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Nonoscillatory Solutions of Higher-Order
Fractional Differential Equations

Martin Bohner , Said R. Grace, Irena Jadlovská and Nurten Kılıç

Abstract. This paper deals with the asymptotic behavior of the nonoscil-
latory solutions of a certain forced fractional differential equations with
positive and negative terms, involving the Caputo fractional derivative.
The results obtained are new and generalize some known results appear-
ing in the literature. Two examples are also provided to illustrate the
results.

Mathematics Subject Classification. 34A08, 34E10, 34A34.

Keywords. Fractional differential equations, integro-differential equa-
tions, nonoscillatory solutions, boundedness, Caputo derivative.

1. Introduction

Consider the forced fractional differential equation with positive and negative
terms of the form

CDα
c y(t) + f1(t, x(t)) = b(t) + k(t)xβ(t) + f2(t, x(t)), (1.1)

where

y =
(
a (x′)β

)(n−1)

with n ∈ N,

β is the ratio of two odd positive integers, and CDα
c y denotes the Caputo

fractional derivative defined as

CDα
c y(t) =

1
Γ(1 − α)

∫ t

c

y′(s)
(t − s)α

ds with α ∈ (0, 1), c > 1,

where

Γ(x) =
∫ ∞

0

sx−1e−sds, x > 0.

Throughout this paper, we assume:
(H1) a, k ∈ C([c,∞), (0,∞)), b ∈ C([c,∞),R).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-022-02047-w&domain=pdf
http://orcid.org/0000-0001-8310-0266
http://orcid.org/0000-0003-4649-5611
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(H2) f1, f2 ∈ C([c,∞) × R,R) and there exist

g1, g2 ∈ C([c,∞), (0,∞)) and λ1, λ2 > 0

with λ1 > λ2 and

xf1(t, x) ≥ g1(t)|x|λ1+1 and 0 ≤ xf2(t, x) ≤ g2(t)|x|λ2+1.

A function x : [c,∞) → R is called a solution of (1.1) if x ∈ C1 ([c,∞),R),
a(x′)β ∈ Cn−1 ([c,∞),R), and x satisfies (1.1). Oscillation and nonoscillation
of such solutions is defined in the usual way.

Integro-differential and fractional differential equations have recently re-
ceived attention due to their potential applications in many disciplines such
as engineering, mechanics, physics, chemistry, aerodynamics, mathematical
biology, electrodynamics, and others. For more details, we refer the reader
to the monographs [1–4]. (See also the papers [5–7] for specific results from
mathematical biology and physics, where the models are formulated by means
of differential equations with forces idealized by nonlocal and/or taxis-driven
terms.) Oscillation and other asymptotic results for solutions of such equa-
tions are relatively scarce in the literature. We refer to [8–28] for correspond-
ing results. Except the recent papers [17,19], there are no such results for
forced fractional differential equations of the form (1.1) In [17,19], (1.1) was
considered in the cases n = 1, n = 2, and β = 1, while the remaining cases
were left as open problems. The main objective of this paper is to present
a solution to these open problems and to generalize the results in [17,19] to
the case of arbitrary n ∈ N. We also refer to Remark 2.5 at the end of Sect. 2
that compares the results given in [17,19] to the ones presented in this paper.
We note that (1.1) is equivalent to the Volterra-type equation

y(t) = y(c) +
1

Γ(α)

∫ t

c

(t − s)α−1[b(s) + k(s)xβ(s) + F (s, x(s))]ds

with F = f2 − f1, (1.2)

see Medveď [22, Lemma 2.5] and Medveď and Posṕı̌sil [23, Lemma 1]. In the
proofs of our main results in Sect. 2, we use the equivalence (1.2) as well
as Young’s inequality. The paper concludes in Sect. 3 with two examples
illustrating the applicability of our two main results.

2. Main Results

To obtain our results in this paper, we shall use the following two auxiliary
results, which are also used in [17,19].

