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Training Set Optimization in an Artificial Neural
Network Constructed for High Bandwidth

Interconnects Design
Bo Pu , Senior Member, IEEE, Heegon Kim , Member, IEEE, Xiao-Ding Cai , Member, IEEE, Bidyut Sen,

Chunchun Sui , Member, IEEE, and Jun Fan , Fellow, IEEE

Abstract— In this article, a novel training set optimization
method in an artificial neural network (ANN) constructed for
high bandwidth interconnects design is proposed based on
rigorous probability analysis. In general, the accuracy of an
ANN is enhanced by increasing training set size. However,
generating large training sets is inevitably time-consuming and
resource-demanding, and sometimes even impossible due to lim-
ited prototypes or measurement scenarios. Especially, when the
number of channels in required design are huge such as graphics
double data rate (GDDR) memory and high bandwidth memory
(HBM). Therefore, optimizing the training set selection process
is crucial to minimizing the training datasets for developing an
efficient ANN. According to rigorous mathematical analysis of
the uniformity of the training data by probability distribution
function, optimization flow of the range selection is proposed to
improve accuracy and efficiency. The optimal number of training
data samples is further determined by studying the prediction
error rates. The performance of the proposed method in terms of
accuracy is validated by comparing the scattering parameters of
arbitrarily chosen strip and microstrip type GDDR interconnects
obtained from EM simulations with those predicted by ANNs
using default and the proposed training-set selection methods.

Index Terms— Artificial neural network (ANN), design-of-
experiment (DoE), high bandwidth interconnect, microwave mod-
eling, optimization, probability analysis, uniform distribution.

I. INTRODUCTION

ELECTROMAGNETIC (EM) modeling is regarded as an
effective way to characterize the microwave components.

Several methods based on computational EM have been devel-
oped for an accurate characterization, such as finite-difference
time-domain (FDTD) [1], finite element method (FEM) [2],
method of moment (MoM) [3], and partial element equivalent
circuit (PEEC) [4], etc. Those methods have been widely
implemented in modeling microstrip lines, stripline, and copla-
nar structures [5]–[10]. The above-mentioned methods are
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all grid-based or cell-based techniques. A meshless modeling
approach was proposed to avoid the very complicated and
even time-consuming demerit caused by the practical struc-
ture with complex geometries [11]. In general, conventional
numerical methods ensure accurate modeling by analyzing
the inherent characteristics of microwave structures. Com-
prehensive understanding of complicated microwave theory
and mathematics is the prerequisite to make use of those
methods. To bring a convenience to a practical engineering
level, complicated numerical methods have been realized by
commercial simulation tools, and users do not need to face the
original numerical challenges in their realistic usage. However,
simulator-based approaches embody the following disadvan-
tages: time-consuming, costly license fees, and expensive
hardware resources [12].

In recent years, artificial neural networks (ANNs) have
attracted attentions for modeling and design optimization
of microwave components since the mechanism of ANNs
can handle new designs by establishing a training network
on the primitively known structures, comprehended in the
early designs. Previous works have enabled fast and accurate
modeling of microwave components with the neural net-
work and machine learning approaches. A method, which
can build neural models automatically by adding samples
and neurons as needed, was proposed in [13]. An advanced
algorithm for automated parametric modeling of microwave
components using combined neural networks and interpolation
techniques was introduced in [14]. Tremendous speedup over
conventional methods was realized by ANNs for the modeling
of electronic device and circuits [15]. Electromagnetically
trained ANN (EM-ANN) was first introduced in [16] for
accurate and efficient modeling of microstrip vias and inter-
connects in monolithic microwave/millimeter-wave integrated
circuit (MMIC). An approach to map the complex relationship
between the physical and electrical parameters of interconnect
structures in an efficient manner by ANNs was presented in
[17]. To develop libraries of neural models for passive and
active components, a hierarchical neural network approach was
proposed in [18]. With the development of the technology,
the functions of neural networks have got enhanced and been
widely used to handle the challenges in modeling of 3-D
substructures [19], complex high-speed channel with equal-
ization [20], and updated with multidimensional extrapolation
techniques [21]. Neural networks have also been implemented
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into the crosstalk prediction, sensitivity analysis, performance
assessment and signal/power integrity design for high speed
and microwave circuits [22]–[25].

