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Huber Kalman Filter for Wi-Fi Based Vehicle
Driver’s Respiration Detection

Yang Yang , Student Member, IEEE, Yunlong Luo , Student Member, IEEE, Alex Qi, Member, IEEE,
Ge Shi, Member, IEEE, Miao Miao, Member, IEEE, Jun Fan , Fellow, IEEE,
Jianhua Ma, Senior Member, IEEE, and Yihong Qi , Senior Member, IEEE

Abstract—The use of breath detection in vehicles can reduce the
number of vehicular accidents caused by drivers in poor physical
condition. Prior studies of contactless respiration detection mainly
targeted a static person. However, there are emerging applications
to sense a driver, with emphasis on contactless methods. For exam-
ple, being able to detect a driver’s respiration while driving by using
a vehicular Wi-Fi system can significantly enhance driving safety.
The sensing system can be mounted on the back of the driver’s seat,
and it can sense the tiny chest displacement of the driver via Wi-Fi
signals. The body displacement and car vibrations could introduce
significant noise in the sensed signal. The noise then needs to be
filtered to obtain the driver’s respiration. In this work, the noise in
the sensed signal is proposed to be reduced using a Huber Kalman
filter to restore the original respiration curve. Through several
experiments in terms of different drivers, different car models,
multiple passengers, and abnormal breathing, we demonstrate the
accuracy and robustness of the Huber Kalman filter in driver’s
respiration.

Index Terms—Huber Kalman filter, respiration detection for the
driver, the noisy sensing signal, vehicular Wi-Fi sensing, wireless
sensing.

I. INTRODUCTION

W ITH the increase of the total number of vehicles, the
incidence of traffic accidents also increases, and the

society attaches great importance to driving safety. According
to the Road Traffic Injuries report released by the World Health
Organization (WHO) in 2021, road traffic crashes result in the
deaths of approximately 1.3 million people around the world
each year, with one of the important risk factors as fatigue
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driving [1]. Such car accidents could be effectively avoided,
and human lives could be saved if drivers are warned when
they become sleepy or impaired physically [2]. Drowsy driving
can be indicated by multiple symptoms of the driver, such as
eyelid movements, driving movements, and human vital signs,
among which, respiratory rate is a valuable indicator of driver
fatigue status. Research shows that the breathing rate usually
drops significantly (about three breaths per minute (bpm)) before
the driver falls asleep [2]–[3]. Thus, accurate monitoring of the
driver’s breathing rate will help prevent the occurrence of drowsy
driving. Further research into respiration waveform analysis
and respiration rate variability (RRV) could help reduce false
positives [4]. Therefore, monitoring to obtain a true respiratory
waveform is necessary.

Different techniques have been proposed for respiration moni-
toring by using various sensing devices, including contact-based
respiration belt to detect thoracic rise and fall [5], acoustic-based
[6], vision-based ones used in video cameras [7]–[8], and the
radio frequency-based (RF) ones [9]–[15]. A contact respiration
belt is inconvenient and uncomfortable to wear on the chest
or abdominal area. Xu et al. proposed a fine-grained breathing
monitoring system, Breath-Listener, which utilizes an acoustic
device on a smartphone to estimate fine-grained breathing wave-
form in driving environments [6]. But when other passengers
are in the car, especially seated in the front passenger seat, it
can interfere with the driver’s breath detection. The vision-based
method is to detect respiration by analyzing the chest movements
captured by a video camera [7]. Still, it may not work well
when the lighting condition is poor (e.g., driving at night) and
it may raise privacy concerns. Among the RF based methods,
with the vigorous deployment of Wi-Fi and the popularization
of intelligence terminals, respiration detection using the existing
Wi-Fi is widely studied [16]–[18]. With the development of the
mobile Internet, the Internet of Vehicles, and the Internet of
Things, an era of smart cars is coming. By carrying onboard
Wi-Fi products, users can enjoy ubiquitous information services.
In-vehicle Wi-Fi has become standard on many new models.
For the driver’s breath detection, it is easy to deploy at a low
cost by using the existing in-vehicle Wi-Fi equipment to realize
the integration of communication and sensing [17]. Moreover,
compared with other high-frequency wireless sensors, Wi-Fi has
less penetration loss and can be installed on the back of the
driver’s seat. Compared to the front, side, and top mounting, the
benefit is to avoid the distraction of arms turning the steering
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wheel and the distraction of other passengers. Therefore, the
Wi-Fi based breath detection is an attractive solution for smart
vehicles. Many scholars have conducted extensive studies on
Wi-Fi based respiration detection. In [13], it illustrates the first to
utilize the CSI phase difference data to remotely detect breathing
and heart rates with commodity Wi-Fi devices. Wang et al.
first provided a rigorous analysis of the CSI phase difference
data with respect to its stability and periodicity. In [19], the
study only focuses on detecting passenger breathing, which
should be utterly static after the vehicle is parked, to see the
unsupervised child left in the car. While these methods work
fine under controlled environments and conditions for stationary
people, several challenges need to be addressed to make these
systems reliable and robust enough to withstand the impact of
body movement in a moving car under different road types of
traffic conditions.