Lemma 2.1. (See [11, Lemma 2.3]) Let α, p > 0 satisfy p(α − 1) + 1 > 0.
Then,

∫ t

0

(t − s)p(α−1)epsds ≤ Qept, t ≥ 0,
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where

Q =
Γ(1 + p(α − 1))

p1+p(α−1)
.

Lemma 2.2. (Young’s inequality [29]) If X,Y ≥ 0 and δ > 1, then

XY ≤ Xδ

δ
+

Y η

η
with η =

δ

δ − 1
. (2.1)

For notational purpose, it is convenient to set

g(t) :=

(
gλ1
2 (t)

gλ2
1 (t)

)1/(λ1−λ2)

and A(t, c) :=
∫ t

c

a−1/β(s)ds.

We now give sufficient conditions under which any nonoscillatory solution x
of (1.1) satisfies

|x(t)| = O
(
t(n−1)/βet/βA(t, c)

)
as t → ∞.

Theorem 2.3. Assume (H1)–(H2). Let p > 1 and α ∈ (0, 1) be such that
p(α − 1) + 1 > 0 holds. If

∫ ∞

c

kq(s)s(n−1)qAβq(s, c)ds < ∞, where q =
p

p − 1
, (2.2)

lim
t→∞

∫ t

c

(t − s)α−1|b(s)|ds < ∞, (2.3)

and

lim
t→∞

∫ t

c

(t − s)α−1g(s)ds < ∞ (2.4)

hold, then every nonoscillatory solution x of (1.1) satisfies

lim sup
t→∞

|x(t)|
t(n−1)/βet/βA(t, c)

< ∞. (2.5)

Proof. Let x be a nonoscillatory solution of (1.1). As the case of eventually
negative x can be treated similarly, we assume in this proof that x is eventu-
ally positive, i.e., there exists a t1 ≥ c such that x(t) > 0 for all t ≥ t1. From
now on in this proof, let t ≥ t1. Applying (2.1) with

δ =
λ1

λ2
> 1, X = xλ2(t), Y =

λ2g2(t)
λ1g1(t)

, and η =
λ1

λ1 − λ2
,
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we obtain

g2(t)xλ2(t) − g1(t)xλ1(t) =
λ1

λ2
g1(t)

(
xλ2(t)

λ2g2(t)
λ1g1(t)

− λ2

λ1

(
xλ2(t)

)λ1/λ2

)

=
λ1

λ2
g1(t)

(
XY − Xδ

δ

)

≤ λ1

λ2
g1(t)

(
Y η

η

)

=
λ1 − λ2

λ2

(
λ2g2(t)

λ1

)λ1/(λ1−λ2)

(g1(t))λ2/(λ2−λ1)

= (λ1 − λ2)

(
λλ2

2

λλ1
1

)1/(λ1−λ2)

g(t).

(2.6)
By (H1)–(H2) and (1.1), we get

y(t)
(1.2)
= y(c) +

1
Γ(α)

∫ t

c

(t − s)α−1[b(s) + k(s)xβ(s) + F (s, x(s))]ds

≤ |y(c)| +
1

Γ(α)

∫ t

c

(t − s)α−1|b(s)|ds

+
1

Γ(α)

∫ t1

c

(t − s)α−1k(s)
∣∣xβ(s)

∣∣ ds

+
1

Γ(α)

∫ t

t1

(t − s)α−1k(s)xβ(s)ds

+
1

Γ(α)

∫ t1

c

(t − s)α−1|F (s)|ds

+
1

Γ(α)

∫ t

t1

(t − s)α−1
(
g2(s)xλ2(s) − g1(s)xλ1(s)

)
ds

(2.6)

≤ |y(c)| +
1

Γ(α)

∫ t

c

(t − s)α−1|b(s)|ds

+
1

Γ(α)

∫ t1

c

(t1 − s)α−1k(s)
∣∣xβ(s)

∣∣ ds

+
1

Γ(α)

∫ t

t1

(t − s)α−1k(s)xβ(s)ds

+
1

Γ(α)

∫ t1

c

(t1 − s)α−1|F (s)|ds

+
λ1 − λ2

Γ(α)

