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1 | INTRODUCTION

The theory of dynamic equations on time scales is recent, it was introduced by Stefan Hilger in 1988 in his PhD thesis.
Since then, this theory has been attracting the attention of many researchers, due to its power of unification, extension
and discretization. It is a known fact that this theory can unify discrete and continuous analysis, as well as the cases
“in between”.

However, despite its potential for unification, for instance, it is still an open problem how to define periodicity on time
scales in a unified way. The first studies concerning periodicity on time scales appeared in the literature by requiring a
very restricted periodicity condition on the time scale T. This condition is described as follows: A time scale T is called w-
periodic if for every t € T, we havet + w € T and o(t + w) = o(t), where o is the forward jump operator of T. Notice that
this definition only makes sense if we ensure that the time scale has such additive property, which is a strong hypothesis.
For instance, this definition does not include the quantum scale T = g™ = {q” ‘ne NO} with g > 1, which plays an
important role for applications since it gives rise to quantum calculus, which is a crucial tool in the study of phenomena
in quantum physics (see [22, 25, 26] and the references therein). Only in 2012, M. Bohner and R. Chieochan introduced
in the literature the concept of periodicity in quantum calculus for the first time (see [8]). Since then, many important
results were proved for this case (see [9, 10, 12, 13, 16-18]). However, all studies and investigations for quantum calculus
were made separately. For the large literature concerning periodic time scales and alternate concepts of periodicity, we
refer to [1-7, 11, 19-21, 23, 24, 27-30] and the references therein. The connection between Adivar’s [1] periodicity concept
and ours is discussed in the appendix, but the material presented there is not needed in any way to understand the results
given in this paper.

The goal of this paper is to present a unified definition of periodicity for all isolated time scales and to prove many
interesting and relevant results in this direction. The definition presented here is consistent with the known formulations
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in the discrete and quantum calculus settings. The definition says that a function f : T — R is called w-periodic provided
p() = (Gw)A(t)p(o“(t)) forall teT,

where T is an isolated time scale. Using this concept, we prove surprising and interesting properties of this class of periodic
functions. For instance, we prove that the space of all periodic and regressive functions p : T — R with the operation &
is a subgroup of (R, @®). We also give a characterization of 1-periodic functions and prove useful properties concerning
the delta integral of an w-periodic function. Another surprising property is that the chain rule for the composition of a
function f with o® holds for isolated time scales, although such a chain rule does not hold for general time scales. Further,
we investigate the existence and uniqueness of periodic solutions of the linear dynamic equations

x2 =a(®)x+b(t) and x? = —c(t)x° +d(t),

where the coefficient functions a, b, c, d satisfy certain conditions related to periodicity. We give explicit formulations of
the periodic solutions of both equations and show that the found results are consistent with the known ones for difference
equations and g-difference equations.

The paper is organized as follows. Section 2 is devoted to some fundamentals of the theory of time scales. We only
state the definitions and results for isolated time scales, as only they are considered in this paper. In Section 3, we consider
“iterated shifts” and prove some auxiliary results about these fundamental objects. Section 4 then introduces our concept of
periodicity on any isolated time scale. Several important properties of periodic functions on isolated time scales are given.
In Section 5, examples are presented to illustrate our new definition. Finally, in Section 6 and Section 7, we investigate
existence and uniqueness of periodic solutions of homogeneous and inhomogeneous linear dynamic equations on isolated
time scales.

2 | TIME SCALES ESSENTIALS

We first introduce some fundamentals of time scales that we will use. A time scale T is a nonempty closed subset of the
real numbers.

Definition 2.1 (See [14, Chapter 1]). For ¢t € T, the forward and backward jump operators o, p : T — T are defined by
o(t) :=inf{seT: s>t} and p(t) :=sup{seT: s<t}

In this definition, we put inf § = sup T and sup @ = inf T. If o(¢) > ¢, then ¢ is called right-scattered. Otherwise, ¢ is called

right-dense. Similarly, if p(t) < t, then t is said to be left-scattered, while if p(t) = t, then ¢ is called left-dense. In this paper,

from now on until the end, we only consider isolated time scales, i.e., all points are right-scattered and all points are left-
scattered. For any function f : T — R, we put

fo=foo.
The graininess function u : T — (0, c0) is defined by
ult)=co(t)—t forall teT.
If t € T has a left-scattered maximum M, then we define T = T \ {M}, while otherwise, we put T* = T.