Compared with the conventional stationary applications of
Wi-Fi based respiration detection, the vehicle application sce-
narios are quite different and challenging when the vehicle is
in motion. The received signal includes the driver’s breathing
motion that we would like to detect modulated by the unwanted
motion induced by different driving conditions. Different driving
conditions, including engine vibration, braking and acceleration
on the road, result in various degrees of driver body displace-
ment. During driving, the breathing curve of the driver will be
affected by three prominent noises: 1) body movements when
controlling the steering wheel during driving; 2) body displace-
ment associated with driving conditions, such as body position
relative to the sensor changes when braking, accelerating, and
turning; 3) the mechanical changes in the car seat when the
engine vibrates, and deformation under different pressures of the
driver. The body movements and the body displacement bring
“large” errors. And the third case above brings “small” errors.

For the above problems, Cruz et al. [20] introduced a mathe-
matical framework. They proposed to attach an accelerometer to
the radar-based sensor to record the acceleration of movement
due to unnecessary external influences. After subtracting this
part of the motion, the radar signal only contains the characteris-
tics of breathing movement. But they assumed a constant vehicle
velocity and a simplified “rigid human” model. Kalman filtering
is an essential data processing method used to estimate the actual
value in the presence of interference [21], it can be used to effec-
tively reduce measurement error and random noise in the system
[22]–[24]. However, when there is a large data error, Kalman fil-
ter performance is limited. When the Kalman filter calculates the
Kalman gain, it uses the second norm, which is greatly affected
by outliers. As a result, the Kalman filter cannot deal with large
error points. However, the Huber function offers a good balance
when dealing with large data errors and small uncertainties
[25]. In this paper, a new filtering algorithm is proposed, which
improves the iterative process of the Kalman filtering by using
a Huber objective function. Combining the advantages of the
Kalman filter and the Huber objective function can filter out
large errors and small fluctuations quickly and effectively and
provide smoother and less biased estimation results.

Overall, this paper introduces an accurate and robust respira-
tion detection system for in-vehicle scenarios. In particular, the

system utilizes the Kalman filter based on the Huber function to
estimate the breathing waveform during driving. This paper is
divided into five parts. Section II briefly introduces the structure
of a prototype for a Wi-Fi-based vehicular respiration detection
system and a principle of respiration detection. Section III de-
scribes the proposed Huber Kalman filtering method. Section IV
shows the performance of the algorithm verified by experiments.
Finally, the summary and discussions are included in the last
section.

II. WI-FI BASED VEHICULAR RESPIRATION

DETECTION SYSTEM

A Wi-Fi based respiration detection system suitable for vehic-
ular applications is presented below. As shown in Fig. 1(a), the
system generates the wireless signal, divided into two identical
signals through a power splitter. One is directly connected to
the receiver RX1 through a coaxial cable, serving as a reference
signal. The other is transmitted through space, reflected by the
driver’s chest, and received by the receiver RX2.

The system analyzes the change of the phase difference
between the two received Channel State Information (CSI)
signals at RX1 and RX2. The distance between the received
antenna and the driver’s chest changes periodically due to the
fluctuation of the chest during the driver’s breathing. Therefore,
the difference between the propagation paths of the two received
signals changes accordingly. The changes in the phase and the
path differences are related as:

Δφ (t) =
2πΔd (t)

λ
(1)

Where Δd(t) and Δφ(t) are the changes of the path and
phase difference between the two received signals, respectively;
and λ is the wavelength. In other words, the change in the phase
difference contains information about the driver’s chest displace-
ment. To achieve the functions described above, the system is
implemented in three parts: data collection, data preprocessing,
and data analysis, with the block diagram shown in Fig. 1(b).