(
λλ2

2

λλ1
1

)1/(λ1−λ2) ∫ t

t1

(t − s)α−1g(s)ds,

i.e.,
(
a (x′)β

)(n−1)

(t) ≤ Mn−1 +
1

Γ(α)

∫ t

t1

(t − s)α−1k(s)xβ(s)ds, (2.7)
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where, in view of (2.3) and (2.4), Mn−1 > 0 is defined by

Mn−1 := |y(c)| +
1

Γ(α)

∫ t1

c

(t1 − s)α−1k(s)
∣∣xβ(s)

∣∣ ds

+
1

Γ(α)

∫ t1

c

(t1 − s)α−1|F (s)|ds

+
1

Γ(α)
lim

t→∞

∫ t

c

(t − s)α−1|b(s)|ds

+
λ1 − λ2

Γ(α)

(
λλ2

2

λλ1
1

)1/(λ1−λ2)

lim
t→∞

∫ t

t1

(t − s)α−1g(s)ds.

Integrating (2.7), unless n = 1, (n − 1) times from t1 to t, each time revers-
ing the order of integration in the double integral and evaluating the inner
integral and using the recursion formula for the Gamma function, yields

a(t) (x′(t))β ≤
n−1∑
ν=0

Mν
(t − t1)ν

ν!

+
1

Γ(α + n − 1)

∫ t

t1

(t − s)α+n−2k(s)xβ(s)ds, (2.8)

where

Mν :=
∣∣∣∣
(
a (x′)β

)(ν)

(t1)
∣∣∣∣ ≥ 0 for all 0 ≤ ν < n − 1.

Note that (2.8) is also correct when n = 1, compare (2.7). Hence, (2.8) holds
for all n ∈ N and for all t ≥ t1. We continue to estimate (2.8) as

a(t) (x′(t))β

≤
n−1∑
ν=0

Mν
tν

ν!
+

tn−1

Γ(α + n − 1)

∫ t

t1

(t − s)α−1k(s)xβ(s)ds

= tn−1

(
n−1∑
ν=0

Mν
tν−n+1

ν!
+

1
Γ(α + n − 1)

∫ t

t1

(t − s)α−1k(s)xβ(s)ds

)

≤ tn−1

(
n−1∑
ν=0

Mν

ν!
+

1
Γ(α + n − 1)

∫ t

t1

(t − s)α−1k(s)xβ(s)ds

)

for all t ≥ t1 ≥ c > 1, and thus

a(t) (x′(t))β ≤ tn−1

(
C1 + C2

∫ t

t1

(t − s)α−1k(s)xβ(s)ds

)
, (2.9)

where C1, C2 > 0 are defined by

C1 :=
n−1∑
ν=0

Mν

ν!
and C2 :=

1
Γ(α + n − 1)

.
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Utilizing now Hölder’s inequality as well as Lemma 2.1 for the integral on
the right-hand side of (2.9), we obtain

∫ t

t1

(t − s)α−1k(s)xβ(s)ds

=
∫ t

t1

[
(t − s)α−1es

] [
e−sk(s)xβ(s)

]
ds

≤
(∫ t

t1

(t − s)p(α−1)epsds

)1/p (∫ t

t1

e−qskq(s)xβq(s)ds

)1/q

≤
(∫ t

0

(t − s)p(α−1)epsds

)1/p (∫ t

t1

e−qskq(s)xβq(s)ds

)1/q

≤ (Qept)1/p

(∫ t

t1

e−qskq(s)xβq(s)ds

)1/q

= Q1/pet

(∫ t

t1

e−qskq(s)xβq(s)ds

)1/q

,

where Q > 0 is given in Lemma 2.1, and using this in (2.9) yields

a(t) (x′(t))β ≤ tn−1etω(t), (2.10)

where

ω(t) := C1 + C3

(∫ t

t1

e−qskq(s)xβq(s)ds

)1/q

with C3 := C2Q
1/p > 0.

