tesla 
Inc. is spearheading the efforts to electrify the road transportation sys-
tem, and as of year-end 2021 it has installed over 30,000 next- 
generation V3 Superchargers globally—that are capable of recharging 
EVs in 15-mins for 200 miles range with a maximum recharge rate of 
250 kW—and some of which are assisted by the solar generation and 
battery storage systems [23–25]. In addition, Tesla also plans to power 
all of its superchargers with renewable energy and battery storage in the 
near future [26,27]. 

1.1. Related work 

Planning of privately owned EV charging stations has been 

attempted in various studies in the literature. This section presents a 
comprehensive review of the extant literature related to charging station 
components’ sizing, research gap identification, and this study’s field 
contributions. 

In [28], Ding et al. presented a mixed integer linear programming 
(MILP) model to assess the capacity of the Li-ion based BESS to (i) reduce 
peak power import from the PDN, (ii) downsize transformer and feeder 
capacity, (iii) exploit energy buffering for energy arbitrage, and (iv) 
alleviate the charging demand variance in an electric bus (EB) charging 
station. Negarestani et al. [29] proposed a MILP model to obtain the 
energy capacity of the flywheel storage for energy arbitrage in a fast 
charging station (FCS). Salapić et al. [30] also proposed a MILP model to 
find the BESS capacity size to reduce the FCS operational cost and stress 
on the PDN. Moreover, net present value (NPV) was employed to find 
the cost of investing in the BESS. Bryden et al. [31] approached sizing of 
the Li-ion based BESS to reduce the power rating of the connection to the 
power network, thus mitigating the necessity for potential grid infra-
structure reinforcement. Another objective was to reduce the mean 
waiting time for the EVs arriving at the FCS. The proposed method was 
comprised of two stages: first, the number of charging ports was deter-
mined, and in the second stage, the optimal energy capacity of the BESS 
was obtained. The relationship between BESS capacity and users’ 
average waiting time was explored for sizing purposes. Monte Carlo 
Simulations (MCS) were used to get the optimal capacity of the BESS 
based on reasonable users’ average waiting time at the charging station. 
However, in this work, the operational characteristics and investment 
cost of the BESS were not considered. MCSs were used in [32] to obtain 
optimal sizing for the storage system and grid-tie converter, such that 
the grid-tie converter was designed to provide the average power de-
mand and storage system to provide for peak power demands at the 
station. Storage system choice was made after the sizing problem was 
solved. The ultracapacitor-based storage system was found to be the best 
choice based on the requisite power-capacity combination obtained 
from simulations. In [33], an optimization model was developed that 
took into account the uncertainty of EVs arrival times, worst-case SoCs 
of EVs arriving at the station, and power level to recharge EVs. Objec-
tives of the proposed model were to minimize the annual operational 
cost (AOC) of the charging station, the annual penalty cost associated 
with charging demand during peak periods, and the investment cost of 
the Li-ion based BESS. The output of the model was the simultaneous 
sizing of the BESS and converters, thereby avoiding the over- or under- 
sizing of the charging station components. 

A quantitative stochastic model was used in [34] to determine the 

[kW] 
EAC

g,j (t) AC energy exchanged with the PDN for scenario j at time t 
[kWh] 

E+
g,j(t) AC energy imported from the PDN for scenario j at time t 

[kWh] 
E−

g,j(t) AC energy exported to the PDN for scenario j at time t 
[kWh] 

P+
g,avg,j(k) ξ-mins average AC power import for scenario j and for kth 

interval [kW] 
Pmax

g,an Maximum ξ-mins average annual AC power import [kW] 
Pmax

g,mo,s Maximum ξ-mins average monthly AC power import for 
season s [kW] 

Pmax
g,daily,j Maximum ξ-mins average daily AC power import for 

scenario j [kW] 
Prated

BESS Rated BESS charge/discharge power [kW] 
SoCBESS,j(t) BESS state of charge for scenario j at time t [%] 
λl

E,j(t) Uncertain wholesale electricity market price for scenario j 
at time t [$/kWh] 

Ed
XFCS,j(t) Uncertain XFCS daily average charging demand forecast 

for scenario j at time t [kWh] 
PVp

G,j(t) Uncertain yearly per unit PV system generation power for 
scenario j at time t 

α, βj(t) Dual variables of the original DO model 
ςj(t) Auxiliary variable used to achieve linearized expressions in 

the RO model 
Ψ Annual BESS charge/discharge cycles 
J

a
(DoD) Allowed number of BESS cycles using piece-wise linear 

approximation of BESS cycle life curve 

Binary variables 
u1,j(t) Binary variable used in Big-M method to avoid 

simultaneous grid energy import/exports for scenario j at 
time t 

u2,j(t) Binary variable used in Big-M method to avoid 
simultaneous charging/discharging of BESS for scenario j 
at time t  
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sizing of local BESS by analyzing its relationship with the quality of 
service to customers, expressed as customer blocking probability. Corchero 
et al. [35] proposed an optimization model to provide more charging 
power to EVs than permitted by grid connection and minimize the 
operational cost of the EV charging energy, investment cost, and oper-
ation and maintenance (O&M) cost of the charging station components. 
The output of the proposed model had optimal capacity ratings of BESS, 
optimal power ratings of the grid-tie converter, and optimal power flow 
between the grid and the FCS. A sensitivity-based analysis was per-
formed in [36] to evaluate the impact of BESS (Li-titanate battery) ca-
pacity on reduction of AOC in the EB charging station, and the optimal 
value of the BESS kWh was achieved when reduction in AOC converged 
to a constant value. In this study, AOC was comprised of equivalent 
capacity charges for grid integration of the station, energy purchased 
from the grid, and the life expenditure cost of the BESS. Tan et al. [37] 
formulated a two-stage stochastic optimization problem to decide on 
sizing the BESS, transformer, and grid connection with regards to in-
vestment. Objectives of the proposed model were to (i) consider the 
participation of BESS in the electricity market and ancillary services 
simultaneously, and (ii) to minimize the total expected investment and 
annual operational cost of the FCS. A planning method was proposed in 
[38] to study the integration of FCS with the power grid to (i) minimize 
the BESS life cycle cost, installation cost, and grid connection cost of the 
FCS and (ii) mitigate the need for potential grid infrastructure rein-
forcement. A detailed cost-benefit analysis was performed to assess the 
viability of using BESS within the FCS by studying its life cycle and 
replacement cost. Finding the optimal BESS size posed a trade-off be-
tween the EVs charging demands and the grid constraints. Furthermore, 
this work introduced two BESSs concepts within the FCS for achieving 
partial decoupling between stations and the grid. A review of the liter-
ature, presented in [28–38] revealed that potential applications of 
renewable energy resources (RERs) and their optimal sizing were not 
investigated. Furthermore, life degradation considerations regarding the 
energy storage system—for instance, optimal depth of discharge (DoD), 
the allowable number of charge/discharge cycles, and calendric lifetime 
of the storage system—were not considered. A mixed integer non-linear 
programming (MINLP) model was proposed in [39] to optimally site and 
size an FCS to minimize the costs associated with station’s development 
and loss of gird and electric vehicle energy. Nonetheless, applications of 
the energy storage system and RERs were not considered in this work. 

Applications of RERs were investigated in [2,40–44] and the 
charging station’s planning problem was solved. A non-linear integer 
programming (NLIP) problem was formulated in [40] and solved using a 
search-based algorithm to find the optimum solar generation size and 
the energy storage system rating in a solar-powered off-grid charging 
station. A multi-dimensional discrete-time 3-D Markov chain model was 
used to incorporate the stochastic nature of the PV generation. More-
over, a queuing model was used to consider the randomness associated 
with EVs’ arrivals at the station. However, operational and technical 
constraints of ESS were not considered. Furthermore, ESS degradation 
considerations were overlooked. In [41], Gunter et al. proposed a 
methodology for a charging station design that was integrated with RER 
and storage system, and it proved there were monetary benefits of 
having solar-generated power in the charging station. Hafez et al. [42] 
approached the charging station design problem by considering the 
lifecycle cost reduction and environmental emissions. Still, degradation 
of the storage system was not considered in either study. An MILP-based 
optimization model was proposed in [2] to optimally obtain the type and 
sizing of ESS and renewable sources for integrating with FCS. ESS 
degradation was considered in this work. However, to the best of our 
knowledge, for the planning of privately owned charging stations, the 
existing literature either completely ignored important data 
uncertainties—as associated with the charging station energy demand, 
renewable generation, and electricity market price for the energy ac-
quired from the power grid—or used simple probabilistic methods to 
account for only some of the uncertainties. A bi-level robust 

optimization approach was proposed in [43,44] it considered un-
certainties in the electricity market prices, renewable generation, and 
EV users’ behaviors. However, EV users’ travelling behaviors and 
charging order were not included. Charging station demand modeling 
and related uncertainties were also not considered. In addition, the BESS 
degradation considerations and reduction of demand charges were 
ignored. 

Accurate data prediction is a challenging task because planning input 
data are subject to uncertainties coupled with the charging demands, 
electricity market prices, and renewable generation levels. There are 
two common approaches to modeling uncertainties in planning prob-
lems: stochastic optimization (SO) modeling and robust optimization 
(RO) modeling. The SO approach needs accurate probability distribution 
of uncertainties to construct a large number of scenarios for precise 
characterization of the uncertain data; consequently, the planning 
model may be computationally expensive to solve and even intractable 
for large-scale systems [22,45–48]. Moreover, obtaining the accurate 
probability distributions of long-term uncertainties, such as electricity 
market prices, EVs ownership data, EV drivers’ traveling behaviors, and 
charging station demand, years into the future may be challenging. If 
uncertainties are not prudently accounted for, they may lead to signif-
icant errors in the sizing of the charging station components. By 
contrast, the RO approach only needs limited uncertain data informa-
tion, in the form of uncertainty confidence bounds, and does not suffer 
from issues associated with the SO approach. Additionally, RO is 
computationally inexpensive compared to SO. Thus, RO methods are 
well suited for solving the planning problem of charging stations due to 
the involvement of the aforementioned long-term uncertainties [43–45]. 
In literature, RO was utilized for modeling and solving planning prob-
lems [22,43,44,46,47,49–52] and scheduling/operation problems 
[48,53–60]. However, the RO approach is conservative, and planners 
typically choose a trade-off between economy and robustness against 
uncertainties in practical applications [46]. Hence, it is worthwhile to 
study ways to lower the conservativeness of the results obtained from 
RO methods. 

This work proposes a novel mathematical model for the problem of 
sizing the battery energy storage system and PV system in an XFCS by 
considering the application of BESS energy arbitrage, monthly and 
annual demand charges reduction, BESS life degradation, and un-
certainties in the forecasted input parameters. We first proposed a model 
for the computation of XFCS charging demand; FCS demand modeling 
has been presented in the extant literature using fixed power-based EV 
recharge throughout the charging process, which is unrealistic and may 
introduce significant errors in the charging station components’ plan-
ning. By contrast, this work uses realistic constant power constant 
voltage (CPCV) based extreme fast charging of EVs in the proposed 
demand modeling approach. One year was represented with eight sce-
narios and the proposed model was solved using a CPLEX solver. 
Additionally, sensitivity analyses were performed to understand how 
changing values of input parameters and different degrees of robustness 
against uncertainties in the input data influence the XFCS components’ 
sizing and the station’s total cost. 