A. Data Collection

Orthogonal Frequency Division Multiplexing (OFDM) is
widely used in modern wireless network standards, such as
Wi-Fi (i.e., IEEE 802.11a/g/n) [13], [15], [26]. OFDM divides
the spectrum into multiple orthogonalized subcarriers on which
wireless data is transmitted. Leveraging the device driver for
off-the-shelf NICs, e.g., the IPQ4019, we can extract the CSI
from the NIC, which is fine-grained physical layer (PHY) infor-
mation. CSI reveals the channel characteristics experienced by
the received signal such as the multipath effect, shadow fading,
and distortion.

With OFDM, the Wi-Fi channel at the 5 GHz band can be
considered as a narrowband flat fading channel. In the frequency
domain, the channel model can be expressed as �Y = CSI ·
�X + �N , where �Y and �X denote the received and transmitted
signal vectors, respectively, �N is the additive white Gaussian
noise, and CSI represents the channel’s frequency response,
which can be estimated from �Y and �X [13].
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Fig. 1. (a) Wi-Fi device. (b) Block diagram of the prototype respiration detection system for vehicular applications.

The channel frequency response of subcarrier i, CSIi, is a
complex value. That is

CSIi = Ii + j Qi = |CSIi| exp (j∠CSIi) (2)

where Ii and Qi are the in-phase component and quadrature
component of subcarrier i, respectively; |CSIi| and ∠CSIi
are the amplitude response and phase response of subcarrier
i, respectively.

Let ̂∠CSIi denote the measured phase subcarrier i [13],
which can be expressed as:

̂∠CSIi = ∠CSIi + (λp + λs)mi + λc + β + Z (3)

where ∠CSIi is the true phase value, mi is the subcarrier
index of subcarrier i , β is the initial phase offset due to the
phase-locked loop (PLL). Z is the measurement noise that is
assumed to be AWGN of variance σ2, and λp, λs, λc are the
phase errors from the packet boundary detection (PBD), the
sampling frequency offset (SFO), and central frequency offset
(CFO) respectively.

Note that RX1 and RX2 use the same clock and the same
down-converter frequency. Consequently, the measured phases
of subcarrier i from two antennas have identical packet detection
delay, sampling periods, frequency differences, and the same
index mi. Thus, the measured phase difference on subcarrier i
between two antennas can be approximated as

̂Δ∠CSIi = Δ∠CSIi +Δβ +ΔZ (4)

where Δ∠CSIi is the true phase difference of subcarrier i, Δβ
is the unknown difference in phase offsets, in fact a constant,
and ΔZ is the noise difference with variance 2σ2.

As mentioned above, the phase information can be obtained by
IQ demodulation. And the tiny displacement of the chest during
breathing could be captured through the phase information of
vehicular Wi-Fi. Theoretically, one received signal is sufficient
as long as its phase information is accurately obtained. However,
in reality, the IQ demodulation of a received CSI signal does not
provide reliable phase information. This issue is resolved by
providing a synchronized reference signal. Since the phase is
a relative quantity, the phase difference between the received
signal and the reference signal is the practical relative phase,
which is reliable from the IQ demodulation.

B. Data Preprocessing

1) Phase Correction: The most common way to demodulate
phase by IQ is arctangent demodulation. The value range of
the phase resolved by CSI is [−π, π]. To maintain the simple
relationship in (1), the measured CSI phase difference needs
to be unwrapped before it can be used to calculate the chest
movement.

The phase correction is accomplished as below [29], as long
as the sample step is small enough such that the absolute value
of the change of the measured phase difference between two
neighboring sampling points is smaller than π. Then,

WhenΔφn+1〈0 and Δφn〉0 as illustrated in Fig. 2(a),Δφn+1

is corrected by adding 2π to its measured value.
When Δφn+1 > 0 and Δφn < 0 as illustrated in Fig. 2(b),

Δφn+1 is corrected by subtracting 2π from its measured value.
The extracted phase sequence of breathing (phase difference

between the two paths) is shown in Fig. 2(c), and Fig. 2(d) the
corrected phase sequence of Fig. 2(c).