We rewrite (2.10) as

x′(t) ≤
(

tn−1etω(t)
a(t)

)1/β

for t ≥ t1. (2.11)

Noting that tn−1, et, and ω(t) are all increasing, integrating (2.11) from t1
to t yields that

x(t) ≤ x(t1) +
∫ t

t1

s(n−1)/βes/βω1/β(s)a−1/β(s)ds

≤ x(t1) + t(n−1)/βet/βω1/β(t)
∫ t

t1

a−1/β(s)ds

= x(t1) + t(n−1)/βet/βω1/β(t)A(t, t1)

=
(

x(t1)
t(n−1)/βet/βA(t, t1)

+ ω1/β(t)
)

t(n−1)/βet/βA(t, t1)

≤
(

x(t1)

t
(n−1)/β
2 et2/βA(t2, t1)

+ ω1/β(t)

)
t(n−1)/βet/βA(t, t1)

holds for t ≥ t2 with t2 > t1, and thus

x(t)
t(n−1)/βet/βA(t, t1)

≤ C4 + ω1/β(t) for t ≥ t2, (2.12)
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where

C4 :=
x(t1)

t
(n−1)/β
2 et2/βA(t2, t1)

> 0.

Applying one of the elementary inequalities

(A + B)β ≤
{

2β−1(Aβ + Bβ) if β ≥ 1
Aβ + Bβ if 0 < β < 1

(2.13)

with A,B ≥ 0 to (2.12) gives
(

x(t)
t(n−1)/βet/βA(t, t1)

)β

≤ C5 + C6ω(t) for t ≥ t2, (2.14)

where C5, C6 > 0 are defined by

C5 :=

{
2β−1Cβ

4 if β ≥ 1
Cβ

4 if 0 < β < 1

and

C6 :=

{
2β−1 if β ≥ 1
1 if 0 < β < 1.

Recalling the definition of ω(t), (2.14) implies that
(

x(t)
t(n−1)/βet/βA(t, t1)

)β

≤ C7 + C8

(∫ t

t1

e−qskq(s)xβq(s)ds

)1/q

holds for t ≥ t2, where

C7 := C5 + C1C6 > 0 and C8 := C3C6 > 0,

from which, by employing again (2.13), we get
(

x(t)
t(n−1)/βet/βA(t, t1)

)βq

≤ C9 + C10

∫ t

t1

e−qskq(s)xβq(s)ds (2.15)

for t ≥ t2, where

C9 := 2q−1Cq
7 > 0 and C10 := 2q−1Cq

8 .

Denoting the left-hand side of (2.15) by w(t), (2.15) yields

w(t) ≤ C9 + C10

∫ t

t1

kq(s)s(n−1)qAβq(s, t1)w(s)ds

for t ≥ t2, and this can be rewritten as

w(t) ≤ C11 + C10

∫ t

t2

kq(s)s(n−1)qAβq(s, t1)w(s)ds

for t ≥ t2, where

C11 := C9 + C10

∫ t2

t1

kq(s)s(n−1)qAβq(s, t1)w(s)ds > 0.

Thanks to Gronwall’s inequality and (2.2), w(t) is bounded. Thus, (2.5) is
established. �
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We now give conditions that ensure that any nonoscillatory solution of
(1.1) with β = 1 is bounded.

Theorem 2.4. Assume (H1)–(H2) and β = 1. Let p > 1, α ∈ (0, 1), S > 0,
and σ > 1 be such that p(α − 1) + 1 > 0 and

tn−1

a(t)
≤ Se−σt (2.16)

hold. If ∫ ∞

c

kq(s)e−qsds < ∞, where q =
p

p − 1
, (2.17)

(2.3), and (2.4) hold, then every nonoscillatory solution of (1.1) is bounded.