Definition 2.2 (See [14, Definition 1.10]). For f : T — R, the derivative of f at t € T is defined as

fle@®) - f&

A —
FO=""0
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IfF : T — R is an antiderivative of f, i.e., FA(t) = f(t) holds for all t € T, then we define the integral

b
/ f(t)At = F(b) — F(a).
a
Theorem 2.3. For f : T — R, the “simple useful formula”

fo=f+uft 2.1)

holds, and for f,g : T — R, the product rule and, if g # 0, the quotient rule

B phgo 4 b 1>A=M
(fe)* = f¢° + fg® and <g 2g°

hold.

Definition 2.4 (See [14, Definition 2.25]). A function p : T — R is called regressive provided
14+ u®)p(t)#0 forall teT.

The set of regressive functions on T is denoted by R = R(T, R).

Definition 2.5 (See [15, p. 13]). Define the “circle plus” addition and the “circle minus” subtraction on R as

pP—q
1+uq

p®q=p+q+upq and pOg=
Theorem 2.6 (See [14, Theorem 2.33]). Let p € R and t, € T. Then
Y2 =p@®)y, y(to)=1
possesses a unique solution, called the exponential function and denoted by e, ( ; to).
Some properties of the exponential function that are used in this paper are given next.
Theorem 2.7 (See [14, Chapter 2]). If p € R, then

eo(t,s) =landep(t,t) = 1.
1
ep(t,s) = P
The semigroup property holds: e, (t,r)e,(r,s) = ep(t, ).
epaq(t,s) = e,(t,5)ey(t, s).

1
egp(t,s) =ey(s,t) = )

ep(0(),5) = (1 + (OPD)e,(t,5).

D AW N~

Theorem 2.8 (Variation of Constants, see [14, Theorem 2.77]). Supposea € Randb : T - R. Letty € Tand y, € R. The
unique solution of the IVP

YA =a®)y +b@®), y(to) =0

is given by

t
ym=%mmm+/%deMM&

lo

85U8017 SUOWILIOD 8AITE1D) 3|qedl|dde aus Aq peuenob ae Ssppile YO ‘SN JO Sa|nJ oy Ariq1T 8UIIUO /8|1 UO (SUOIIPUOD-pUR-SLLIBIALICY" A8 | 1M Afe.1q 11 |UO//SANY) SUORIPUOD Pue SWe | 81 88S *[£202/20/22] Uo A%idiauliu A1 ‘80ueids JO AISBAIUN LNOSSII A 09E006TOZ BUBW/ZOOT OT/I0p/W0d A8 |imAeIq1 ul|uo//sdny woly pspeojumoq ‘Z ‘220z ‘919222ST



%ﬁgf{{%ﬁéﬁ’g‘%ﬁH BOHNER ET AL.
[NACHRICHTEN |
3 | ITERATED SHIFTS
We let w € N and define the iterated shiftv : T — T by
v :=0% !=0g000..00.
N—o—o —/
 times
Let f : T — R.In analogy to the notation f° = foo, we use the notation
7 = fov.
Note that this notation implies
= ()T = (1) = e (3D
Moreover, o and v commute, i.e.,
goy = voo, le., o’ =% (3.2)
The derivative of the function v is given next.
Lemma 3.1. We have
v
A_ M
pA = —, (3.3)
u
Proof. Lett € T. Then the short calculation
g = M) =Y
(1)
32 o(v(1)) — v()
u(t)
IC0)
u(t)
confirms (3.3). O
The chain rule now reads as follows.
Lemma 3.2. For f : T —» R, we have
frA =VAfAY, (34

Proof. The short calculation

VA—fVG'_fV
"=

(3 1 fcn/ fv
u
(3.3) f av—fr
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(55

= yAphy
confirms (3.4). O
The second derivative of v will be needed as well.
Lemma 3.3. We have
A _ A GAV#; GA' (3.5)

Proof. We use the quotient rule for (3.3) and the chain rule (3.4) applied to u to find

AA=IMVA/'£_IMAIMV

v
ue
_ VRS — BBy
297
Av _ A
_ VA# = KM '
Since u(t) = o(t) — t, we get
Ut = ot —1, (3.6)
and hence (3.5) is established. O

Remark 3.4. Note also that, by using the “simple useful formula” (2.1), we have

(3.6)
Moo= p ppt = p(1+pt) =" ot

(3.7
Example 3.5. If T = Z, thenu(t) = 1,0(t) =t + 1, v(t) = t + w, v (t) = 1, and v*2(t) = O for all t € T.

Example 3.6. If T = hZ with h > 0, then u(t) = h, o(t) = t + h, v(t) = t + how, v2(t) = 1, and v*2(t) = 0 for all t € T.
Example 3.7. If T = g™ with ¢ > 1, then u(t) = (g — 1)t, o(t) = qt, v(t) = q*t, v2(t) = ¢®, and v*2(t) = O for all t € T.