1.2. Contributions 

In relation to the identified research gaps in existing literature, the 
contributions to the field are made by this study are summarized as 
follows:  

1) We propose novel MILP formulations to find optimal power and 
energy ratings for a Li-ion based BESS, ratings for a PV system in-
tegrated with the station, and optimal energy management of the 
XFCS for each considered scenario. Unlike the extant literature on 
the planning of privately owned charging stations [2,28–42,61], this 
work also considers uncertainties—such as charging station demand, 
electricity market prices, and PV system generation—in the long- 

W. Rehman et al.                                                                                                                                                                                                                               



Applied Energy 313 (2022) 118745

5

term forecast data, and it leverages the RO approach to model and 
solves the XFCS planning problem.  

2) Compared to the probabilistic charging station demand modeling 
approaches in the literature [2,19,29], this work proposes an 
improved method to incorporate the realistic charging station de-
mand characteristics by considering EV users’ driving behaviors 
(such as the probability of vehicles’ daily driven mileage, probability 
of daily trips for weekdays and weekends, etc.) and CPCV based 
extreme fast charging of EVs. Furthermore, this work incorporates 
the heterogeneous behavior of EV users in terms of starting and 
terminating the charging process using normal probability distribu-
tions of the starting SoC (i.e., SoCthr) and desired target SoC (i.e., 
SoCtarget) of EVs.  

3) This work considers the reduction in monthly and annual demand 
charges associated with the XFCS maximum average power impor-
ted—monitoring rate used by utilities for calculating the demand 
charges is every 15 min (96 intervals/day) [62,63]—from the PDN, 
based on realistic utility tariff [64], which were not considered in the 
extant literature. While the majority of the methods used in the 
literature incorporated hour-scale granularity, this study considers 
minute-scale granularity to compute the 15-min average power im-
ported from the PDN and to cope with the rapid changes in the XFCS 
charging demand profile as it is capable of charging EVs in less than 
10 min [4]. Thus, usage of minute-scale granularity is also critical for 
the correct power sizing of the BESS, in the case of XFCS sizing, as it 
depends on the information of actual charging profile and true peaks, 
which will be lost when hourly sampling is used.  

4) This work accounts for the cycle-life degradation of the Li-ion based 
BESS when modeling the planning problem, which was neglected in 
the literature that examined charging station planning 
[28–38,40–44]; thereby, this work ensures that the BESS will not be 
replaced during the lifetime of the project and consequently prevents 
extra investment cost that may incur otherwise. Furthermore, 
differing from the reported work related to BESS sizing [2,65,66], 
this work proposes novel and pragmatic linear formulations to 
accurately tally the number of BESS charge/discharge cycles using 
cumulative charging/discharging energy. The outcome of the pro-
posed degradation model is the optimal DoD and the number of BESS 
charge/discharge cycles during the project’s lifetime. 

1.3. Paper organization 

This paper is structured as follows: Section 2 describes the XFCS 
demand model, Section 3 proposes a MILP-based deterministic optimi-
zation (DO) model, and Section 4 presents the RO-based optimization 
model for XFCS planning. Section 5 describes the case study and presents 

findings and discussion. Section 6 concludes the paper. 

2. XFCS demand modeling 

This section presents the modeling of the XFCS charging demand 
profile. Fig. 1 presents a schematic of the XFCS that consists of BESS, PV 
system, and charging ports. The XFCS is connected to a medium voltage 
(MV) grid (e.g., 12.47 kV feeder), thereby eliminating the low frequency 
(LF) transformer for interconnection with the grid [67]. 

This work proposes an improved method to model the XFCS charging 
demand profile by considering EVs’ departure from their parking places 
and associated initial SoCs, and it models their arrival times and SoCs at 
the time when they arrive at the station for recharging. Different from 
the literature [2,19,29], the charging demand profile of the XFCS is 
determined by using CPCV-based extreme fast charging of EVs at the 
station. Due to the substantial differences in the EVs’ departure times 
and driving patterns during working days and non-working days, the 
XFCS demand profiles are separately modeled for a typical weekday and 
weekend day. 

This study divides EVs into three categories: category-1 (EVC1) in-
cludes privately owned EVs used for traveling from home to offices/ 
workplaces, category-2 (EVC2) privately owned EVs belonging to un-
employed/retired persons for their personal use, and category-3 (EVC3) 
corporately owned EVs used for work related travel and other purposes; 
this work assumes that EVC3 includes company-owned electric buses, 
delivery trucks, and other large vehicles with larger battery packs 
compared to those used by EVC1 and EVC2 vehicles. Departure times for 
the EVs in the aforementioned categories is collected from the online 
database National Household Travel Survey (NHTS) [68]. It is assumed 
that for weekends, the departure time for EVs in all categories follows 
N 1(μ1, σ2

1) normal probability distribution with mean μ1 and variance 
σ2

1. For weekdays, it is assumed that the departure time for vehicles in 
categories EVC2 and EVC3 also follows the same N 1(μ1, σ2

1) distribu-
tion. Vehicles in EVC1, follow N 2(μ2, σ2

2) normal distribution, with μ2 

and variance σ2
2, when departing from their parking places [69]. Table 1 

presents the departure time assumptions for the considered EV 

Fig. 1. XFCS schematic.  

Table 1 
Probabilistic distribution for the departure time of EVs in different categories.  

EV categories Probabilistic Distribution for EVs Departure Time 

Weekends Weekdays 

Category-1 (EVC1) N 1(μ1,σ2
1) N 2(μ2,σ2

2)

Category-II (EVC2) N 1(μ1,σ2
1) N 1(μ1,σ2

1)

Category-III (EVC3) N 1(μ1,σ2
1) N 1(μ1,σ2

1)
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categories. 
Per NHTS survey data, the daily driven mileage for EVs is assumed to 

follow the exponential probability distribution, as given by (1), where 
the coefficient ϖ is obtained by the maximum likelihood method and its 
value is 0.0296 [69]. The exponential distribution h(q) and histogram of 
a vehicle’s daily driven mileage is shown in Fig. 2. 

h(q) = ϖe− ϖq , q ≥ 0. (1) 

In this work, the continuous probability density function is dis-
cretized, as presented in Fig. 2, and instead of using each possible 
mileage q in the interval, the average driven mileage Q a (in miles) is 
computed for the interval [Q d ,Q d +1] using (2): 

Q a =
Q d + Q d +1

2
,∀Q d = 1, 2, 3,⋯(miles) (2) 

where ‘a’ is the index of EVs driven mileage, and Q d and Q d +1 are 
the distance values (in miles) used to obtain the average driven mileage 
(Q a) in the interval [Q d ,Q d +1]. Eq. (3) gives the probability F (Q a) of 
driving the average distance of Q a in the interval [Q d ,Q d +1]. 

F (Q a) =

∫Q d +1

Q d

ϖe− ϖq dq. (3) 

The XFCS demand modeling requires the probability of driving an EV 
at different times for both weekdays and weekends. Fig. 3 gives the 
hourly traffic distributions in the U.S. for a typical weekday and week-
end day [2]. 

The arrival time and the arrival charge state for an EV can be ob-
tained by using its departure time, state of charge at departure time, and 
the driving probability distribution at each hour around the clock, as 
given in Fig. 3. The state of charge of EV i at time t after driving a total 
distance of Q a miles is given by (4): 

SoCEV
i,a (t) = SoCEV

i,a (t − 1) −
1

C
EV
i

(
Q a.φEV (t).Ecpm

i
)
× 100. (4) 

This proposed model assumes a driver will immediately recharge the 
EV i at the station when its SoC reaches the threshold SOCthr

i . However, it 
should be noted that the SOCthr

i is not the same for each EV and follows a 
normal distribution N 3

(
μ3, σ2

3
)

with mean μ3 and variance σ2
3, thereby 

considering the heterogeneous actions of drivers in determining when 
and where to recharge their EVs when their SoCs reach the threshold 
[2]. The traveled distance for which an EV does not reach its SoCthr

i , 
implying the EV will not go to the charging station for recharging, is 
represented by Q a, where Q a ∈ Q a − Q

*
a. The weighted average of the 

arrival time (̂tarr
i ) and state of charge (ŜoC

arr
i ) of EVs arriving at the 

station after traveling Q *
a distances, where Q *

a ∈ Q a − Q a, is given by (5) 

and (6), respectively. The ̂tarr
i and ŜoC

arr
i are computed using only those 

values of the traveled distance for which Q a ≤ Q
*
a. For the other values 

of Q a (i.e., Q a ≤ Q a), EVs will not need to go to the charging station 

since their SoCs didn’t reach the specified threshold; thus, Q a ≤ Q a are 
not used for the computation of ̂tarr

i and ŜoC
arr
i in (5) and (6). 

t̂ arr
i =

∑Q *
a

Q a

(
F
(
Q

*
a

)
.tarr

i,Q *
a

)

∑Q *
a

Q a

(
F
(
Q

*
a

) ) (5)  

ŜoC
arr
i =

∑Q *
a

Q a

(
F
(
Q

*
a

)
.SOCthr

i,Q *
a

)

∑Q *
a

Q a

(
F
(
Q

*
a

) ) . (6) 

To compute XFCS demand modeling, it is assumed that there are r 
charging ports and w waiting spots. Upon arrival at the station, r EVs can 
be recharged simultaneously, and newly arrived EVs can stay in the 
waiting zone until a charging port becomes vacant. Once a charging port 
is available, EVs in the waiting zone can be recharged on a first-come- 
first-serve basis. If all the waiting spots are filled, new coming EVs 
may leave the station and find another station for recharging. The 
accepted EVs for recharging are denoted with i* and associated arrival 
time and state of charge with ̂tarr

i* and ŜoC
arr
i* , respectively. Depending on 

EV i* wait time before a charging port becomes available, the start time 
tst
i* for recharging of that EV can be equal to or greater than its arrival 

time at the station. 
The desired target state of charge for EV i*, which started charging at 

tst
i* for duration tch

i* , is represented by (7). Note that EV users’ heteroge-
neous behaviors in terms of terminating the charging process are 
considered by assuming that the SoCtarget

i* , for each i* EV, follows a 
normal probability distribution N 4

(
μ4, σ2

4
)
. 

SoCtarget
i* = ŜoC

arr
i* +

EEV
i* (t)
C

EV
i

× 100. (7) 

The charging energy received by EV i* is given by (8). In this work, 
the CPCV charging method is utilized for extreme fast charging of EVs at 
the station. In the CPCV charging protocol, the EV battery is charged 
with a constant power in the CP mode until it reaches the cut-off voltage, 
after which the mode switches to CV mode wherein the voltage is held 
constant and charging power decreases [70]. The CPCV charging pro-
tocol is reported to have lower usable energy loss, higher charging ef-
ficiency, and lower cycle life aging of batteries especially in the case of 
fast charging (i.e., charging power > 50 kW) [70–72]. Fig. 4 displays a 
sample CPCV profile (battery pack’s recharge power, current, C-rate, 
and SoC) that was obtained by simulating the extreme fast charging of a 
160-kWh battery pack. A C-rate is defined as the rate at which battery 
storage is charged/discharged with respect to its maximum capacity (C- 
rate unit is h− 1) [73]. 

