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Joint control of manufacturing and onsite microgrid system via novel 
neural-network integrated reinforcement learning algorithms 

Jiaojiao Yang a, Zeyi Sun b,*, Wenqing Hu c, Louis Steinmeister c 

a School of Mathematics and Statistics, Anhui Normal University, Wuhu, Anhui 241002, China 
b Mininglamp Technology, Shanghai 200030, China 
c Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65401, USA   

H I G H L I G H T S  

• This paper proposes a joint energy control model for microgrid and manufacturing. 
• Markov decision process is used to model the decision procedure. 
• Reinforcement learning leveraging TD and DPG is proposed to solve the problem.  

A R T I C L E  I N F O   
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A B S T R A C T   

Microgrid is a promising technology of distributed energy supply system, which consists of storage devices, 
generation capacities including renewable sources, and controllable loads. It has been widely investigated and 
applied for residential and commercial end-use customers as well as critical facilities. In this paper, we propose a 
joint state-based dynamic control model on microgrids and manufacturing systems where optimal controls for 
both sides are implemented to coordinate the energy demand and supply so that the overall production cost can 
be minimized considering the constraint of production target. Markov Decision Process (MDP) is used to 
formulate the decision-making procedure. The main computing challenge to solve the formulated MDP lies in the 
co-existence of both discrete and continuous parts of the high-dimensional state/action space that are inter
twined with constraints. A novel reinforcement learning algorithm that leverages both Temporal Difference (TD) 
and Deterministic Policy Gradient (DPG) algorithms is proposed to address the computation challenge. Experi
ments for a manufacturing system with an onsite microgrid system with renewable sources have been imple
mented to justify the effectiveness of the proposed method.   

1. Introduction 

A microgrid is a localized autonomous energy system that consists of 
distributed energy sources and loads [1], which can operate either 
separated from, or connected to, external utility power grids [2,3]. It is 
considered a reliable solution to satisfy the growing demand for electric 
power through strengthening the resilience and mitigating the distur
bances of the grid [4,5]. 

Various studies on microgrids have been conducted for residential 
houses and critical facilities, such as medical centers, financial corpo
rations, military bases, and jails (see details in Section 2.1). A great deal 
of literature focusing on the optimal control strategies of using micro
grids has been reported (see details in Sections 2.2 and 2.3). 

While for the manufacturing industry, the loss due to blackouts is not 
that direct or explicit when compared to the industries or sectors that are 
traditionally considered “critical”. The incurred losses such as unem
ployment and supply chain failure cannot be sensed and evaluated 
immediately after blackouts. The overall influence in term of both 
economic and societal aspects seems to be underestimated. Thus, the 
research on the application of microgrid in manufacturing has been less 
reported compared to residential sector. 

The benefits of combining microgrids with manufacturing systems 
can be discussed from two aspects. On one hand, the microgrids can 
offer one more option of energy supply in terms of cost effectiveness. 
The cost of energy delivered by utility company varies depending on 
different time periods. The use of microgrids can provide a more flexible 
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solution of energy supply considering the cost variation. The users can 
select different energy sources as well as determine energy flow to 
optimize their performance with respect to cost effectiveness. In addi
tion, the use of microgrids can enhance the security of manufacturing 
systems against the utility failures due to various reasons (e.g., natural 
disaster). On the other hand, microgrids can help manufacturing prac
titioners further improve their performance from the perspective of 
environmental sustainability. The adoption of renewable sources in 
microgrids can significantly improve the carbon footprints of the energy 
supplied for production. 

Therefore, this study aims to enhance the use of microgrid in 
manufacturing sector through building a joint control model that can 
simultaneously adjust the energy supply and demand from both 
microgrid and manufacturing sides towards cost effectiveness and 
environment sustainability. 

Recently, with the increasing concerns on climate change and envi
ronmental protection, the benefits of integrating energy-aware strate
gies in manufacturing have been recognized. Many sustainability-aware 
and carbon-constrained operating strategies, either on individual 
manufacturing processes or entire manufacturing system, have been 
investigated and used by many practitioners (see details in Section 2.4). 
Meanwhile, the use of microgrid to support manufacturing has also been 
launched, in particular, in the areas of benefits evaluation, system sizing, 
and microgrid-side control (see details in Sections 2.5 and 2.6), among 
which many investigations on using integrated energy systems for pro
cess industry have been reported (see details in Section 2.7). 

However, the study of joint energy control for both microgrids and 
manufacturing systems simultaneously has not yet been fully launched. 
In this paper, a joint control model considering both microgrids and 
manufacturing systems is established using Markov Decision Process 
(MDP). A novel reinforcement learning algorithm is proposed for solving 
the MDP. The algorithm uses both Temporal Difference (TD) method to 
search for the discrete optimal control actions and Deterministic Policy 
Gradient (DPG) algorithms to search for the continuous optimal control 
actions, together with function approximations of the action-value 
function via a neural network. Experiments based on a manufacturing 
system with an onsite microgrid with renewable sources are imple
mented under real parameters to identify optimal control actions for 
both manufacturing system and microgrid towards cost optimality. It is 
empirically validated that the optimal policies found by the proposed 
reinforcement learning algorithm are more efficient in production and 
incur less cost when compared to randomly sampled policies and a 
routine operation policy. Last but not least, due to its explor
ation–exploitation nature, the proposed reinforcement learning method 
is also effective in the case when the MDP parameters are not known but 
have to be learned during the algorithm dynamics. 

The proposed MDP model as well as the reinforcement learning al
gorithms can well address the major challenges with respect to modeling 
and problem solving. On one hand, the combined system including both 
manufacturing and microgrid has a complex interaction when controls 
are implemented from both sides. For example, the controls on 
manufacturing systems will influence the energy demand that needs to 
be met through controlling the operations of microgrids as well as the 
external utility connections to achieve an energy flow balance. The 
manufacturing system itself is a complex system where the in
terrelationships among different machines in the system need to be 
quantified. The manufacturing throughput should also be cared when 
energy control for the manufacturing system is implemented. All these 
factors need to be carefully considered. 

On the other hand, it can be expected that the space of the states and 
the actions in the MDP model could be extremely large, which makes 
most existing strategies for solving MDP such as reinforcement learning 
algorithms less effective. An initial study by authors has shown that a 
traditional algorithm, e.g., vanilla Q-learning, integrated with a neural 
network can only work for a small sized model, while cannot sufficiently 
address the model with a large space size [6]. 

In summary, the major contributions of the proposed joint control 
model are summarized as follows:  

• In most relevant literature, the control is only focused on the 
microgrid side, while neglecting the demand side (i.e., 
manufacturing system). In some research where manufacturing side 
is integrated into the control scheme, the manufacturing system is 
usually simplified and thus the complex internal dynamics cannot be 
fully represented (see details in Section 2.6). In this paper, the dy
namic joint controls of manufacturing systems and microgrids, e.g., 
the complex dynamics in the demand side when energy control is 
implemented on manufacturing systems, are modeled.  

• In existing literature, the renewable sources are usually modeled as 
the system state in MDP, that means, the renewable energy is 
dependent on the variations of wind and solar sources. It ignores the 
opportunities of controlling the energy supply from the renewable 
sources. In this paper, the availability of renewable sources is 
modeled as the state, while the ON/OFF control of renewable gen
eration capacity is modeled as the control actions.  

• There exist a few published works that use reinforcement learning 
algorithms such as deep Q-learning (DQN) to solve dynamic 
decision-making problems with respect to microgrid operations 
[7,8]. However, Q-learning algorithms is typically constrained by 
problem size, and thus cannot work very well if the problem size is 
too large. Our novel reinforcement learning algorithm integrates 
DPG with TD to treat the co-existence of discrete and continuous 
states and actions. We also address the constraints via proximal 
projection operators and policy gradient updates. 

The remaining part of the paper is organized as follows. A brief 
literature review in several relevant areas is given in Section 2. Section 3 
introduces the formulation of the dynamic decision-making model using 
MDP in detail. Section 4 proposes our reinforcement learning algorithm. 
Section 5 implements numerical case studies through extensive experi
ments and sensitivity analysis to validate the effectiveness of the pro
posed method. Section 6 concludes the paper and discusses future 
works. Supplementary materials in terms of mathematical derivations 
are summarized in Section 7. 