We next give a result for the derivative of an integral from ¢ to ().

Lemma3.8. For f : T — R, define

Then
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Proof. Letting ty € T and defining
t
Fo) = [ s,
lo

we obtain F* = f and F, = F” — F. Hence, using the chain rule (3.4) applied to F, we get
FA = F"A A = )ARAY _pA — A v g
confirming the claim. O
We conclude with two formulas for the exponential function.
Lemma 3.9. Lett, € T. For f € R, we have
h(t) :=e;(v(t),t) implies h*(t) = ((v*f”) © f)h(t) (3.8
and

evAfv (t, to)

forall teT. (3.9
er(t,to)

er(v(0),1) = es(v(ty).to)

Proof. Defining
h(t) 1= es(v(0),t)
and noticing that the semigroup property implies
h(t) = ep(v(0),to)es (Lo, t) = ep (v(0),t) ey (L. to),

we may use the product rule and the chain rule to obtain

hA(1) = vA2(0) f(D))es (v(1), to) (1 + u(XO ) (1))egs (1. to) + e (v(1), £0) (O F)Degy (1. o)
[VAOF(O))A + u)O 1)) + (B 1)) A)

AOFOO) - FO)
RO

((v2f7) © f)OhQ),

confirming (3.8) and hence (3.9). O
Lemma 3.10. Let t, € T. For f € R, we have

er(v(0),v(s)) = eyapr(t,s) forall s,t €T. (3.10)
Proof. Using the semigroup property and Lemma 3.9, we get

er(v(1), v(s)) = ey (v(t), )es(t, s)e (s, v(s))

e (). 0)

= ef(y(s)’ S) ef(t, S)
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eyapv(t,s)
=— et
er(t,s) er(t:s)
= e,ap(t,s),
confirming the required formula. O

4 | PERIODICITY

This work is based upon the formulation of periodicity for isolated time scales, which we introduce in the following
definition.

Definition 4.1. A function p : T — R is called w-periodic provided

vApv

=p. 4.1
The set of all w-periodic functions p : T — R is denoted by P, = P = P(T,R).
Remark 4.2. Because of (3.3), it is easy to see that p € P if and only if
(up)” = up. (4.2)
Example 4.3. If T = Z, then p € P provided
p(t)=p(t+w) forall teT,
which is the usual definition of w-periodicity.
Example 4.4. If T = hZ with h > 0, then p € P provided
p(t) = p(t + hw) forall teT.
Example 4.5. If T = g0 with g > 1, then p € P provided
p(t) =q”p(q®“t) forall teT,
which is the periodicity condition from quantum calculus introduced in [8, Definition 3.1], see also [12, 16].
Lemma 4.6. We have P,, C P,,,.
Proof. Letusdefine? : T — T by
(t) = o%°(t) = v(v(1)).
Assuming that p : T — R is w-periodic and using the chain rule (3.4) applied to v, we obtain
PAOp@()) = vAEAW())p(r(»(1)))
= A 0pe)

(4.1)
=" p(),
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which shows that p is also 2w-periodic. O

A crucial property of periodicity is obtained next.

Theorem 4.7. If p € P, then the integral

v(t)
/ p(t)At isindependentof te€T.
t

Proof. This follows now immediately from Lemma 3.8 and Definition 4.1. O

Theorem 4.8. If p € P, then

(t) t
/ p(T)AT = / p(DAT  forall s,teT.
v(s) s

Proof. Let p € P. Since

v(t) s t v(t)
/ p(t)AT = / p(T)AT + / p(T)AT + / p(T)AT
v(s) v(s) s t

and the first and last integrals cancel out due to Theorem 4.7, the proof is complete. O
Finally, two results about the exponential function are given.
Theorem 4.9. If p € P N R, then
e,(v(t),t) isindependentof t€T (4.3)

and

e,(v(0),v(s)) = e,(t,s) forall s,teT. (4.4)
Proof. While (4.3) follows now immediately from Lemma 3.9 and Definition 4.1, (4.4) follows from Lemma 3.10 and
Definition 4.1. O
5 | EXAMPLES

We first characterize 1-periodic functions on an arbitrary isolated time scale. Note that these play the role that is assumed
by constant functions in the classical discrete (T = Z) case.

Theorem 5.1. Let f : T — R. Then f is 1-periodic if and only if there exists ¢ € R such that

f(t):ﬁ forall teT. (5.)