Above mentioned frontier researches profoundly promote
the development of modeling technology toward an efficient
direction. However, in previous publications on ANN-related
applications in microwave and high-speed areas, only the
implementation and enhancement of ANN itself has been
discussed. The accuracy of the ANN method is significantly
affected by training data size, but so far the selection of
training data in a rigorous probability analysis has yet to be
investigated. Using a large number of training data samples
can enhance the general accuracy of an ANN. However, this
approach also increases the overall effort because more train-
ing data must be generated. Especially, in graphics double data
rate (GDDR) memory and high bandwidth memory (HBM)
which solve the ever-increasing bandwidth issue by enlarging
the number of channels [26], [27], maintaining a limited
number of training data samples for all channels is desirable to
save time while still achieving high accuracy. Hence, a better
method for the selection of training datasets is of utmost
importance.

The design-of-experiment (DoE) method can be used to
efficiently select training data [28]. Any DoE method generates
a distribution of plausible collections of parameter values
from a multidimensional distribution. It enables rapid and
precise ANN model construction by using a small number
of training data, because the method spreads the sample
points more evenly across all possible values, on the basis
of the original multidimensional distribution. Many studies
have constructed ANN models of transmission line struc-
tures based on training data generated by a DoE method.
However, as described earlier, the training data samples gen-
erated by a DoE method can significantly affect the accu-
racy of the constructed ANN model, and the DoE method
setup necessary to optimize efficiency has not been carefully
examined in prior studies. In our previous study [29], the
inputs used in the DoE method were physical dimensions,
such as metal width, spacing, and dielectric height. The
outputs, which are resistance, inductance, conductance, and
capacitance (RLGC) matrices, can be first extracted from
EM simulations on the basis of the model established by
physical dimensions and material information, and used as the
criteria in the training process. Moreover, RLGC matrices are
able be converted to corresponding scattering parameter (S-
parameter) by circuit simulators for a quick check of the signal
quality.

Although the metal width and spacing parameters in the
training datasets were uniformly selected by the DoE method,
the ratio of the metal width to spacing, an important factor for
mutual RLGC components, was not uniformly distributed. The
consequence of this issue was a larger prediction error at the
boundary of the ranges (i.e., for an extreme channel structure,
such as a channel with a minimum width and maximum
spacing), which would result from the lack of training data.

In this article, a training set optimization is proposed to
overcome the accuracy issue caused by nonuniform mutual
parameters. The proposed optimization approach for training

Fig. 1. Structure of GPU-GDDR6 system with high bandwidth (32 bits)/speed
(16 Gbps/channel) interconnects.

dataset enhances the efficiency of the ANN with the least
computation resources, easing the knowledge requirement for
users and designers, compared to traditional numerical solu-
tions [1]–[4], and achieves higher accuracy than that of the
traditional DoE setup by using the same number of training
data samples [29]. The rigorous analysis process introduced
herein is a general dataset optimization approach to provide
an efficient training for ANN. Thus, the merit requiring less
training data samples can be implemented into modeling
of any arbitrary, complex, multiconductor transmission line
systems, and potentially capable to deal with inhomogeneous,
non-isotropic, multilayered structures with less difficulty to
obtain sufficient simulated or measured data.

Section II introduces an ANN construction procedure to
predict the RLGC matrices of a typical target interconnects
structure in GDDR memory. In Section III, various DoE
method setups for improved training dataset generation are
discussed, and an optimal DoE setup is proposed based on uni-
formity probability investigation and error analysis. The per-
formance of the proposed method is validated by S-parameter
simulations performed with arbitrarily selected parameters of
strip lines and microstrip channels in Sections IV and V,
respectively.

II. ANN CONSTRUCTION PROCEDURE FOR

INTERCONNECTS MODELING IN GDDR6 MEMORY

32 bits high-speed channels between GDDR6 and graphics
processing unit (GPU) enables the data communication in
a fast speed and high bandwidth as illustrated in Fig. 1.
An electrical characterization of channels is usually demanded
for the evaluation of performance. However, large number of
lines for high bandwidth make the RLGC extraction based
on full wave simulation not efficient. Since the structure of
lines are designed with common characteristics, ANN is used
here to provide a fast but accurate prediction of RLGC for
channels on the basis of geometrical parameters, especially
in the early design stage when the layout and model for
simulation have not prepared yet. Those channels are designed
as stripline and microstrip line types depending on specific
functions as shown in Fig. 2. Geometrical parameters of one
differential pair for clock and other single-ended for data are
linewidth (W ), intrapair spacing (S), and interpair spacing
(SP). The heights of the prepreg and core layers are HP

and HC , respectively. Dielectric material is often predefined,
geometrical parameters here as W , S, SP , HP , and HC are
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TABLE I

RANGES OF DESIGN PARAMETER FOR TRAINING SET OPTIMIZATION
(STRIP LINE)

Fig. 2. Target channel for modeling: Strip lines and microstrip lines between
GPU and GDDR6. Design parameters are W , S, SP , HP , and HC .