Fig. 2. Probability distribution and histogram of a vehicle’s daily driven 
mileage [69] 

Fig. 3. Probability of daily trips for a typical weekday and weekend day.  
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EEV
i* (t) =

⎧
⎨

⎩

PXFCS × Δt, CP mode
P(t) × Δt, CV mode
0, at other times.

(8) 

The total energy demand profile of the XFCS is the aggregated 
charging energies of all the EVs served at the station on a typical 
weekday/weekend day and is given by (9): 

EWD(t) or EWND(t) =
∑T*

i*
EEV

i* (t) (9)  

3. Proposed deterministic MILP model 

This section introduces mathematical formulations for the proposed 
deterministic MILP model to optimally size the XFCS components and 
obtain optimal energy station management. This paper investigates an 
XFCS that comprises of an active front end (AFE: three-phase AC/DC 
converter), DC/DC converters, a PV generation system, a Li-ion BESS, 
and three charging ports. The charging ports, PV system, and the BESS 
are tied to a common DC voltage bus [67], as shown in Fig. 1. 

This work considers seasonal variations in the solar generation and 
electricity prices by representing a typical year with four seasons. Since 
the XFCS daily demand profile is computed for both weekdays and 
weekends, eight scenarios denoted by j are used to characterize a typical 
year. The first four scenarios (i.e., j = 1,2,3,4) represent the weekends, 
and scenarios five through eight (i.e., j = 5, 6, 7, 8) represent the 
weekdays during winter, spring, summer, and fall, respectively. The 

energy balance equation for the XFCS for scenario j at time t is given by 
(10). The efficiency losses in the AFE and DC/DC power converters are 
also considered, as observed in (10). The stored energy content in BESS 
for scenario j at time t is defined by (11) using its charge/discharge 
energies and the associated efficiencies [74]. The energy exchanged 
with the PDN for scenario j at time t is given by (12) in terms of energy 
imports/exports: the energy imported and exported from/to the PDN is 
respectively represented by positive and negative values. Simultaneous 
energy import and export is technically impossible and is enforced by 
(13) [75]. The Big-M method [44,75] is utilized in (13b) and (13c) to 
linearize the bi-linear term appearing in (13a). The solar power gener-
ation is modeled in this work using the approach presented in 
[46,76,77]. Daily PV generation profiles for the considered scenarios at 
a time step duration of 1-min were calculated using the global irradiance 
and the daytime temperature profile for the selected location at Oak 
Ridge, Tennessee, USA. Eqs. (14–16) are used to model the PV system 
power profile (Ppv,j(t)) for scenario ‘j’ at time ‘t’, where (14) relates the 
Ppv,j(t) with the per unit PV generation estimate (P̂VG,j(t))—which is 
modeled using (15) and (16) [76,77]—and its rated capacity PPV [46]. 
Moreover, this paper assumes that full sunlight exposure is possible by 
installing the solar modules at open locations where shading from 
buildings, trees, and other objects does not reduce the PV system power 
generation [78]. The input parameters and solar irradiance profiles for 
the considered scenarios are presented in Section 5.2.   

Fig. 4. Sample CPCV charging profile for 160-kWh battery pack with starting SoC = 20% and desired SoC = 85.6%.  

E+
g,j(t) × (ηAC− DC × ηDC− DC) −

E−
g,j(t)

(ηAC− DC × ηDC− DC)
= ̂EXFCS,j(t)+Ech,j(t) − Edch,j(t) − Ppv,j(t) × Δt,∀t ∈ T , ∀j ∈ J (10)   
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EBESS,j(t) = EBESS,j(t − 1)+Ech,j(t) × ηch −
Edch,j(t)

ηdch
,∀t ∈ T ,∀j ∈ J (11)  

EAC
g,j (t) = E+

g,j(t) − E−
g,j(t),∀t ∈ T ,∀j ∈ J (12)  

E+
g,j(t) × E−

g,j(t) = 0, ∀t ∈ T ,∀j ∈ J (13a)  

E+
g,j(t) ≤ M × u1,j(t),∀t ∈ T ,∀j ∈ J (13b)  

E−
g,j(t) ≤ M ×

(
1 − u1,j(t)

)
,∀t ∈ T ,∀j ∈ J (13c)  

Ppv,j(t) ≤ PPV × P̂VG,j(t), ∀t ∈ T , ∀j ∈ J (14)  

P̂VG,j(t) = 0.92 × IRG,j(t) ×
(
1 − ƥ × ΔTj(t)

)

1000
,∀t ∈ T ,∀j ∈ J (15)  

ΔTj(t) =
⃒
⃒
⃒
⃒25 −

(

TAmb,j(t) + (NOCT − 20) ×
IRG,j(t)

800

) ⃒
⃒
⃒
⃒,∀t ∈ T ,∀j ∈ J

(16)  

0 ≤ Ech,j(t) ≤ Prated
BESS × Δt,∀t ∈ T ,∀j ∈ J (17)  

0 ≤ Edch,j(t) ≤ Prated
BESS × Δt, ∀t ∈ T , ∀j ∈ J (18)  

Ech,j(t) × Edch,j(t) = 0, ∀t ∈ T , ∀j ∈ J (19a)  

Ech,j(t) ≤ M × u2,j(t), ∀t ∈ T , ∀j ∈ J (19b)  

Edch,j(t) ≤ M ×
(
1 − u2,j(t)

)
, ∀t ∈ T , ∀j ∈ J (19c)  

0 ≤
(
Prated

BESS × Δt
)
≤ Emax

XFCS (20)  

γ × Prated
BESS≤ CBESS ≤ γ × Prated

BESS (21)  

∑

t∈T

Edch,j(t)
ηdch

=
∑

t∈T

Ech,j(t) × ηch,∀t ∈ T ,∀j ∈ J (22)  

Ech,j(t) ≤ (CBESS − EBESS,j(t)),∀t ∈ T ,∀j ∈ J (23)  

Edch,j(t) ≤ EBESS,j(t),∀t ∈ T ,∀j ∈ J (24)  

− π ≤ EBESS,j(t) − EBESS,j(t − 1) ≤ π, ∀t ∈ T , ∀j ∈ J . (25)  

SoCBESS,j(t) =
EBESS,j(t)

CBESS
× 100,∀t ∈ T , ∀j ∈ J (26) 

The charging and discharging energies from the BESS are limited by 
kW sizing, as denoted by (17) and (18) [2,79]. Moreover, simultaneous 
charging and discharging of the BESS is prohibited and given by (19). 

The big-M method is leveraged in (19b) and (19c) to linearize the bi- 
linear term appearing in (19a) [44]. The constraint in (20) limits the 
rated power of the BESS to be less than the maximum charging demand 
at the station. The practical limitations of the BESS, such as mutual 
dependence of its energy and power ratings, are represented by (21). 
The BESS stored energy is constrained to be equal for the start and end 
time of the optimization horizon, as given by (22). The charging and 
discharging energies of the BESS are constrained by available energy 
capacity and the BESS stored energy for scenario ‘j’ at time ‘t’, as given by 
(23) and (24), respectively. The ramp-down and ramp-up constraints are 
imposed on the charge/discharge energy of the BESS using (25) [80]. Eq. (26) 
gives the BESS state of charge in the percentage of its total energy capacity for 
scenario ‘j’ at time ‘t’. Note that (26) makes the model non-linear, therefore it is 
used only to compute the SoCBESS,j(t) for presenting results after the optimi-
zation model is solved. 

P+
g,avg,j(k) =

(
1
ξ

)
∑k×ξ

t=1+ξ×(k− 1)

(E+
g,j(t)
Δt

)

,∀k ∈ K ,∀j ∈ J (27)  

Pmax
g,daily,j = max

(
P+

g,avg,j(k)
)
,∀k ∈ K ,∀j ∈ J (28)  

Pmax
g,mo,s = max

(
Pmax

g,daily,s ,Pmax
g,daily,s+S

)
,∀s ∈ S (29)  

Pmax
g,an = max

(
Pmax

g,mo,s

)
,∀s ∈ S (30)  

Pmax
g,daily,j ≥ P+

g,avg,j(k), ∀k ∈ K , ∀j ∈ J (31a)  

{
Pmax

g,mo,s ≥ Pmax
g,daily,s

Pmax
g,mo,s ≥ Pmax

g,daily,s+S

,∀s ∈ S (31b)  

Pmax
g,an ≥ Pmax

g,mo,s ,∀s ∈ S . (31c) 

To compute the monthly and annual demand charges, the daily 
average power imported from the PDN (averaged over ξ-mins window) 
is computed using (27), and its maximum value for scenario j during 24- 
hours is obtained using (28). Since each season is characterized by one 
weekday and one weekend day, the maximum monthly average power 
imported from the PDN for season s, is computed using (29). Finally, the 
maximum annual average power import is given by (30). In (29)-(30), 
the ‘max’ function is nonlinear; therefore, (31) is used to replace it in the 
proposed linear formulations. Note the addition of (31) is sufficient to 
replace the ‘max’ function in the proposed model because the nature of 
the objective function (40) guarantees that the smallest feasible values 
of Pmax

g,daily,j, Pmax
g,mo,s , and Pmax

g,an will always be selected:    

Studies [81–83] have been proposed in the literature that model the 
battery degradation accurately in a very detailed manner. However, 
because the proposed models are non-linear and involve multiple vari-
ables, they are computationally burdensome for planning studies which 
is not acceptable. Introducing non-linear formulations in the optimal 

Ψ =
(D/S )

CBESS
.
∑

t∈T

[
2
7
∑4

j=1

(
Edch,j(t)

ηdch

)

+
5
7
∑8

j=5

(
Edch,j(t)

ηdch

)]

=
(D/S )

CBESS
.
∑

t∈T

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2
7
∑4

j=1

(
ηch × Ech,j(t)

)
+

5
7
∑8

j=5

(
ηch × Ech,j(t)

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∀t ∈ T ,∀j ∈ J . (32)   
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sizing model can also lead to a local optimum [84,85]. Furthermore, to 
simulate the accurate capacity fading phenomenon, the planning model 
would need to be solved for the entire planning horizon which is 
extremely computation-expensive, especially when the simulation time 
step uses minute-scale time granularity as used in this work. Therefore, 
this paper utilizes a different BESS degradation method, adopted from 
[2,65,66,84] and is suitable for planning studies, that considers the 

cycle-life degradation characteristics of the Li-ion based battery energy 
storage system (BESS) in terms of its depth of discharge (the DoD at 
which it will be operated during the project lifetime) and corresponding 
maximum allowable cycles using the relationship presented in Fig. 5. 