Proof. First suppose there exists ¢ € R such that f : T — R is given by (5.1). Then

BOfoy B HCW ¢ _

w6 u@)  wo
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Therefore, f is 1-periodic. Assume now that f is 1-periodic. By Remark 4.2, we have (uf)(a(¢t)) = (uf)(t) forallt € T, and
hence (uf)(¢t) is independent of t € T, equal to a constant c, so that f is in the form (5.1). O

Remark 5.2. A consequence of Theorem 5.1 is that any 1-periodic function f : T — R for a given isolated time scale T can
be described uniquely by the area between two consecutive time points, since

a(t) a(t)
Cc C
f(T)AT = -/t mAT = M(t)m =C.

¢
It follows that a 1-periodic function with unit area 1, i.e., the area between two consecutive time points, is of the form

F()= —— forall teT.

u(t)

Now we present three examples of w-periodic functions on an isolated time scale.
Example 5.3. Consider any time scale
T={: i€z} with o(t;) =t >t forall i€z

Define f : T - R by

_1)i
f@) = ) forall ieZ.
ans
Ifi € Z, then
A EOVACH )

_ Rlli) (<) (=1
#(ti) M(fi+2) #(fi)

Hence, f is 2-periodic on T.
Example 5.4. Consider any time scale
T={: i€z with o(t;)=t;y,>t; forall ieZ.
Define f : T — R by
0 ifi is odd
if i is even.
If i is even, then

2 _/l(ti+2) | S
S D =0 vt~ )

A

(0%) (6)f(0*(11))

a3 #(o?(1))
u(t)
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while if i is odd, then
()" (6)(0%(1)) = 0= £ (1)
Hence, f is 2-periodic on T.
Example 5.5. Consider any time scale
T={: i€z} with o(t) =t >t forall i€z

Letg : Z — R be a “normal” periodic function of period w, i.e., g(i + w) = g(i) for alli € Z. Define f : T — R by

() = % forall ieZ.
Ifi € Z, then
“(t lite
() () (e(0)) L ETD gy o Hle) g
u(t) u(ti)
_ M) gli+ o) _ g() _ £,

u(t) pltine)  pt)

Hence, f is w-periodicon T.
In the following, we give examples how one, with given periodic functions, can construct more periodic functions.
Theorem 5.6. Assume p,q € Panda,3 € R. Then
ap+pqE€P and upq€eP.

Moreover, if a + u(t)q(t) # 0 forallt €T, then

P
a+ ugq

eEP

Proof. Assuming that o, 5 € R and p, q € P, the formulas
[1ap + ] = alup)” + B(uq)” = a(up) + Buq) = u(ap + Bg),
[1(up]” = (up)’(1q)” = (kp)(pq) = p(ppg),

and, ifa + u(t)q(t) #0forallt € T,

[M p ]V __wpy _ mp _, P
a+puq a+(uqr a+pqg Ta+uq
together with Remark 4.2 verify all claims. ]

Remark 5.7. Theorem 5.6 together with Theorem 5.1 shows that p(t) # 0 for all t € T implies that

p € P ifandonlyif % eP.
H°p
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The next result shows that the set of all w-periodic and regressive functions is a subgroup of the set of regressive func-
tions.

Corollary 5.8. f pe PN R, then©Sp € P.Ifp,q € P, thenp @ q € P.

Proof. These claims follow from

P
T+up

p®qg=p+q+upq and ©p=-—
and the results given in Theorem 5.6. O

Remark 5.9. For the notation in this remark, we refer to [15, Definition 2.35]. Using Theorem 5.6, we can show that for
a€eRand p e PnR(a), we have a ® p € P. In particular, e.g.,

P :l(DpeP.

1+itmp 2

2p+up*=20peP and

6 | HOMOGENEOUS LINEAR DYNAMIC EQUATIONS
In this section, we apply our definition of periodicity to homogeneous linear dynamic equations on isolated time scales.
Theorem 6.1. Leta € R. If
xA = a(t)x (6.1)
has a nontrivial w-periodic solution, then
<a + l)oA eP. (6.2)
u
Proof. Assume that (6.1) has a nontrivial w-periodic solution x. Then, by Theorem 2.8, we have
x(v() = e,(v(t),t)x(t) forall teT.
Thus, by Definition 4.1, we get
x(t) = v2(O)x(v()) = v2()e,(v(t), )x(t) forall teT. (6.3)

