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Abstract
In this work, we formulate the definition of periodicity for functions defined on
isolated time scales. The introduced definition is consistent with the known for-
mulations in the discrete and quantum calculus settings. Using the definition
of periodicity, we discuss the existence and uniqueness of periodic solutions to a
family of linear dynamic equations on isolated time scales. Examples in quantum
calculus and for mixed isolated time scales are presented.
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1 INTRODUCTION

The theory of dynamic equations on time scales is recent, it was introduced by Stefan Hilger in 1988 in his PhD thesis.
Since then, this theory has been attracting the attention of many researchers, due to its power of unification, extension
and discretization. It is a known fact that this theory can unify discrete and continuous analysis, as well as the cases
“in between”.
However, despite its potential for unification, for instance, it is still an open problem how to define periodicity on time

scales in a unified way. The first studies concerning periodicity on time scales appeared in the literature by requiring a
very restricted periodicity condition on the time scale 𝕋. This condition is described as follows: A time scale 𝕋 is called 𝜔-
periodic if for every 𝑡 ∈ 𝕋, we have 𝑡 + 𝜔 ∈ 𝕋 and 𝜎(𝑡 + 𝜔) = 𝜎(𝑡), where 𝜎 is the forward jump operator of 𝕋. Notice that
this definition only makes sense if we ensure that the time scale has such additive property, which is a strong hypothesis.
For instance, this definition does not include the quantum scale 𝕋 = 𝑞ℕ0 =

{
𝑞𝑛 ∶ 𝑛 ∈ ℕ0

}
with 𝑞 > 1, which plays an

important role for applications since it gives rise to quantum calculus, which is a crucial tool in the study of phenomena
in quantum physics (see [22, 25, 26] and the references therein). Only in 2012, M. Bohner and R. Chieochan introduced
in the literature the concept of periodicity in quantum calculus for the first time (see [8]). Since then, many important
results were proved for this case (see [9, 10, 12, 13, 16–18]). However, all studies and investigations for quantum calculus
were made separately. For the large literature concerning periodic time scales and alternate concepts of periodicity, we
refer to [1–7, 11, 19–21, 23, 24, 27–30] and the references therein. The connection between Adıvar’s [1] periodicity concept
and ours is discussed in the appendix, but the material presented there is not needed in any way to understand the results
given in this paper.
The goal of this paper is to present a unified definition of periodicity for all isolated time scales and to prove many

interesting and relevant results in this direction. The definition presented here is consistent with the known formulations
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260 BOHNER et al.

in the discrete and quantum calculus settings. The definition says that a function 𝑓 ∶ 𝕋 → ℝ is called𝜔-periodic provided

𝑝(𝑡) =
(
𝜎𝜔

)Δ
(𝑡)𝑝

(
𝜎𝜔(𝑡)

)
for all 𝑡 ∈ 𝕋,

where𝕋 is an isolated time scale. Using this concept, we prove surprising and interesting properties of this class of periodic
functions. For instance, we prove that the space of all periodic and regressive functions 𝑝 ∶ 𝕋 → ℝ with the operation⊕
is a subgroup of (,⊕). We also give a characterization of 1-periodic functions and prove useful properties concerning
the delta integral of an 𝜔-periodic function. Another surprising property is that the chain rule for the composition of a
function 𝑓with 𝜎𝜔 holds for isolated time scales, although such a chain rule does not hold for general time scales. Further,
we investigate the existence and uniqueness of periodic solutions of the linear dynamic equations

𝑥Δ = 𝑎(𝑡)𝑥 + 𝑏(𝑡) and 𝑥Δ = −𝑐(𝑡)𝑥𝜎 + 𝑑(𝑡),

where the coefficient functions 𝑎, 𝑏, 𝑐, 𝑑 satisfy certain conditions related to periodicity. We give explicit formulations of
the periodic solutions of both equations and show that the found results are consistent with the known ones for difference
equations and 𝑞-difference equations.
The paper is organized as follows. Section 2 is devoted to some fundamentals of the theory of time scales. We only

state the definitions and results for isolated time scales, as only they are considered in this paper. In Section 3, we consider
“iterated shifts” andprove some auxiliary results about these fundamental objects. Section 4 then introduces our concept of
periodicity on any isolated time scale. Several important properties of periodic functions on isolated time scales are given.
In Section 5, examples are presented to illustrate our new definition. Finally, in Section 6 and Section 7, we investigate
existence and uniqueness of periodic solutions of homogeneous and inhomogeneous linear dynamic equations on isolated
time scales.

2 TIME SCALES ESSENTIALS

We first introduce some fundamentals of time scales that we will use. A time scale 𝕋 is a nonempty closed subset of the
real numbers.

Definition 2.1 (See [14, Chapter 1]). For 𝑡 ∈ 𝕋, the forward and backward jump operators 𝜎, 𝜌 ∶ 𝕋 → 𝕋 are defined by

𝜎(𝑡) ∶= inf {𝑠 ∈ 𝕋 ∶ 𝑠 > 𝑡} and 𝜌(𝑡) ∶= sup{𝑠 ∈ 𝕋 ∶ 𝑠 < 𝑡}.

In this definition, we put inf ∅ = sup𝕋 and sup ∅ = inf 𝕋. If 𝜎(𝑡) > 𝑡, then 𝑡 is called right-scattered. Otherwise, 𝑡 is called
right-dense. Similarly, if 𝜌(𝑡) < 𝑡, then 𝑡 is said to be left-scattered, while if 𝜌(𝑡) = 𝑡, then 𝑡 is called left-dense. In this paper,
from now on until the end, we only consider isolated time scales, i.e., all points are right-scattered and all points are left-
scattered. For any function 𝑓 ∶ 𝕋 → ℝ, we put

𝑓𝜎 = 𝑓 ◦𝜎.

The graininess function 𝜇 ∶ 𝕋 → (0,∞) is defined by

𝜇(𝑡) = 𝜎(𝑡) − 𝑡 for all 𝑡 ∈ 𝕋.

If 𝑡 ∈ 𝕋 has a left-scattered maximum𝑀, then we define 𝕋𝜅 = 𝕋 ⧵ {𝑀}, while otherwise, we put 𝕋𝜅 = 𝕋.

Definition 2.2 (See [14, Definition 1.10]). For 𝑓 ∶ 𝕋 → ℝ, the derivative of 𝑓 at 𝑡 ∈ 𝕋𝜅 is defined as

𝑓Δ(𝑡) =
𝑓(𝜎(𝑡)) − 𝑓(𝑡)

𝜇(𝑡)
.
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BOHNER et al. 261

If 𝐹 ∶ 𝕋 → ℝ is an antiderivative of 𝑓, i.e., 𝐹Δ(𝑡) = 𝑓(𝑡) holds for all 𝑡 ∈ 𝕋, then we define the integral

∫
𝑏

𝑎

𝑓(𝑡)Δ𝑡 = 𝐹(𝑏) − 𝐹(𝑎).

Theorem 2.3. For 𝑓 ∶ 𝕋 → ℝ, the “simple useful formula”

𝑓𝜎 = 𝑓 + 𝜇𝑓Δ (2.1)

holds, and for 𝑓, 𝑔 ∶ 𝕋 → ℝ, the product rule and, if 𝑔 ≠ 0, the quotient rule

(𝑓𝑔)Δ = 𝑓Δ𝑔𝜎 + 𝑓𝑔Δ and
(
𝑓

𝑔

)Δ

=
𝑓Δ𝑔 − 𝑓𝑔Δ

𝑔𝑔𝜎

hold.

Definition 2.4 (See [14, Definition 2.25]). A function 𝑝 ∶ 𝕋 → ℝ is called regressive provided

1 + 𝜇(𝑡)𝑝(𝑡) ≠ 0 for all 𝑡 ∈ 𝕋.

The set of regressive functions on 𝕋 is denoted by = (𝕋,ℝ).
Definition 2.5 (See [15, p. 13]). Define the “circle plus” addition and the “circle minus” subtraction on as

𝑝 ⊕ 𝑞 = 𝑝 + 𝑞 + 𝜇𝑝𝑞 and 𝑝 ⊖ 𝑞 =
𝑝 − 𝑞

1 + 𝜇𝑞
.

Theorem 2.6 (See [14, Theorem 2.33]). Let 𝑝 ∈  and 𝑡0 ∈ 𝕋. Then

𝑦Δ = 𝑝(𝑡)𝑦, 𝑦
(
𝑡0
)
= 1

possesses a unique solution, called the exponential function and denoted by 𝑒𝑝
(
⋅, 𝑡0

)
.

Some properties of the exponential function that are used in this paper are given next.

Theorem 2.7 (See [14, Chapter 2]). If 𝑝 ∈ , then
1. 𝑒0(𝑡, 𝑠) = 1 and 𝑒𝑝(𝑡, 𝑡) = 1.
2. 𝑒𝑝(𝑡, 𝑠) =

1

𝑒𝑝(𝑠,𝑡)
.