2) Subcarrier Selection: There are 53 subcarriers for Wi-Fi
signals, and different subcarriers have different frequency bands.
The noise levels for different subcarriers are also different [15].
For example, Fig. 3 shows 4 CSI phase difference data from
Sub-Carriers #10, #20, #30, #40.

Therefore, the selection of subcarriers is necessary. In data
preprocessing, several subcarrier groups with good quality need
to be selected. Wang et al. proposed to use the mean absolute
deviation of the CSI phase difference data from every subcarrier
to quantify its sensitivity [13]. Generally, the larger the mean
absolute deviation, the higher the sensitivity. Therefore, several
larger groups can be selected by calculating the absolute devia-
tion values of all the subcarriers. Liu, et al. revealed that the chest
displacement due to breathing was cyclical [15]. If a CSI phase
difference sequence can be accurately modeled as a sinusoidal
wave, we regard it as high periodicity level. A subcarrier with a
better periodicity was selected by quantifying the periodicity of
the CSI phase difference data of each subcarrier. The work in this
paper combines the two criteria proposed in the two reference
papers and considers both the periodicity and the mean absolute
deviation.

To quantify the periodicity of a phase sequence, we first model
the sequence as a sinusoidal wave. Then the ratio of the two
parameters, the amplitude of the sinusoid, and the goodness of
fit of the sinusoid, is utilized to calculate the periodicity level
[18], [27].
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Fig. 2. Unwrapping the measured phase difference: (a) the increase of the measured phase difference from the nth step to the (n+1)th step is less than -π, (b)
the decrease of the measured phase difference from the nth step to the (n+1)th step is greater than π, (c) the raw phase of breathing and the corrected phase after
unwrapping.

Fig. 3. Respiration curves captured by different subcarriers.

When a person is breathing, a measured phase sequence x(t)
can be largely modelled as a sinusoidal wave:

x (t) = Asin (2πft+ ϕ) +D + ε (t) (5)

where the constants A, f, ϕ andD are the amplitude, frequency,
phase, and shift of the identified sinusoidal wave, and ε(t) is an
additive noise.

Givenx(t) , the parameters of the sinusoidal wave (A, f, ϕ and
D) can be identified using the Nelder-Mead method [28], which
is a common non-linear optimization technique for multidimen-
sional unconstrained minimization. Since the frequency f has
already been estimated using the process described in [18], we
regard f as a known constant when applying the Nelder-Mead
method.

The goodness of fit can be calculated by the root-mean-square
error (RMSE) defined as

RMSE =

√∑n
t=1 (x̂ (t)− x (t))2

N
(6)

where x̂(t) is the predicted values at time t using the sinusoidal
model and n is the length of x(t). Based on the RMSE and A,
we define the periodicity level of x(t), denoted as Pr, as the ratio

Fig. 4. The periodicity levels of different subcarriers.

of the two parameters:

Pr =
A

RMSE
(7)

After calculating the above algorithm, Sub-Carriers #30 was
selected as the best subcarrier, as shown in Fig. 4.

C. Data Analysis

For the static person under a controlled environment, a simple
bandpass filter works well to restore the breathing waveform.
Compared with the conventional stationary applications of Wi-
Fi based respiration detection, the vehicle application scenarios
are quite different and challenging when the vehicle is in motion.
During driving, the acquired phase waveform includes four
parts: 1) displacement of breathing; 2) body movements when
controlling the steering wheel during driving; 3) body displace-
ment associated with driving conditions, such as body position
relative to the sensor changes when braking, accelerating, and
turning; 4) the mechanical changes in the car seat when the
engine vibrates, and deformation under different pressures of
the driver. The noise and interference that do not belong to the
driver’s breathing need to be filtered out through the filter. And
then after peak detection, all peak-to-peak intervals (PPI) are
averaged to obtain the period of the breathing signal, denoted
as P. Finally, the estimated breathing rate can be computed as
60/P bpm.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 17:20:59 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: HUBER KALMAN FILTER FOR WI-FI BASED VEHICLE DRIVER’S RESPIRATION DETECTION 8937

III. BREATHING ESTIMATION DURING DRIVING

A. Kalman Filters for Breathing Estimation

The Kalman filter is real-time, accurate and fast, and it is
a powerful data processing tool that can effectively reduce
measurement errors and deal with random noise in the system
[22], [30]. Kalman filtering is often used in distance-velocity-
acceleration based position tracking models. So similarly, the
Kalman filter can also be used for a phase tracking model based
on phase - angular velocity - angular acceleration.