2. Literature review 

2.1. Microgrids for residential properties, community services, and critical 
facilities 

The research of microgrid applications in residential properties, 
community services, and critical facilities has been widely reported in 
the literature. For example, Faruque discussed an economically profit
able way to deploy a residential microgrid incorporating a new market 
entity that can act as both a consumer and a power supplier [9]. Kriett 
and Salani proposed a generic mixed integer linear programming model 
to minimize the operating cost of a residential microgrid [10]. Roggia et 
al designed a sustainable residential microgrid system including PHEV 
and energy storage devices [11]. Ahourai and Faruque analyzed the 
impact of a residential microgrid under various electric vehicle pene
tration levels [12]. Igualada et al. proposed an optimization model to 
manage a residential microgrid including a charging spot with a vehicle- 
to-grid system and renewable energy sources [13]. Hawkes and Leach 
investigated the cost-effective operating strategy for residential micro- 
combined heat and power (CHP) systems [14]. Tasdighi et al. investi
gated a micro-CHP based residential microgrid scheduling problem 
using smart meter data and temperature dependent thermal load 
modeling [15]. Kakigano et al. applied a direct-current microgrid to 
residential houses with a cogeneration system, such as a gas engine or 
fuel cell [16]. 
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2.2. Microgrid control strategies using traditional methodologies 

Considering the complex dynamics, in particular, the uncertainties of 
the renewable sources and the load, involved in microgrid operation, 
Model Predictive Control (MPC)-based approaches have been widely 
used to estimate the uncertainty and offer an optimizer to solve the best 
schedules of microgrid operations [17]. For example, an online optimal 
energy management model for energy storage system in a microgrid was 
developed using a mixed integer linear programming (MILP) over a 
rolling horizon period [18]. A similar method considering time-varying 
constraints of a microgrid was proposed [19]. MPC was applied to the 
operation of a hydrogen-based hybrid energy storage system in a 
microgrid [20]. A robust optimization model was proposed for micro
grid operation using ensemble weather forecasts [21]. 

Another major research approach to address the challenges of un
certainties is stochastic optimization. For example, a stochastic energy 
scheduling model in microgrids with intermittent renewable energy 
resources was proposed [22]. A risk-averse stochastic programming 
method was proposed, which considered not only the expectation but 
the variation of the total cost [23]. A two-stage stochastic programming 
approach with MPC for microgrid energy management was proposed 
considering the uncertainty of load demand, renewable energy genera
tion, and electricity prices [24]. From the perspective of control objec
tives, the existing literature focuses on optimizing cost [25,26], power 
system stability [27,28] such as voltage frequency control [29,30], and 
environmental objectives such as reducing carbon dioxide emissions 
[31,32]. 

2.3. Microgrid control strategies using Machine learning methodologies 

Recently, some researchers have started to leverage the methodolo
gies such as deep learning and reinforcement learning to address the 
microgrid control problem, i.e., reinforcement learning framework is 
used to solve the sequential decision-making problem typically formu
lated by MDP, and deep learning is used to approximate the values of 
some critical components in MDP such as Q-value and the state value. 
For example, Zeng et al. presented a novel dynamic energy management 
tool that incorporates efficient management of energy storage system 
into microgrid real-time dispatch while considering power flow con
straints and uncertainties in load, renewable generation, and real-time 
electricity price [7]. Ji et al. proposed a deep reinforcement learning 
approach to identify the optimal control strategy of microgrids that can 
minimize the daily operating cost. In their study, a deep feed-forward 
neural network is designed to approximate the optimal action-value 
function, and the deep Q-network algorithm is used to train the neural 
network [8]. 

2.4. Sustainability-Aware and Carbon-Constrained manufacturing 
control strategy 

Manufacturing activities dominate energy consumption and Green
house Gas (GHG) emissions in the industrial sector [33] that accounts 
for approximately one third of the total energy consumption in the U.S. 
[34]. Thus, many studies focusing on building energy consumption 
framework and exploring emission reductions for various industries 
have been reported. For example, a big data driven analytical frame
work was proposed to reduce the energy consumption and emission for 
energy-intensive industries [35,36]. Therblig power model was devel
oped for calculating the energy supply of Computer Numerical Control 
(CNC) machine tools using machining process parameters [37]. 

In addition, many sustainability-aware and carbon-constrained 
operating and control strategies have been investigated for 
manufacturing. Optimal energy control towards a smart and sustainable 
manufacturing paradigm has been widely reported. For example, a CPS- 
enabled and knowledge-aided demand response strategy was proposed 
for sustainable manufacturing [38]. Later, the same team investigated a 

demand response strategy for manufacturing systems considering the 
implications of fast-charging battery powered material handling 
equipment [39]. Work-in-process parts in manufacturing systems were 
utilized for optimal production control to reduce energy cost without 
sacrificing production throughput [40]. A joint energy control and 
maintenance scheduling model was proposed to minimize overall 
operational costs considering time-dependent energy cost as well as 
equipment degradation [41]. 

2.5. Microgrid system sizing for manufacturing 

The benefits of using microgrids in manufacturing have been grad
ually recognized by both academic colleagues and industrial practi
tioners. It is hardly possible to maintain manufacturing operations 
without electricity supply nowadays, even a very short power outage 
can lead to detrimental impacts on manufacturing companies [42,43]. 
Many studies focusing on the optimal design and component sizing of 
the microgrid for manufacturing plant has been reported [44–46]. For 
example, a Mixed Integer Non-Linear Programming optimization model 
was proposed for sizing the capacity of onsite generation system with 
renewable sources and battery energy storage system for the manufac
turers considering the energy loads from both the manufacturing system 
and HVAC (Heating, Ventilation, and Air Conditioning) system in a 
typical manufacturing plant [44]. A time series model was proposed to 
describe and predict the variation of the energy load of manufacturing 
systems and the irradiation of solar energy such that a case study 
examining the cost for building and running an onsite microgrid system 
considering different microgrids capacities was implemented [46]. The 
onsite wind and solar power capacity that could maximize the cost 
saving of a manufacturing facility was estimated in an interruptible load 
demand response program [47]. 

2.6. Microgrid control for manufacturing 

Some studies on using microgrid for manufacturing have been 
recently reported. For example, Harper et al. proposed a demand-side 
management method for manufacturing that uses a microgrid to 
reduce energy consumption and improve system reliability [48,49]. 
They employed a simple rule-based control strategy to adjust the oper
ation modes of industrial pumps based on the empirical parameters of 
supply capability and electricity demand. Golari et al. presented a multi- 
period, production-inventory planning model in a multi-plant 
manufacturing system powered with onsite and grid renewable energy 
to determine the production quantity, the stock level, and the renewable 
energy supply in each period such that the aggregated production cost 
(including energy) is minimized [50]. It was formulated as a static 
optimization problem, rather than a dynamic state-based decision- 
making model. 

The common limitations of the existing studies on microgrid control 
for manufacturing can be summarized as follows. 1) Manufacturing 
system is usually simplified and modeled as a single isolated machine, 
which ignores the complex dynamics and interactions of various 
equipment within the manufacturing system. 2) The manufacturing side 
is typically considered a fixed load, while neglecting its control flexi
bility. 3) The control strategies used for the manufacturing equipment 
are usually simple heuristic and/or empirical rule based utilizing the 
empirical parameters of supply capability and electricity demand. 

2.7. Integrated energy systems in process industry 

Process industries, e.g., food, pulp and paper, basic chemicals, 
refining, and iron/steel, are typically considered to be energy intensive. 
For example, the electricity demand of pulp & paper industry in 2020 
was estimated to be 2.08EJ [51]. Many studies in terms of improving 
energy efficiency and reducing GHG emissions have been reported. For 
example, Pandey and Prakash systematically analyzed energy 
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conservation opportunities in pulp & paper industry [52]. Ashok pro
posed a peak load management model for steel plant [53]. Later, he and 
his colleague generalized the previous reseach to an optimization model 
for industrial load management [54]. Ma et al. presented an architecture 
of energy-cyber-physical system enabled management for energy- 
intensive process industries to enhance the implementation of inte
grated energy system for a cleaner production strategy [55]. Later, this 
team proposed a big data-driven analytical framework for energy- 
intensive process industries towards sustainability [56,57]. Zhang 
et al. explored the physical and chemical characteristics of fugitive 
emission sources in the iron and steel production process [58]. Sun et al. 
systematically analyzed the integrated optimization of material and 
energy flows in the iron and steel industry [59]. Zhang et al. proposed a 
carbon flow tracing and carbon accounting method for exploring 
CO2 emissions of the iron and steel industry [60]. 