3. The semigroup property holds: 𝑒𝑝(𝑡, 𝑟)𝑒𝑝(𝑟, 𝑠) = 𝑒𝑝(𝑡, 𝑠).
4. 𝑒𝑝⊕𝑞(𝑡, 𝑠) = 𝑒𝑝(𝑡, 𝑠)𝑒𝑞(𝑡, 𝑠).
5. 𝑒⊖𝑝(𝑡, 𝑠) = 𝑒𝑝(𝑠, 𝑡) =

1

𝑒𝑝(𝑡,𝑠)
.

6. 𝑒𝑝(𝜎(𝑡), 𝑠) = (1 + 𝜇(𝑡)𝑝(𝑡))𝑒𝑝(𝑡, 𝑠).

Theorem 2.8 (Variation of Constants, see [14, Theorem 2.77]). Suppose 𝑎 ∈  and 𝑏 ∶ 𝕋 → ℝ. Let 𝑡0 ∈ 𝕋 and 𝑦0 ∈ ℝ. The
unique solution of the IVP

𝑦Δ = 𝑎(𝑡)𝑦 + 𝑏(𝑡), 𝑦
(
𝑡0
)
= 𝑦0

is given by

𝑦(𝑡) = 𝑒𝑎
(
𝑡, 𝑡0

)
𝑦0 + ∫

𝑡

𝑡0

𝑒𝑎(𝑡, 𝜎(𝑠))𝑏(𝑠)Δ𝑠.
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262 BOHNER et al.

3 ITERATED SHIFTS

We let 𝜔 ∈ ℕ and define the iterated shift 𝜈 ∶ 𝕋 → 𝕋 by

𝜈 ∶= 𝜎𝜔 ∶= 𝜎◦𝜎◦…◦𝜎
⏟⎴⎴⏟⎴⎴⏟

𝜔 times

.

Let 𝑓 ∶ 𝕋 → ℝ. In analogy to the notation 𝑓𝜎 = 𝑓◦𝜎, we use the notation

𝑓𝜈 = 𝑓◦𝜈.

Note that this notation implies

𝑓𝜈𝜎 ∶=
(
𝑓𝜈

)𝜎
=
(
𝑓𝜎

)𝜈
=∶ 𝑓𝜎𝜈. (3.1)

Moreover, 𝜎 and 𝜈 commute, i.e.,

𝜎◦𝜈 = 𝜈◦𝜎, i.e., 𝜎𝜈 = 𝜈𝜎. (3.2)

The derivative of the function 𝜈 is given next.

Lemma 3.1. We have

𝜈Δ =
𝜇𝜈

𝜇
. (3.3)

Proof. Let 𝑡 ∈ 𝕋. Then the short calculation

𝜈Δ(𝑡) =
𝜈(𝜎(𝑡)) − 𝜈(𝑡)

𝜇(𝑡)

(3.2)
=

𝜎(𝜈(𝑡)) − 𝜈(𝑡)

𝜇(𝑡)

=
𝜇(𝜈(𝑡))

𝜇(𝑡)

confirms (3.3). □

The chain rule now reads as follows.

Lemma 3.2. For 𝑓 ∶ 𝕋 → ℝ, we have

𝑓𝜈Δ = 𝜈Δ𝑓Δ𝜈. (3.4)

Proof. The short calculation

𝑓𝜈Δ =
𝑓𝜈𝜎 − 𝑓𝜈

𝜇

(3.1)
=

𝑓𝜎𝜈 − 𝑓𝜈

𝜇

(3.3)
= 𝜈Δ

𝑓𝜎𝜈 − 𝑓𝜈

𝜇𝜈
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BOHNER et al. 263

= 𝜈Δ
(
𝑓𝜎 − 𝑓

𝜇

)𝜈

= 𝜈Δ𝑓Δ𝜈

confirms (3.4). □

The second derivative of 𝜈 will be needed as well.

Lemma 3.3. We have

𝜈ΔΔ = 𝜈Δ
𝜎Δ𝜈 − 𝜎Δ

𝜇𝜎
. (3.5)

Proof. We use the quotient rule for (3.3) and the chain rule (3.4) applied to 𝜇 to find

𝜈ΔΔ=
𝜇𝜈Δ𝜇 − 𝜇Δ𝜇𝜈

𝜇𝜇𝜎

=
𝜈Δ𝜇Δ𝜈𝜇 − 𝜇Δ𝜈Δ𝜇

𝜇𝜇𝜎

=𝜈Δ
𝜇Δ𝜈 − 𝜇Δ

𝜇𝜎
.

Since 𝜇(𝑡) = 𝜎(𝑡) − 𝑡, we get

𝜇Δ = 𝜎Δ − 1, (3.6)

and hence (3.5) is established. □

Remark 3.4. Note also that, by using the “simple useful formula” (2.1), we have

𝜇𝜎 = 𝜇 + 𝜇𝜇Δ = 𝜇
(
1 + 𝜇Δ

) (3.6)
= 𝜇𝜎Δ. (3.7)

Example 3.5. If 𝕋 = ℤ, then 𝜇(𝑡) = 1, 𝜎(𝑡) = 𝑡 + 1, 𝜈(𝑡) = 𝑡 + 𝜔, 𝜈Δ(𝑡) = 1, and 𝜈ΔΔ(𝑡) = 0 for all 𝑡 ∈ 𝕋.

Example 3.6. If 𝕋 = ℎℤ with ℎ > 0, then 𝜇(𝑡) = ℎ, 𝜎(𝑡) = 𝑡 + ℎ, 𝜈(𝑡) = 𝑡 + ℎ𝜔, 𝜈Δ(𝑡) = 1, and 𝜈ΔΔ(𝑡) = 0 for all 𝑡 ∈ 𝕋.

Example 3.7. If 𝕋 = 𝑞ℕ0 with 𝑞 > 1, then 𝜇(𝑡) = (𝑞 − 1)𝑡, 𝜎(𝑡) = 𝑞𝑡, 𝜈(𝑡) = 𝑞𝜔𝑡, 𝜈Δ(𝑡) = 𝑞𝜔, and 𝜈ΔΔ(𝑡) = 0 for all 𝑡 ∈ 𝕋.

We next give a result for the derivative of an integral from 𝑡 to 𝜈(𝑡).

Lemma 3.8. For 𝑓 ∶ 𝕋 → ℝ, define

𝐹𝜈(𝑡) ∶= ∫
𝜈(𝑡)

𝑡

𝑓(𝜏)Δ𝜏.

Then

𝐹Δ𝜈 = 𝜈Δ𝑓𝜈 − 𝑓.
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264 BOHNER et al.

Proof. Letting 𝑡0 ∈ 𝕋 and defining

𝐹(𝑡) ∶= ∫
𝑡

𝑡0

𝑓(𝜏)Δ𝜏,

we obtain 𝐹Δ = 𝑓 and 𝐹𝜈 = 𝐹𝜈 − 𝐹. Hence, using the chain rule (3.4) applied to 𝐹, we get

𝐹Δ𝜈 = 𝐹𝜈Δ − 𝐹Δ = 𝜈Δ𝐹Δ𝜈 − 𝐹Δ = 𝜈Δ𝑓𝜈 − 𝑓,

confirming the claim. □

We conclude with two formulas for the exponential function.

Lemma 3.9. Let 𝑡0 ∈ 𝕋. For 𝑓 ∈ , we have
ℎ(𝑡) ∶= 𝑒𝑓(𝜈(𝑡), 𝑡) implies ℎΔ(𝑡) =

((
𝜈Δ𝑓𝜈

)
⊖ 𝑓

)
ℎ(𝑡) (3.8)

and

𝑒𝑓(𝜈(𝑡), 𝑡) = 𝑒𝑓
(
𝜈
(
𝑡0
)
, 𝑡0

)𝑒𝜈Δ𝑓𝜈(𝑡, 𝑡0)
𝑒𝑓
(
𝑡, 𝑡0

) for all 𝑡 ∈ 𝕋. (3.9)

Proof. Defining

ℎ(𝑡) ∶= 𝑒𝑓(𝜈(𝑡), 𝑡)

and noticing that the semigroup property implies

ℎ(𝑡) = 𝑒𝑓
(
𝜈(𝑡), 𝑡0

)
𝑒𝑓
(
𝑡0, 𝑡

)
= 𝑒𝑓

(
𝜈(𝑡), 𝑡0

)
𝑒⊖𝑓

(
𝑡, 𝑡0

)
,

we may use the product rule and the chain rule to obtain

ℎΔ(𝑡) = 𝜈Δ(𝑡)𝑓(𝜈(𝑡))𝑒𝑓
(
𝜈(𝑡), 𝑡0

)
(1 + 𝜇(𝑡)(⊖𝑓)(𝑡))𝑒⊖𝑓

(
𝑡, 𝑡0

)
+ 𝑒𝑓

(
𝜈(𝑡), 𝑡0

)
(⊖𝑓)(𝑡)𝑒⊖𝑓

(
𝑡, 𝑡0

)
=

[
𝜈Δ(𝑡)𝑓(𝜈(𝑡))(1 + 𝜇(𝑡)(⊖𝑓)(𝑡)) + (⊖𝑓)(𝑡)