We choose the phase φk and the angular frequency ωk as our
state variables [20]. The state uncertainty depends on (but is not
equal to) the unknown acceleration ω̇k−1. So, we can quickly
obtain the following state-space description of the system:

xk =

(
φk

ωk

)
≈

(
1
0
Δt
1

)(
φk−1

ωk−1

)
+ ω̇k−1

(
1/2Δt2

Δt

)
(8)

The internal state of the process is considered unknown but
can be estimated by measurements. Therefore, we must intro-
duce a vector of measurement values and define their relation-
ship to the state variables which can be done by defining:

zk = φk + vk (9)

where vk describes the measurement noise and p(v) ∼ N(0, R).
A Kalman filter uses the last estimated state and the current

measurement to assess the current state by calculating a weighted
mean of the two. The Kalman Filter continuously calculates
“optimal” weights (called Kalman filter gain coefficients) for
optimum estimation accuracy or noise cancellation. This effi-
cient and computable method can estimate the process state and
minimize the mean square error of the estimation. The Kalman
filter uses the feedback control method to assess the process
state: the filter estimates the state of the process first, and then the
feedback is obtained by measuring the variables. Therefore, the
Kalman filter can be divided into the time updating equation and
the measurement updating equation. The time updating equation
predicts the prior state estimate of the next moment through
historical data and the state transfer equation. And the measure-
ment updating equation is responsible for correction. According
to the combination of the prior estimate and the measurement,
an improved posterior state estimate is constructed [31]. The
established Kalman filter thus has the prediction-update model
shown in Fig. 5 [31].

Define Pk as the error covariance, expressed as

Pk = E
[
ekek

T
]

(10)

The estimation principle of the Kalman filter is to minimize
the covariance of the optimal state estimation Pk , making it
closer to the actual value. Therefore, its objective function is:

J = min
∑

Pk (11)

It can be seen from this formula that the Kalman filter is
based on the estimation of the second norm. The second norm is
greatly affected by outliers, so the result of the Kalman filter
is affected by large error points. Compared with the second
norm, the first norm has better robustness for large errors, but
when small fluctuations, its optimization results are biased to

Fig. 5. Kalman filter prediction-update model.

some subsets of the data. Neither the first norm nor the second
norm can effectively treat all the errors. Fortunately, the Huber
function offers a good balance when dealing with large errors
and small uncertainties [25]. It integrates the advantages of the
first norm and the second norm and applies the first norm when
handling a large error and the second norm when dealing with
a small fluctuation for evaluation. In this paper, we propose to
use the Huber function as the objective function in the Kalman
filter, resulting in a novel Huber Kalman filter, for the Wi-Fi
based respiration detection in-vehicle environments.

B. Huber Kalman Filters for Breathing Estimation

1) Characteristics of Huber Objective Function: As men-
tioned earlier, in the common least square method, the second
norm 𝓁1 is easily affected by large errors. On the contrary, the
first norm 𝓁1 has good robustness against large error, but when
there are small fluctuation errors in the data, the 𝓁1-based solu-
tion is often biased to a subset of the data. In 1993, J.W. Bandler
[25] proposed the Huber objective function in the common least
square method combining the first norm and the second norm
functions, taking advantage of the two to provide smoother and
less biased estimates. The Huber objective function is defined
as follows:

ρa (f) =

{
f 2

2 if f ≤ a

a |f | − a2

2 if f > a
(12)

where a is a positive constant to define the threshold between the
large and small errors, and f is the error function. The proportion
of processing error functions in 𝓁1 or 𝓁2 can be changed by
changing a. When a is large enough, the optimization problem
becomes the conventional least square problem. When a ap-
proaches 0, the optimization problem becomes the first norm
based one. As shown in Fig. 6, the definition of ρa ensures a
stationary transition at |f | = a, i.e., the first derivative of the
Huber objective function is continuous.