Proof. Let x be a nonoscillatory solution of (1.1). As the case of eventually
negative x can be treated similarly, we assume in this proof that x is even-
tually positive, i.e., there exists a t1 ≥ c such that x(t) > 0 for all t ≥ t1.
Exactly as in the proof of Theorem 2.3, we obtain (2.11) with β = 1. Recalling
that ω(t) is increasing, integrating (2.11) from t1 to t yields

x(t) ≤ x(t1) +
∫ t

t1

un−1euω(u)
a(u)

du

(2.16)

≤ x(t1) +
∫ t

t1

Se(1−σ)uω(u)du

≤ x(t1) +
∫ t

t1

Se(1−σ)uω(t)du

= x(t1) + Sω(t)
(

e(1−σ)t1

σ − 1
− e(1−σ)t

σ − 1

)

≤ x(t1) + Sω(t)
e(1−σ)t1

σ − 1
,

and hence, by the definition of ω(t), we have

x(t) ≤ C12 + C13

(∫ t

t1

e−qskq(s)xq(s)ds

)1/q

(2.18)

for t ≥ t1, where

C12 := x(t1) + C1S
e(1−σ)t1

σ − 1
> 0 and C13 := C3S

e(1−σ)t1

σ − 1
> 0.

Employing (2.13), (2.18) yields

xq(t) ≤ C14 + C15

∫ t

t1

e−qskq(s)xq(s)ds (2.19)

for t ≥ t1, where

C14 := 2q−1Cq
12 > 0 and C15 := 2q−1Cq

13 > 0.

From Gronwall’s inequality and (2.17), we conclude that x is bounded. �
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Remark 2.5. In this remark, we would like to compare our presented results
with the results offered in [17,19]. Just like in our work, Lemmas 2.1 and 2.2
are utilized in both [17,19].

1. First, in 2019, Grace, Graef, and Tunç considered in [17] the same equa-
tion (1.1) with β = 1. In the definition of y, the cases n = 1 and n = 2
were allowed. They proved two results, [17, Theorem 2.1] in the case
n = 2 and [17, Theorem 2.2] in the case n = 1, both of which are special
cases of the above Theorem 2.4. Note that our Theorem 2.4 also has the
restriction β = 1, but it allows n ∈ N to be arbitrary.

2. Next, in 2020, the same authors considered in [19] the same equation
(1.1) with β ≥ 1. In the definition of y, again the cases n = 1 and n = 2
were allowed. [19, Theorem 2.3] in the case n = 2 and [19, Theorem 2.4]
in the case n = 1, both of which are special cases of the above Theorem
2.3. Note that our Theorem 2.3 allows for β > 0 and n ∈ N be arbitrary.
Note also that our proof of Theorem 2.3 is, in the special cases n = 1
and n = 2, slightly different from the proofs in [19], which is mainly due
to the fact that we could not verify that the function ϕ in [19, (2.25)]
was indeed an increasing function (case n = 1), while our function ω
presented in the proof of Theorem 2.3 is increasing for any n ∈ N, also
for n = 1.

3. Examples

We conclude this paper with two examples to illustrate our results.

Example 3.1. Consider the equation
CD

1/2
8

(
t(x′(t))3

)′′′
+ f1(t, x(t))

= e−4t sin t +
1

1 + t6
x3(t) + f2(t, x(t)), t ≥ 8. (3.1)

Hence, (3.1) is in the form (1.1) with

y(t) =
(
t(x′(t))3

)′′′
, n = 4, α =

1
2
, c = 8,

β = 3, a(t) = t, b(t) = e−4t sin t, k(t) =
1

1 + t6
,

and

A(t, c) = A(t, 8) =
∫ t

8

s−1/3ds =
3
2

(
t2/3 − 4

)
.

Then, it is easy to see that (H1) holds. Putting p = 3/2, we get q = 3 and
p(α − 1) + 1 = 1/4 > 0. Letting

f1(t, x) = g1(t)|x|λ1−1x and f2(t, x) = g2(t)|x|λ2−1x

with λ1 > λ2 and g1(t) = g2(t) = e−4t, we see that (H2) holds. Moreover,

g(t) =

(
gλ1
2 (t)

gλ2
1 (t)

)1/(λ1−λ2)