The DoD per cycle and charge/discharge cycles of a BESS are the 
chief operating factors contributing to its cycle-life degradation during 
its calendar lifetime. BESS cycle-life degradation is a key aspect to 
consider for obtaining the optimal DoD and the maximum allowed 
number of cycles to make sure that the BESS will not be replaced during 
the considered project lifetime. Therefore, in addition to BESS invest-
ment costs ($/kW and $/kWh), it is also important to take its number of 
charge/discharge cycles and DoD per cycle into account in the BESS 
planning studies [2,65,66]. One complete cycle of the BESS consists of 
one full charge cycle and a discharge cycle. In this work, the number of 
BESS charge and discharge cycles in a day are equal because the BESS 
stored energy is constrained to be equal for start and end times in the 
day. In the existing literature on BESS sizing [2,65,66], one discharge 
cycle is completed when the BESS energy capacity is discharged from 
100% to 0% continuously all from one discharge (i.e., no charging can 
happen before finishing a discharge cycle). On the contrary, in this 
study, one discharge cycle is completed when an equivalent amount of 
energy that amounts to 100% of the ESS capacity is discharged but not 
essentially all from one discharge. Thus, this paper offers a more prac-
tical approach for tallying BESS cycles, as given by (32). In (32), the 
annual cycle count is obtained using cumulative charging/discharging 
energy. 

This work uses a piece-wise linear approximation of the Li-ion BESS 
cycle life curve shown in Fig. 5, which was taken from [86] and 
approximated using expressions in (33). It should be noted that in (33), a 
maximum of two adjacent non-zero ρ’s are in the final solution, which 
can be realized in AIMMS (an optimization modeling tool) by specifying 
a special order set of type-2 (SOS2) in the property attribute of con-
straints given in (33) [87,88]. The total number of BESS charge/ 
discharge cycles is constrained to be less than the allowed cycles cor-
responding to the optimal DoD, as given by (34). The constraint in (35) 
sets the lower limit of BESS stored energy based on the determined 

optimal DoD. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J
a
(DoD) =

∑

s∈S

(ρ(s) × J(DoD(s)) )

DoD =
∑

s∈S

(ρ(s) × DoD(s))

∑

s∈S

(ρ(s)) = 1

(33)  

Ψ ≤ J
a
(DoD) (34)  

(1 − DoD) × CBESS ≤ EBESS,j(t) ≤ CBESS. (35) 

The constraints in (32) and (35) contain non-linear terms. Rear-
ranging (32) and (35) yields bi-linear terms, i.e., ‘Ψ× CBESS’ and ‘DoD×

CBESS’ respectively given by (36) and (37), which can be linearized using 
McCormick relaxations. A McCormick envelope can form the tightest 
convex hull of bi-linear functions [89]. Interested readers should refer to 
[90–92] for detailed discussions about standard McCormick relaxations 
and tightening piece-wise McCormick relaxations for bi-linear terms.  

(CBESS − DoD × CBESS) ≤ EBESS,j(t) ≤ CBESS (37) 

Let Y = Ψ× CBESS 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y ≥ Ψ.CBESS + Ψ .CBESS − Ψ .CBESS
Y ≥ Ψ.CBESS + Ψ.CBESS − Ψ.CBESS

Y ≤ Ψ.CBESS + Ψ .CBESS − Ψ .CBESS
Y ≤ Ψ.CBESS + Ψ.CBESS − Ψ.CBESS

(38) 

Let ω = DoD× CBESS 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ω ≥ DoD.CBESS + DoD .CBESS − DoD .CBESS
ω ≥ DoD.CBESS + DoD .CBESS − DoD .CBESS

ω ≤ DoD.CBESS + DoD .CBESS − DoD .CBESS
ω ≤ DoD.CBESS + DoD.CBESS − DoD.CBESS

. (39) 

Consequently, the linearized expressions (38) and (39) replace the 
bilinear terms of (36) and (37), resulting in a standard MILP model. 
Using the approach presented in [92], MILP formulations are used to 
obtain the tightest piece-wise McCormick relaxation corresponding to 
(38), as given in Appendix A; formulations can also be derived for (39) 

using the same approach. In (38) and (39), CBESS ∈

[

CBESS ,CBESS

]

, Ψ ∈

[
Ψ ,Ψ

]
, and DoD ∈

[

DoD ,DoD
]

. 

The objective function (OF) of the proposed formulations is to mini-
mize the total yearly XFCS cost that consists of three main components: 
monthly and yearly demand charges, investment and O&M costs for the 
PV system and the BESS, and the operating cost for the station, as 
expressed in (40). The decision vector of the proposed formulations is 
V = [CBESS, Prated

BESS, DoD, ψ , EBESS,j(t), PPV, Ppv,j(t), EAC
g,j (t), Pmax

g,mo,s , Pmax
g,an ]. 

The annualized investment costs of the BESS and the PV system are 
obtained using CFann from (41) [2]. The complete DO optimization 
model consists of the OF (40) and the constraints (10–39). 

Fig. 5. Cycle life curve of Li-ion based BESS.  

Ψ × CBESS = (D/S )
∑

t∈T

[
2
7
∑4

j=1

(
Edch,j(t)

ηdch

)

+
5
7
∑8

j=5

(
Edch,j(t)

ηdch

)]

= (D/S )
∑

t∈T

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2
7
∑4

j=1

(
ηch × Ech,j(t)

)
+

5
7
∑8

j=5

(
ηch × Ech,j(t)

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,∀t ∈ T ,∀j ∈ J (36)   
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CFann =
z × (1 + z)

L

(1 + z)
L
− 1

. (41)  

4. Robust optimization based MILP model 

The RO approach is an alternative method for considering un-
certainties in planning problems without needing accurate information 
about uncertain data probability distribution functions (PDFs). Instead, 
it only requires limited information about uncertain data in the form of 
uncertainty confidence bounds. The RO solution is workable for all 
uncertainty realizations within the specified bounds, and it is obtained 
at the worst-case realization of uncertain parameters [45,48]. 

4.1. Uncertainty modeling of electricity market price 

This section outlines the RO modeling to account for uncertainties in 
wholesale electricity prices. The DO model (40) can be recast as a 
min–max–min RO model, given by (42). The max–min structure of (42) 
relates to the fact that, while the inner term minimizes the OF over 
decision variables, the outer term realizes the uncertainty such that it 
occasions the worst possible impact on the OF. The decision vector is 
V = [CBESS, Prated

BESS, DoD, ψ , EBESS,j(t), PPV , Ppv,j(t), EAC
g,j (t), Pmax

g,mo,s , Pmax
g,an ].    

Uλ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λl
E,j(t) ∈ R+ : Γλ ≤

λl
E,j(t)

λ̂E,j(t)
≤ Γλ

λl
E,j(t) ∈

[

λE,j (t), λE,j(t)
]

λE,j(t) = (1 + Φ)×λ̂E,j(t)

λE,j (t) = (1 − Φ)×λ̂E,j(t)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,∀t ∈ T ,∀j ∈ J . (43) 

Using the approach presented in [93], the min–max-min RO struc-
ture is reformulated into a standard minimization problem, as given by 
(44), using duality properties and linearization of the constraints. 
Interested readers should see [93] for a detailed discussion about the 
implemented approach. This approach transforms the min–max-min 
structure-based model into a tractable minimization problem and pro-
vides a way to adjust the degree of risk-aversion in the final solution by 
tuning the robust parameter. The bounds of the electricity price are 
given by (43). Furthermore, the lower and upper limits on the electricity 
price signal are enforced using the uncertainty budget, denoted by Γλ

and Γλ for managing the degree of conservatism for Uλ. The uncertainty 
budget ‘Γλ’ can take any value between [0, T ], where T is total minutes 
in a day. Increasing the Γλ makes the robust solution more conservative, 
with Γλ = T the solution is most conservative, while Γλ = 0 yields the 
least conservative solution, i.e., deterministic case. Put simply, Γλ con-
trols the trade-off between economic performance and the robustness 
against uncertainties in the final solution: 

(40)   

min.
V

(
MDC+ADC+ IC&OMBESS + IC&OMPV)+ max.

λl
E,j(t)∈Uλ

min.
V

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(D/S )
∑

t∈T

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2
7
∑4

j=1

(
EAC

g,j (t) × λl
E,j(t)

)
+

5
7
∑8

j=5

(
EAC

g,j (t) × λl
E,j(t)

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,∀t ∈ T , ∀j ∈ J (42)   
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s.t. the constraints (10–39), (43), and (45).   

αλE ≥ 0,

βλE (t) ≥ 0,

ςλE
j (t) ≥ 0,

ςλE
j (t) ≥ EAC

g,j (t),∀t ∈ T ,∀j ∈ J . (45) 

where αλE and βλE (t) are dual variables of the original DO model, and 
ςλE

j (t) is an auxiliary variable that is used to achieve the corresponding 
linear formulations. 

4.2. Uncertainty modeling of XFCS demand and PV system generation 

In this section, uncertainty modeling of the XFCS demand profile and 
the PV system power generation is addressed. Similar to Section 4.1, the 
DO model (40) is recast as a min–max-min RO structure, as given by 
(46). The uncertainty bounds for both input parameters are given by 
(47) and (48). In addition, the uncertainty budgets for charging demand 
and PV generation, respectively, are denoted by ΓD and ΓPV , manage the 
degree of conservatism in the final solution. Note that the optimal rating 
of the PV system is one of the decision variables and the uncertainty 

exists in the per unit PV generation data, which is modeled using (13) 
and (14). The decision vector is V = [CBESS, Prated

BESS, DoD, ψ, EBESS,j(t), PPV , 
Ppv,j(t), EAC

g,j (t), Pmax
g,mo,s , Pmax

g,an ].  

UD =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ed
XFCS,j(t) ∈ R+ : ΓD ≤

Ed
XFCS,j(t)
̂EXFCS,j (t)

≤ ΓD

Ed
XFCS,j(t) ∈

[

EXFCS,j (t),EXFCS,j(t)

]

EXFCS,j(t) = (1 + ϱ) × ̂EXFCS,j(t)

EXFCS,j (t) = (1 − ϱ) × ̂EXFCS,j (t)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, ∀t ∈ T , ∀j ∈ J (47)  

UPV =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PVp

G,j(t) ∈ R+ : ΓPV ≤
PVp

G,j(t)

P̂VG,j(t)
≤ ΓPV

PVp

G,j(t) ∈
[

PVG,j (t),PVG,j(t)
]

PVG,j(t) = (1 + ε) × P̂VG,j(t)

PVG,j (t) = (1 − ε) × P̂VG,j(t)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,∀t ∈ T ,∀j ∈ J . (48) 

In the RO model, using the approach from [93], the energy balance 
constraint of (10) is transformed into (49), with additional constraints of 
(50) and (51):  

min.
V

(
MDC+ADC+ IC&OMBESS + IC&OMPV)+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(D/S )
∑

t∈T

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2
7
∑4

j=1

(
EAC

g,j (t) × λ̂E,j(t)
)
+

5
7
∑8

j=5

(
EAC

g,j (t) × λ̂E,j(t)
)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

(

Γλ × αλE +
∑

t∈T

βλE (t)

)

,∀t ∈ T ,∀j ∈ J (44)   

αλE + βλE (t) ≥ (D/S )

⎛

⎜
⎜
⎝

2
7
∑4

j=1

(

λE,j(t) − λE,j (t)
)

2
×ςλE

j (t) +
5
7
∑8

j=5

(

λE,j(t) − λE,j (t)
)

2
×ςλE

j (t)

⎞

⎟
⎟
⎠,

min.
V

(
MDC + ADC + IC&OMBESS + IC&OMPV)+ max.