If x(ty) = 0 for some ¢, € T, then Theorem 2.8 yields that X is identically zero, which is not possible. Hence, X(t) # 0 for
all t € T, so that (6.3) implies

v2()e,(v(t),t) =1 forall teT. (6.4)
Now applying the product rule while taking the derivative of (6.4) and using (3.8), we obtain
VAA(0e, (1), ) + v27 (1) ((v2a”) © a)(De,(v(t),t) =0 forall teT,
ie.,

VA& + 989 ((v2a”) ©a) = 0. (6.5)
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By Lemma 6.2 below, (6.5) is equivalent to (6.2). |
We now give several conditions that are equivalent to (6.2).
Lemma 6.2. If a € R, then a satisfies (6.2) if and only if
VA8 L yByYRIgY =Yg (6.6)
holds, and (6.6) is also equivalent to
R HAA
v —_
(vha )ea——wTo. (6.7)
Proof. Let a € R. By Remark 4.2, (6.2) is equivalent to
1 Y 1
a+=)o?| =ula+=)o",
(o3| =#{o43)
which is, by (3.7), equivalent to
oh” + (/x"a)v =%+ ua,
which is, as v and u° are never zero, equivalent to
A
ALY
via = g ue
ve Ay A 4\
= IF{U -+ ua)’}
3.1
(:)Z_U{O.Av O.A+Iuvcrav
3.3 Ay _ <A
33 A{o Iuaa +VA"aV}
G a0 | a0,4 v
which is (6.6). Now (6.6) is equivalent to
A _ AA
A=V Aav
%
(VAJ _ /.lVAA)a VAA
= yAc Y
AA HAA
= _VTG a— ,UVTU(I
AA
v
(2)en
which is equivalent to (6.7). O

Next, we give two results about the exponential function.

35UBD 7 SUOWILLIOD AIIERID 8ol [dde ay) Aq peuieob 818 sao1e YO 9SN JO Sa|NJ 10} AId 1T aUIIUQ AB]IA UO (SUOTHPUOD-pUR-SWLBIALI0D" A 1M ARe.d 1 jBul [Uo//Sdiy) SUONIPUOD pue sWie | ay) 89S *[£202/20/22] Uo Akeiqi8uliuo A8|Im ‘90us s JO A1sieAlun Unossi Aq 09E006T0Z BUeW/Z00T 0T/I0p/W0d A8 1M AeIq1juluo//sdiy Wwoly pepeojumoq ‘Z ‘220z ‘919222ST



, MATHEMATISCHE
BOHNER ET AL NACHRICHTEN 27

Theorem 6.3. Let a € R and assume (6.2). For t, € T, we have

v4(to)
ea(v(t), t)= eq (V(to), to) ‘VA—(I) fOV all teT. (6.8)
Moreover, we have
0
e, (v(t),v(s)) = ey(t,s) Yo forall s,teT. (6.9)

Proof. Suppose f : T — R is such that f(t) # 0 forall t € T. Then —f*/f° € R since

L fmwten £
fe fe fo
Now fix s € T and definey : T — R by y(¢t) = f(s)/f(¢). Then y(s) = 1 and

_fOrfo - Ao
fofe@wy  fo@

YA = y(@).

This shows that e_a/¢o(t,5) = y(t) = f(s)/ f(¢). Applying this fact to f* = v2 and using (6.7) together with (3.9) shows
(6.8), while (3.10) yields (6.9). O

The next theorem supplements Theorem 6.1 to a complete characterization of periodic solutions of (6.1).
Theorem 6.4. Let a € R and assume (6.2). If
v2(to)eq (v(t), to) =1,
then all solutions of (6.1) are w-periodic. Otherwise, no nontrivial solution of (6.1) is w-periodic.
Proof. Leta € R, assume (6.2), and let x be any solution of (6.1). Then, by Theorem 2.8, we have
x(v(t)) = e,(v(t),t)x(t) forall teT.
Thus, (6.8) gives
VAOX((D) = vA(D)ea (1), DX(8) = v*(to)ea (v(t0), to) X (D),

from which all claims follow. O

7 | INHOMOGENEOUS LINEAR DYNAMIC EQUATIONS

In this section, we apply our definition of periodicity to linear dynamic equations on isolated time scales. We prove the
existence and uniqueness of a periodic solution for two families of linear dynamic equations.