3. Markov decision process (MDP) for joint control of 
manufacturing and onsite microgrid systems 

3.1. Formulation of joint energy control using MDP 

3.1.1. Modeling microgrids and manufacturing systems 
An MDP model is proposed to model the decision-making of the joint 

control of both onsite microgrid systems and manufacturing systems. 
MDP has been widely used in modeling complex and evolving state- 
based decision-making problems [61,62]. In this paper, the microgrid 
system used is a typical setup consisting of a gas turbine generator, a 
battery bank as well as solar PV modules and wind turbines as shown in 
Fig. 1. Note that, traditionally, microgrid meant a distributed energy 
generation system and renewable sources were not the default compo
nents. While, in recent years, with the increasing penetration and 
popularity of renewable sources in energy systems, the integration of 
wind and solar energy in microgrid has become the main stream in 
literature when studying microgrids, especially, considering the benefits 

with respect to environmental sustainability. Thus, renewable compo
nents are considered the default components in the microgrids modeled 
in this paper. 

The manufacturing system modeled is a typical serial production line 
with N machines and N − 1 buffers as shown in Fig. 2 (here N = 5, and 
work-in-progress parts are stored in buffers). Let i = 1, ...,N be the in
dexes of the machines and i = 1, ...,N − 1 be the indexes of the buffers. 

Note that the type of the manufacturing system modeled in the paper 
is a flow shop setting. Many industries use such a layout for their pro
duction system, e.g., auto assembly system, aeroplane assembly system, 
etc. In practice, the system may be more complex, say, with some par
allel configurations, while, a serial line is considered a fundamental 
layout from which many complex layouts can be studied through 
appropriate extensions. 

The time horizon is discretized and divided into a set of discrete 
intervals, with the actual time duration for each interval to be Δt. The 
time variable t denotes the indexes of the decision epochs of such 
discrete intervals at which the control actions identified based on the 
optimal policy and the given states can be implemented. The state, 
policy, state transition, objective function, and constraints of the pro
posed MDP are introduced as follows. 

3.1.2. System state 
Let the system states form a state space S. The system state at decision 

epoch t is denoted by St. It includes the states of manufacturing system 
(Smfg

t ), microgrid system (Smic
t ), and exogenous environmental features 

(Senv
t ), which can be formulated by St =

(
Smfg

t ,Smic
t ,Senv

t

)
. Smfg

t can be 

denoted by Smfg
t =

(
SM

1t , ..., SM
Nt , SB

1t , ..., SB
(N− 1)t

)
, where SM

it (i = 1, ...,N)

denotes the state of machine i in the manufacturing system at decision 
epoch t; SB

it(i = 1, ...,N − 1) denotes the state of the buffer i in the 
manufacturing system at decision epoch t. Machine states include 
operational, blockage, starvation, off, and breakdown. Blockage means 
that the machine itself is not failed while the completed part cannot be 

Fig. 1. A microgrid with various components.  

Fig. 2. A typical manufacturing system with N machines and N − 1 buffers (here N = 5).  
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delivered to the downstream buffer due to the breakdown of specific 
downstream machines. Starvation means that the machine itself is not 
failed while there is no incoming part from the upstream buffer due to 
the breakdown of specific upstream machines. The set of machine states 
is thus {Opr,Blo,Sta,Off ,Brk}, where Opr,Blo, Sta,Off and Brk denote the 
operational state, blockage state, starvation state, off state, and break
down state, respectively. At each state, there is a corresponding power 
consumption state, which is illustrated in Fig. 3. 

Smic
t can be denoted by Smic

t =
(
gs

t , gw
t , g

g
t , SOCt

)
, where gs

t , gw
t , and gg

t 

denote the working status of solar PV, wind turbine, and generator, 
respectively, of the onsite microgrid generation system at decision epoch 
t (working = 1, not working = 0). A non-negative real number SOCt, 
denotes the state of charge of the battery system at decision epoch t. 

The state describing exogenous environmental features, Senv
t , can be 

denoted by Senv
t = (It , vt) , where It denotes the solar irradiance at de

cision epoch t, and vt denotes the wind speed at decision epoch t. The 
exogenous feature has an impact on the system dynamics and the cost 
function, but cannot be influenced by the control actions. The feature is 
time and weather dependent. The model formulation considers the 
availability of a deterministic forecast of the exogenous state informa
tion. The states (It , vt) are taken from one year’s data (assumed to be 360 
days and 24 h/day, so in total 8640 h). 

3.1.3. Control actions and policy 
All admissible actions constitute an action space A. Let π be the 

policy that maps from different states S to the actions A. The control 
actions adopted at decision epoch t can be denoted by At. It includes the 
control actions for the manufacturing system (Amfg

t ) and the microgrid 

system (Amic
t ), which can be denoted by At =

(
Amfg

t ,Amic
t

)
. Amfg

t can be 

denoted by Amfg
t =

(
a1

t , ..., aN
t
)
, where ai

t(i = 1, ...,N) is the control action 
for machine i at the decision epoch t. The actions include K-action, 
W-action, and H-action. K-action intends to keep original machine 
states, which can be applied to the machines in Opr,Blo,Sta,Off , and Brk 
states (note that machine repair is not considered a control action in this 
paper and repair is assumed to be a supposed-to-be reaction, so K-action 
used for breakdown machine can imply that repair will be imple
mented). H-action intends to turn off the machine, which can only be 
applied to the machine in Opr, Blo, and Sta states. W-action intends to 
turn on the machine that was previously turned off, which can only be 
applied to the machine in Off states. Note that for model simplicity, we 
assume that the energy consumption and time required for the transi
tions between different machine states can be ignored. The time and 
energy required for state transition depend on machine characteristics. 
For example, many CNC machines have a relatively short switch time as 
well as lower switch energy consumption when machine state is 
adjusted. 

Amic
t specifies the actions with respect to the adjustment of the 

working status of the components of the microgrid as well as the cor
responding energy flow and allocation in the joint system, which can be 
denoted by Amic

t =
(
as

t , aw
t , a

g
t , sm

t , sb
t , ssb

t ,wm
t ,wb

t ,wsb
t , gm

t , gb
t , gsb

t , pm
t , pb

t , bm
t
)
. 

Here as
t ,aw

t , and ag
t are the actions of adjusting the working status (i.e., 1 

is connected, 0 is not connected to the load) of the solar, wind, and 

generators in microgrids; sm
t , sb

t , and ssb
t denote the solar energy used for 

supporting manufacturing, charging battery, and sold back to grids, 
respectively. Similarly, the notations w and g with corresponding su
perscripts denote the allocation of the energy generated by wind turbine 
and generator, respectively. pm

t and pb
t denote the use of the energy 

purchased from the grid, i.e., for supporting manufacturing, and 
charging battery, respectively. Note that the energy purchased from the 
grid is not considered for sold back due to utility policies. Finally, bm

t 
denotes the energy discharged by the battery for supporting 
manufacturing, and is given by a binary variable δbm

t , so that bm
t = b⋅δbm

t ⋅ 
Δt for some discharging rate b > 0. Note that the energy discharged by 
the battery is not considered for sold back. 

3.1.4. State transition 
Let the function P : S × A × S →[0,1] be the transition probability 

function, so that P(S’,A, S) ≡ Pr(S’|S,A) is the probability of transition 
to state S’ given that the previous state was S and action A was taken. It 
is assumed that the state transition happens at the beginning of each 
interval when the decision is made. 

For the manufacturing system, the buffer state at decision epoch t+1 
can be obtained by (1) based on the states and the control actions 
adopted at decision epoch t of upstream and downstream machines: 

SB
i(t+1) = SB

it + I
(
SM

it , at
i

)
− I

(
SM
(i+1)t, a

t
i+1

)
, 0 ≤ SB

it ≤ Ni, (1) 

Here Ni is the capacity of buffer i, and I
(
SM

it , at
i
)

is an indicator 
function that is defined by (2): 

I
(
SM

it , a
t
i

)
=

{
1,whenSM

it = Oprandat
i = K

0 ,whenSM
it ∕= Oprorat

i = H
(2) 

Referring to the literature focusing on the statistical methods for 
machine reliability [63], we assume Li, which is the random lifetime of 
machine i, follows Weibull distribution with specific shape parameter 
and scale parameter. The probability that machine i goes into break
down or non-breakdown state at the next decision epoch t + 1, given it is 
not in breakdown state at the current decision epoch t can be described 
by (3) and (4) respectively: 

Pr
(

SM
i(t+1)= Brk|SM

it ∕= Brk, SM
it ∕= Off

)
= Pr(Li < t+Δt) (3)  

Pr
(

SM
i(t+1)∕= Brk|SM

it ∕= Brk, SM
it ∕= Off

)
= Pr(Li ≥ t+Δt) (4) 

Whether the machine is at Off state or not at next decision epoch can 
be determined in a deterministic way by (5): 

SM
i(t+1) = Off if

(
SM

it = Off andat
i = K

)
or
(
SM

it ∕= Off andat
i = H

)
(5) 

In addition, we also assume Di, which is the random repair time of 
machine i, follows Exponential distribution [64]. The probability that 
machine i completes or does not complete the repair at the next decision 
epoch t + 1, given it is in repair at the current decision epoch t can be 
described by (6) and (7) respectively. 