Ed
XFCS,j(t)∈UD ,PVp

G,j(t)∈UPV
min.

V

⎛

⎜
⎜
⎝(D/S )

∑

t∈T

⎛

⎜
⎜
⎝

2
7
∑4

j=1

(
EAC

g,j (t) × λ̂E,j(t)
)
+

5
7
∑8

j=5

(
EAC

g,j (t) × λ̂E,j(t)
)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠,∀t ∈ T ,∀j ∈ J (46)   

E+
g,j(t)×(ηAC− DC×ηDC− DC)−

E−
g,j(t)

(ηAC− DC×ηDC− DC)
=
(

ΓD×αD+βD
j (t)+ ̂EXFCS,j (t)+Ech,j(t)− Edch,j(t)−

(
− ΓPV ×αPV − βPV

j (t)+Ppv,j(t)
)

Δt
)
,∀t∈T ,∀j∈J (49)   
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Fig. 6. XFCS daily charging demand profile for a typical (a) weekday and (b) weekend withr = 3 charging ports and w = 5 waiting spots.  

Fig. 7. Per unit estimate of PV generation profiles for each season.  
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αD + βD
j (t) ≥

(

EXFCS,j(t) − EXFCS,j (t)

)

2
× ςD

j (t),

αD ≥ 0,

βD
j (t) ≥ 0,

ςD
j (t) ≥ 0,

ςD
j (t) ≥ 1∀t ∈ T ,∀j ∈ J (50)  

αPV + βPV
j (t) ≥

(

PVG,j(t) − PVG,j (t)
)

2
× ςPV

j (t),

αPV ≥ 0,

βPV
j (t) ≥ 0,

ςPV
j (t) ≥ 0,

ςPV
j (t) ≥ PPV ,∀t ∈ T ,∀j ∈ J . (51) 

where αD, βD
j (t), αPV, and βPV

j (t) are the dual variables of the original 
DO model related to charging demand and solar generation un-
certainties; ςD

j (t) and ςPV
j (t) are the auxiliary variables utilized for 

obtaining the corresponding linear expressions. 
The complete RO-based MILP model comprises of the OF (44) and 

the constraints (11–39), (43), (45), and (47–51). 

5. Case study simulations 

5.1. Simulations of the XFCS demand model 

In XFCS demand modeling, the total number of EVs is assumed to be 
100 [2]. The following assumptions are made to calculate the XFCS 
demand: there is only one XFCS in the region under study. If an EV ‘i’ 
originating from this region travels within the region and its SoC reaches 
the threshold SOCthr

i , specified in the demand model, it will get 
recharged at the XFCS under study. If EV users travel from other regions 
and SoCs of their EVs reach pre-specified thresholds, they will also 
recharge EVs at this XFCS if they cannot reach back to their regions of 
origin without being recharged, otherwise they will recharge EVs at the 
charging stations of their own regions. Additionally, it is assumed that 
the number of EVs traveling out of the region under study are the same 

as those traveling in the region, such that, the total number of consid-
ered EVs in the region under study remains 100. Lastly, the XFCS de-
mand modeling approach is not applicable and needs to be revised if 
there are multiple charging stations in the region. 

The percentages of EVs belonging to EVC1, EVC2, and EVC3 cate-
gories are taken as 61%, 30%, and 9%, respectively [94]. The normal 
probability distribution values of departure times for EVC2/EVC3, and 
EVC1 are taken from [69] and are N 1(13 : 51,5 : 12) and N 2(06 : 52,
1 : 18), respectively. The battery capacities of EVs in the EVC1 and EVC2 
are assumed to be 100-kWh, with energy consumptions of 0.35 kWh/ 
mile [95,96], which is used in the Tesla Model S 100D (2018) and Tesla 
Model X 100D (2018) [97,98]. The battery capacity of 160-kWh, with 
energy consumption of 2.0 kWh/mile [99], is assumed for EVs in the 
EVC3 [100–102]. The normal probability distribution representing the 
threshold SOCthr

i is taken from [103] and is N 3(30, 15). Moreover, to 
avoid deep-discharge and over-charging and to enhance battery life, the 
state of charge for all EVs is assumed to be constrained within the range 
of 10–90%, at all times [104,105]. The SoCtarget

i* also follows a normal 
distribution N 4(80,10) [106]. For the purpose of simulations, it is 
assumed that there are r = 3 charging ports and w = 5 waiting spots in 
the studied charging station. Obtaining the optimal number of charging 
and waiting spots is out of this study’s scope. The kW rating of each 

Fig. 8. Electricity market prices for four seasons.  

Table 2 
Simulation Parameters.  

Parameter Value Parameter Value 

BESS technology Li- 
ion 

Mounting status of PV 
module and tilt angle 

Free-standing 
and 34◦

BESS power rating cost 
[$/kW] 

300 PV system losses [%] 
(estimated) 

14 

BESS annual O&M cost 
[$/kW] 

– PV NOCT [◦C] 45 

BESS energy rating 
cost [$/kWh] 

695 ηAC− DC, ηDC− DC [%] 95 

BESS installation cost 
[$/kWh] 

3.6 Optimization horizon [years] 1 

BESS lifetime [years] 20 z [%] 4 
BESS γmin , γmax 1, 8 ξ [min] 15 
BESS ηch , ηdch [%] 98 K 96 
π [kWh/min] 20 λADC, λMDC [$/kW] 18, 10 
PV technology c-Si D, T , S , J 365, 1440, 4, 8 
PV power rating cost 

[$/kW] 
2277 SFM 3 

PV system O&M cost 
[$/kW/year] 

21 Δt [h] 1/60 

PV system lifetime 
[years] 

25 L [years] 20 

ƥ 0.007    

Table 3 
Simulation results of XFCS sizing with a project lifetime of 20 years.   

Base Case (w/o PV 
& BESS) 

Case I Case II 

CBESS [kWh] – 2207.47 1854.19 
Prated

BESS [kW] – 1050 715.86 
Optimal BESS DoD [%] – 100 60.2 
BESS annual charge/discharge 

cycles 
– 755 369 

PV system rating [kW] – 300 300 
Monthly Pmax

g,mo,s for winter, 
spring, summer, and fall [kW] 

1081.31 445.76 288.11 

Pmax
g,an [kW] 1081.31 445.76 288.11 

XFCS operation cost [$/year] 356627.53 75751.12 181444.81 
BESS investment cost [$/year] 0 136648.38 111112.76 
PV system investment cost 

[$/year] 
0 56,562 56,562 

Total demand charges [$/year] 149220.57 61515.28 39759.07 
Total XFCS savings [$/year] 0 175371.32 116969.36 
Total XFCS savings [%/year] 0 34.66 23.12  
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charging port in the studied XFCS is taken as 350 kW [10,107]. 
The obtained XFCS demand profiles for a typical weekday and 

weekend are displayed in Fig. 6. The XFCS demand has two peaks for a 
typical weekday: one peak is observed in the morning time and the 

second in the evening/nighttime. For the weekend, the majority of the 
EVs get charged in the afternoon and evening times. In this work, the 
XFCS charging demand is assumed to be the same for all seasons. 

Fig. 9. Deterministic optimization model results with project lifetime of 20 years: winter season results for the weekend (scenario #1) and weekday (scenario #5) are 
respectively shown in (a) – (d) and (e) – (h). (a), (e) Hourly electricity price and the XFCS charging demand curves; (b), (f) energy exchanged with the PDN to satisfy 
the XFCS charging demand, to charge/discharge the BESS for arbitrage, and to send excess PV generation back to PDN to earn extra revenue. Positive values represent 
the energy imported from the PDN, and negative values indicate the energy exported back to the PDN; (c), (g) BESS SOC variations in percentage and energy flows in 
kWh: positive values represent energy to charge the ESS and negative values represent the energy discharged from the BESS; and (d), (h) average power imported 
from the PDN (averaged over 15-min time intervals). 

Table 4 
Simulation results of XFCS sizing with different planning horizons.  

Project lifetime [years] Base Case (w/o PV & BESS) L = 5 L = 10 L = 15 L = 20 

CBESS [kWh] – 358.22 797 1394.03 1854.19 
Prated

BESS [kW] – 358.22 582.62 671.54 715.86 
Optimal BESS DoD [%] – 88.53 68.85 62.03 60.2 
BESS annual charge/discharge cycles – 710 582 468 369 
PV system rating [kW] – 0 300 300 300 
Monthly Pmax

g,mo,s for winter, spring, summer, and fall [kW] 1081.31 684.39 435.74 337.22 288.11 
Pmax

g,an [kW] 1081.31 684.39 435.74 337.22 288.11 
XFCS operation cost [$/year] 356627.53 325064.25 213986.85 192001.10 181444.81 
BESS investment cost [$/year] 0 80149.52 90202.68 105656.74 111112.76 
PV system investment cost [$/year] 0 0 90,519 67,710 56,562 
Total investment cost [$/year] 0 80149.52 180721.68 173366.74 167674.76 
Total demand charges [$/year] 149220.57 94445.21 60132.45 46535.98 39759.07 
Total XFCS savings [$/year] 0 6189.10 51007.1 93944.10 116969.36 
Annualized return on investment (AROI) [%] 0 7.72 28.22 54.18 69.75 
Total XFCS savings [%/year] 0 1.22 10.08 18.57 23.12  
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5.2. Simulation of the XFCS sizing model 

The proposed MILP sizing model was implemented in AIMMS 
4.74.1.0 and solved using CPLEX 12.10 solver [88]. The model was 
implemented on a computer with 32 GB of RAM and a 3.20 GHz Intel® 
CoreTM i7 processor. The solutions for the DO and RO models were 
obtained in ~ 26 and ~ 102 s, respectively. 

In this work, one year is characterized by eight scenarios to include 
the effects of seasonal differences in the PV generation profiles and 
electricity prices, as discussed in Section 3. To signify seasonal varia-
tions in the per unit estimate of PV power generation (P̂VG,j(t)), the solar 
irradiance and ambient temperature data were collected for four seasons 
(for weekends and weekdays respectively) for the year 2019 and loca-
tion Oak Ridge, Tennessee, USA (Latitude: 35.92996◦ North 

Longitude: 84.30952◦ West) from an online database of the National 
Renewable Energy Laboratory (NREL) [108]. Fig. 7 illustrates the per 
unit estimate of the PV generation profiles for each season. It should be 
noted the eight different profiles were randomly picked, by season and 
by weekend/weekday. The larger fluctuations in the weekend profiles 
are coincidental and may not represent the general situation. This work 
assumes the total area of the XFCS is 2000m2 [44], therefore the PV 
generation system maximum power rating is restricted to 300 kW [109]. 
Moreover, the capacity of the PDN feeder and ratings of power elec-
tronic converters (PECs) are assumed to be enough to satisfy the XFCS 
peak power demand. 