Theorem 7.1. Leta € Randb : T — R. Assume (6.2). If

x2 = a(t)x + b(t) (7.1)
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has a nontrivial w-periodic solution, then

bus € P. (7.2)

A=

Proof. Assume that (7.1) has a nontrivial w-periodic solution x. Define g := v*x” — X = 0. Now we use the product rule

to calculate

gh=v

AAxY +vA9A (@%” + b”) —ax — b

AAX.V + VAGVAX'AV _ X'A

o
Il

=V

= (v22 +92920”)%” — ax + v29v2p” — b

(6.6) _ _
="v2axY —ax + v292pY — b

ag +v29v2b” — b

= vA9)2p” — b,

By Lemma 7.2 below, v*v2?b” = b is equivalent to (7.2). O

We now give a condition that is equivalent to (7.2).
Lemma 7.2. Ifb : T - R, then b satisfies (7.2) if and only if

pAyAopy — p (7.3)
Proof. Letb : T — R. Then (7.2) holds if and only if
VA(blua)V = bu°,

which is equivalent to

b= 1/A blecv (352) vavlu_W (3;3) vavVAo
o 9

uo
i.e., to (7.3). O
Theorem 7.3. Leta € Randb : T — R. Assume (6.2) and (7.2). If (7.1) has a solution x that satisfies

vA2(to)x(v(to)) = x(ty) forsome t, €T,
then x € P.

Proof. Define g := v®x” — x and use the same calculation as in the proof of Theorem 7.1 to find g* = ag. Therefore, we
have g(1) = e, (t,))g(ty) = 0forallt € T,sox € P. O

We use the following result in the proofs of our main theorems.

Lemma 7.4. Leta € Randb : T — R. Assume (6.2) and (7.2). If

v(t)
H(t) :=/ eca(0(s), to) b(s)As, (7.4)
t
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then

1

Ay — _
H (t)_<vﬂ(t0)ea(v(to),t0) 1>b(t)eea(a(f)»to)-

Proof. We use Lemma 3.8 to find

HA(t) = vA(Begqa (0((1)), to) b((1)) — ega (a(1), £ ) (1)

)
eqa(o((1)),0(1))

(32) { VA2 (a(£)b(»(1))
vA(a(t))e,(v(a(t)),a(t))

———————=b(¥(1)) — b(t) }eea (a(6), 1)

- b(t) }eea (O'(t)’ tO)

(68) A(t)vA(o-(t))b(y(t)) _

{ vA(ty)eq (v(to). to) b(t)}eea(o(t), to)
(7 3) b(t) )

{ A(to)eq (v(to) to) b(t)}eea(a(f)’ to),

verifying (7.5).
The next theorem is the main result of this paper.
Theorem 7.5. Letty € T,a € R,andb : T - R. Assume (6.2) and (7.2). If

v2(to)eq (v(to),to) #1,

then (7.1) has a unique w-periodic solution X given by

v(t)
x(t) = /1/ egq(0(s), H)b(s)As,
t

where

Vi (t)

eaa(v(to) to) — VA(fo)'

A=
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(7.5)

(7.6)

(7.7)

(7.8)

Proof. LettyeT,a€e R,and b : T — R. Assume (6.2), (7.2), and (7.6). First, we assume that (7.1) has an w-periodic

solution X. Then, by Theorem 2.8, we have
v(t)
x(v(1)) = e, (v(t), )X(t) + / eq(v(t), a(s))b(s)As.
t
Since X is w-periodic, we obtain
_, 4D _
x(t) = vA(O)x((1))

v(t)
<§’)VA(t){ea(v<t>, DE() + / ea(v(®), o(s))b(s>AS}
t

(7.9
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v(t)
= Y2()e,(v(t),1) { x(t) + / e, (t, o(s))b(s)As}
t

v(t)
©8) VA(to)eq (v (o), to) {J‘C(t) + / eq(t,0(s))b(s)As } ,
t

i.e., due to (7.6) and (7.8), (7.7) holds. Conversely, assume that X is given by (7.7). Hence,
x(t) = Aey (t,to)H(2), (7.10)

where H is defined in (7.4). By (7.5) and (7.8), we have

HA(E) = 3b(00eq (910 o). (7.11)
Now we get
v(t)
H(t) — H(t) = / HA(s)As
t
v(t)
(7.11) 1
2 L bs)eaa (0(5), o)A
| 3becu(e® )as
1
= IH(t)’
ie.,
H (1) = %H(t). (7.12)

Next, we use the product rule in (7.10) to find

A0 = 2a(t)ey(t,t0)H(t) + ey (o(b), o) HA(L)

TV (0)x(0) + b(D),

so X indeed solves (7.1). It is left to show that x is w-periodic. To this end, we calculate

VAOXW() = vA(OAeq (v(1), to) H(D))

T2 A 0e (1), DAeq (L. 1) AALlH(t)

202 (tg)ea (v(t0) t0) A + Vg (£, 1) HEO)