Fig. 3. ANN model for channel RLGC components. The polynomial features
of design parameters and the corresponding channel RLGC matrices are the
inputs and outputs of the established ANN model.

the design parameters of the target channel in the training
process. Table I lists ranges of the design parameters for
optimization, which is used in [29] and defined as default
case here. The conductor thickness is fixed at 0.6 mil.

The ANN model constructed for high speed and bandwidth
channel design is illustrated in Fig. 3. The design parameters
of physical dimensions are the input parameters of the ANN
model, for example, S, W , Sp, Hp, and Hc. The total number
of the output nodes is 30 as mentioned in our previous
research, which is the reference [29]. The corresponding per-
unit-length RLGC matrices of the W-element model, which
consists of six frequency-independent RLGC (Lo, Co, Go, Ro,
Gd, and Rs) matrices, are the ANN outputs. Each element,
such as Ro, includes five terms (11, 12, 13, 23, and 14).
Because of symmetry, reciprocity, and negligible crosstalk
between the leftmost and right-most pairs, the 36 terms in
each matrix can be replaced by only five terms mentioned,
which were also explained in detail in [29]. Two hidden
layers containing 40 hidden neurons are used for the ANN
model. The degree of input polynomial and regularization
factor are 2 and 0.003, respectively. Five channel parameters
were transformed into their polynomial features with degree
of 2 as the input of ANN, which is a more suitable format for
efficient training [30]. We would like to mention here that the

ANN itself is not the main content of this manuscript while
the optimization of the training datasets is the most significant
contribution.

The mutual terms in the extracted RLGC components vary
exponentially with S and SP . To achieve a nearly linear
relationship between the inputs and outputs of the training
datasets, the data values of the training set outputs are con-
verted by logarithmic functions. This post-processing step
makes the ANN model sufficiently precise despite the use of
a small number of training data samples.

Although the polynomial chaos expansion [31] and support
vector machine methods have been widely used for optimiza-
tion, their merits relate to variability analysis and process
regression. An ANN computes in an interpolative manner.
Uniformly scattered training samples, therefore, provide the
network with better information to make comprehensive and
efficient predictions [32]. As explained in reference [33], the
uniformity helps the gradient descent converge more quickly,
because it makes more uniform steps through the feasibility
space of the error function. In addition, in some cases, it helps
zero-center the data, thus preventing zigzag behavior in gra-
dient descent algorithm optimization.

Approaches to achieved uniform samplings have been
studies in many publications. Among them, adaptive rejec-
tion samplings, low-discrepancy sequences (LDS), and Latin-
hypercube sampling (LHS) method [34] have very good
performance. Adaptive rejection sampling seems to be the
best candidate with superior performance, while it requires a
prerequisite that the probability density function (PDF) should
satisfy log-concave, and this limits its application range.
LDS such as Sobol’s or Halton’s sampling methods can also
generate uniform distribution as well. However, LDS performs
well for solving high dimensional problem and the LHS has
proven to be very effective in application to metamodeling
where a not huge number of sample points are required, and
a sampling design of such points can be efficiently optimized
[35]. Therefore, to ultimately realize an efficient optimization
for reduced training data size, LHS is used herein to generate
the initial level uniform data for each geometrical parameter in
its optimal range determined by proposed rigorous probability
analysis. The given lower and upper bounds for the range
are shown in Table I, and the training dataset inputs were
selected. The corresponding RLGC values, which are the
training dataset outputs, were extracted by EM simulations.
Because of symmetry, reciprocity, and negligible crosstalk
between the leftmost and right-most pairs, the 36 components
in each matrix can be replaced by only five components.
If WCK_t to DQm+1 correspond to strips 1–6, then RLGC
components 11, 12, 13, 23, and 14 are sufficient to represent
the full 6 × 6 matrix as mentioned in [29].