]
ℎ(𝑡)

=
𝜈Δ(𝑡)𝑓(𝜈(𝑡)) − 𝑓(𝑡)

1 + 𝜇(𝑡)𝑓(𝑡)
ℎ(𝑡)

=
((
𝜈Δ𝑓𝜈

)
⊖ 𝑓

)
(𝑡)ℎ(𝑡),

confirming (3.8) and hence (3.9). □

Lemma 3.10. Let 𝑡0 ∈ 𝕋. For 𝑓 ∈ , we have
𝑒𝑓(𝜈(𝑡), 𝜈(𝑠)) = 𝑒𝜈Δ𝑓𝜈 (𝑡, 𝑠) for all 𝑠, 𝑡 ∈ 𝕋. (3.10)

Proof. Using the semigroup property and Lemma 3.9, we get

𝑒𝑓(𝜈(𝑡), 𝜈(𝑠)) = 𝑒𝑓(𝜈(𝑡), 𝑡)𝑒𝑓(𝑡, 𝑠)𝑒𝑓(𝑠, 𝜈(𝑠))

=
𝑒𝑓(𝜈(𝑡), 𝑡)

𝑒𝑓(𝜈(𝑠), 𝑠)
𝑒𝑓(𝑡, 𝑠)

 15222616, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.201900360 by M
issouri U

niversity O
f Science, W

iley O
nline L

ibrary on [22/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BOHNER et al. 265

=
𝑒𝜈Δ𝑓𝜈 (𝑡, 𝑠)

𝑒𝑓(𝑡, 𝑠)
𝑒𝑓(𝑡, 𝑠)

= 𝑒𝜈Δ𝑓𝜈 (𝑡, 𝑠),

confirming the required formula. □

4 PERIODICITY

This work is based upon the formulation of periodicity for isolated time scales, which we introduce in the following
definition.

Definition 4.1. A function 𝑝 ∶ 𝕋 → ℝ is called 𝜔-periodic provided

𝜈Δ𝑝𝜈 = 𝑝. (4.1)

The set of all 𝜔-periodic functions 𝑝 ∶ 𝕋 → ℝ is denoted by 𝜔 =  = (𝕋,ℝ).
Remark 4.2. Because of (3.3), it is easy to see that 𝑝 ∈  if and only if

(𝜇𝑝)𝜈 = 𝜇𝑝. (4.2)

Example 4.3. If 𝕋 = ℤ, then 𝑝 ∈  provided

𝑝(𝑡) = 𝑝(𝑡 + 𝜔) for all 𝑡 ∈ 𝕋,

which is the usual definition of 𝜔-periodicity.

Example 4.4. If 𝕋 = ℎℤ with ℎ > 0, then 𝑝 ∈  provided

𝑝(𝑡) = 𝑝(𝑡 + ℎ𝜔) for all 𝑡 ∈ 𝕋.

Example 4.5. If 𝕋 = 𝑞ℕ0 with 𝑞 > 1, then 𝑝 ∈  provided

𝑝(𝑡) = 𝑞𝜔𝑝
(
𝑞𝜔𝑡

)
for all 𝑡 ∈ 𝕋,

which is the periodicity condition from quantum calculus introduced in [8, Definition 3.1], see also [12, 16].

Lemma 4.6. We have 𝜔 ⊂ 2𝜔.
Proof. Let us define �̃� ∶ 𝕋 → 𝕋 by

�̃�(𝑡) = 𝜎2𝜔(𝑡) = 𝜈(𝜈(𝑡)).

Assuming that 𝑝 ∶ 𝕋 → ℝ is 𝜔-periodic and using the chain rule (3.4) applied to 𝜈, we obtain

�̃�Δ(𝑡)𝑝(�̃�(𝑡)) = 𝜈Δ(𝑡)𝜈Δ(𝜈(𝑡))𝑝(𝜈(𝜈(𝑡)))

(4.1)
= 𝜈Δ(𝑡)𝑝(𝜈(𝑡))

(4.1)
= 𝑝(𝑡),
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266 BOHNER et al.

which shows that 𝑝 is also 2𝜔-periodic. □

A crucial property of periodicity is obtained next.

Theorem 4.7. If 𝑝 ∈  , then the integral

∫
𝜈(𝑡)

𝑡

𝑝(𝜏)Δ𝜏 is independent of 𝑡 ∈ 𝕋.

Proof. This follows now immediately from Lemma 3.8 and Definition 4.1. □

Theorem 4.8. If 𝑝 ∈  , then

∫
𝜈(𝑡)

𝜈(𝑠)

𝑝(𝜏)Δ𝜏 = ∫
𝑡

𝑠

𝑝(𝜏)Δ𝜏 for all 𝑠, 𝑡 ∈ 𝕋.

Proof. Let 𝑝 ∈  . Since

∫
𝜈(𝑡)

𝜈(𝑠)

𝑝(𝜏)Δ𝜏 = ∫
𝑠

𝜈(𝑠)

𝑝(𝜏)Δ𝜏 + ∫
𝑡

𝑠

𝑝(𝜏)Δ𝜏 + ∫
𝜈(𝑡)

𝑡

𝑝(𝜏)Δ𝜏

and the first and last integrals cancel out due to Theorem 4.7, the proof is complete. □

Finally, two results about the exponential function are given.

Theorem 4.9. If 𝑝 ∈  ∩, then
𝑒𝑝(𝜈(𝑡), 𝑡) is independent of 𝑡 ∈ 𝕋 (4.3)

and

𝑒𝑝(𝜈(𝑡), 𝜈(𝑠)) = 𝑒𝑝(𝑡, 𝑠) for all 𝑠, 𝑡 ∈ 𝕋. (4.4)

Proof. While (4.3) follows now immediately from Lemma 3.9 and Definition 4.1, (4.4) follows from Lemma 3.10 and
Definition 4.1. □

5 EXAMPLES

We first characterize 1-periodic functions on an arbitrary isolated time scale. Note that these play the rôle that is assumed
by constant functions in the classical discrete (𝕋 = ℤ) case.

Theorem 5.1. Let 𝑓 ∶ 𝕋 → ℝ. Then 𝑓 is 1-periodic if and only if there exists 𝑐 ∈ ℝ such that

𝑓(𝑡) =
𝑐

𝜇(𝑡)
for all 𝑡 ∈ 𝕋. (5.1)

Proof. First suppose there exists 𝑐 ∈ ℝ such that 𝑓 ∶ 𝕋 → ℝ is given by (5.1). Then

𝜎Δ(𝑡)𝑓(𝜎(𝑡))
(3.3)
=

𝜇(𝜎(𝑡))

𝜇(𝑡)

𝑐

𝜇(𝜎(𝑡))
=

𝑐

𝜇(𝑡)
= 𝑓(𝑡).
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BOHNER et al. 267

Therefore, 𝑓 is 1-periodic. Assume now that 𝑓 is 1-periodic. By Remark 4.2, we have (𝜇𝑓)(𝜎(𝑡)) = (𝜇𝑓)(𝑡) for all 𝑡 ∈ 𝕋, and
hence (𝜇𝑓)(𝑡) is independent of 𝑡 ∈ 𝕋, equal to a constant 𝑐, so that 𝑓 is in the form (5.1). □

Remark 5.2. A consequence of Theorem 5.1 is that any 1-periodic function 𝑓 ∶ 𝕋 → ℝ for a given isolated time scale 𝕋 can
be described uniquely by the area between two consecutive time points, since

∫
𝜎(𝑡)

𝑡

𝑓(𝜏)Δ𝜏 = ∫
𝜎(𝑡)

𝑡

𝑐

𝜇(𝜏)
Δ𝜏 = 𝜇(𝑡)

𝑐

𝜇(𝑡)
= 𝑐.

It follows that a 1-periodic function with unit area 1, i.e., the area between two consecutive time points, is of the form

𝑓(𝑡) =
1

𝜇(𝑡)
for all 𝑡 ∈ 𝕋.

Now we present three examples of 𝜔-periodic functions on an isolated time scale.

Example 5.3. Consider any time scale

𝕋 = {𝑡𝑖 ∶ 𝑖 ∈ ℤ} with 𝜎
(
𝑡𝑖
)
= 𝑡𝑖+1 > 𝑡𝑖 for all 𝑖 ∈ ℤ.