% Aey(t,t0)H(t) = x(t),

confirming that X is w-periodic. O

Remark 7.6. The unique solution to (7.1) with the initial condition

v(lo)
x(ty) = /1/ e, (ty,a(s))b(s)As

lo
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results in the unique w-periodic solution.
Example 7.7. Let T = Z. Then (6.2) readsa +1 € P, i.e.,
at+w)+1=a(t)+1 forall teT,

ie,a(t+w)=a(t)forallt € T,i.e. a € P. Moreover, (7.2) reads b € P. Hence, Theorem 7.5 reads as follows. If a € R
and a,b € P, then, provided (7.6) holds,

x2 = a(t)x + b(t)

has a unique w-periodic solution given by
t+w—1
X(0)=21 ) ecqlk+1,0b(k).
k=t

This is consistent with known results for difference equations.

Example 7.8. Let T = g™o with g > 1. Then (6.2) reads

1
[a(t) " (g—1)

1
q= q“’[a q“t) + —]q forall teT,
] (g°) (g — 1)g»t
ie,q“a(q”t) = a(t)forallt € T,ie., a € P. Moreover, (7.2) reads

b(1)(g — gt = ¢°[b(q®t)(q — 1qq®t] forall teT,

ie,tb(t) = q* [(q“t)b(q”t)] forallt € T,ie.,c € P,wherec(t) = tb(¢). Therefore, Theorem 7.5 ensures that the dynamic
equation

c(t)

xA = a(t)x + W

where a € R and a,c € P, has a unique w-periodic solution provided (7.6) is satisfied. This is consistent with known
results for g-difference equations. See [13, Remark 3.11].

Example 7.9. Consider the dynamic equation on an isolated time scale

(50(t) — o?(t) — 4t)x + 2

A _
EETE O 713
Notice that (7.13) is in the form (7.1) with
4 1 2
0= 6@ 1o = L Ouw)
Clearly, a € R since
_Au(t)
14+ u(®)a(t) = PO #0
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because of u(t) > 0 for all t € T. Also, due to Theorem 5.1, we have that
A
<a+l>0A=4o—(3'=3)ieP and bu° = 2 EP,
1z 25 K K

so (6.2) and (7.2) are satisfied. Thus, from Theorem 7.5, (7.13) possesses a unique w-periodic solution provided (7.6) is
satisfied, for any w € N.

The next theorem supplements Theorem 7.5 to a complete characterization of periodic solutions of (7.1).
Theorem 7.10. Letty € T,a € R,andb : T — R. Assume (6.2), (7.2), and
VA(to)ea(V(t()),to) =1. (714)

If

(o)
/ esa(0(s),t9)b(s)As = 0,

lo

then all solutions of (7.1) are w-periodic. Otherwise, no nontrivial solution of (7.1) is w-periodic.

Proof. Under the stated conditions, let x be any solution of (7.1). As in the proof of Theorem 7.5, we obtain

v(t)
vAOx((1)) = vA(to)ea (¥(t0) to) {X(t) + / eq(t, U(S))b(S)AS},
t

i.e., using (7.14),

v(t)
VA@OXO(D) = x(0) + / ea(t, o(s)b(s)As,

i.e., with H defined as in (7.4),
YAOx (1)) = x(t) + eq (t, o) H(@). (7.15)
Due to (7.5) and (7.14), we get H* = 0 and hence (7.15) yields
YAOx((1) = x(t) + e, (2, t0)H(ty). (7.16)
From (7.16), we can see that x is w-periodic if and only if H (to) = 0, which concludes the proof. O
Finally, we consider “the other” linear dynamic equation.

Theorem 7.11. Lett, € T,c € Randd : T — R. Assume

c+-
Pep (7.17)
gh
and
ud € P. (7.18)
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If

vA(to)ee(v(t0), t0) # 1,
then

x2 = —c()x° +d(t) (7.19)

has a unique w-periodic solution X given by

v(t)
x(t) = /1/ e.(s, t)d(s)As,
t

where
V2 (to)

T b)) — A ()

Proof. Besides the assumptions, assume also that x is a solution of (7.19). Then, using the “simple useful formula” (2.1),
we get

1+ pe)x® = —cx +d,
so (7.19) is equivalent to

x2=dx+b, where a=6¢c and b=

1+ uc’

Now (6.2) and (7.2) (use also (3.7)) read

1
ﬁ = <d+ %)O’A €P and % =u°’beP, where p= C:A;’
which is, by Theorem 5.6 and Remark 5.7, equivalent to
pEP and udeP,
i.e., to (7.17) and (7.18). Hence, all claims follow from Theorem 7.5. O
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APPENDIX A: ADIVAR’S PERIODICITY CONCEPT

In this Appendix, we point out the connection between our periodicity definition and Murat Adivar’s [1] concept. We start
by recalling the three relevant definitions from [1]. First, the so-called shift operators are defined.