= e−4t.
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Since ∫ ∞

c

kq(s)s(n−1)qAβq(s, c)ds ≤
(

3
2

)9 ∫ ∞

8

s15

(1 + s6)3
ds

≤
(

3
2

)9 ∫ ∞

8

ds

s3
< ∞,

(2.2) holds. Applying the substitution u = t − s + 8, we find
∫ t

c

(t − s)α−1|b(s)|ds

=
∫ t

8

(t − s)−1/2
∣∣e−4s sin s

∣∣ ds

≤
∫ t

8

(t − s)−1/2e−4sds

=
∫ t

8

(u − 8)−1/2e4u−4t−32du

≤ 1
e4t+32

∫ t

8

(u − 8)−1/2e4udu

=
1

e4t+32

(∫ 16

8

(u − 8)−1/2e4udu +
∫ t

16

(u − 8)−1/2e4udu

)

=
1

e4t+32

(
lim

b→8+

∫ 16

b

(u − 8)−1/2e4udu +
∫ t

16

(u − 8)−1/2e4udu

)

≤ e64

e4t+32
lim

b→8+

∫ 16

b

(u − 8)−1/2du +
(16 − 8)−1/2

e4t+32

∫ t

16

e4udu

=
25/2e64

e4t+32
+

2−7/2

e4t+32

(
e4t − e64

)
< ∞ as t → ∞,

so (2.3) holds, and similarly
∫ t

c

(t − s)α−1g(s)ds =
∫ t

8

(t − s)−1/2e−4sds < ∞,

so (2.4) holds. Since all assumptions of Theorem 2.3 are satisfied, we may
conclude that every nonoscillatory solution x of (3.1) satisfies (2.5), i.e.,

lim sup
t→∞

|x(t)|
et/3t

(
t2/3 − 4

) < ∞.

Example 3.2. Consider the equation
CD

3/4
2

(
2t4e5tx′(t)

)′′′′
+ f1(t, x(t))

= e−t cos t + et/4x(t) + f2(t, x(t)), t ≥ 2. (3.2)

Hence, (3.2) is in the form (1.1) with

y(t) =
(
2t4e5tx′(t)

)′′′′
, n = 5, α =

3
4
, c = 2,

β = 1, a(t) = 2t4e5t, b(t) = e−t cos t, k(t) = et/4.
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Clearly, (H1) is satisfied. With S = 1/2 and σ = 5, we see that (2.16) holds.
Putting p = 2, we get q = 2 and p(α − 1) + 1 = 1/2 > 0. Moreover,

∫ ∞

c

kq(s)e−qsds =
∫ ∞

2

es/2e−2sds =
∫ ∞

2

e−3s/2ds < ∞,

so (2.17) holds. Letting

f1(t, x) = g1(t)|x|λ1−1x and f2(t, x) = g2(t)|x|λ2−1x

with λ1 > λ2 and g1(t) = g2(t) = e−t, so that g(t) = e−t, we see that (H2),
(2.3), and (2.4) hold. Since all assumptions of Theorem 2.4 are satisfied, we
may conclude that every nonoscillatory solution of (3.2) is bounded.

4. Conclusions

In this paper, we considered a higher-order fractional differential equation of
Caputo type. By employing an equivalent representation in form of a Volterra-
type equation as well as Young’s inequality, we derived some new oscillation
criteria. These criteria contain some previously published results for special
cases of our general equation. We presented also two examples, which cannot
be treated by the methods available in the literature thus far.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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Turkey

e-mail: nurten.kilic@dpu.edu.tr

https://doi.org/10.2478/tmmp-2013-00010
https://doi.org/10.2478/tmmp-2013-00010
https://doi.org/10.3846/13926292.2015.1068233
https://doi.org/10.1186/s13662-021-03223-0


142 Page 14 of 14 M. Bohner et al. MJOM

Received: May 22, 2021.

Revised: September 9, 2021.

Accepted: April 7, 2022.


	Nonoscillatory Solutions of Higher-Order Fractional Differential Equations
	Recommended Citation

	Nonoscillatory Solutions of Higher-Order Fractional Differential Equations
	Abstract
	1. Introduction
	2. Main Results
	3. Examples
	4. Conclusions
	References