Define 𝑓 ∶ 𝕋 → ℝ by

𝑓(𝑡𝑖) =
(−1)𝑖

𝜇
(
𝑡𝑖
) for all 𝑖 ∈ ℤ.

If 𝑖 ∈ ℤ, then

(
𝜎2

)Δ(
𝑡𝑖
)
𝑓
(
𝜎2

(
𝑡𝑖
)) (3.3)

=
𝜇
(
𝜎2

(
𝑡𝑖
))

𝜇
(
𝑡𝑖
) 𝑓

(
𝜎2

(
𝑡𝑖
))
=
𝜇
(
𝑡𝑖+2

)
𝜇
(
𝑡𝑖
) 𝑓

(
𝑡𝑖+2

)
=

𝜇
(
𝑡𝑖+2

)
𝜇
(
𝑡𝑖
) (−1)𝑖+2

𝜇
(
𝑡𝑖+2

) = (−1)𝑖

𝜇
(
𝑡𝑖
) = 𝑓

(
𝑡𝑖
)
.

Hence, 𝑓 is 2-periodic on 𝕋.

Example 5.4. Consider any time scale

𝕋 = {𝑡𝑖 ∶ 𝑖 ∈ ℤ} with 𝜎
(
𝑡𝑖
)
= 𝑡𝑖+1 > 𝑡𝑖 for all 𝑖 ∈ ℤ.

Define 𝑓 ∶ 𝕋 → ℝ by

𝑓(𝑡𝑖) =

⎧⎪⎨⎪⎩
0 if 𝑖 is odd
1

𝜇
(
𝑡𝑖
) if 𝑖 is even.

If 𝑖 is even, then

(
𝜎2

)Δ(
𝑡𝑖
)
𝑓
(
𝜎2

(
𝑡𝑖
)) (3.3)

=
𝜇
(
𝜎2

(
𝑡𝑖
))

𝜇(𝑡𝑖)
𝑓(𝜎2

(
𝑡𝑖
)
) =

𝜇
(
𝑡𝑖+2

)
𝜇
(
𝑡𝑖
) 1

𝜇
(
𝑡𝑖+2

) = 1

𝜇
(
𝑡𝑖
) = 𝑓

(
𝑡𝑖
)
,
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268 BOHNER et al.

while if 𝑖 is odd, then (
𝜎2

)Δ(
𝑡𝑖
)
𝑓
(
𝜎2

(
𝑡𝑖
))
= 0 = 𝑓

(
𝑡𝑖
)
.

Hence, 𝑓 is 2-periodic on 𝕋.

Example 5.5. Consider any time scale

𝕋 = {𝑡𝑖 ∶ 𝑖 ∈ ℤ} with 𝜎
(
𝑡𝑖
)
= 𝑡𝑖+1 > 𝑡𝑖 for all 𝑖 ∈ ℤ.

Let 𝑔 ∶ ℤ → ℝ be a “normal” periodic function of period 𝜔, i.e., 𝑔(𝑖 + 𝜔) = 𝑔(𝑖) for all 𝑖 ∈ ℤ. Define 𝑓 ∶ 𝕋 → ℝ by

𝑓
(
𝑡𝑖
)
=

𝑔(𝑖)

𝜇
(
𝑡𝑖
) for all 𝑖 ∈ ℤ.

If 𝑖 ∈ ℤ, then

(
𝜎𝜔

)Δ(
𝑡𝑖
)
𝑓
(
𝜎𝜔

(
𝑡𝑖
)) (3.3)

=
𝜇
(
𝜎𝜔

(
𝑡𝑖
))

𝜇
(
𝑡𝑖
) 𝑓

(
𝜎𝜔

(
𝑡𝑖
))
=
𝜇
(
𝑡𝑖+𝜔

)
𝜇
(
𝑡𝑖
) 𝑓

(
𝑡𝑖+𝜔

)
=

𝜇(𝑡𝑖+𝜔)

𝜇(𝑡𝑖)

𝑔(𝑖 + 𝜔)

𝜇(𝑡𝑖+𝜔)
=

𝑔(𝑖)

𝜇(𝑡𝑖)
= 𝑓(𝑡𝑖).

Hence, 𝑓 is 𝜔-periodic on 𝕋.

In the following, we give examples how one, with given periodic functions, can construct more periodic functions.

Theorem 5.6. Assume 𝑝, 𝑞 ∈  and 𝛼, 𝛽 ∈ ℝ. Then

𝛼𝑝 + 𝛽𝑞 ∈  and 𝜇𝑝𝑞 ∈  .
Moreover, if 𝛼 + 𝜇(𝑡)𝑞(𝑡) ≠ 0 for all 𝑡 ∈ 𝕋, then

𝑝

𝛼 + 𝜇𝑞
∈  .

Proof. Assuming that 𝛼, 𝛽 ∈ ℝ and 𝑝, 𝑞 ∈  , the formulas
[𝜇(𝛼𝑝 + 𝛽𝑞)]

𝜈
= 𝛼(𝜇𝑝)𝜈 + 𝛽(𝜇𝑞)𝜈 = 𝛼(𝜇𝑝) + 𝛽(𝜇𝑞) = 𝜇(𝛼𝑝 + 𝛽𝑞),

[𝜇(𝜇𝑝𝑞)]
𝜈
= (𝜇𝑝)𝜈(𝜇𝑞)𝜈 = (𝜇𝑝)(𝜇𝑞) = 𝜇(𝜇𝑝𝑞),

and, if 𝛼 + 𝜇(𝑡)𝑞(𝑡) ≠ 0 for all 𝑡 ∈ 𝕋,[
𝜇

𝑝

𝛼 + 𝜇𝑞

]𝜈
=

(𝜇𝑝)𝜈

𝛼 + (𝜇𝑞)𝜈
=

𝜇𝑝

𝛼 + 𝜇𝑞
= 𝜇

𝑝

𝛼 + 𝜇𝑞

together with Remark 4.2 verify all claims. □

Remark 5.7. Theorem 5.6 together with Theorem 5.1 shows that 𝑝(𝑡) ≠ 0 for all 𝑡 ∈ 𝕋 implies that

𝑝 ∈  if and only if 1

𝜇2𝑝
∈  .
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BOHNER et al. 269

The next result shows that the set of all 𝜔-periodic and regressive functions is a subgroup of the set of regressive func-
tions.

Corollary 5.8. If 𝑝 ∈  ∩, then⊖𝑝 ∈  . If 𝑝, 𝑞 ∈  , then 𝑝 ⊕ 𝑞 ∈  .
Proof. These claims follow from

𝑝 ⊕ 𝑞 = 𝑝 + 𝑞 + 𝜇𝑝𝑞 and ⊖ 𝑝 = −
𝑝

1 + 𝜇𝑝

and the results given in Theorem 5.6. □

Remark 5.9. For the notation in this remark, we refer to [15, Definition 2.35]. Using Theorem 5.6, we can show that for
𝛼 ∈ ℝ and 𝑝 ∈  ∩(𝛼), we have 𝛼 ⊙ 𝑝 ∈  . In particular, e.g.,

2𝑝 + 𝜇𝑝2 = 2 ⊙ 𝑝 ∈  and
𝑝

1 +
√
1 + 𝜇𝑝

=
1

2
⊙ 𝑝 ∈  .

6 HOMOGENEOUS LINEAR DYNAMIC EQUATIONS

In this section, we apply our definition of periodicity to homogeneous linear dynamic equations on isolated time scales.

Theorem 6.1. Let 𝑎 ∈ . If
𝑥Δ = 𝑎(𝑡)𝑥 (6.1)

has a nontrivial 𝜔-periodic solution, then (
𝑎 +

1

𝜇

)
𝜎Δ ∈  . (6.2)

Proof. Assume that (6.1) has a nontrivial 𝜔-periodic solution �̄�. Then, by Theorem 2.8, we have

�̄�(𝜈(𝑡)) = 𝑒𝑎(𝜈(𝑡), 𝑡)�̄�(𝑡) for all 𝑡 ∈ 𝕋.

Thus, by Definition 4.1, we get

�̄�(𝑡) = 𝜈Δ(𝑡)�̄�(𝜈(𝑡)) = 𝜈Δ(𝑡)𝑒𝑎(𝜈(𝑡), 𝑡)�̄�(𝑡) for all 𝑡 ∈ 𝕋. (6.3)

If �̄�
(
𝑡0
)
= 0 for some 𝑡0 ∈ 𝕋, then Theorem 2.8 yields that �̄� is identically zero, which is not possible. Hence, �̄�(𝑡) ≠ 0 for

all 𝑡 ∈ 𝕋, so that (6.3) implies

𝜈Δ(𝑡)𝑒𝑎(𝜈(𝑡), 𝑡) = 1 for all 𝑡 ∈ 𝕋. (6.4)

Now applying the product rule while taking the derivative of (6.4) and using (3.8), we obtain

𝜈ΔΔ(𝑡)𝑒𝑎(𝜈(𝑡), 𝑡) + 𝜈Δ𝜎(𝑡)
((
𝜈Δ𝑎𝜈

)
⊖ 𝑎

)
(𝑡)𝑒𝑎(𝜈(𝑡), 𝑡) = 0 for all 𝑡 ∈ 𝕋,

i.e.,

𝜈ΔΔ + 𝜈Δ𝜎
((
𝜈Δ𝑎𝜈

)
⊖ 𝑎

)
= 0. (6.5)
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270 BOHNER et al.