Definition A.1 (See [1, Definition 3]). Let T* be a nonempty subset of the time scale T including a fixed number ¢, € T*
such that there exist operators 8, : [ty, 00)7 X T* — T* satistying the following properties:

P.1. The functions &, are strictly increasing with respect to their second arguments, i.e., if
(To,1),(To,u) € Dy 1= {(5,1) € [tg,00)y X T* 1 6.(s,1) € T*},
then
To<t<u implies 6. (To,t) <8.(To,u).
P2. If (T;,u),(T,,u) € D_with T; < T,, then
§_(Ty,u) > 8_(Tyu),
and if (T, u), (T, u) € D, with T} < T,, then
8, (T1,u) <68, (Tau).
P.3. Ift € [ty, oo)r, then (t,4y) € D, and 8, (t,ty) = t. Moreover, if t € T*, then (t,t) € D, and &, (to,t) =t.
P4. If(s,t) € D, then (s,5,(s,t)) € D+ and 5-(s,5,.(s, 1)) = t.

P5. If (s,t) € D, and (u,8,(s,t)) € Do, then (s, 6+ (u,t)) € D, and 6 (u,5.(s,t)) = 6.(s,5-(u, t)).

Then the operators 6_ and d,, associated with ¢, € T* (called the initial point) are said to be backward and forward shift
operators on the set T*. The variable s € [t,, co) is called the shift size.

Next, the notion of a time scale that is periodic in shifts is defined.
Definition A.2 (See [1, Definition 4]). Let T be a time scale with the shift operators .. associated with the initial point

to € T*. The time scale T is called periodic in these shifts if there exists p € (to, OO)T* such that (p,t) € Dy forallt € T".
Furtheremore, if

p= inf{p € (tp),. : (p.)ED; forall teT*} £ 1o,
then P is called the period of the time scale T.

The notion of periodic functions in shifts [1, Definition 5] is not relevant to our considerations and thus is not recalled
here. However, the following notion of A-periodic functions in shifts is relevant.

Definition A.3 (See [1, Definition 6]). Let T be a time scale that is periodic in shifts ., with period P. Then we say that a
function f : T* — R is called A-periodic in shifts 8, if there exists T € [P, o)y« such that

(T,t)e D, forall teT",
the shifts éi are A-differentiable with rd-continuous derivatives, and
FETO) (D) () = ft) forall te T, (A1)

where &_Tr(t) 1= 0,(T,t). The smallest number T € [P, oo)y+ With these properties is called the period of f.
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Remark A.4. Note that [1, (3.10)] displays the undefined symbol éiT, which we have changed in (A.1) to its probable

A
meaning (5%) .

For some isolated time scales, we can find shift functions &, such that the above coincides with our presented (in our
opinion, “simpler”) periodicity concept, and in those cases (A.1) matches (4.1). For those cases, the result [1, Theorem 2]
matches our Theorem 4.7, while none of the other results presented in Sections 3-7 above are proved for the setting in [1].
Example A.5. If T = Z, then we can pick §,.(s,t) =t + sfort,s € T, and then

v(it)=0“{t)=6,(w,t) for te€T and weN.

IfT = qNO, then we can pick §,.(s,t) = tsfor t,s € T, and then

v(t) =o®(t) =q®t =6,(q®,t) for te€T and weN.
2
If T = N2, then we can pick 8,(s,t) = <\/? + \/§> fort,s € T, and then

2
v(t) = o®(t) = (Vi+w) =6,(wt) for teT and weN.

Also, there is a slight difference in terminology. For example, in the last case, e.g., if w = 5, a function would be called
5-periodic according to Definition 4.1, while Adivar’s Definition A.3 would call this function periodic with period 25.

However, for many isolated time scales, we cannot find shift functions 8, such that the above coincides with our pre-
sented periodicity concept,

Example A.6. None of the isolated time scales

T:{Z

: neN}, T=N'={n!': neNj}

=

T={n": neN}, T=

T={"+3": neN}, T:{exp(n)+1n(n)—%: neN}

is periodic in shifts in the sense of Definition A.2, using a fixed P € T. For none of the above time scales, it is possible to
find shift functions &, such that there exists a fixed T € T with

() =0%(t) =6,(T,t) forall teT.
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