Fig. 3. Operation and energy states.  
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Pr
(

SM
i(t+1)∕= Brk|SM

it = Brk
)
= Pr(Di < t+Δt) (6)  

Pr
(

SM
i(t+1)= Brk|SM

it = Brk
)
= Pr(Di ≥ t+Δt) (7) 

From (3)-(7) we can decide whether the machine state SM
i(t+1) is Brk or 

Off or any one of the states Sta, Blo, Opr. To further determine the exact 
state if we fall into one of the states Sta, Blo, Opr, we use the following 
rules. For 2 ≤ i ≤ N: 

SM
i(t+1) = StaifSM

i(t+1) ∕= Brk/Off andSB
(i− 1)(t+1) = 0andSM

(i− 1)(t+1) = Brk/Sta/Off

(8) 

and for 1 ≤ i ≤ N − 1: 

SM
i(t+1) = BloifSM

i(t+1) ∕= Brk/Off andSB
i(t+1) = NiandSM

(i+1)(t+1) = Brk/Blo/Off

(9) 

and for all 1 ≤ i ≤ N: 

SM
i(t+1) = OprifSM

i(t+1) ∕= Brk/Sta/Blo (10) 

Notice that (8) and (9) can be used to find all the Sta and Blo state 
machines by forward/backward scanning of all machines starting from 
the first/last machine, due to the trivial fact that SM

1(t+1) ∕= Sta and 
SM

N(t+1) ∕= Blo. With these, (10) can further help to determine Opr state for 
machines. 

Therefore, the system operation state transition between the current 
decision epoch and the next decision epoch can be calculated by using 
(1)-(10) when Amfg

t is adopted based on a given Smfg
t . 

For the microgrid system, the state transition of solar PV is deter
mined by the action adopted. While, the state transition of wind turbine 
is determined by the action adopted and the variation of the wind speed. 
They can be formulated by (11) and (12), respectively: 

gs
t+1 =

{
1, if as

t+1 = 1
0, if as

t+1 = 0
(11)  

gw
t+1 =

{
1, if aw

t+1 = 1andvci ≤ vt+1 ≤ vco

0, if aw
t+1 = 0orvt+1 > vcoorvt+1 < vci (12) 

where vci and vco are the cut-in and cut-off wind speeds (m/s), 
respectively, 

The state transition of generator is determined by the control actions 
adopted, which can be formulated by: 

gg
t+1 =

{
1, if ag

t+1 = 1
0, if ag

t+1 = 0
(13) 

The state transition of battery (i.e., SOC) is determined by the 
charging and discharging occurring between t and t+1 as well as the 
original SOC, which can be formulated by: 

SOCt+1 = SOCt +
(
sb

t +wb
t + gb

t + pb
t

)
η − bm

t /η (14) 

where η is charging/discharging efficiency. 

3.1.5. Objective function 
The objective is to identify an optimal policy based on the given state 

that can minimize the incurred cost from time t to the end of decision 
horizon. At time t, the cost at state St when action At is taken, can be 
defined by E(St,At). The total incurred cost from time 0 to the end of 
planning horizon, starting from state S and under policy π : S → A, is 
given by: 

C(π) = E[
∑∞

t=0
γtE(St, π(St) )|S0 = S] (15) 

Here γ ∈ [0,1) is the discount factor. The objective is to identify an 
optimal policy π* = argmin

π
C(π) over all policies satisfying the 

constraints, that can guide the decision maker to find appropriate ac
tions based on the given system state to minimize the total incurred cost 
C(π) in (15). 

For our model, the cost when action A is taken at state S is given by 
E(S,A), which is equal to energy consumption cost plus the microgrid 
operational cost, minus production throughput reward and the sold back 
reward. So, it can be calculated by: 

E(S,A) = TF(S,A)+MC(S,A) − TP(S,A) − SB(S,A) (16) 

where TF(S,A) is the cost for the energy purchased from the grid, 
MC(S,A) is the operational cost for the onsite generation system, TP(S,
A) is the reward of production throughput of the manufacturing system, 
and SB(S,A) is the sold back benefit. 

Note that in this paper, since the throughput modeling and quanti
fication for a typical manufacturing system is still a major research 
challenge in the field of production system engineering when consid
ering non 100% reliable machines and finite capacity buffers [65,66], 
the concern of production throughput maintaining is represented as a 
monetary reward and integrated into the objective function. This 
strategy circumvents the challenges of modelling throughput as a major 
constraint in MDP. 

In (16), TF(S,A) can be calculated by: 

TF(S,A) = pt⋅rc
t =

(
pm

t + pb
t

)
⋅rc

t (17) 

where pt is the energy consumption purchased from the grid at de
cision epoch t, and rc

t is the rate of energy consumption charge. pt can be 
calculated by: 

pt = Emfg
t −

(
sm

t +wm
t + gm

t + bm
t

)
(18) 

where Emfg
t is the total energy consumed by the manufacturing system 

at decision epoch t which can be determined by: 

Emfg
t =

∑N

i=1
PCit⋅Δt (19) 

where PCit is the amount of power drawn by the machine i from t to 
t + 1. PCit can be calculated by: 

PCit =

⎧
⎪⎪⎨

⎪⎪⎩

0, if SM
it = BrkorSM

it = Off
PCOpr

i , if SM
it = Opr

PCIdl
i , if SM

it = StaorSM
it = Blo

(20) 

where PCOpr
i and PCIdl

i are the power level of machine i at the states of 
Opr and Sta/Blo, respectively. 

MC(S,A) can be calculated by: 

MC(S,A) = es
t ⋅r

s
omc + ew

t ⋅rw
omc + eg

t ⋅rg
omc +

(
bm

t + sb
t + wb

t + gb
t

)
⋅Δt

2e(SOCmax − SOCmin)
⋅rb

omc , (21) 

where es
t , ew

t , and eg
t are the energy generated at decision epoch t from 

the onsite solar PV, wind turbine, and generator, respectively, which are 
calculated from the states and actions, that will be specified below. rs

omc, 
rw
omc, and rg

omc are the unit operational and maintenance cost for gener
ating electricity from solar PV, wind turbine, and generator respectively. 
rb
omc is the operational and maintenance cost for battery storage system 

per unit charging/discharging cycle. e is the capacity of battery storage 
system. SOCmax and SOCmin are maximum and minimum allowed state of 
charge of battery storage system, respectively. Note that the fraction 
part of the 4th term on the right-hand side of (21) represents for the 
fraction of the charging/discharging cycle of the battery in one decision 
period [45]. Specifically, the numerator calculates the total energy flow 
(either charging or discharging) through the battery system in one de
cision period, while the denominator calculates the total energy flow of 
one charging/discharging cycle. 

es
t can be calculated by: 

J. Yang et al.                                                                                                                                                                                                                                    



Applied Energy 315 (2022) 118982

7

es
t =

{
0, if gs

t = 0
It⋅a⋅δ⋅Δt/1000, if gs

t = 1
(22) 

where It is the solar irradiance of a certain location (W/m2) at de
cision epoch t, a is the area of the solar PV system, and δ is the efficiency 
of the solar PV. 

ew
t can be calculated by: 

ew
t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if gw
t = 0orvt < vciorvt > vco

Nw⋅RPw⋅Δt, if gw
t = 1andvr ≤ vt < vco

Nw⋅RPw⋅
vt − vci

vr − vci
⋅Δt, if gw

t = 1andvci ≤ vt < vr

(23) 

where vt is the wind speed (m/s) at decision epoch t. vr is the rated 
wind speeds (m/s). Nw is the number of wind turbine equipped within 
the onsite generation system and RPw is the rated power of the wind 
turbine (kW). RPw is determined by: 

RPw =
1
2
⋅ρ⋅π⋅r2⋅v3

avg⋅θ⋅ηt⋅ηg/1000 , (24) 

where ρ is the density of air. vavg is average wind speed. θ is the power 
coefficient. r is the radius of the wind turbine blade. ηt is its gearbox 
transmission efficiency. ηg is electrical generator efficiency. 

eg
t can be calculated by: 

eg
t =

{
0, if gg

t = 0
ng⋅Gp⋅Δt, if gg

t = 1
(25) 

where ng is the number of generators and Gp is the rated output 
power of the generator (kW). 