III. PROPOSED TRAINING SET OPTIMIZATION FOR

EFFICIENT ANN TRAINING

A. Probability Analysis for a 2-D Uniform Distribution

As described earlier, to construct the ANN shown in Fig. 3,
W and S were uniformly selected by the DoE method to
form the training datasets [29], but W /S was not uniformly
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Fig. 4. Uniformity analysis of W /S for the given ranges of W and S.

distributed. Because W /S can significantly affect the accuracy
of the mutual RLGC components, large prediction errors
occurred for the cases with the boundary W /S values, which
were insufficiently covered by the training data. As shown in
Table I and Fig. 3, five of the six design parameters except
W /S were the inputs of the ANN. The uniformity of these five
parameters was automatically enforced by the DoE method
if they were directly used as the input parameters of the
DoE. The remaining design parameter, W /S, however, was
not independent. Its uniformity can be investigated rigorously
by performing probability analysis.

Let us assume that W and S are uniformly distributed in
the ranges of [Wmin, Wmax] and [Smin, Smax], respectively.
As shown in Fig. 4, all possible W and S combinations form a
rectangular area, which can be further divided into three parts:
A to C. Of note, for an arbitrary point (W , S) in the figure,
W /S is the slope of the line passing through the point and
the origin of the coordinate system. Then regions A, B, and
C correspond to the W /S ranges of [Wmin/Smax, Wmin/Smin],
[Wmin/Smin, Wmax/Smax], and [Wmax/Smax, Wmax/Smin], respec-
tively (assuming Wmax/Smax > Wmin/Smin; other cases can be
similarly derived). Furthermore, the PDFof W /S determines its
uniformity. If it is constant, then W /S is uniformly distributed.
To obtain the PDF, the cumulative distribution function (CDF)
is first calculated in each part. Then the PDF is obtained as
the derivative of the CDF.

The PDF of the 2-D uniform distribution W and S with
ranges of Wmin–Wmax and Smin–Smax is described in the
following:

fw,s(W, S)

=
⎧⎨
⎩

1

Wmax − Wmin
× 1

Smax − Smin
, Inside rectangle

0, elsewhere.
(1)

In part A, the CDF of W /S can be obtained as shown in
(2), where Z is an arbitrary value in the range of [Wmin/Smax,
Wmin/Smin]

CDF1(W/S ≤ Z)

= CDF1(W ≤ Z S)

=
∫ Smax

Wmin/Z

∫ Z S

Wmin

1

Wmax − Wmin
× 1

Smax − Smin
dWd S

= Z S2
max

− 2Wmin Smax + (
W 2

min
/Z

)
2(Wmax − Wmin)(Smax − Smin)

. (2)

Only when the CDF is a linear first-order function of Z does
the derivative, which is the PDF, become constant. Clearly, the
PDF of W /S in part A is not constant, and thus W /S is not
uniformly distributed in this part

CDF2(W/S ≤ Z)

= CDF2(W ≤ Z S)

=
∫ Smax

Smin

∫ Wmin S

Wmin

1

Wmax − Wmin
× 1

Smax − Smin
dWd S

+
∫ Smax

Smin

∫ Z S

Smin S

1

Wmax − Wmin
× 1

Smax − Smin
dWd S

= (Z − Wmin/Smin)(Smax + Smin) + Wmin(Smax/Smin − 1)

2(Wmax − Wmin)(Smax − Smin)
.

(3)

In part B, the corresponding CDF can be derived similarly,
as shown in (3). The CDF2 is clearly a linear first-order
function of Z , which is an arbitrary value in the range of
[Wmin/Smin, Wmax/Smax]. Therefore, the PDF2 becomes con-
stant, and W /S is uniformly distributed in this part.

In part C, the CDF of W /S is similarly derived, as in (4),
where Z is an arbitrary value in the range of [Wmax/Smax,
Wmax/Smin]. The CDF is clearly not a linear function of Z ,
and thus W /S is not uniformly distributed in this part

CDF3(W/S ≤ Z)

= CDF3(W ≤ Z S)

=
∫ Smax

Smin

∫ Smin S

Wmin

1

Wmax − Wmin
× 1

Smax − Smin
dWd S

+
∫ Smax

Wmax/Z

∫ Wmax

Smin S

1

Wmax − Wmin
× 1

Smax − Smin
dWd S

+
∫ Wmax/Z

Smin

∫ Z S

Smin S

1

Wmax − Wmin
× 1

Smax − Smin
dWd S

= 1 − Z S2
max

+ W 2
max

/Z − 2Wmax Smin

2(Wmax − Wmin)(Smax − Smin)
. (4)

In summary, when both W and S are uniformly distributed,
W /S is uniformly distributed in part B only. Of note, in our
practical problem, W , S, and W /S are all design parame-
ters with specified ranges. If the W /S range is larger than
[Wmin/Smin, Wmax/Smax], as is the case in this article, W /S is
clearly not uniformly sampled when W and S are uniformly
sampled in their ranges by using the DoE method. This is the
underlying reason for the issue with the training set selection
in reference [29] discussed earlier.