By Lemma 6.2 below, (6.5) is equivalent to (6.2). □

We now give several conditions that are equivalent to (6.2).

Lemma 6.2. If 𝑎 ∈ , then 𝑎 satisfies (6.2) if and only if
𝜈ΔΔ + 𝜈Δ𝜈Δ𝜎𝑎𝜈 = 𝜈Δ𝑎 (6.6)

holds, and (6.6) is also equivalent to

(
𝜈Δ𝑎𝜈

)
⊖ 𝑎 = −

𝜈ΔΔ

𝜈Δ𝜎
. (6.7)

Proof. Let 𝑎 ∈ . By Remark 4.2, (6.2) is equivalent to[
𝜇

(
𝑎 +

1

𝜇

)
𝜎Δ

]𝜈
= 𝜇

(
𝑎 +

1

𝜇

)
𝜎Δ,

which is, by (3.7), equivalent to

𝜎Δ𝜈 +
(
𝜇𝜎𝑎

)𝜈
= 𝜎Δ + 𝜇𝜎𝑎,

which is, as 𝜈Δ and 𝜇𝜎 are never zero, equivalent to

𝜈Δ𝑎 =
𝜈Δ

𝜇𝜎
𝜇𝜎𝑎

=
𝜈Δ

𝜇𝜎
{
𝜎Δ𝜈 − 𝜎Δ + (𝜇𝜎𝑎)

𝜈}
(3.1)
=

𝜈Δ

𝜇𝜎
{
𝜎Δ𝜈 − 𝜎Δ + 𝜇𝜈𝜎𝑎𝜈

}
(3.3)
= 𝜈Δ

{
𝜎Δ𝜈 − 𝜎Δ

𝜇𝜎
+ 𝜈Δ𝜎𝑎𝜈

}
(3.5)
= 𝜈ΔΔ + 𝜈Δ𝜎𝜈Δ𝑎𝜈,

which is (6.6). Now (6.6) is equivalent to

𝜈Δ𝑎𝜈 =
𝜈Δ𝑎 − 𝜈ΔΔ

𝜈Δ𝜎

=

(
𝜈Δ𝜎 − 𝜇𝜈ΔΔ

)
𝑎

𝜈Δ𝜎
−
𝜈ΔΔ

𝜈Δ𝜎

=−
𝜈ΔΔ

𝜈Δ𝜎
+ 𝑎 − 𝜇

𝜈ΔΔ

𝜈Δ𝜎
𝑎

=

(
−
𝜈ΔΔ

𝜈Δ𝜎

)
⊕ 𝑎,

which is equivalent to (6.7). □

Next, we give two results about the exponential function.
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BOHNER et al. 271

Theorem 6.3. Let 𝑎 ∈  and assume (6.2). For 𝑡0 ∈ 𝕋, we have

𝑒𝑎(𝜈(𝑡), 𝑡) = 𝑒𝑎
(
𝜈
(
𝑡0
)
, 𝑡0

)𝜈Δ(𝑡0)
𝜈Δ(𝑡)

for all 𝑡 ∈ 𝕋. (6.8)

Moreover, we have

𝑒𝑎(𝜈(𝑡), 𝜈(𝑠)) = 𝑒𝑎(𝑡, 𝑠)
𝜈Δ(𝑠)

𝜈Δ(𝑡)
for all 𝑠, 𝑡 ∈ 𝕋. (6.9)

Proof. Suppose 𝑓 ∶ 𝕋 → ℝ is such that 𝑓(𝑡) ≠ 0 for all 𝑡 ∈ 𝕋. Then −𝑓Δ∕𝑓𝜎 ∈  since

1 − 𝜇
𝑓Δ

𝑓𝜎
=
𝑓𝜎 − 𝜇𝑓Δ

𝑓𝜎
(2.1)
=

𝑓

𝑓𝜎
.

Now fix 𝑠 ∈ 𝕋 and define 𝑦 ∶ 𝕋 → ℝ by 𝑦(𝑡) = 𝑓(𝑠)∕𝑓(𝑡). Then 𝑦(𝑠) = 1 and

𝑦Δ(𝑡) = −
𝑓(𝑠)𝑓Δ(𝑡)

𝑓(𝑡)𝑓𝜎(𝑡)
= −

𝑓Δ(𝑡)

𝑓𝜎(𝑡)
𝑦(𝑡).

This shows that 𝑒−𝑓Δ∕𝑓𝜎 (𝑡, 𝑠) = 𝑦(𝑡) = 𝑓(𝑠)∕𝑓(𝑡). Applying this fact to 𝑓 = 𝜈Δ and using (6.7) together with (3.9) shows
(6.8), while (3.10) yields (6.9). □

The next theorem supplements Theorem 6.1 to a complete characterization of periodic solutions of (6.1).

Theorem 6.4. Let 𝑎 ∈  and assume (6.2). If

𝜈Δ
(
𝑡0
)
𝑒𝑎
(
𝜈
(
𝑡0
)
, 𝑡0

)
= 1,

then all solutions of (6.1) are 𝜔-periodic. Otherwise, no nontrivial solution of (6.1) is 𝜔-periodic.

Proof. Let 𝑎 ∈ , assume (6.2), and let 𝑥 be any solution of (6.1). Then, by Theorem 2.8, we have

𝑥(𝜈(𝑡)) = 𝑒𝑎(𝜈(𝑡), 𝑡)𝑥(𝑡) for all 𝑡 ∈ 𝕋.

Thus, (6.8) gives

𝜈Δ(𝑡)𝑥(𝜈(𝑡)) = 𝜈Δ(𝑡)𝑒𝑎(𝜈(𝑡), 𝑡)𝑥(𝑡) = 𝜈Δ
(
𝑡0
)
𝑒𝑎
(
𝜈
(
𝑡0
)
, 𝑡0

)
𝑥(𝑡),

from which all claims follow. □

7 INHOMOGENEOUS LINEAR DYNAMIC EQUATIONS

In this section, we apply our definition of periodicity to linear dynamic equations on isolated time scales. We prove the
existence and uniqueness of a periodic solution for two families of linear dynamic equations.

Theorem 7.1. Let 𝑎 ∈  and 𝑏 ∶ 𝕋 → ℝ. Assume (6.2). If

𝑥Δ = 𝑎(𝑡)𝑥 + 𝑏(𝑡) (7.1)
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272 BOHNER et al.

has a nontrivial 𝜔-periodic solution, then

𝑏𝜇𝜎 ∈  . (7.2)

Proof. Assume that (7.1) has a nontrivial 𝜔-periodic solution �̄�. Define 𝑔 ∶= 𝜈Δ�̄�𝜈 − �̄� = 0. Now we use the product rule
to calculate

0 = 𝑔Δ = 𝜈ΔΔ�̄�𝜈 + 𝜈Δ𝜎𝜈Δ�̄�Δ𝜈 − �̄�Δ

= 𝜈ΔΔ�̄�𝜈 + 𝜈Δ𝜎𝜈Δ
(
𝑎𝜈�̄�𝜈 + 𝑏𝜈

)
− 𝑎�̄� − 𝑏

=
(
𝜈ΔΔ + 𝜈Δ𝜎𝜈Δ𝑎𝜈

)
�̄�𝜈 − 𝑎�̄� + 𝜈Δ𝜎𝜈Δ𝑏𝜈 − 𝑏

(6.6)
= 𝜈Δ𝑎�̄�𝜈 − 𝑎�̄� + 𝜈Δ𝜎𝜈Δ𝑏𝜈 − 𝑏

= 𝑎𝑔 + 𝜈Δ𝜎𝜈Δ𝑏𝜈 − 𝑏

= 𝜈Δ𝜎𝜈Δ𝑏𝜈 − 𝑏.

By Lemma 7.2 below, 𝜈Δ𝜈Δ𝜎𝑏𝜈 = 𝑏 is equivalent to (7.2). □

We now give a condition that is equivalent to (7.2).