2) Huber Kalman Filter: To resolve the issue in the conven-
tional Kalman filter, in this paper, we propose to use the Huber
function as the objective function in the Kalman filter, leading
to a novel Huber Kalman filter.

The prior estimation error and the posteriori estimation error
are represented as e−k and ek, which represent the difference
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Fig. 6. Huber objective function.

between the prior estimate x̃−
k , the best estimate x̃k and the true

value xk, respectively. The covariances of the prior estimation
error and the posterior estimation error are as follows piecewise
function:

P−
k =

{
e−2
k

2 if
∣∣e−k ∣∣ ≤ a

a
∣∣e−k ∣∣− a2

2 if
∣∣e−k ∣∣ > a

(13)

Pk =

{
e2
k

2 if |ek| ≤ a

a |ek| − a2

2 if |ek| > a
(14)

Combined x̃k = x̃−
k +Kk(zk −Hx̃−

k ), Pk represented by
P−
k as

Pk =

⎧⎨
⎩

(I−KH)P−
k (I−KH)T+KRKT

2 if 0 ≤ P−
k ≤ a2

2

(I −KH)
(
P−
k + a2

2

)
− a2

2 if P−
k > a2

2

(15)

The estimation principle of the Kalman filter is to minimize
the error function of the optimal state estimation to approach
the true value. Therefore, the objective function is modified as
formula (11).

Taking the partial derivative of (15) for the Kalman gain
coefficient K results in:

∂Pk

∂Kk
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−P−
k HT +K

(
HP−

k HT +R
)

if 0 ≤ P−
k ≤ a2

2
HKkH

T−H
|1−KkH|

(
P−
k + a2

2

)
if P−

k > a2

2

(16)

By setting the partial derivative in (16) to 0, we obtain

Kk =

{
P−

k HT

HP−
k HT+R

if 0 ≤ P−
k ≤ a2

2
1
H if P−

k > a2

2

(17)

It’s easy to derive that P−
k is represented by Pk as follows:

P−
k =

{
APk−1A

T+Q
2 if 0 ≤ Pk−1 ≤ a2

2

|A|
(
Pk−1 +

a2

2

)
− a2

2 if Pk−1 > a2

2

(18)

With all these, the time updating and state updating equations
based on the Huber objective functions can be derived as Fig. 7.

3) Parameter a: As shown in the (12) and Fig. 6, the Huber
function is a hybrid of the least-squares 𝓁2 (when |f | ≤ a) and 𝓁1

TABLE I
THE RESULT OF DIFFERENT FILTERS

(when |f | > a) functions. The 𝓁1 is robust against gross errors.
Since the Huber function treats errors above threshold in the
𝓁1 sense, it is robust against those errors, the solution is not
sensitive to those errors. The choice of a defines the threshold
between “large” and “small” errors. By varying a, we can alter
the pro-portion of error functions to be treated in the 𝓁1 and 𝓁2

sense [25].
We can also define Ns as the number of “small errors”. The

cardinality of the set refers to all number of errors, defined as
N . Fig. 8(d) depicts Ns versus a, where ordinate is expressed
as a percentage of the number of “small errors” Ns and the
total number of devices N . The turning point as shown in the
Fig. 9, called “knee” on the curve by J. W. Bandler [25], which is
consistent with the solution that includes a majority of functions
as “small errors.” The value of a at the “knee”, which provides
a clear line between the “large” and “small” errors, is consistent
with our choice.

During initialization, there is a 20-second startup time. The
Pk is recorded during the iteration. From Pk, we can get ek. Ad-
justing a, there are different proportions of large error and small
error. The value of a at the “knee” is set. In the real-time process,
ek in the past 20-second time window is continuously analyzed
to set the value of a adaptively. During driving, different driv-
ing scenarios have different data characteristics and different
error distributions. Therefore, different thresholds a should be
selected for different scenarios. To illustrate Huber Kalman is
dependent on the threshold a, we show the error distribution and
the filtering results of different driving scenes in Fig. 8. When
the engine is turned off, there are fewer errors, and more points
are evaluated by the second norm. When the engine is turned on,
some of the sampling points are now considered to be “large” er-
rors and the remaining are considered “small” errors. Therefore,
they use the first norm and the second norm, respectively.