To solve this problem, the ranges of W and S can be
increased such that part B in Fig. 4 covers the entire range
of W /S. Thus, on the basis of probability analysis, W /S in the
specified range is ensured to be uniformly sampled when W
and S are uniformly sampled in their ranges. In the case under
study, if the S range remains the same as that in the original,
and the W range is increased to [1, 10] mil, the specified
range of W /S [0.2, 1] becomes the same as that in part B.
That is, when W is uniformly sampled in [1, 10] mil, and S is
uniformly sampled in [5, 10] mil, W /S is sampled in the range
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Fig. 5. (a) W and (b) W /S distributions of training data when the DoE
method uses an increased W range while the S range is maintained (proposed
is case 2 in Table II).

TABLE II

PARAMETER SETUP TO GENERATE TRAINING DATASETS BASED ON PRO-
POSED DOE METHODS

of [0.1, 2], within which in [0.2, 1], W /S is also uniformly
sampled. Using this method, we can ensure the uniformity
of W /S in its specified range; however, this process results
in sampling points outside of the specified ranges of W and
W /S.

The range of [1, 10] mil for W ensures the generation
of uniformly distributed W /S in its specified range. Further
increasing the range of W can still provide a uniform distri-
bution of W /S in its specified range; however, more sample
points will fall outside of the specified ranges of W and W /S,
thus decreasing the efficiency and accuracy.

Alternatively, instead of using W and S as input parameters,
we can use W /S and S. If W /S is uniformly sampled in
[0.2, 1], and S is uniformly sampled in [5, 10] mil, W is
then sampled in the range of [1, 10] mil, but clearly the
sampling of W is no longer uniform, as can be easily seen in
Fig. 4: only part B is sampled. This nonuniformity can clearly
affect accuracy when the number of training data samples is
small. With enough training samples, the effect on accuracy
is negligible, because the entire range of W is covered.

B. DoE Setups to Enhance ANN Model Accuracy

To validate the proposed solutions through probability
analysis, we tested different DoE setups in the case under
study to compare the performance of the different training
set selections. The black bars in Fig. 5(a) and (b) show the
W and W /S distributions in the training datasets generated by
the initial default setup as case 1 in Table II. The default setup
ensured a uniform W distribution because the input training
datasets of W were generated with the LHS method; however,

Fig. 6. (a) W and (b) W /S distributions of training data when the DoE
method uses a uniform W /S (proposed is case 7 in Table II).

the uniformity of the W /S distribution was not achieved by
the uniformly distributed W and S, as shown in Fig. 5(b).
Although the occurrence ratio at W /S = 0.7 is more than 15%,
those at the boundary (W /S < 0.5) are less than 5%. This low
uniformity of W /S reduces the accuracy of the mutual RLGC
elements, particularly when the geometry of channel has a
W /S value near the boundary.

The first solution proposed in Section III-A increases the
range for input data W to [1, 10] mil while maintaining the
S range. This is case 2 listed in Table II. Consequently, the
uniformity of the W/S distribution can be relatively enhanced.
The red bars in Fig. 5 show the W and W /S distributions when
the training datasets are generated with an increased range of
W , from 1 to 10 mil.

Although the occurrence ratio of training datasets within the
specified W and W /S ranges is relatively reduced, the unifor-
mity of W /S within the specified W /S range is significantly
enhanced. As long as the number of training data samples
included in the specified W and W /S ranges is sufficient, the
proposed modification can improve the accuracy of the ANN
model compared with that of the original DoE set up under
the same number of training data samples.