Lemma 7.2. If 𝑏 ∶ 𝕋 → ℝ, then 𝑏 satisfies (7.2) if and only if

𝜈Δ𝜈Δ𝜎𝑏𝜈 = 𝑏. (7.3)

Proof. Let 𝑏 ∶ 𝕋 → ℝ. Then (7.2) holds if and only if

𝜈Δ
(
𝑏𝜇𝜎

)𝜈
= 𝑏𝜇𝜎,

which is equivalent to

𝑏 = 𝜈Δ
𝑏𝜈𝜇𝜎𝜈

𝜇𝜎
(3.2)
= 𝜈Δ𝑏𝜈

𝜇𝜈𝜎

𝜇𝜎
(3.3)
= 𝜈Δ𝑏𝜈𝜈Δ𝜎,

i.e., to (7.3). □

Theorem 7.3. Let 𝑎 ∈  and 𝑏 ∶ 𝕋 → ℝ. Assume (6.2) and (7.2). If (7.1) has a solution 𝑥 that satisfies

𝜈Δ
(
𝑡0
)
𝑥
(
𝜈
(
𝑡0
))
= 𝑥

(
𝑡0
)

for some 𝑡0 ∈ 𝕋,

then 𝑥 ∈  .
Proof. Define 𝑔 ∶= 𝜈Δ𝑥𝜈 − 𝑥 and use the same calculation as in the proof of Theorem 7.1 to find 𝑔Δ = 𝑎𝑔. Therefore, we
have 𝑔(𝑡) = 𝑒𝑎

(
𝑡, 𝑡0

)
𝑔
(
𝑡0
)
= 0 for all 𝑡 ∈ 𝕋, so 𝑥 ∈  . □

We use the following result in the proofs of our main theorems.

Lemma 7.4. Let 𝑎 ∈  and 𝑏 ∶ 𝕋 → ℝ. Assume (6.2) and (7.2). If

𝐻(𝑡) ∶= ∫
𝜈(𝑡)

𝑡

𝑒⊖𝑎
(
𝜎(𝑠), 𝑡0

)
𝑏(𝑠)Δ𝑠, (7.4)
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BOHNER et al. 273

then

𝐻Δ(𝑡) =

(
1

𝜈Δ
(
𝑡0
)
𝑒𝑎
(
𝜈
(
𝑡0
)
, 𝑡0

) − 1

)
𝑏(𝑡)𝑒⊖𝑎

(
𝜎(𝑡), 𝑡0

)
. (7.5)

Proof. We use Lemma 3.8 to find

𝐻Δ(𝑡) = 𝜈Δ(𝑡)𝑒⊖𝑎
(
𝜎(𝜈(𝑡)), 𝑡0

)
𝑏(𝜈(𝑡)) − 𝑒⊖𝑎

(
𝜎(𝑡), 𝑡0

)
𝑏(𝑡)

=

{
𝜈Δ(𝑡)

𝑒𝑎(𝜎(𝜈(𝑡)), 𝜎(𝑡))
𝑏(𝜈(𝑡)) − 𝑏(𝑡)

}
𝑒⊖𝑎

(
𝜎(𝑡), 𝑡0

)
(3.2)
=

{
𝜈Δ(𝑡)𝜈Δ(𝜎(𝑡))𝑏(𝜈(𝑡))

𝜈Δ(𝜎(𝑡))𝑒𝑎(𝜈(𝜎(𝑡)), 𝜎(𝑡))
− 𝑏(𝑡)

}
𝑒⊖𝑎

(
𝜎(𝑡), 𝑡0

)
(6.8)
=

{
𝜈Δ(𝑡)𝜈Δ(𝜎(𝑡))𝑏(𝜈(𝑡))

𝜈Δ
(
𝑡0
)
𝑒𝑎
(
𝜈
(
𝑡0
)
, 𝑡0

) − 𝑏(𝑡)

}
𝑒⊖𝑎

(
𝜎(𝑡), 𝑡0

)
(7.3)
=

{
𝑏(𝑡)

𝜈Δ
(
𝑡0
)
𝑒𝑎
(
𝜈(𝑡0), 𝑡0

) − 𝑏(𝑡)

}
𝑒⊖𝑎

(
𝜎(𝑡), 𝑡0

)
,

verifying (7.5). □

The next theorem is the main result of this paper.

Theorem 7.5. Let 𝑡0 ∈ 𝕋, 𝑎 ∈ , and 𝑏 ∶ 𝕋 → ℝ. Assume (6.2) and (7.2). If

𝜈Δ
(
𝑡0
)
𝑒𝑎
(
𝜈
(
𝑡0
)
, 𝑡0

) ≠ 1, (7.6)

then (7.1) has a unique 𝜔-periodic solution �̄� given by

�̄�(𝑡) = 𝜆 ∫
𝜈(𝑡)

𝑡

𝑒⊖𝑎(𝜎(𝑠), 𝑡)𝑏(𝑠)Δ𝑠, (7.7)

where

𝜆 ∶=
𝜈Δ

(
𝑡0
)

𝑒⊖𝑎
(
𝜈(𝑡0), 𝑡0

)
− 𝜈Δ

(
𝑡0
) . (7.8)

Proof. Let 𝑡0 ∈ 𝕋, 𝑎 ∈ , and 𝑏 ∶ 𝕋 → ℝ. Assume (6.2), (7.2), and (7.6). First, we assume that (7.1) has an 𝜔-periodic
solution �̄�. Then, by Theorem 2.8, we have

�̄�(𝜈(𝑡)) = 𝑒𝑎(𝜈(𝑡), 𝑡)�̄�(𝑡) + ∫
𝜈(𝑡)

𝑡

𝑒𝑎(𝜈(𝑡), 𝜎(𝑠))𝑏(𝑠)Δ𝑠. (7.9)

Since �̄� is 𝜔-periodic, we obtain

�̄�(𝑡)
(4.1)
= 𝜈Δ(𝑡)�̄�(𝜈(𝑡))

(7.9)
= 𝜈Δ(𝑡)

{
𝑒𝑎(𝜈(𝑡), 𝑡)�̄�(𝑡) + ∫

𝜈(𝑡)

𝑡

𝑒𝑎(𝜈(𝑡), 𝜎(𝑠))𝑏(𝑠)Δ𝑠

}
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274 BOHNER et al.

= 𝜈Δ(𝑡)𝑒𝑎(𝜈(𝑡), 𝑡)

{
�̄�(𝑡) + ∫

𝜈(𝑡)

𝑡

𝑒𝑎(𝑡, 𝜎(𝑠))𝑏(𝑠)Δ𝑠

}

(6.8)
= 𝜈Δ(𝑡0)𝑒𝑎

(
𝜈
(
𝑡0
)
, 𝑡0

){
�̄�(𝑡) + ∫

𝜈(𝑡)

𝑡

𝑒𝑎(𝑡, 𝜎(𝑠))𝑏(𝑠)Δ𝑠

}
,

i.e., due to (7.6) and (7.8), (7.7) holds. Conversely, assume that �̄� is given by (7.7). Hence,

�̄�(𝑡) = 𝜆𝑒𝑎
(
𝑡, 𝑡0

)
𝐻(𝑡), (7.10)

where𝐻 is defined in (7.4). By (7.5) and (7.8), we have

𝐻Δ(𝑡) =
1

𝜆
𝑏(𝑡)𝑒⊖𝑎

(
𝜎(𝑡), 𝑡0

)
. (7.11)

Now we get

𝐻(𝜈(𝑡)) − 𝐻(𝑡) = ∫
𝜈(𝑡)

𝑡

𝐻Δ(𝑠)Δ𝑠

(7.11)
= ∫

𝜈(𝑡)

𝑡

1

𝜆
𝑏(𝑠)𝑒⊖𝑎

(
𝜎(𝑠), 𝑡0

)
Δ𝑠

=
1

𝜆
𝐻(𝑡),

i.e.,

𝐻(𝜈(𝑡)) =
𝜆 + 1

𝜆
𝐻(𝑡). (7.12)

Next, we use the product rule in (7.10) to find

�̄�Δ(𝑡) = 𝜆𝑎(𝑡)𝑒𝑎
(
𝑡, 𝑡0

)
𝐻(𝑡) + 𝜆𝑒𝑎

(
𝜎(𝑡), 𝑡0

)
𝐻Δ(𝑡)

(7.11)
= 𝑎(𝑡)�̄�(𝑡) + 𝑏(𝑡),

so �̄� indeed solves (7.1). It is left to show that �̄� is 𝜔-periodic. To this end, we calculate

𝜈Δ(𝑡)�̄�(𝜈(𝑡)) = 𝜈Δ(𝑡)𝜆𝑒𝑎
(
𝜈(𝑡), 𝑡0

)
𝐻(𝜈(𝑡))

(7.12)
= 𝜈Δ(𝑡)𝑒𝑎(𝜈(𝑡), 𝑡)𝜆𝑒𝑎

(
𝑡, 𝑡0

)𝜆 + 1

𝜆
𝐻(𝑡)

(6.8)
= 𝜈Δ

(
𝑡0
)
𝑒𝑎
(
𝜈
(
𝑡0
)
, 𝑡0

)
(𝜆 + 1)𝑒𝑎

(
𝑡, 𝑡0

)
𝐻(𝑡)

(7.8)
= 𝜆𝑒𝑎

(
𝑡, 𝑡0

)
𝐻(𝑡) = �̄�(𝑡),

confirming that �̄� is 𝜔-periodic. □

Remark 7.6. The unique solution to (7.1) with the initial condition

𝑥(𝑡0) = 𝜆 ∫
𝜈(𝑡0)

𝑡0

𝑒𝑎(𝑡0, 𝜎(𝑠))𝑏(𝑠)Δ𝑠
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BOHNER et al. 275

results in the unique 𝜔-periodic solution.