TP(S,A) can be determined by: 

TP(S,A) = prt⋅rp (26) 

where prt is the production count at decision epoch t and rp is the unit 
reward for each unit of production. prt can be calculated by: 

prt =

{
1, if SM

Nt = OprandaN
t = K

0, if SM
Nt ∕= OproraN

t = H
(27) 

Note that, in such a serial production system as shown in Fig. 2, the 
system throughput is counted by the production count of the last ma
chine in the line since one finished product is only counted when the 
process of the last machine is completed. Thus, the subscript in (27) is N. 

Similarly, the sold back reward SB(S,A) can be calculated by: 

SB(S,A) = st⋅rsb , (28) 

where st = ssb
t +wsb

t +gsb
t is the sold back energy to the grid at decision 

epoch t and rsb is the unit reward from sold back energy. 

3.2. Parameterization of the action space and constraints 

Our model contains the following constraints for the action space A, 
that are described below. 

Since we set that the battery state of charge level needs to be 
maintained within a given range, which can be formulated by: 

SOCmin ≤ SOCt +
(
sb

t +wb
t + gb

t + pb
t

)
η − bm

t

η ≤ SOCmax . (29) 

Notice that (29) indicates that the actions to the microgrid on battery 
charging/discharging are controlled by the current SOC state. 

Actions that can be applied to machines are restricted by the current 
machine states: K-action can be applied to the machine at Opr,Blo, Sta,
Off and Brk states; H-action can only be applied to the machine at Opr,
Blo and Sta states; W-action can only be applied to the machine at Off 
states, i.e., 

ai
t =

⎧
⎪⎪⎨

⎪⎪⎩

K , if SM
it = Opr,Blo, Sta,Off ,Brk

H , if SM
it = Opr,Blo, Sta

W , if SM
it = Off

(30) 

The energy flow balance for the energy generated by solar PV, wind 
turbine, and generator can be formulated by (31)-(33), respectively. 

sm
t + sb

t + ssb
t = es

t , (31)  

wm
t +wb

t +wsb
t = ew

t (32)  

gm
t + gb

t + gsb
t = eg

t (33) 

Notice that according to (22), (23) and (25), the energies es
t , ew

t , e
g
t 

depend on the working states of the microgrid 
(
gs

t , gw
t , g

g
t
)
, the solar 

irradiance It and the wind speed vt . The constraints (31)-(33) are 
restricting the actions applied to microgrid based on the current 
microgrid state and the environmental features. 

The battery cannot be charged and discharged simultaneously. The 
charge/discharge constraint is represented as follows: 
(
sb

t +wb
t + gb

t + pb
t

)
⋅bm

t = 0 . (34) 

Notice that since bm
t = δbm

t ⋅b⋅Δt, we only seek for binary choices of 
δbm

t = 0/1 when sb
t = wb

t = gb
t = pb

t = 0. 
The energy sold back to the grid and the energy purchased from the 

grid cannot happen simultaneously, which can be represented by: 
(
ssb

t +wsb
t + gsb

t

)(
pm

t + pb
t

)
= 0 . (35) 

If the constraint (35) is satisfied at ssb
t = wsb

t = gsb
t = 0, so that we 

allow pm
t + pb

t ∕= 0, then due to supply–demand balance principle, the 
energy purchased from the grid should be equal to the energy consumed 
from the grid, so we have. 

pm
t + pb

t = pt1{pt>0} , (36) 

where pt is given by (18). 
To simplify the model, we further assume that the energy purchased 

from the grid can only be used either for supporting manufacturing or 
charging battery, but not simultaneously, i.e., 

pm
t ⋅pb

t = 0 . (37) 

Due to (35) and (37), if ssb
t = wsb

t = gsb
t = 0, we can introduce a bi

nary variable δpb
t = 0/1 (0 means purchased energy is not used for bat

tery charging, 1 means purchased energy is used for battery charging) so 

that pm
t =

(
1 − δpb

t

)
pt1{pt>0} and pb

t = δpb
t pt1{pt>0}; if else, i.e., any of ssb

t ,

wsb
t or gsb

t is not equal to zero, we have pm
t = pb

t = 0. 
To facilitate the design of policy-gradient related algorithms for 

training, we further parameterize the control actions 
(
sm
t , sb

t , ssb
t ,wm

t ,wb
t ,

wsb
t , gm

t , gb
t , gsb

t
)

by introducing proportionality parameters. 

θ =
(

λm
s , λ

b
s , λm

w , λ
b
w, λm

g , λ
b
g

)
(38) 

such that the proportionality relation holds as. 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sm
t = es

t ⋅λ
m
s , sb

t = es
t ⋅λ

b
s , s

sb
t = es

t ⋅
(
1 − λm

s − λb
s

)

wm
t = ew

t ⋅λm
w ,w

b
t = ew

t ⋅λb
w ,wsb

t = ew
t ⋅
(
1 − λm

w − λb
w

)

gm
t = eg

t ⋅λm
g , gb

t = eg
t ⋅λb

g , g
sb
t = eg

t ⋅
(

1 − λm
g − λb

g

)
(39) 

These representations further simplify the constraints (31)-(33) into 
the following constraints. 

λm
s ≥ 0, λb

s ≥ 0, 0 ≤ λm
s + λb

s ≤ 1 (40)  

λm
w ≥ 0, λb

w ≥ 0, 0 ≤ λm
w + λb

w ≤ 1 (41) 
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λm
g ≥ 0, λb

g ≥ 0, 0 ≤ λm
g + λb

g ≤ 1 (42) 

To deal with the constraints (34), (35), and (37), we further intro
duce the binary (0/1) variables δb

t = 1{sb
t +wb

t +gb
t >0} , δsb

t = 1{ssb
t +wsb

t +gsb
t >0}, 

and δp
t = 1{pm

t +pb
t >0}. Then constraints (34), (35), and (37) become a 

discrete constraint.   

Notice that (43) summarizes all discrete constraints for the control 
parameters on the microgrid. The remaining continuous constraints for 
the microgrid are only (29) and (40)-(42). Based on (43), we can further 
write the constraints (29) and (40)-(42) into different constraints on θ 
(the parameter in (38)) and SOC. These constraints are formulated in 
(S1)-(S6) in Supplementary Material 7.3. All effective constraints for the 
admissible actions in this problem are (30), (43) and (S1)-(S6). 

4. Novel Neural-Network integrated reinforcement learning 
algorithms for the MDP model 

4.1. Abstract formulation of the MDP model 

A state St ∈ S in the space of the model consists of two parts St =
(
Sd

t ,S
c
t
)
: the discrete part. 

Sd
t =

(
SM

1t , ..., S
M
Nt, SB

1t, ..., S
B
(N− 1)t, g

s
t , g

w
t , g

g
t , It, vt

)
(44) 

which consists of the machine, buffer and microgrid states, as well as 
the coarse-grained solar irradiance and the wind speed (It , vt). Here to 
reduce complexity, an approximate coarse-grained scheme is applied to 
each pair of the values (It , vt), so that they will be approximated by in
tegers closest to them on a grid with 20 × 20 states, thus taken values 
among 20 × 20 different states; the continuous part. 

Sc
t = (SOCt) (45) 

which consists of the SOC state. 
An action At in the action space A of the model also consists of three 

parts At =
(
Ad

t ,A
c
t ,A

r
t
)
: the discrete part. 

Ad
t =

(
a1

t , ..., a
N
t , a

s
t , a

w
t , ag

t , δ
b
t , δp

t , δ
pb
t , δsb

t , δ
bm
t

)
(46) 

which consists of the actions on each machines and the connecting/ 
disconnecting action of the solar PV, the wind turbine, and the gener
ator, as well as the indicator variables in (43); the continuous part. 

Ac
t =

(
sm

t , sb
t , s

sb
t ,w

m
t ,w

b
t ,w

sb
t , g

m
t , gb

t , gsb
t

)
(47) 

which consists of the solar/wind/generator energy used for sup
porting manufacturing, charging battery, and sold back to the grid. The 
continuous action Ac

t depends on St and the proportionality parameters 
in θ introduced in (38), i.e., Ac

t = Ac(θt ,St); the remainder part Ar
t =

(
pm

t , pb
t , bm

t
)
, which consists of the use of the energy purchased from the 

grid for supporting manufacturing and charging battery, and the energy 
discharged by the battery for supporting manufacturing. These can be 
calculated directly from δpb

t and δbm
t as well as (36) and (18), which then 

can be calculated from Ac
t . 