Among different pricing mechanisms, Time of Use (ToU), Real-time 
Pricing (RTP), and Critical Peak Pricing (CPP) are the most appropriate 
pricing methods in US energy markets [110]. RTP increases the BESS’s 
revenue, but it generates the highest price variation for the prosumer, 
according to [111]. TOU and CPP, on the other hand, only bring a 
modest amount of profit to the retailer’s bottom line. The optimal 
scheduling problem [74,79,112] and system planning [113,114] of 
various players in power markets have been studied in the literature 
considering the availability of EV and charging stations. The superiority 
of various demand response (DR) programs is dependent on the 

numerous case studies and the examined problem, according to the re-
sults and explanations in the literature. To provide a more realistic case 
study, this paper employed the RTP pricing mechanism. Fig. 8 shows the 
electricity price curves for four seasons taken from [44]. 

The input parameters related to BESS and PV generation system are 
taken from [2,76] and are presented in Table 2. 

5.3. Results and discussion 

5.3.1. XFCS sizing using deterministic optimization model 
This section presents sizing of the XFCS components and optimal 

energy management of the XFCS using the DO model (without consid-
ering any uncertainty in the input data) for a planning horizon of 20 
years. The investment costs of the BESS and PV system are obtained with 
the help of expression (41) using the interest rate and lifetime of the 
project. Table 3 presents comparisons of the sizing results and savings in 
the total annualized cost of the station for the following three cases:  

• Base Case: Without considering the application of BESS and PV 
system in the station  

• Case I: XFCS sizing with BESS and PV system: without considering 
the BESS life degradation  

• Case II: XFCS sizing with BESS and PV system: by considering the 
BESS life degradation 

In the Base Case, the total annualized cost of the station is computed 
as a baseline for appraising the savings obtained from Cases I and II. 
Between Cases I and II, it is found that the BESS energy and power sizing 
are higher for Case I; moreover, the optimal DoD and annual charge/ 
discharge cycles are also higher in Case I. The increased BESS power and 
energy ratings in Case I can be attributed to the fact that with no limi-
tations on the allowed annual BESS cycles (i.e., with no degradation 
considerations), the energy arbitrage can be performed to a higher de-
gree and earn more revenue and annual savings for the station compared 
to Case II, which is evident in Table 3. Case I promises annual savings of 

Fig. 10. Robust optimization model results: (a) sensitivity of BESS sizing and (b) XFCS cost components with different levels of robustness against uncertainty in 
forecasted electricity prices. 
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34.66% in contrast to 23.12% expected in Case II, so having a larger 
BESS is justified in Case I. The maximum monthly and annual average 
power imported from the PDN and the resulting demand charges are 
higher in Case I (approx. 35% higher) in comparison with Case II. The 
justification for this is that the revenue earned via energy arbitrage 
overshadows the reduction in the demand charges using BESS; there-
fore, in Case I, the BESS is utilized more often to exploit the energy 
arbitrage opportunities by charging during the low-price hours and 
discharging during the peak-price hours, thereby resulting in ~ 58% 
lower operating cost compared to Case II. 

The optimal PV sizing system is found to be 300 kW in both Case I 
and Case II, which is equal to the maximum allowed PV system size for a 
station with a total area of 2000m2. Thus, it demonstrates that the 
installation of the PV system in the studied XFCS is economically viable 
in both cases because it serves multiple purposes by directly feeding the 
charging station demand, charging the BESS, and exporting the excess 
generated power to the PDN to earn extra revenue (see Fig. 9(b) and (f)). 
Note that in Table 3, the average power imported from the PDN in Base 
Case (i.e., 1081.31 kW) is higher than the maximum XFCS peak power 
demand at any time (i.e., 1050 kW), which is attributed to the efficiency 
losses in the power electronic converters. 

Case I promises comparatively significant payoffs, but it requires 
755 BESS annual charge/discharge cycles (>2 times as in Case II) with 
100% DoD. Consequently, the BESS in Case I will reach its End-of-Life 
(EOL) in only ~3.7 years and will need to be replaced, thereby 
incurring extra investment costs. Conversely, the BESS undergoes only 
369 annual cycles with a DoD of 60.2% in Case II and will not be 
replaced during the project’s lifetime, thus preventing any additional 
investment costs. Note that, the EOL is estimated using 
maximum allowable BESS cycles based on the selected DoD

BESS annual cycles of operation with help of the cycle-life 
curve presented in Fig. 5. Nevertheless, it should be noted that for 
the EOL estimation, it is assumed that BESS operation is strictly 
following the 60.2% DoD with annual 369 cycles of operation. The DoD 
restriction can be practically imposed by limiting BESS charge/ 
discharge operation between the SoC range of 100%-39.8%. 

In the light of results presented in Table 3 and discussion, this case 

study signifies that accounting for the BESS life degradation aspects is 
imperative and cannot be ignored in charging station planning studies. 

For a typical weekend and weekday in the winter season (i.e., 
correspondingly scenarios #1 and #5), the optimal energy management 
of the XFCS, corresponding BESS SoC variations in response to station’s 
charging demand and electricity price variations, and average power 
imported from the PDN are displayed in Fig. 9. For the purpose of dis-
cussion, this section presents the results for the winter season only, 
however, the proposed model can give the optimal energy management 
for the station and BESS operation for all studied seasons. In Fig. 9(b) 
and (f), the ellipses E1, E2, and E3 indicate the periods when BESS 
discharges to earn revenue by feeding the XFCS charging demand and/ 
or exporting energy to the PDN during high electricity price periods. The 
PV system generates power to fulfill the station’s charging demands 
partially/fully and either export the excess energy to the PDN or charge 
the BESS. During the weekend, the PV system generation coincides with 
the XFCS demand, therefore the majority of the time it is being utilized 
to feed the charging station demands. By contrast, as there is less 
charging demand on the station during the weekday daytime hours, the 
excess PV power is either exported to the PDN to earn revenue, or it 
charges the BESS for later use during peak price hours. 

Charging/discharging of the BESS and corresponding SoC variations 
are illustrated in Fig. 9(c) and (g). The BESS operation is always con-
strained by the optimal DoD of 60.2% to ensure longevity. It is evident in 
both charts that BESS charges during the off-peak price hours and dis-
charges during the peak-price hours to take advantage of the energy 
arbitrage opportunities and earn revenue. Consequently, it shifts the 
charging station demand from peak hours to off-peak hours, and it also 
helps reduce peak demand on the local distribution network. Hence, 
energy arbitrage using BESS is not only beneficial for the XFCS owner 
but can also play a central role in reducing the peak demand on the 
distribution network, thereby precluding the potential future grid re-
inforcements which may otherwise be needed if multiple XFCS are 
installed on the PDN. 

The BESS also discharges to meet another important objective: 
keeping the maximum monthly and annual average power imports from 

Fig. 11. Robust optimization model results: (a) sensitivity of BESS sizing and (b) XFCS cost components with different degrees of robustness against all uncertainties.  
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the PDN to the lowest and reducing the ensuing demand charges, as 
exemplified by Fig. 9(c), (g), (d), and (h). From Table 3, the total de-
mand charge comparisons between Base Case and Case II reveal a 
reduction of ~73% that is realized by optimally utilizing the BESS 
operation to bring the maximum monthly and annual average power 
imports from 1081.31 kW to 288.11 kW. 

Note that the efficacy of the proposed MILP formulations to tally the 
BESS cycles using cumulative charge/discharge energy is evident in 
Fig. 9(c) and (g), wherein the BESS charges and discharges frequently 
during a day—charging (/discharging) happens before finishing a 
discharge (/charge) cycle—and accurate cycle counting using ap-
proaches presented in the literature [2,65,66] may not be practical. 
Finally, Fig. 9(d) and (h) present the daily average power import from 
the PDN for both weekends and weekdays of the winter season, wherein 
the average power import is always either equal to or less than 288.11 
kW. Hence, it exemplifies that the proposed model keeps the average 
grid power imports minimized, at all times, to keep the ensuing total 
demand charges to the lowest. 

5.3.2. Impact of planning horizon on XFCS sizing using deterministic 
optimization model 

This section investigates the impacts of different project lifetimes and 
offers insights and discussion on the results listed in Table 4. Base Case 
represents the case without considering the application BESS and PV 
system in the XFCS. Results reveal that a higher rated BESS is econom-
ically more viable with a longer project lifetime; therefore, with L = 20 
years, the energy and power ratings are highest among all studied cases. 
This is because the return on large investment is more promising and 
yields larger payoffs with longer project lifetimes, i.e., 23.12% savings 
are expected with L = 20 years versus only 1.22% in case of L = 5 
years. Moreover, the maximum average power imported from the PDN 
and resultant demand charges are highest for L = 5 years and lowest for 
L = 20 years. This is because, with higher-rated BESS, there is more 
opportunity to utilize it for reducing the average power imported from 
the PDN. 

Annualized return on investment (AROI) is a commonly used metric 
for the economic valuation of any investment and is defined as the ratio 
of annual savings over annualized investment [115–118]. Table 4 shows 
that with L = 20 years the AROI is maximum (i.e., 69.75%) and is 
minimum (i.e., 7.72%) with L = 5 years assuming constant operation of 
BESS and PV system with no reliability issues. The AROI values indicate 
promising returns on investment with longer project lifetimes. Note that, 
per [116], on average, investors expect after-tax AROI of about 30–40%. 
In this work, the large AROI values are chiefly attributed to the savings 
realized by using the BESS for energy arbitrage and reduction in total 
demand charges. 

With longer project lifetimes, the optimal value of the BESS DoD is 
smaller; additionally, the BESS undergoes fewer annual cycles to in-
crease its longevity and thereby ensuring that it will not reach its EOL 
before the end of the project. Among the studied cases, investment in the 
PV system is not economically feasible with L = 5 years, and for the rest 
of the cases, installing the maximum allowed PV capacity is proved 
valuable. 

Based on the findings and discussion, it is deduced that higher in-
vestments in the PV system and BESS yields higher AROI and savings in 
the XFCS total annualized cost with longer project durations. Therefore, 
L =20 years is used to perform the rest of the case studies for this paper. 

5.3.3. XFCS sizing using robust optimization model 
In the RO model, the uncertainty bounds of Uλ = ±20, UD = ±10, 

UPV = ±20 are considered to accommodate forecast errors in the elec-
tricity price, XFCS demand, and PV system generation. The following 
cases are analyzed to study the impact of uncertainties on XFCS sizing 
and annualized costs: 

Case III: Impact of uncertainty in the electricity market price on XFCS 
sizing 
Case IV: Simultaneous impact of all uncertainties on XFCS sizing  

Fig. 12. Impact of varying EPM on (a) BESS and PV system sizing, (b) different cost components and total annualized savings.  
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Case III:. In this case study, the sensitivity of XFCS components sizing 
and the total cost is appraised with different levels of robustness against 
the electricity price signal. Fig. 10 illustrates the results when the robust 
parameter for price (Γλ) is varied from 0 to 100%. Where Γλ = 0% 
represents the deterministic case and Γλ = 100% is the most conserva-
tive solution, wherein the electricity price curve either picks lower or 
upper bounds from its uncertainty set to occasion a worst possible 
impact on the total cost. Note that the worst-case cannot be realized by 
simply using the upper bound of the electricity price uncertainty since it 
may help XFCS owner earn more revenue by exporting energy back to 
the PDN at higher prices. Therefore, the RO model picks the worst case 
such that it causes the worst possible impact on total cost and payoffs. 