Example 7.7. Let 𝕋 = ℤ. Then (6.2) reads 𝑎 + 1 ∈  , i.e.,
𝑎(𝑡 + 𝜔) + 1 = 𝑎(𝑡) + 1 for all 𝑡 ∈ 𝕋,

i.e., 𝑎(𝑡 + 𝜔) = 𝑎(𝑡) for all 𝑡 ∈ 𝕋, i.e., 𝑎 ∈  . Moreover, (7.2) reads 𝑏 ∈  . Hence, Theorem 7.5 reads as follows. If 𝑎 ∈ 
and 𝑎, 𝑏 ∈  , then, provided (7.6) holds,

𝑥Δ = 𝑎(𝑡)𝑥 + 𝑏(𝑡)

has a unique 𝜔-periodic solution given by

�̄�(𝑡) = 𝜆

𝑡+𝜔−1∑
𝑘=𝑡

𝑒⊖𝑎(𝑘 + 1, 𝑡)𝑏(𝑘).

This is consistent with known results for difference equations.

Example 7.8. Let 𝕋 = 𝑞ℕ0 with 𝑞 > 1. Then (6.2) reads[
𝑎(𝑡) +

1

(𝑞 − 1)𝑡

]
𝑞 = 𝑞𝜔

[
𝑎
(
𝑞𝜔𝑡

)
+

1

(𝑞 − 1)𝑞𝜔𝑡

]
𝑞 for all 𝑡 ∈ 𝕋,

i.e., 𝑞𝜔𝑎
(
𝑞𝜔𝑡

)
= 𝑎(𝑡) for all 𝑡 ∈ 𝕋, i.e., 𝑎 ∈  . Moreover, (7.2) reads

𝑏(𝑡)(𝑞 − 1)𝑞𝑡 = 𝑞𝜔
[
𝑏
(
𝑞𝜔𝑡

)
(𝑞 − 1)𝑞𝑞𝜔𝑡

]
for all 𝑡 ∈ 𝕋,

i.e., 𝑡𝑏(𝑡) = 𝑞𝜔
[(
𝑞𝜔𝑡

)
𝑏
(
𝑞𝜔𝑡

)]
for all 𝑡 ∈ 𝕋, i.e., 𝑐 ∈  , where 𝑐(𝑡) = 𝑡𝑏(𝑡). Therefore, Theorem7.5 ensures that the dynamic

equation

𝑥Δ = 𝑎(𝑡)𝑥 +
𝑐(𝑡)

𝑡
,

where 𝑎 ∈  and 𝑎, 𝑐 ∈  , has a unique 𝜔-periodic solution provided (7.6) is satisfied. This is consistent with known
results for 𝑞-difference equations. See [13, Remark 3.11].

Example 7.9. Consider the dynamic equation on an isolated time scale

𝑥Δ =

(
5𝜎(𝑡) − 𝜎2(𝑡) − 4𝑡

)
𝑥 + 2

𝜇(𝜎(𝑡))𝜇(𝑡)
. (7.13)

Notice that (7.13) is in the form (7.1) with

𝑎(𝑡) =
4

𝜇(𝜎(𝑡))
−

1

𝜇(𝑡)
and 𝑏(𝑡) =

2

𝜇(𝑡)𝜇(𝜎(𝑡))
.

Clearly, 𝑎 ∈  since

1 + 𝜇(𝑡)𝑎(𝑡) =
4𝜇(𝑡)

𝜇(𝜎(𝑡))
≠ 0
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276 BOHNER et al.

because of 𝜇(𝑡) > 0 for all 𝑡 ∈ 𝕋. Also, due to Theorem 5.1, we have that(
𝑎 +

1

𝜇

)
𝜎Δ = 4

𝜎Δ

𝜇𝜎
(3.3)
=

4

𝜇
∈  and 𝑏𝜇𝜎 =

2

𝜇
∈  ,

so (6.2) and (7.2) are satisfied. Thus, from Theorem 7.5, (7.13) possesses a unique 𝜔-periodic solution provided (7.6) is
satisfied, for any 𝜔 ∈ ℕ.

The next theorem supplements Theorem 7.5 to a complete characterization of periodic solutions of (7.1).

Theorem 7.10. Let 𝑡0 ∈ 𝕋, 𝑎 ∈ , and 𝑏 ∶ 𝕋 → ℝ. Assume (6.2), (7.2), and

𝜈Δ
(
𝑡0
)
𝑒𝑎
(
𝜈
(
𝑡0
)
, 𝑡0

)
= 1. (7.14)

If

∫
𝜈(𝑡0)

𝑡0

𝑒⊖𝑎
(
𝜎(𝑠), 𝑡0

)
𝑏(𝑠)Δ𝑠 = 0,

then all solutions of (7.1) are 𝜔-periodic. Otherwise, no nontrivial solution of (7.1) is 𝜔-periodic.

Proof. Under the stated conditions, let 𝑥 be any solution of (7.1). As in the proof of Theorem 7.5, we obtain

𝜈Δ(𝑡)𝑥(𝜈(𝑡)) = 𝜈Δ(𝑡0)𝑒𝑎
(
𝜈
(
𝑡0
)
, 𝑡0

){
𝑥(𝑡) + ∫

𝜈(𝑡)

𝑡

𝑒𝑎(𝑡, 𝜎(𝑠))𝑏(𝑠)Δ𝑠

}
,

i.e., using (7.14),

𝜈Δ(𝑡)𝑥(𝜈(𝑡)) = 𝑥(𝑡) + ∫
𝜈(𝑡)

𝑡

𝑒𝑎(𝑡, 𝜎(𝑠))𝑏(𝑠)Δ𝑠,

i.e., with𝐻 defined as in (7.4),

𝜈Δ(𝑡)𝑥(𝜈(𝑡)) = 𝑥(𝑡) + 𝑒𝑎
(
𝑡, 𝑡0

)
𝐻(𝑡). (7.15)

Due to (7.5) and (7.14), we get𝐻Δ = 0 and hence (7.15) yields

𝜈Δ(𝑡)𝑥(𝜈(𝑡)) = 𝑥(𝑡) + 𝑒𝑎
(
𝑡, 𝑡0

)
𝐻
(
𝑡0
)
. (7.16)

From (7.16), we can see that 𝑥 is 𝜔-periodic if and only if 𝐻
(
𝑡0
)
= 0, which concludes the proof. □

Finally, we consider “the other” linear dynamic equation.

Theorem 7.11. Let 𝑡0 ∈ 𝕋, 𝑐 ∈  and 𝑑 ∶ 𝕋 → ℝ. Assume

𝑐 +
1

𝜇

𝜎Δ
∈  (7.17)

and

𝜇𝑑 ∈  . (7.18)
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BOHNER et al. 277

If

𝜈Δ
(
𝑡0
)
𝑒⊖𝑐

(
𝜈
(
𝑡0
)
, 𝑡0

) ≠ 1,

then

𝑥Δ = −𝑐(𝑡)𝑥𝜎 + 𝑑(𝑡) (7.19)

has a unique 𝜔-periodic solution �̄� given by

�̄�(𝑡) = 𝜆 ∫
𝜈(𝑡)

𝑡

𝑒𝑐(𝑠, 𝑡)𝑑(𝑠)Δ𝑠,

where

𝜆 ∶=
𝜈Δ

(
𝑡0
)

𝑒𝑐
(
𝜈
(
𝑡0
)
, 𝑡0

)
− 𝜈Δ

(
𝑡0
) .

Proof. Besides the assumptions, assume also that 𝑥 is a solution of (7.19). Then, using the “simple useful formula” (2.1),
we get

(1 + 𝜇𝑐)𝑥Δ = −𝑐𝑥 + 𝑑,

so (7.19) is equivalent to

𝑥Δ = �̃�𝑥 + �̃�, where �̃� = ⊖𝑐 and �̃� =
𝑑

1 + 𝜇𝑐
.