At a specific state St ∈ S, the actions that can be taken are restricted 
by this particular state via the restriction. 

Ad
t ∈ Dd ( Sd

t

)
(48) 

And. 

θ ∈ Dc( Sd
t ,S

c
t ,A

d
t

)
(49) 

where Dd is the set of admissible discrete actions Ad
t that can be taken 

at the current state, and Dc is the set of admissible parameters θ for 
continuous actions Ac that can be taken at the current state. According to 

the discussions in Section 3.2, we see that Dd is given by (30) and (43), 
and depends only on the discrete part of the current state (actually, only 
on the current states of the machines) and Dc is given by one of (S1)-(S6) 
in Supplementary Material 7.3, that depends on both the continuous and 
the discrete parts of the current state, as well as the discrete actions. 

4.2. A brief overview of reinforcement learning: Temporal-Difference and 
policy gradient methods 

For an infinite horizon, discounted MDP with state space S and action 
space A, Reinforcement Learning algorithms [67] design an “agent” 
interacting with an environment over a number of time steps. At each 
time step t when the agent is at a state St, it selects an action At using the 
policy π(St) ∈ A, and then moves to the next state St+1 according to the 
transition probability P(St+1,At,St) = Pr(St+1|St,At). During this step 
the agent incurs a cost E(St,At). The goal of the agent is to find a policy 
π* that minimizes the expected total discounted cost. 

π* = argmin
π

C(π) (50) 

where C(π) ≡ E
[∑∞

t=0γtE(St,At)|S0 = S
]
, and γ ∈ (0, 1] is the dis

count factor. To solve (50), we introduce the action-value function Qπ(S,
A), which is the expected total discounted cost under policy π starting 
from state S and taking initial action A. For the optimal policy π* in (50) 
we have Q*(S,A) ≡ Qπ*

(S,A) = minπQπ(S,A). The key idea in action- 
value methods is to identify π* through a sequence of approximators 
Q(S,A) built via an iterative scheme that approaches Q*(S,A). In prac
tice we use a function approximator, such as a neural network Q(S,A;ω)

(sometimes referred as the “critic”, see [67–70]) to replace the actual 
action-value function Qπ(S,A), where ω is the parameter of the 
approximating function. Given current ωt, we construct the temporal 
difference. 

δt = E(St,At)+ γQ(St+1,At+1;ωt) − Q(St,At;ωt) (51) 

where St+1 is the next state of MDP from state St under action At and 
At+1 is selected as the optimal policy (or near-optimal policy), such as 
ε-greedy policy [67] at state St+1 when the approximator is given by the 
parameter ωt. This class of action-value methods are called (on-policy) 
Temporal Differences (TD or SARSA, see [67]). Actually, there are two 
kinds of reinforcement learning methods: on-policy and off-policy. On- 
policy methods attempt to evaluate or improve the policy that is used to 
make decisions, whereas off-policy methods evaluate or improve a 
policy different from that used to generate the data (see [67, Section 5.4, 
p. 82]). In our temporal-difference method, we are using the policy 
obtained from data in the current iteration step to generate new data and 
we repeat this iteration. So, our TD method is on-policy. Once the 
temporal differences (51) are constructed, we can update the critic 
parameter ωt according to a standard gradient descent. 

ωt+1 = ωt − ηωδt∇ωQ(St,At;ωt) , (52) 

where ηω > 0 is the learning rate. Another way to solve (50) works in 
the scenario when the policy can be parameterized by a policy 

(
δb

t , δ
p
t , δ

pb
t , δsb

t , δbm
t

)
∈ {(1, 1, 1, 0, 0), (1, 1, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (0, 1, 0, 0, 1), (0, 0, 0, 1, 1)} . (43)   
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parameter θ, so that π = πθ, C(π) = C(πθ) = C(θ). In that case, we can 
simply use a gradient descent to find the optimal policy parameter θ* 

such that π* = πθ* : 

θt+1 = θt − ηθ∇θC(θ) (53) 

where ηθ > 0 is the learning rate. The gradient ∇θC(θ) can be esti
mated by the well-celebrated policy gradient theorem when the policy πθ 

is random (see [67]). However, if we are restricted only to deterministic 
policies, so that we assume that πθ(S) = A(θ) is a deterministic policy, 
and thus C(θ) = C(A(θ) ), then the Deterministic Policy Gradient (DPG, 
see [68]) can also be calculated as: 

∇θC(θ) = ES∼ρπ |π=A(θ)

[
∇θA(θ)∇AQπ(S,A)|π=A(θ),A=A(θ)

]
(54) 

where ρπ |π=A(θ) = ES0

∑∞
t=1γtPr(St= S|S0, π) is the discounted state 

distribution when π = A(θ). 

4.3. Neural-Network integrated reinforcement learning for solving the 
optimal policy of the model in its abstract formulation 

Based on the abstract formulation in Section 4.1, a policy π in the 
objective function (15) can be written as π(St) =

(
Ad

t (St),Ac(θt ,St),

Ar
t (St)

)
. The purpose is then to find optimal proportionality parameter 

θ* and for each state S ∈ S, to identify the optimal control actions 
(
A*,d(S),A*,c(θ*,S),A*,r(S)

)
, so that the objective function (15) can be 

minimized. Notice that, if θ is the only parameter for the control actions, 
then DPG can be used to search for an optimal θ. On the other hand, if we 
only have to search for the optimal discrete actions A*,d(S), then we can 
employ TD. Since we are simultaneously targeting at these two tasks, we 
alternatively perform these two optimization steps. We take into ac
count the constraints D(S), so that at the TD step, we search over the 
constraint Dd(S) on the discrete action space Ad, while at the policy 
gradient step, we project the gradient updates to the continuous 
constraint Dc(S) on Ac using proximal projection operators (see [72]). 
We employ on-policy methods rather than off-policy to deal with con
straints that are variable with respect to change of states. This enables 
more exploration over the variable constraints. 

The proposed method is model-free (see [67]), as compared with 
model-based methods (see [73]). This means that we do not have to 
know in advance any of the MDP system parameters. Rather, the 
exploration mechanism in the reinforcement learning algorithm will 
help us to estimate all the system parameters in an implicit way and 
make use of them. In the case study in Section 5, the model parameters 
are given only in order to simulate the system, but the learning algo
rithm does not require to know these parameters. 

Below we write the proposed algorithm into pseudo-code at Algo
rithm 1. 

Algorithm 1. Reinforcement Learning via integrating TD control and DPG 
with Proximal Projection. 

1: Input: Input state space S, action space A, constraints Dd,Dc; Given 
the neural network architecture Q

(
S,Ad,Ac(θ),Ar;ω

)
; Discount factor 

0 < γ < 1; Learning rates ηθ,ηω > 0; 
2: Initialization: Initialize the weight vector 

ω0 ∼ agivenpriordistribution; initial action Ad
0,A

r
0 and action parameter 

θ0, Ac
0 = Ac(θ0); Initial state S0 =

(
Sd

0,S
c
0
)
; 

3: for t = 1, 2,⋯,T do. 
4: Run one step of the MDP from state St under action At =

(
Ad

t ,Ac
t ,A

r
t
)
, obtain a new state St+1; 

5: Calculate the total cost E(St ,At); 
6: Identify. 

Ad
t+1 = arg min

Ad∈Dd (St+1)
Q
(
St+1,Ad,Ac(θt),Ar

t ;ωt
)
;

7: Based on Ad
t+1, update the policy parameter θ according to DPG 

(53) and (54): 

θt+1 = proxDc(St+1 ,Ad
t+1)

[
θt − ηθ∇θAc(θt)∇Ac Q

(
St,Ad

t ,Ac
t ,A

r
t ;ωt

) ]
;

8: Based on Ad
t+1 and θt+1, obtain Ar

t+1, so that. 

At+1 =
(
Ad

t+1,A
c
t+1 = Ac(θt+1),Ar

t+1

)
;

9: Calculate TD (51): 

δt = E(St,At)+ γQ(St+1,At+1;ωt) − Q(St,At;ωt) ;

10: Update the weight vector ω of the critic based on (52): 

ωt+1 = ωt − ηωδt∇ωQ(St,At;ωt) ;

11: end for. 
12: Output: With the given optimal ω* and θ* found, for each state S 

given, output the approximate optimal policy 
(
A*,d,Ac(θ*),A*,r ), where. 