The alternative solution proposed in Section III-A uses W /S
and S as the input parameters, and samples W /S uniformly in
[0.2, 1] and S uniformly in [5, 10] mil, as in case 7 listed
in Table II. The resulting distributions of the training datasets
are compared with the default case in Fig. 6. Although this
new DoE setup sacrifices the uniformity of the W distribution,
which dominates the self RLGC, the accuracy of the mutual
RLGC models can be enhanced because of the completely
uniform W /S distribution.

To estimate the error rates of the ANN models trained on
the training datasets generated in the different cases listed
in Table II, we randomly selected 140 additional channel
structures within the parameter ranges in Table I, which were
simulated numerically as the test data for error analysis. The
learning curves of the average error rates of all cases as
functions of the number of training data samples used in the
ANN training are compared in Fig. 7. The average error rates
of all cases clearly decrease as the number of training data
samples increases, but the decreasing rate of the original DoE
setup is the smallest because more evenly distributed W /S
is achieved in all other cases, thus further resulting in better
model accuracy, particularly at the boundary. The performance
of the proposed DoE modifications in Section III-A is clearly
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Fig. 7. Learning curves of different DoE modifications for training dataset
generation. The lowest average error rates are achieved by the proposed
modification with uniform W sampling with an increased range from 1 to 10
(solid red line), or the proposed alternative modification with uniform W /S
sampling from 0.2 to 1.0 (solid blue line).

the best when the number of training data samples is more
than 60. The decreasing rate of the original DoE setup is the
smallest because more evenly distributed W/S is achieved in
all other cases, thus further resulting in better model accuracy,
particularly at the boundary. As derived in the probability
analysis, case 2 has the minimum required range of W that
ensures the uniformity of W /S in its specified range. Other
DoE cases, such as cases 3 and 4, have larger W ranges than
the original case and are thus better, but they cannot ensure the
uniformity of W /S in its specified range. Case 5 can ensure the
uniformity of W /S in its specified range; however, the larger
W range results in fewer useful sampling points in the required
ranges, thus lowering accuracy. Case 6 again cannot ensure the
uniformity of W /S in its specified range. The learning curves
shown in Fig. 7 validate the proposed modifications based on
the probability analysis.

Furthermore, the error rate distributions of the self and
mutual RLGC components for all cases are plotted in Fig. 8,
with the number of training data samples fixed at 120. The
default case for both the self and mutual elements is the
poorest in terms of the accuracy of the predicted ANN
elements. The proposed alternative modification (case 7) is
the best, and the other proposed modification (case 2) is the
second best, as shown in Fig. 8(b). Case 5, which has the
largest W range, is clearly worse than all other modifications.

As shown in Fig. 8(a), most of the self RLGC components
are precisely predicted, with an error rate of less than 5%.
In contrast, the error rates of the predicted mutual RLGC
components increase overall, to values greater than 10% in
some cases, as depicted in Fig. 8(b). This change in error rate
occurs because the mutual RLGC values are dominated by
the ratio of W /S. Although the relative standard deviation of
the self RLGC components in the test set is 0.161, those of
the mutual RLGC components 12, 23, 13, and 14 are 0.404,
0.865, 1.202, and 1.739, respectively, where WCK_t to DQm+1

in Fig. 2 correspond to strips 1–6. Because the mutual RLGC
variations due to different channel structures are significantly
larger than the self RLGC components, the error rates of the

Fig. 8. Error rate distributions of different DoE modifications. (a) Self RLGC
components. (b) Mutual RLGC components. The number of training data
samples is fixed to 120.

Fig. 9. Ratios of predicted RLGC values with an error rate less than 5%,
as functions of the number of training data samples. Training data samples
are generated by the proposed DoE modification with a uniform W from 1 to
10 mil. The optimal number of training data needed to achieve the target ratio
of 95% is 120.

predicted mutual RLGC components are relatively higher than
those of the self RLGC components, as shown in Fig. 8.

Notably, that the self RLGC components are accurately
predicted regardless of the DoE modifications used, as shown
in Fig. 8(a), whereas the accuracy of the predicted mutual
RLGC components is significantly dependent on these factors,
as shown in Fig. 8(b) because the mutual RLGC models are
more dominated by the W /S distribution in the specified range.