The impact of increasing Γλ on the sensitivity of power ratings for 
BESS is not substantial. In contrast, increasing the Γλ causes a notable 

increase in BESS energy rating, which increased from 1854 kWh (Γλ =

0%) to 2107 kWh (Γλ = 100%). This increase in the BESS sizing is to 
hedge against the uncertainty of electricity prices: with an increase in 
the electricity market price (i.e., with increasing Γλ), feeding XFCS de-
mand using energy import from the PDN becomes less cost-effective, 
therefore BESS energy ratings get increased to safeguard the XFCS 
operation against increased electricity prices and to exploit potential 
energy arbitrage opportunities. Fig. 9 shows that the increase in BESS 
sizing is more sensitive to the robust parameter at the start until Γλ =

40% than for higher values of Γλ. This is because the RO initially picks 
electricity price values for the time instants in which it would cause the 
worst impact on the XFCS operation cost. Therefore, BESS sizing in-
creases aggressively to make the XFCS operation more economical 
during those periods. Since the PV system was already rated at its 
maximum allowable capacity, its rating remains unchanged. Increasing 
Γλ yields increased investment cost, which is referred to as the price of 
robustness in the literature, and it is paid to hedge against the un-
certainties [22]. Compared to the deterministic case, the increase in the 
total investment cost is 7.6% for the most risk-averse case. 

From Fig. 10, note that variations in the demand charges are mirror 
images of changes in the BESS power ratings: with higher power rated 
BESS the annual demand charges are lower. Additionally, the highest 
and lowest demand charges respectively correspond to the lowest and 
highest power ratings for the BESS. This is because BESS with higher 
power ratings can help lower the maximum average power imported 
from the grid, and ensuing demand charges, more effectively than a 
BESS with smaller power ratings. Therefore, it is concluded that demand 
charges are directly correlated with BESS power rating when compared 
to energy capacity. 

Case IV:. This case study seeks to explore the impacts of different 
levels of robustness against all uncertainties. Different levels of robust 
parameters are simultaneously selected for all uncertainties and impacts 
on XFCS sizing and the station’s cost components are analyzed. 

Fig. 11 illustrates the effects of increasing robust parameter on BESS 

Fig. 13. Impact of varying ICM on (a) BESS and PV system sizing, (b) different cost components and total annualized savings.  

Fig. 14. Impact of varying EVs’ mean departure time on BESS and PV sys-
tem sizing. 
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ratings and XFCS cost components. The power and energy ratings of the 
BESS respectively increased from 1854 kWh and 716 kW (deterministic 
case) to 2312 kWh and 774 kW (most risk-averse case). Consequently, 
the total yearly investment increases by ~15% for the most conservative 
case. In the deterministic case, the cost of investment is lower, but the 
XFCS is more vulnerable to uncertainties in the input parameters and 
may result in more operating costs. In the most conservative case, the 
investment cost becomes higher to secure the XFCS operation against 
uncertainties and their worst possible impact on the total cost of the 
station. Moreover, the PV system size remains unaffected because it was 
already equal to the maximum allowed ratings in the deterministic case. 
In addition, as mentioned in Case III, demand charges variations are 
strongly correlated with the power sizing of the BESS, as seen in Fig. 11. 

Based on the results and discussion presented in Sections 5.3.1, 5.3.2, 
and 5.3.3, this paper recommends using a BESS of 1854 kWh/716 kW 
ratings and a solar system of 300 kW power rating for the deterministic 
case. For the robust case (the most risk-averse case), BESS is sized as 
2312 kWh/774 kW and the solar system as 300 kW power rating. Note 
that the project lifetime of 20 years is considered for these recommen-
dations since it yields the highest annualized savings and returns on 
investment among all considered project durations. 

5.3.4. Sensitivity analysis 
This section studies the sensitivity of BESS and PV system sizing with 

input parameters, namely electricity market price and investment cost of 
the BESS and PV system. 

5.3.4.1. Sensitivity of sizing with electricity price. Electricity price is 
varied using the electricity price multiplier (EPM) and its impact on the 
sizing of XFCS components and annualized savings is studied. Note that 

the EPM = 1.0 belongs to the deterministic case (i.e., Case II) that is 
solved with the original price signal, as displayed in Fig. 8. Fig. 12(a) 
illustrates that with EPM values of less than 0.6, the application of PV 
system in the studied station is not economically viable; this is because, 
with lower electricity prices, the return on investment in the PV system 
is insufficient to justify the investment. With EPM ≥ 0.6, the PV system is 
rated at its maximum allowable capacity for the considered total area of 
the XFCS. This is because, with higher EPM, the PV system proves its 
worth by directly feeding the charging station demand, charging the 
BESS for later use during peak prices, and exporting the excess generated 
power to the PDN to earn extra revenue. 

Note that with lower values of EPM, the investment in BESS is always 
feasible, albeit with smaller power and energy ratings. This is because 
for lower EPM values, the energy arbitrage using BESS may not be 
economically beneficial, but BESS still finds its application in lowering 
the demand charges. In Fig. 12 (b), the total investment cost curve shows 
an increasing trend with increasing values of EPM. This is attributed to 
the fact that investing in BESS for higher EPM values brings more rev-
enue from energy arbitrage either by exporting the charged energy back 
to the PDN or utilizing it to feed the XFCS demand during peak-price 
hours. A sudden increase in the total investment cost curve and a sud-
den decrease in the operation cost curve is observed in Fig. 12(b) when 
EPM increases from 0.5 to 0.6, which is because of deploying a PV 
system with the rated power of 300 kW. 

In Fig. 12(b), the demand charges curve initially decreases consis-
tently until EPM = 1.0, while for EPM > 1.0 it shows an increasing trend 
with a sudden increase at the end. This is because, with EPM > 1.0, BESS 
finds more economic benefits of its usage in energy arbitrage than 
lowering the demand charges. Hence with EPM = 1.4, there is a sudden 
decrease in the operation cost and a sudden increase in the demand 
charges. Finally, the saving curve initially decreases until EPM = 0.6 and 
then it increases consistently afterward. The initial decrease in annual 
savings is attributed to the fact that with EPM less than 0.6, the energy 
arbitrage and PV deployment is not economically feasible, and with an 
increase in EPM from 0.2 to 0.6, the energy purchased from the PDN 
becomes more costly, thereby making the saving curve to exhibit a 
decreasing trend. However, for EPM ≥ 0.6 total cost of the station be-
comes lower, and savings consistently increase mainly because of 
exporting excess solar generation back to the PDN to earn extra revenue 
and exploiting the energy arbitrage prospects using BESS. Hence, 
reduction in the operation cost and demand charges overshadows the 
investment costs of BESS and PV systems with higher EPM values and 
results in higher annualized savings. 

5.3.4.2. Sensitivity of sizing with investment cost. The investment cost of 
both BESS and PV systems is varied using investment cost multiplier 
(ICM) and its effect on sizing and annualized saving is explored. With 
ICM = 1.0, results are the same as presented for Case II of Section 5.3.1, 
which was solved with original investment cost data. Fig. 13 depicts the 
impact of changing ICM on BESS and PV system sizing, XFCS cost 
components, and total savings. From Fig. 13(a), with an increase in ICM 
both power and energy ratings of the BESS exhibit a consistent decrease, 
while PV system size remains the same until ICM = 1.6. For higher ICM 
values, it becomes economically infeasible to deploy a PV system of any 
rating. Consequently, a sudden increase in the operation cost and a 
sudden decrease in the investment cost is evident from Fig. 13(b) when 
ICM increases from 1.6 to 1.7. 

Note that investing in BESS remains economically viable for higher 
ICM, mainly because it can prove its value by lowering the demand 
charges even with ICM = 1.8. The demand charges curve in Fig. 13 (b) 
shows an increasing tendency as ICM values increase. This is because, 
with increasing ICM values, the power rating of the BESS keeps 
decreasing and therefore results in higher demand charges. Lastly, the 
saving curve exhibits a decreasing trend with an increase in ICM values 
which can be attributed to the fact that with higher ICM values, 

Fig. 15. Impact of varying the number of XFCS charging ports on the BESS and 
PV system sizing. 

Table 5 
Quality of solution obtained from the relaxed model.   

Solution I: 
relaxed model 

Solution II: original model 
with fixed planning decisions 
from Solution I 

Gap 

Investment cost 
[$/year]  

167674.76  167674.76 0% 

Operation cost 
[$/year]  

181444.81  181446.64 0.001% 

Total demand 
charges 
[$/year]  

39759.07  39759.43 0% 

Total XFCS 
savings 
[$/year]  

116969.36  116967.20 0.0018%  
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investing in large BESS and PV systems becomes costly and may not 
justify returns via energy arbitrage at the expense of bigger investment 
cost. Hence, it limits the ability of the BESS to exploit the potential 
energy arbitrage opportunities and the resultant revenue, thus resulting 
in decreased annualized savings. 

5.3.5. Sensitivity of XFCS sizing with EV Users’ departure times and 
number of XFCS charging ports 

This section investigates the sensitivity of EV users’ departure times 
from their parking places and the number of charging ports at the XFCS 
on the sizing of the BESS and PV system. The EVC1 category of EVs has 
the largest share of 61% in the studied XFCS demand model and in-
fluences the XFCS demand profile. EVs in this category follow a normal 
probability distribution for departure time from their parking places. In 
this analysis, the sensitivity of the XFCS components’ sizing with mean 
values of departure time in N 2(06: 52, 01: 18) is studied for EVs in 
category EVC1. EVs in categories EVC2 and EVC3 are assumed to follow 
the same N 1(13: 51, 5: 12) distribution for their departure. Fig. 14 il-
lustrates that the variations in EVs’ mean departure time have a signif-
icant impact on BESS energy ratings, moderate effect on BESS power 
ratings, and no effect on PV system ratings. With an increase in mean 
departure time, BESS energy capacity increases and achieves the highest 
value with a mean departure time of 08: 52. After which, it keeps 
decreasing and achieves the lowest rating with a mean departure time of 
13: 52. This is attributed to the fact that variations in EVs’ mean de-
parture time affect the XFCS demand peaks which in turn affect the 
capability of BESS to participate in energy arbitrage opportunities. If the 
XFCS demand profile peaks coincide with the electricity price curve, the 
BESS can discharge during the peak-price demand hours and avoid the 
high cost of XFCS operation. Hence, BESS sizing gets increased in this 
case. On the contrary, if EVs mean departure time shift the XFCS demand 
peaks to off-peak hours, there may be fewer energy arbitrage opportu-
nities and BESS sizing will be decreased, as illustrated in Fig. 14. The 
BESS energy ratings are lowest with EVs’ mean departure times of 03: 52 
and 13: 52. Based on the sizing results in Fig. 14, the correlation of BESS 
power ratings with EVs’ mean departure time is unclear. The PV system 
was sized at maximum allowable ratings and exhibited no change with 
EVs’ mean departure time variations. 