4) Data Analysis: Fig. 9 is a breath wave of the driver during
driving. As shown in Table I, the error of the original phase after
the Kalman filtering is 1 beat/min, and the error after the Huber
Kalman filtering is 0 beat/min. The errors of the average peak-
to-peak interval after the Kalman filtering and the Huber Kalman
filtering are 110 s and 45 s, and the correlation coefficients of the
waveforms after the Kalman filtering and the Huber Kalman fil-
tering are 0.8293 and 0.9156, respectively. These results clearly
demonstrate that, in the driving situation, the Huber Kalman
filter is more suitable for dealing with large and small errors,
and the recovered breathing waveform correlates well with that
from the reference device. The better correlation in peak-to-peak
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Fig. 7. Huber Kalman filter prediction-update model.

Fig. 8. (a) Raw data of respiration when the engine is not started; (b) The value of threshold value a in scenario(a) is the "knee" of the curve; (c) Raw data of
respiration when the engine is working; (d) The value of threshold value a in scenario(c) is the “knee” of the curve.

Fig. 9. Comparison of Kalman filtering and Huber Kalman while driving.

interval of the Huber Kalman filtering can be further used for
impaired or fatigue driving research and applications.

IV. EXPERIMENTAL RESULTS

A. Experimental Environment

The proposed respiration detection system based on the Wi-
Fi was then used to detect the respiration of the driver. The
sensor was mounted on the back of the seat, the signal passed
through the seat and reflected from driver’s back, which can

Fig. 10. Experimental setup of the proposed system for Wi-Fi-based breathing
detection.

avoid complex reflections due to multiple people and avoid the
influence of the arms that turn the steering wheel while driving.
As shown in Fig. 10, the system was arranged behind the driver’s
seat at the approximate location of the chest, with the antenna
facing the driver’s back. To validate the effectiveness of the
Wi-Fi based vital sign detection, the driver also wore a wearable
sensor, a Vernier Respiration Belt, for breath monitoring used
as the reference for comparison. The respiration belt uses a
force sensor and an adjustable nylon strap around the chest to
measure respiration effort and respiration rate. During driving,
the detection result of the wearable device is almost unaffected
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by the driving conditions. Each experiment covers a variety of
driving scenarios, like starting, turning, speeding up, speeding
down and stopping. Data of the experiments were collected and
compared among different filtering cases and to the reference
data, demonstrating the effectiveness of the proposed Huber
Kalman filter for Wi-Fi based respiration detection in vehicles.

B. Experimental Method

In total, 8 participants (four males and four females) aging
from 20 to 60 were invited to conduct experiments. We evaluated
the overall performance of the Huber Kalman filter for different
scenarios involving different drivers, different car models and
multiple passengers. Both normal and abnormal breathing of
drivers were included in the experiments. We compared the Hu-
ber Kalman filter and the Kalman filter with the common breath
rate estimation technique using a bandpass filter. To evaluate the
performance of different filters, we defined three metrics: Breath
Rate Error, PPI Error, and Correlation Coefficient (Corr-Coeff)
with a reference device.
� Breath Rate Error: The error of the estimated breath rate

RE compared to the reference breathing rate RR, which is
defined as the difference between RE and RR, i.e., (RE -
RR).

� PPI Error: After peak detection, all peak-to-peak intervals
(PPI) are averaged to obtain the period of the breathing
signal, denoted as P. The error of the estimated P (PE)
compared to the reference P (PR), which is defined as the
difference between PE and PR, i.e., (PE - PR).

� Corr-Coeff: Corr-Coeff reflects the similarity of the esti-
mated respiration waveform to the reference device. The
correlation coefficient is between -1 and 1, and larger than
0.8 indicates a strong positive relationship.

C. Experimental Results

1) Overall Performance: We evaluated the overall perfor-
mance of the proposed system for different drivers and for
different breathing frequency ranges of drivers. Both normal
and abnormal breathing of the driver were included in the
assessment. Different car models and a variable number of
passengers were involved as well. Each set of experiments is
driven on the road for 2 minutes, during which driving scenarios
such as acceleration, braking, and cornering may be encountered
naturally. Overall, as shown in Fig. 11, the probability when the
breathing rate error equals to 0 bpm after the Huber Kalman
filter is 0.56, which is significantly higher than those after the
bandpass filter and the Kalman filter. The breathing rate error
of all test results was less than 3 bpm. As shown in Fig. 12,
during driving, the average correlation coefficient between the
time-domain waveform recovered by the Huber Kalman filter
and the reference device reached 0.9, which means that the Huber
Kalman filter almost recovered the true waveform.