C. Optimal Number of Training Data Samples

Although using a greater number of training data samples
can lead to higher accuracy of an ANN model, too many
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TABLE III

COMPARISON OF THE COMPUTATIONAL TIME AND ACCURACY

training data samples can negatively affect simulation time
and resources. A learning curve that indicates the prediction
error rates of the test datasets in accordance with the number
of training data samples can be used to investigate the tradeoff
between performance and cost. In this study, we defined a 5%
target error rate for each element, including Lo, Co, Ro, Go,
Rs, and Gd. The percentages of the predicted elements with
an error rate less than 5% are plotted in Fig. 9 as functions of
the number of training data samples used in the ANN training.
The training datasets were generated by using the proposed
alternative modification method (case 2) with a uniform W
distribution from 1 to 10 mil, which has the best learning
curve for the constructed ANN, as shown in Fig. 7. As the
number of training data samples increases, the accuracy of
the element models is enhanced. When the number of training
data samples is more than 120, all the element values achieve
the target specification. Therefore, 120 is the optimal number
of training data samples because, in this example, it enables
the most efficient channel model to be developed based on the
proposed DoE modification.

Table III lists the computational times in constructing an
ANN with the number of the training samples and the corre-
sponding accuracy already shown in Fig. 7. These costs are
necessary to construct an ANN; however, after an ANN is
constructed as a generic model of the target channel, predicting
the electrical performance of a channel with arbitrary geomet-
rical parameters within the predefined ranges becomes very
fast and does not require any EM simulation skills. Less than
30 s is required for the ANN to predict the RLGC elements
for the channel studied herein, compared with at least 180 s
when a 2-D analysis tool is used under the same hardware
condition. As a result, the time and resource cost for the
parameter prediction of a large number of channels such as
GDDR and HBM by our proposed method is much less than
those based on 2-D or 3-D solvers, and the more channels, the
more efficiency is achieved.

IV. VALIDATION OF THE PROPOSED METHOD

To validate the performance of the proposed optimal DoE
approach for ANN, the commercial EM simulator is con-
sidered the “gold standard” for generating S-parameters for

Fig. 10. Comparisons of loss of strip lines obtained from EM simulations,
predicted by ANN models trained by using the default DoE method and
predicted by ANN models trained by using the proposed optimal DoE setup.
(a) |SDD21|. (b) |SDD11|.

Fig. 11. Comparisons of crosstalk of strip lines obtained from EM
simulations, predicted by ANN models trained by using the default DoE
method and predicted by ANN models trained by using the proposed optimal
DoE setup (of note: proposed one takes less training data samples and time to
achieve the same accuracy here comparing with default one). (a) Differential-
to-differential NEXT. (b) Differential-to-differential FEXT between adjacent
lines of the different pairs.

various structures of channels. The ANN results with the
default and proposed alternative setup of DoE were compared
with those from simulations to validate the performance of
our method. The channel structures used for validation were
randomly selected within the parameter ranges in Table I. The
chosen channel structures are listed in Table IV. The number
of training data samples for the ANN was fixed to 120.

Both Differential pairs and single-ended transmission lines
act as the high speed and huge bandwidth channels. The
type of differential pairs has more complicated characteris-
tics and was used as the case for validation to verify our
proposed method. Differential insertion loss |SDD21|, differ-
ential return loss |SDD11|, differential-to-differential near-end
crosstalk (NEXT), and far-end crosstalk (FEXT) between
adjacent differential lines are shown in Figs. 10 and 11, respec-
tively, for case 1 listed in Table IV. The W and W /S values
in this case are 4 and 0.4 mil, respectively. The proposed
alternative DoE setup clearly achieves significantly better
predictions than the default DoE setup when the same number
of training data samples is used. Although the magnitudes of
the differential-to-differential FEXTs are predicted well, the
resonance frequencies of the FEXTs simulated by the ANN
models and the EM simulation results correlate less well,
as shown in Fig. 11(b). The crosstalk between the differential
lines is a function of SP , which has a very wide parameter
range, from 5 to 50 mil. In addition, the FEXT value between
strip lines is usually very small, owing to the approximate
homogeneous property. Thus, the effects of the inaccurate
resonance frequency are negligible.
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TABLE IV

GDM COMPARISON RESULTS FOR COMPLICATED DIFFERENTIAL CHANNEL STRUCTURES

TABLE V

CORRELATION LEVELS AND CORRESPONDING GDM VALUES

Eye diagram is a good index to describe the channel quality.
However, it is data rate and eye mask dependent and not a fig-
ure of merit for an obvious judgment. To numerically compare
the correlation of the S-parameter curves, the global difference
measure (GDM) in the feature selective validation (FSV)
method is used alternatively [36]. The GDM is an overall sin-
gle figure of merit between the two datasets being compared.
It allows a simple decision to be made about the quality of
a comparison. It is obtained from the overall values for the
two components, the amplitude difference measure (ADM),
and the feature difference measure (FDM). The relationship
between the correlation levels and the corresponding ranges of
GDM values are listed in Table V. According to the calculated
GDM values, the overall accuracy of the trained ANN models
by using the proposed DoE modification is significantly better
than that of the ANN models based on the original DoE setup.