The sensitivity of BESS and PV system sizing with the number of 
XFCS charging ports in analyzed in another study and results are shown 
in Fig. 15. Note that the demand profiles used in the rest of the paper are 
obtained with r = 3 charging ports and w = 5 waiting spots. For this 
analysis, waiting spots are kept the same and only the number of 
charging ports are changed. With the increasing number of charging 
ports, BESS power and energy ratings increase. This can be attributed to 
the fact that with a higher number of XFCS ports, more EVs can get 
recharged simultaneously at the station without staying in the waiting 
zone, which would result in higher demand peaks. Moreover, EVs may 
not need to wait, thus resulting in less rejection rates of their charging 
requests. In contrast, with fewer charging ports, more EVs will have to 
stay in the waiting zones until a port becomes available, and there is a 
higher possibility of rejection of EV’s charging request, thus decreasing 
the demand peaks and total area under the charging demand curve. 
Lastly, the PV system rating remains unaffected, and it is sized at its 
maximum allowable capacity. 

5.3.6. Discussion on McCormick relaxations 
As described in Section 3, McCormick relaxations are used to relax 

the bi-linear terms appearing in (36) and (37), and consequently, linear 
formulations are obtained. Relaxing the original NLP model using 
McCormick approximation helps reduce the computational intricacy of 
the original model at the expense of solution’s quality; the final optimal 
solution obtained from the relaxed model may not always be the exact 
optimum of the original NLP model, instead, it provides an optimistic 
bound for the optimal solution of the original NLP model. With tighter 
lower and upper bounds of variables involved in the bi-linear terms, the 

quality of the relaxed solution gets improved [92]. Practically, solution 
quality obtained from the relaxed model is appraised by solving the 
original NLP model using the obtained solution and analyzing the 
feasibility of the constraints. If all the constraints are not satisfied, then 
the solution obtained from the relaxed model is not feasible for the 
original NLP model [119]. 

In this work, both bi-linear terms, appearing in (36) and (37), are 
associated with the operational constraints of the BESS, therefore, to 
appraise the quality of the relaxed solution, the planning decisions, 
obtained for Case II (see Table 3), were fixed and used as parameters in 
the original NLP model and it was re-solved. The CBESS appears in both 
bi-linear terms of (36) and (37) in the original NLP model, therefore, 
fixing CBESS and using it as a parameter makes both bi-linear terms 
vanish, thereby rendering the original NLP model to become a linear 
model that is easily solvable. 

Table 5 presents a comparison of the results by following the pro-
cedure explained in the previous paragraph. The investment cost in both 
solutions is the same because the investment decisions for Solution I 
were used to obtain Solution II. The percent gap between both solutions 
is insignificant, demonstrating the efficacy of using tighter lower and 
upper bounds of the variables involved in the bi-linear terms of the 
original NLP problem. 

It can be inferred that the proposed relaxed linear model is a good 
approximation of the original NLP model and can be utilized to carry out 
charging station planning studies. 

6. Conclusions 

This paper proposed a MILP-based optimization model to obtain 
BESS and PV system sizing and optimal energy management for an 
XFCS, distinctively for each representative scenario of a typical year. 
The BESS was sized to serve four vital purposes: i) to satisfy the XFCS 
demand during peak price hours, ii) to store excessive PV system gen-
eration, iii) to exploit the energy arbitrage opportunities by charging 
during low price hours and discharging to export energy back to the PDN 
to maximize net revenue, and iv) to manage the monthly and annual 
average power imports from the PDN to minimize total demand charges. 
Case studies demonstrated the proposed model’s efficacy. It was inferred 
that by considering the BESS life degradation, it will not reach the EOL 
during the project lifetime, thus preventing additional investment costs. 
Case study results implied that the BESS would need to be replaced after 
~3.7 years if degradation aspects are not considered in the XFCS sizing 
studies. In addition, the effectiveness of the proposed MILP formulations 
to tally the BESS cycles was demonstrated when the BESS charged and 
discharged discontinuously during a day, under which conditions the 
cycle counting approaches presented in the literature may not be 
practical. 

Furthermore, a reduction of ~73% in total demand charges was 
realized by optimally utilizing the BESS operation which reduced the 
maximum monthly and annual average grid power imports from 
1081.31 kW to 288.11 kW. Case studies signified that the highest 
annualized savings of 23.12% and AROI of 69.75% were expected when 
the XFCS components were sized for a planning horizon of 20 years, and 
savings of only 1.22% and AROI of 7.72% were achieved with a planning 
horizon of 5 years. An optimal PV system rating was equal to the 
maximum allowable size for a station with the considered area of 
2000m2. Sensitivity analyses were performed to provide insights into 
how changing input parameters and different levels of robustness 
against uncertainties in the input data impact sizing of the BESS, the PV 
system, and the total cost of the XFCS. It is found that demand charges 
are strongly correlated with BESS power rating when compared to its 
energy rating. Moreover, with EPM values of less than 0.6, the appli-
cation of the PV system in the studied station is not economically viable, 
while it is rated at its maximum allowable capacity for EPM ≥ 0.6. The 
BESS, on the other hand, still finds its application in lowering the 

W. Rehman et al.                                                                                                                                                                                                                               



Applied Energy 313 (2022) 118745

21

demand charges even with EPM = 0.2. In addition, it becomes 
economically infeasible to deploy a PV system of any rating with ICM ≥
1.6, while the BESS remains economically viable even with ICM = 1.8 
because it can prove its worth in demand charges reduction. 

Finally, the quality of the solution obtained from the relaxed model 
was appraised, and the proposed relaxed model was found to be a good 
approximation of the original NLP model, warranting its application for 
planning studies of charging stations. 

CRediT authorship contribution statement 

Waqas ur Rehman: Conceptualization, Methodology, Software, 
Data curation, Formal analysis, Validation, Visualization, Writing – 
original draft, Writing – review & editing. Rui Bo: Supervision, 
Conceptualization, Methodology, Writing – review & editing. Hossein 
Mehdipourpicha: Software, Writing – review & editing. Jonathan 
Kimball: Supervision, Project administration, Funding acquisition, 
Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

This work was supported by the U.S. Department of Energy, under 
Grant DE-EE0008449. We thank Kirk Stetzel (LG Energy Solutions, Inc.) 
for providing support and insightful discussion on CPCV based extreme 
fast charging of EVs that improved the accuracy of XFCS daily demand 
modeling. We also thank Rodney Hilburn (Technology Applications 
Center (TAC), Ameren Illinois) and Mark Hagge (previously with TAC, 
Ameren Illinois) for providing invaluable information and discussions 
on utility practices and tariffs in Ameren.  

Appendix 

Tight Piece-wise McCormick relaxation for bi-linear terms: MILP formulations 

This section presents MILP formulations to obtain a tight piece-wise McCormick relaxation for bi-linear term in (38) with a bi-variate partitioning 
approach. Assuming gxnyn’ be the binary variable representing the active partitioning for Ψ and CBESS, which are respectively bounded by [Ψ ,Ψ] and 
[CBESS ,CBESS]. The piece-wise McCormick relaxation for Y = Ψ × CBESS with bi-variate partitioning can be characterized as Generalized Disjunctive 
Program (GDP), as given by (A.1): 

⋁N

n=1 ⋁N

n’=1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

gxnyn’

Yxy ≥ Ψx.CBESSyn’ + Ψxn .CBESSy − Ψxn .CBESSyn’

Yxy ≥ Ψx.CBESSyn’ + Ψxn.CBESSy − Ψxn.CBESSyn’

Yxy ≤ Ψx.CBESSyn’ + Ψxn .CBESSy − Ψxn .CBESSyn’

Yxy ≤ Ψx.CBESSyn’ + Ψxn.CBESSy − Ψxn.CBESSyn’

Ψxn ≤ Ψx ≤ Ψxn
CBESSyn’ ≤ CBESSy ≤ CBESSyn’

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∀(x, y) ∈ BL and gxnyn’ ∈ {0, 1}, ∀{x|(x, y) ∈ BL}, n ∈ {1,⋯,N}, n’ ∈ {1,⋯,N} (A1) 

where BL is an (x,y)-index set defining the bi-linear term Y in (38). 

Ψxn = Ψx +

(n − 1).
(

Ψx − Ψx

)

N

Ψxn = Ψx +

n.
(

Ψx − Ψx

)

N

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, ∀{x|(x, y) ∈ BL}, n ∈ {1,⋯,N} (A2)  

CBESSyn’ = CBESSy +

(n − 1).
(

CBESSy − CBESSy

)

N

CBESSyn’ = CBESSy +

n.
(

CBESSy − CBESSy

)

N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, ∀{x|(x, y) ∈ BL}, n’ ∈ {1,⋯,N} (A3) 

Applying the convex hull formulations to transform the linear GDP of (A.1) into MILP formulations, as given by (A.4) and (A.5): 
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Yxy ≥
∑N

n=1

∑N

n’

(

Ψ̂xxnyn’ .CBESSyn’ + Ψxn .ĈBESS yxnyn’ − Ψxn .CBESSyn’ .gxnyn’

)

Yxy ≥
∑N

n=1

∑N

n’

(
Ψ̂xxnyn’ .CBESSyn’ + Ψxn.ĈBESS yxnyn’ − Ψxn.CBESSyn’ .gxnyn’

)

Yxy ≤
∑N

n=1

∑N

n’

(

Ψ̂xxnyn’ .CBESSyn’ + Ψxn .ĈBESS yxnyn’ − Ψxn .CBESSyn’ .gxnyn’

)

Yxy ≤
∑N

n=1

∑N

n’

(

Ψ̂xxnyn’ .CBESSyn’ + Ψxn.ĈBESS yxnyn’ − Ψxn.CBESSyn’ .gxnyn’

)

Ψx =
∑N

n=1

∑N

n’ Ψ̂xxnyn’

CBESSy =
∑N

n=1

∑N

n’ ĈBESS yxnyn’

∑N

n=1

∑N

n’ gxnyn’ = 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,∀(x, y) ∈ BL (A4) 

where Ψxn , Ψxn, CBESSyn’ , CBESSyn’ are given in (A.2) and (A.3), and 

Ψxn .gxnyn’ ≤ Ψ̂xxnyn’ ≤ Ψxn.gxnyn’

CBESSyn’ .gxnyn’ ≤ ĈBESS yxnyn’ ≤ CBESSyn’ ..gxnyn’

⎫
⎬

⎭
∀{x|(x, y) ∈ BL}, n ∈ {1,⋯,N}, n’ ∈ {1,⋯,N} and 

gxnyn’ ∈ {0, 1}, ∀{x|(x, y) ∈ BL}, n ∈ {1,⋯,N}, n’ ∈ {1,⋯,N} (A5)  
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