2) Impact of Different Car Models: Fig. 13 shows the exper-
imental results for 6 models labeled as A to F. The test results of
model A are the best, with the average errors of the breath rate
and the PPI as about 0.17 bpm and 20 ms, respectively, and the
correlation coefficient as 0.9. The average breath rate error of

Fig. 11. CDF of overall breathing rate estimation error.

Fig. 12. Overall breathing correlation coefficient and PPI error.

the worst model C also reached 0.43 bpm, with the correlation
coefficient as 0.88, which fully meets the requirements for
respiration detection in the cabin.

3) Impact of Different Drivers: Fig. 14 shows the experimen-
tal results for 8 drivers. The 8 drivers had different breathing
rates, with the lowest breathing rate as 12 bpm, and the highest
as 31 bpm. There were some differences in the test results of
different people. But for all the cases, the errors in diver’s breath
rates were no more than 0.5 bpm, and the correlation coefficient
was no less than 85%. Again the performances of the proposed
Huber Kalman filter were better than the Kalman filter and the
bandpass filter.

4) Impact of Multiple Passengers: We separately tested the
impact on driver breath detection with different numbers of
passengers in the car. The cases of 1-5 passengers were tested.
As shown in Fig. 15, regardless of the number of passengers,
the error of the respiration rate after the Huber Kalman filter is
smaller than those after the bandpass filter and the Kalman filter.
Passengers in other locations have little effect on the driver’s
breath detection. This is because the antenna is mounted behind
the driver’s seat. The antennas radiate forward, and any objects
in the car along the other directions do not affect the driver’s
breathing detection.

5) Result of Abnormal Breathing: Since driver’s respiration
detection aims at monitoring the breathing of the driver, it shall
be effective for both normal and abnormal breathing. The drivers
are asked to intentionally change their breathing patterns in three
cases during driving, including breathing from normal to apnea,
from normal to fast, and from normal to slow. The result is
shown in Fig. 16. It can be observed that the estimated breathing
waveforms from the Huber Kalman filter are the best compared
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Fig. 13. Impact of different car models. (a) Breathing rate estimation error. (b) PPI errors. (c) Correlation coefficient.

Fig. 14. Impact of different drivers. (a) Breathing rate estimation error and PPI errors. (b) Correlation coefficient.

Fig. 15. Impact of multiple passengers. (a) Breathing rate estimation error and PPI errors. (b) Correlation coefficient.

to the actual breathing waveforms. As shown in Table II, the
results of the Huber Kalman filter and the reference device
maintain a strong correlation. With PPI detection, an abnormal
respiration can be captured after a full cycle. And the detailed
information that the rate of respiration increases or decreases is
thus known.

V. SUMMARY AND DISCUSSION

For the Wi-Fi based vital sign detection systems applied in the
vehicle environment, the noise in the sensing data is complicated
due to various road and driving conditions. Thus, effective noise
filtering techniques are necessary. Compared with the conven-
tional Kalman filter that is suitable for wireless sensing in static

applications, the proposed Huber Kalman filter is more suitable
for the moving objects under sensing, such as in the vehicular
environments. Digital signal processing is an important part of
wireless intelligent sensing (WISe) [32]. The proposed filtering
method can provide low noise data for future data analytics
for detailed driver health condition monitoring. The respiration
waveform can be better extracted through the Huber Kalman
filter, which is beneficial to the follow-up research on the rela-
tionship between respiration waveform and driving fatigue, as
well as the relationship between PPI and fatigue. At the same
time, heart rate and heart rate variability are also important and
meaningful information for driver. In the future, we will also
focus on the accurate extraction of the driver’s heartbeat signal.
We will analyze the characteristics of the driver’s heart rate and
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Fig. 16. Breathing waveform estimation in abnormal transitions. (a) From normal to apnea. (b) From normal to fast. (c) From normal to slow.

TABLE II
THE RESULT IN ABNORMAL TRANSITIONS

heart rate variability to provide more data for driving safety.
The proposed method in this paper can also be used for general
robust data processing.
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