V. IMPLEMENTATION IN MICROSTRIP LINE MODELING

In this section, generic models of microstrip channels are
obtained similarly with ANNs constructed by using the train-
ing datasets selected according to the default and the proposed
alternative DoE method. With the same method for error sets
analysis and an error margin of 5%, the number of training
data used for the ANN model was selected to be 120. The
structure of the microstrip channel under study is shown in
Fig. 2. Each of the three differential pairs has an identical
conductor width (W ), intrapair spacing (S), and interpair
spacing (SP). The height of the dielectric layer is HP . W ,
S, SP , HP , and W /S are the design parameters of the target
channel. The upper and lower bounds of each design parameter
are listed in Table VI. Although this application has only five
design parameters, the W and S ranges are increased. The

TABLE VI

RANGES OF DESIGN PARAMETER FOR TRAINING SET OPTIMIZATION

(MICROSTRIP)

Fig. 12. Comparisons of loss of microstrip lines obtained from EM
simulations, predicted by ANN models trained by using the default DoE
method and proposed optimal DoE setup. (a) |SDD21|. (b) |SDD11|.

Fig. 13. Comparisons of crosstalk of microstrip lines obtained from EM
simulations, predicted by ANN models trained by using the default DoE
method and proposed optimal DoE setup (of note: proposed one takes less
training data samples and time to achieve the same accuracy here comparing
with default one). (a) Differential-to-differential NEXT. (b) Differential-to-
differential FEXT between adjacent lines of the different pairs.

allowable W /S ratio is limited to between 0.2 and 1.0. Both
the conductor and solder-mask thicknesses are fixed to 0.6 mil.

A boundary case with randomly selected geometries was
selected to validate the improved performance of the proposed
DoE method. The selected W , S, SP , and HP of the target
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microstrip channel are 5, 12, 40, and 11 mil, respectively. The
W /S ratio is 0.416, which falls into the lower boundary case.

The predicted |SDD21| together with |SDD11| and the
differential-to-differential NEXT together with differential-
to-differential FEXT between adjacent lines are shown in
Figs. 12 and 13, respectively, for the target channel. The
predicted S-parameter curves when using the proposed DoE
method nearly overlap with the EM simulation results. These
findings demonstrate that using 120 training data samples with
the proposed DoE method is sufficient to accurately model the
target microstrip channel.

VI. CONCLUSION

In this article, training set optimization in an ANN con-
structed for ultraspeed and high bandwidth interconnects
design is proposed. The enhanced ANN can precisely predict
the RLGC components for any arbitrary structure for the chan-
nels between GPU and GDDR6 memory when the geometrical
parameters are within predefined ranges. The uniformity of
W/S sampling in its specified range in the training datasets is
a dominant factor affecting the accuracy of the mutual RLGC
elements in the modeling of multiconductor transmission lines.
A probability analysis was performed to understand the rea-
son underlying the W/S non-uniformity causing the accuracy
issues, and two methods are proposed to address the issue
in this article. When an ANN model of the target channel
is trained on 120 training data samples generated by the
proposed alternative optimized DoE modification, 95% of the
predicted RLGC components for the test datasets achieve an
error rate less than 5%, while the accuracy is only 74.40% by
traditional DoE on the same condition. Validation is ultimately
performed by comparing S-parameters obtained from proposed
methods, traditional DoE, and gold standard EM simulations.
Furthermore, around 10 times speedup than EM simulation is
achieved by proposed approach as listed in Table III.

The proposed method should enable rapid and precise
modeling in contrast with traditional numerical solutions, and
allow for ANN predictions with much fewer training data
samples than the traditional DoE setup. The rigorous analysis
process introduced herein should be desired for implemen-
tation in modeling any arbitrary, complex, multiconductor
transmission line systems, and be potentially capable to deal
with inhomogeneous, non-isotropic, multilayered structures
with less difficulty for costly training data samples preparation
by simulation or measurement.
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