(
A*,d,A*,r) = arg min

Ad ,Aradmissible
Q
(
S,Ad,Ac(θ*),Ar;ω* ) .

The flow chart of Algorithm 1 is shown in Fig. 4 below. 

4.4. Practical implementation details of Algorithm 1 at original MDP 
model 

When implementing Algorithm 1 at the original MDP model for the 
microgrid-manufacturing system, practical issues need to be addressed 

Fig. 4. The flow chart of Algorithm 1.  
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arise. The set of admissible parameters θ ∈ Dc(S,A) for continuous actions 
Ac, that are determined by (S1)-(S6) in Supplementary Material 7.3, have 
an intersection structure. Indeed from (S1)-(S6) one can view Dc(S,A) as an 

intersection Dc(S,A) = Dc ∩ DSOC
(

θ, SOCt ,
(

δb
t , δ

p
t , δ

pb
t , δsb

t , δbm
t

))
. Here we 

set the fixed simplex.   

The complicacy in Dc(S,A) lies in the other part of the intersection 

DSOC
(

θ, SOCt ,
(

δb
t , δp

t , δ
pb
t , δsb

t , δ
bm
t

))
, that may vary according to the 

choice of 
(

δb
t , δ

p
t , δpb

t , δsb
t , δ

bm
t

)
and depend on the SOC state, which makes 

the proximal projection to Dc(S,A) in Step 7 of Algorithm 1 nearly 
impossible to compute in practice. To fix this issue, we suggest to relax 
the constraint Dc(S,A) by only considering its fixed simplex part Dc. Of 
course, if we only project to Dc at every proximal projection step in our 
Step 7 of Algorithm 1, we may miss the SOC constraints in (S1)-(S6). But 
we can then fix this issue by using the θ found on the relaxed constraint 

set Dc and determine the binary variables 
(

δb
t , δ

p
t , δpb

t , δsb
t , δbm

t

)
, as well as 

update the SOC. If the SOC values we obtain violate the additional 

constraints in DSOC
(

θ, SOCt ,
(

δb
t , δp

t , δ
pb
t , δsb

t , δ
bm
t

))
, we will just set them 

to be the boundary values SOCmax or SOCmin, so that they will not violate 
the SOC constraints. In this way, we can find an approximate solution to 
the optimal one, with computationally achievable simulations. 

Under this simplification, the solution algorithm for the original 
model becomes practical to implement. We can then change Algorithm 1 
accordingly, so that.  

• In Step 6 of Algorithm 1, we select one action Ad
t+1 that only takes 

into account the constraint (30) and minimizes the Q-value. The 
admissible actions Ad are stored in a tree constructed based on (30) 
and we search over the tree to identify optimal action Ad

t+1 based on 

Step 6. The action Ad
t+1 does not include the indicator variables 

(
δb

t+1,

δp
t+1, δ

pb
t+1, δ

sb
t+1, δbm

t+1

)
in (43).  

• In Step 7 of Algorithm 1, the constraint Dc( St+1,Ad
t+1

)
is replaced by a 

fixed constraint Dc in (55). Notice that in this case, the projection 
onto Dc can be calculated directly, see Supplementary Material 7.1.  

• Once θ is chosen, we determine whether or not we should choose 
pm

t+1 + pb
t+1 ∕= 0, and whether pb

t+1 ∕= 0 according to (35), (36), and 
(37); we also determine whether or not we choose bm

t+1 ∕= 0 according 
to (34). The precise scheme of choosing 

(
pm

t+1, pb
t+1, bm

t+1
)

can be found 
in Supplementary Material 7.2.  

• With all these ready, Step 8 in Algorithm 1 will be modified 
accordingly.  

• At each loop, the optimal actions are implemented for the MDP 
system to jump to the next state and the incurred cost, throughput 
and energy demand are calculated. 

5. Case study 

5.1. Experimental parameters 

5.1.1. Joint Microgrid-Manufacturing system parameters 
In this section, numerical case studies are implemented to illustrate 

the benefits of the proposed modeling and solution strategies. The open- 
source code for the proposed model in this paper is released at the 
GitHub repository [74]. 

We have carried out experiments of the microgrid-manufacturing 

Table 1 
Machine Parameters.   

Mean time between 
failures Scale/Shape 
Parameter 

Mean time 
to repair 
(min) 

Rated power of 
operation (kW) 

Power at 
idle state 
(kW) 

M1 111.39 min/1.5766  4.95 115.5 105 
M2 51.1 min/1.6532  11.7 115.5 105 
M3 110.9 min/1.7174  15.97 115.5 105 
M4 239.1 min/1.421  27.28 170.5 155 
M5 122.1 min/1.591  18.37 132 120  

Table 2 
Buffer Parameters.   

B1 B2 B3 B4 

Capacity 1000 1000 1000 1000 
Initial 100 100 100 100  

Table 3 
Wind Turbine Parameters.  

Parameters Value Parameters Value 

vci(m/s)-Cut in speed 3 ηt-Gearbox efficiency 0.9 
vco(m/s)-Cut off speed 11 ηg-Generator efficiency 0.9 
vr(m/s)-Rate speed 7 θ-Power coefficient 0.593 
ρ(kg/m3)-Air density 1.225 rw

omc($/kWh) 0.08 
r(m)-Blade radius 25 Nw(unit) 1  

Table 4 
Battery Storage Parameters.  

Parameters Value Parameters Value 

e(kWh)-Capacity 350 b-Charging rate (kW) 2 
SOCmax(%) 95 SOCmin(%) 5 
rb
omc($/kWh) 0.9 η-Efficiency 0.99  

Table 5 
Solar Panel and Generator Parameters.  

Parameters Value Parameters Value 

a
(
m2)-Panel area 1400 ng(unit)-Number of generator 1 

δ-Efficiency 0.2 Gp(kW)-Generator capacity 650 
rs
omc($/kWh) 0.17 rg

omc($/kWh)-Operating cost 0.45  

Table 6 
Comparison Among Three Models.   

Energy Cost 
($) 

Production Throughput 
(unit) 

Training CPU Time 
(s) 

Routine 
Strategy 

3,642 73 29 

Proposed 
Model 

876 73 457 

Random 
Policy 

1,656 24 N/A  

Dc = {
(

λm
s , λ

b
s , λm

w , λ
b
w, λm

g , λ
b
g

)
: λm

s , λ
b
s , λ

m
w , λb

w, λ
m
g , λb

g ≥ 0, 0 ≤ λm
g + λb

g ≤ 1, 0 ≤ λm
s + λb

s ≤ 1 , 0 ≤ λm
w + λb

w ≤ 1} (55)   
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system using a real-case parameter set. The manufacturing system in
cludes five machines and four buffers as shown in Fig. 2. We summarize 
all the system parameters in Tables 1-5. The parameters of the 
manufacturing system are taken according to [78], where machine and 
buffer parameters of the manufacturing system are shown in Table 1 and 
Table 2, respectively. Note that the mean time between failures of each 
machine is modeled as random variables following Weibull distribution 
with respective scale and shape parameters. The mean time to repair of 
each machine is modeled as exponentially distributed random variables. 
Unit production reward rp is set to be $104 per unit. 

The parameters of the microgrid used in the experiment are sized 
based on the manufacturing load according to the methods proposed in 
[45]. The parameters related to wind turbine, battery storage system, 
and solar panel and generator are illustrated in Table 4, Table 5, and 
Table 6, respectively. The data of solar irradiance and wind speed are 
collected from Solar Energy Local [76] and State Climatologist of Illinois 
[77], respectively. 

In order to prevent computational overflow, in the actual numerical 
experiment we scaled all the parameters by choosing different units of 
measurement, with distance measured by km (103 m), time measured by 
hour (60 min = 3600 s), speed measured by km/h (3.6 m/s), energy 
measured by MegaWatt (106 Watt), money cost measured by 104 USD, 
area measured by km2 (106 m2), mass measured by 106 kg. Time period 
is measured in hours. 

5.1.2. Reinforcement algorithm parameters 
The neural network Q(S,A;ω) is taken to be fully connected and it 

contains two hidden layers with 100 neurons for each layer, with Sig
moid and ReLU activations for layers 1 and 2. The output is then scaled 
back to usual units of measurement, like $ for cost and kW for energy 
demand. 