Now (6.2) and (7.2) (use also (3.7)) read

1

𝜇2𝑝
=

(
�̃� +

1

𝜇

)
𝜎Δ ∈  and 𝑑

𝑝
= 𝜇𝜎�̃� ∈  , where 𝑝 =

𝑐 +
1

𝜇

𝜎Δ
,

which is, by Theorem 5.6 and Remark 5.7, equivalent to

𝑝 ∈  and 𝜇𝑑 ∈  ,
i.e., to (7.17) and (7.18). Hence, all claims follow from Theorem 7.5. □
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APPENDIX A: ADIVAR’S PERIODICITY CONCEPT

In this Appendix, we point out the connection between our periodicity definition andMurat Adıvar’s [1] concept. We start
by recalling the three relevant definitions from [1]. First, the so-called shift operators are defined.

Definition A.1 (See [1, Definition 3]). Let 𝕋∗ be a nonempty subset of the time scale 𝕋 including a fixed number 𝑡0 ∈ 𝕋∗

such that there exist operators 𝛿± ∶ [𝑡0,∞)𝕋 × 𝕋
∗ → 𝕋∗ satisfying the following properties:

P.1. The functions 𝛿± are strictly increasing with respect to their second arguments, i.e., if

(𝑇0, 𝑡), (𝑇0, 𝑢) ∈ ± ∶=
{
(𝑠, 𝑡) ∈ [𝑡0,∞)𝕋 × 𝕋

∗ ∶ 𝛿±(𝑠, 𝑡) ∈ 𝕋∗
}
,

then

𝑇0 ≤ 𝑡 < 𝑢 implies 𝛿±
(
𝑇0, 𝑡

)
< 𝛿±

(
𝑇0, 𝑢

)
.

P.2. If (𝑇1, 𝑢), (𝑇2, 𝑢) ∈ − with 𝑇1 < 𝑇2, then

𝛿−
(
𝑇1, 𝑢

)
> 𝛿−

(
𝑇2, 𝑢

)
,

and if
(
𝑇1, 𝑢

)
,
(
𝑇2, 𝑢

)
∈ + with 𝑇1 < 𝑇2, then

𝛿+
(
𝑇1, 𝑢

)
< 𝛿+

(
𝑇2, 𝑢

)
.

P.3. If 𝑡 ∈ [𝑡0,∞)𝕋, then
(
𝑡, 𝑡0

)
∈ + and 𝛿+

(
𝑡, 𝑡0

)
= 𝑡. Moreover, if 𝑡 ∈ 𝕋∗, then

(
𝑡0, 𝑡

)
∈ + and 𝛿+

(
𝑡0, 𝑡

)
= 𝑡.

P.4. If (𝑠, 𝑡) ∈ ±, then (𝑠, 𝛿±(𝑠, 𝑡)) ∈ ∓ and 𝛿∓(𝑠, 𝛿±(𝑠, 𝑡)) = 𝑡.
P.5. If (𝑠, 𝑡) ∈ ± and (𝑢, 𝛿±(𝑠, 𝑡)) ∈ ∓, then (𝑠, 𝛿∓(𝑢, 𝑡)) ∈ ± and 𝛿∓(𝑢, 𝛿±(𝑠, 𝑡)) = 𝛿±(𝑠, 𝛿∓(𝑢, 𝑡)).

Then the operators 𝛿− and 𝛿+ associated with 𝑡0 ∈ 𝕋∗ (called the initial point) are said to be backward and forward shift
operators on the set 𝕋∗. The variable 𝑠 ∈ [𝑡0,∞)𝕋 is called the shift size.

Next, the notion of a time scale that is periodic in shifts is defined.

Definition A.2 (See [1, Definition 4]). Let 𝕋 be a time scale with the shift operators 𝛿± associated with the initial point
𝑡0 ∈ 𝕋∗. The time scale 𝕋 is called periodic in these shifts if there exists 𝑝 ∈

(
𝑡0,∞

)
𝕋∗
such that (𝑝, 𝑡) ∈ ∓ for all 𝑡 ∈ 𝕋∗.

Furtheremore, if

𝑃 ∶= inf
{
𝑝 ∈

(
𝑡0,∞

)
𝕋∗
∶ (𝑝, 𝑡) ∈ ∓ for all 𝑡 ∈ 𝕋∗

} ≠ 𝑡0,

then 𝑃 is called the period of the time scale 𝕋.

The notion of periodic functions in shifts [1, Definition 5] is not relevant to our considerations and thus is not recalled
here. However, the following notion of Δ-periodic functions in shifts is relevant.

Definition A.3 (See [1, Definition 6]). Let 𝕋 be a time scale that is periodic in shifts 𝛿± with period 𝑃. Then we say that a
function 𝑓 ∶ 𝕋∗ → ℝ is called Δ-periodic in shifts 𝛿± if there exists 𝑇 ∈ [𝑃,∞)𝕋∗ such that

(𝑇, 𝑡) ∈ ± for all 𝑡 ∈ 𝕋∗,

the shifts 𝛿𝑇± are Δ-differentiable with rd-continuous derivatives, and

𝑓
(
𝛿𝑇±(𝑡)

)(
𝛿𝑇±

)Δ
(𝑡) = 𝑓(𝑡) for all 𝑡 ∈ 𝕋∗, (A.1)

where 𝛿𝑇±(𝑡) ∶= 𝛿±(𝑇, 𝑡). The smallest number 𝑇 ∈ [𝑃,∞)𝕋∗ with these properties is called the period of 𝑓.
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Remark A.4. Note that [1, (3.10)] displays the undefined symbol 𝛿Δ𝑇± , which we have changed in (A.1) to its probable
meaning

(
𝛿𝑇±

)Δ
.

For some isolated time scales, we can find shift functions 𝛿+ such that the above coincides with our presented (in our
opinion, “simpler”) periodicity concept, and in those cases (A.1) matches (4.1). For those cases, the result [1, Theorem 2]
matches our Theorem 4.7, while none of the other results presented in Sections 3–7 above are proved for the setting in [1].

Example A.5. If 𝕋 = ℤ, then we can pick 𝛿+(𝑠, 𝑡) = 𝑡 + 𝑠 for 𝑡, 𝑠 ∈ 𝕋, and then

𝜈(𝑡) = 𝜎𝜔(𝑡) = 𝛿+(𝜔, 𝑡) for 𝑡 ∈ 𝕋 and 𝜔 ∈ ℕ.

If 𝕋 = 𝑞ℕ0 , then we can pick 𝛿+(𝑠, 𝑡) = 𝑡𝑠 for 𝑡, 𝑠 ∈ 𝕋, and then

𝜈(𝑡) = 𝜎𝜔(𝑡) = 𝑞𝜔𝑡 = 𝛿+
(
𝑞𝜔, 𝑡

)
for 𝑡 ∈ 𝕋 and 𝜔 ∈ ℕ.

If 𝕋 = ℕ2, then we can pick 𝛿+(𝑠, 𝑡) =
(√

𝑡 +
√
𝑠
)2

for 𝑡, 𝑠 ∈ 𝕋, and then

𝜈(𝑡) = 𝜎𝜔(𝑡) =
(√

𝑡 + 𝜔
)2
= 𝛿+

(
𝜔2, 𝑡

)
for 𝑡 ∈ 𝕋 and 𝜔 ∈ ℕ.

Also, there is a slight difference in terminology. For example, in the last case, e.g., if 𝜔 = 5, a function would be called
5-periodic according to Definition 4.1, while Adıvar’s Definition A.3 would call this function periodic with period 25.

However, for many isolated time scales, we cannot find shift functions 𝛿+ such that the above coincides with our pre-
sented periodicity concept,

Example A.6. None of the isolated time scales

𝕋 =

{
𝑛∑
𝑘=1

1

𝑘
∶ 𝑛 ∈ ℕ

}
, 𝕋 = ℕ! = {𝑛! ∶ 𝑛 ∈ ℕ},

𝕋 = {𝑛𝑛 ∶ 𝑛 ∈ ℕ}, 𝕋 =

⎧⎪⎪⎨⎪⎪⎩

(
1+

√
5

2

)𝑛

−

(
1−

√
5

2

)𝑛

√
5

∶ 𝑛 ∈ ℕ

⎫⎪⎪⎬⎪⎪⎭
,

𝕋 = {2𝑛 + 3𝑛 ∶ 𝑛 ∈ ℕ}, 𝕋 =

{
exp(𝑛) + ln(𝑛) −

1

𝑛
∶ 𝑛 ∈ ℕ

}
is periodic in shifts in the sense of Definition A.2, using a fixed 𝑃 ∈ 𝕋. For none of the above time scales, it is possible to
find shift functions 𝛿+ such that there exists a fixed 𝑇 ∈ 𝕋 with

𝜈(𝑡) = 𝜎𝜔(𝑡) = 𝛿+(𝑇, 𝑡) for all 𝑡 ∈ 𝕋.
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