We take the discount factor γ = 0.999. The experiment includes 
reinforcement learning training for 5 × 103 iterations, with each itera
tion counts for time period with equal duration of one hour per period, 
and the learning rates are tuned to be ηθ = 0.003 and ηω = 0.0003, with 
ηω discounted by a factor 0.999 at each iteration. Fig. 5-(a) plots the 
L2-norm of the difference at two consecutive iterations during training in 
the neural network weights (‖ωt+1 − ωt‖

2
2), which clearly indicates the 

convergence of the training process. Fig. 5-(b) plots the cumulative 
reward function (total incurred cost C(S, π) in (15) truncated at the 
current iteration step). 

In order to validate the effective convergence of our reinforcement 
learning algorithm, comparison has been carried out for a pure 
Q-learning algorithm for the same microgrid-manufacturing system with 
a smaller size (2 machines and 1 buffer) [6]. After discretization of the 
continuous states and actions, the state space has a size of 3.8 × 103 and 
the action space has a size of 2.6× 104. We use a smaller fully-connected 
neural network Q(S,A;ω) with two hidden layers and Sigmoid activa
tion, where each hidden layer has 32 neurons. Again, we calculated the 
square norms of the differences of the neural-network weight vectors for 
each two consecutive algorithm iterations (i.e., ‖ωt+1 − ωt‖

2
2). The dis

count factor γ = 0.1. The neural network is trained using Adam [75] 
with different learning rates: Fig. 5-(c) is for learning rate 0.001 and 
Fig. 5-(d) is for learning rate 0.0001. It is seen that in these two cases, 
even after 104 iterations, the vanilla Q-learning algorithm cannot 
converge due to the immense size of the discretized state-action spaces 
(a manifestation of the “curse of dimensionality”), indicating the effec
tiveness of our method that combines deterministic policy gradient [71] 
with discrete Monte-Carlo type searches. Based on the optimal param
eters (ω*, θ*) found for the neural-network Q(S,A;ω*) and the contin
uous action Ac(θ*) (see Algorithm 1), we tested the corresponding 

Fig. 5. Left to Right: (a) Evolution of weight differences ‖ωt+1 − ωt‖
2
2; (b) Evolution of cumulative rewards; (c), (d) Compare with vanilla Q-learning.  

Fig. 6. Left to Right: Average over three experiments the comparison of (a) total throughput in production unit; (b) total energy cost incurred by optimal, routine and 
random policies: red solid line = optimal policy, blue dashed line = routine strategy via integer programming, black star line = random policy. 
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microgrid-manufacturing model at a time horizon of 100 time periods, 
with each time period equals one hour. 

5.1.3. Baseline scenarios 
The results are compared with two baseline scenarios: The first one 

runs under a random policy, while the second one is a routine policy. For 
the random policy, the accumulation of total incurred cost E(S,A) at (16), 
total energy cost TF(S,A) at (17) and total production units prt in (26) 
for the optimal policy and random policy are calculated for the system 
running at a total horizon of 100 time periods (each period = 1 hour). 

For the routine policy, we consider a routine practice strategy that can 
be adopted by many industrial practitioners, i.e., the production system 
and microgrid are controlled or scheduled separately. The production 
scheduling is generated to minimize total energy consumption without 
sacrificing target production. This model is briefly introduced as follows. 
Let xit be the binary decision variable denoting the production schedule 
of the manufacturing system, i.e., it takes the value of one when machine 
i is scheduled for production in period t, and zero otherwise. The 
objective function can be formulated as: 

min
xit

∑

t∈T
xit⋅pi⋅Δt (56) 

where T is the set including all time periods t, pi is the rated power of 
machine i, Δt is the time duration of each discretization period. Note 
that for simplicity, the values of PCOpr

i are used as the rated power 
without considering the difference between PCOpr

i and PCIdl
i . 

Two constraints are formulated as follows: 
∑

t∈T
xNt⋅PRN ≥ TA (57) 

where xNt is the decision variable for machine N (i.e., the last ma
chine) of the production system. PRN is the production rate of machine 
N. TA is the target production count. This constraint shows that the 
target production should be satisfied. Note that this constraint is based 
on a simplified assumption that machine breakdown and the resultant 
blockage/starvation are not considered. 

0 ≤ Bi(t+1) = Bit + xit⋅PRi − x(i+1)t⋅PRi+1 ≤ Ci (58) 

where Ci is the capacity of buffer i. Bi(t+1) is the count of work-in- 
progress parts stored in buffer location i at the beginning of period t +
1. This constraint shows material flow balance and the work-in-progress 
part in each buffer location cannot exceed respective bounds. 

After solving the aforementioned Integer Programming, the pro
duction schedule that can minimize energy consumption without 
sacrificing production can be obtained. Then, the utilization of micro
grids following the empirical rules will be implemented. First, the bat
tery storage system and generator are typically considered backups for 
emergency situations in practice, and thus are not used in this routine 
policy. Second, if the renewable sources are available at time period t, 
they will be first used to satisfy the energy demand of production. If the 
renewable sources have a higher supply capability than production de
mand at period t, the remaining part will be sold back to the grid. If the 
renewable sources have a less supply capability than production demand 
at period t, the demand gap will be filled by purchasing electricity from 
the grid. The wind energy has a higher priority to be used than solar 
source since the cost of wind energy is typically lower than solar energy. 

To match the target production unit made by optimal policy, for this 
routine strategy found by Integer Programming, we set the target output 
at the time horizon 100, i.e., the target production unit TA in (56) to be 
equal to 73, which is the total production throughput in units for the 
optimal policy (the quantity prt in (26)) at time horizon 100. 

5.2. Result analysis 

5.2.1. Random strategy 
The system under randomly chosen policy starts with the same initial 

conditions as the system under optimal policy. The results of 3 experi
ments are shown in Fig. 6, where red solid lines are for the optimal 
policy selected by reinforcement learning and black star lines are for the 
random policy. It is clearly seen from these results that under the 
optimal policy the manufacturing system tends to produce more 
throughput with less total cost and similar or less total energy cost 
(energy demand). More precisely, in one of the experiments, the optimal 
policy found by reinforcement learning over a time horizon of 100 time 
periods has an output (the quantity prt in (26) of 73, while the randomly 
selected policy only produces 24. At the same time, the total cost for the 
optimal policy is − $728,293 and the total cost for the random policy is 
− $236,214 . In terms of energy cost, optimal policy is also about one 
time less than the random policy, with $876 for optimal policy and 
$1,656 for random policy. The two other experiments behave very 
similarly. 

5.2.2. Routing strategy 
We found that the total energy cost under the optimal policy found 

by this integer programming is $3,642. This has been about four times of 
our previously announced $876 for the optimal policy found by rein
forcement learning. Two other experiments are made and the results are 
similar. The results of the evolution of the total energy cost and total 
production throughput in units as a function of time are shown in Fig. 6, 
where red solid lines are for the optimal policy selected by reinforce
ment learning and blue dashed lines are for the routine strategy found by 
an integer programming. It is clearly seen that the reinforcement 
learning model selects a policy that incurs less energy cost. 

5.2.3. Comparisons 
The overall comparison between proposed reinforcement learning 

model and random policy as well as routine policy is summarized in 
Table 6, where the last column also compares the average training time 
(CPU time over 3 experiments) consumed in training for the routine 
strategy and our proposed reinforcement learning method in the paper. 

6. Conclusion 

This paper proposes a joint dynamic control model for microgrids 
and manufacturing systems using MDP to identify an optimal control 
strategy for both microgrid components and manufacturing system so 
that the energy cost for production can be minimized without sacrificing 
production throughput. A novel reinforcement learning algorithm that 
leverages both TD and DPG algorithms is proposed to solve the joint 
control of microgrid and manufacturing system towards cost optimality. 
Experiments for a manufacturing system with an onsite microgrid with 
renewable sources have been implemented and the results show the 
effectiveness of the proposed method in addressing the “curse of 
dimensionality” in dynamic decision-making with high dimensional and 
complicated state and action spaces. 

There are several remarks and future directions that we would like to 
address here: (1) One can consider real time decision making for 
emergency situations such as natural disasters that lead to non- 
availability of external energy supplies from grids (i.e., some new rele
vant constraints need to be added); (2) Our method could also be 
extended to other types of manufacturing systems, e.g., flexible 
manufacturing system, for an extended application scope; (3) The time 
consumed for the training process in reinforcement learning can be 
reduced by using reinforcement learning schemes with more explora
tion, such as ε-greedy [67], Monte-Carlo tree search [79] or upper- 
confidence-bound method [80]. 
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