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Abstract
We derive a discrete predator–prey model from first principles, assuming that the prey
population grows to carrying capacity in the absence of predators and that the predator
population requires prey in order to grow. The proposed derivation method exploits
a technique known from economics that describes the relationship between continu-
ous and discrete compounding of bonds. We extend standard phase plane analysis by
introducing the next iterate root-curve associated with the nontrivial prey nullcline.
Using this curve in combination with the nullclines and direction field, we show that
the prey-only equilibrium is globally asymptotic stability if the prey consumption-
energy rate of the predator is below a certain threshold that implies that the maximal
rate of change of the predator is negative. We also use a Lyapunov function to provide
an alternative proof. If the prey consumption-energy rate is above this threshold, and
hence the maximal rate of change of the predator is positive, the discrete phase plane
method introduced is used to show that the coexistence equilibrium exists and solu-
tions oscillate around it. We provide the parameter values for which the coexistence
equilibrium exists and determine when it is locally asymptotically stable and when it
destabilizes by means of a supercritical Neimark–Sacker bifurcation. We bound the
amplitude of the closed invariant curves born from the Neimark–Sacker bifurcation
as a function of the model parameters.

Keywords Difference equations · Predator–prey · Neimark–Sacker bifurcation ·
Global stability · Lyapunov function
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1 Introduction

Mathematical models describing interactions of populations are essentially based on
one or more of the three main relationships: mutualism, competition, and predation.
A popular, but simple example of continuous predator–prey systems is the Lotka–
Volterramodel. Themodelwas formulated independently byLotka (1920) andVolterra
(1926).WhileLotka applied this systemof ordinarydifferential equations to a chemical
reaction and later to a plant populationwith a dependent species (Lotka 1920), Volterra
used the periodic solutions of this predator–prey system to explain oscillatory fish
catches in the Adriatic (Kingsland 1995). The model assumes that the prey population
grows exponentially in the absence of predators and the predator population decays
exponentially in the absence of prey. The contribution of the prey to the growth of
the predator population is assumed to be proportional to the product of the size of the
predator population and the size of the prey population. Similarly, the decline in the
size of the prey population in the presence of predators is assumed to be proportional
to the product of the sizes of the two populations. The classical and widely studied
Lotka–Volterra model is then given by

x ′ = r x − αxy, y′ = −dy + γ xy, (1)

where r > 0 is the growth rate (in the absence of the predator) and d > 0 represents
the decay rate of the predator in the absence of the prey. The positive parameters α

and γ determine the consumption rate and consumption-energy rate, respectively. The
coexistence equilibrium of (1) is a center, and a family of periodic orbits oscillates
about the coexistence equilibrium with an oscillation frequency that is more rapid for
larger prey reproduction rates and larger predator mortality rates. A criticism of the
model is the structural instability, since a small change in the equations can eliminate
the existence of periodic orbits (Kot 2001).

Another criticism of (1) is the assumption of exponential growth for the prey popu-
lation. This has also been criticized for single speciesmodels as resources are generally
limited. Consequently, Verhulst (1838) introduced the so-called logistic growthmodel,
assuming limited resources and resulting in convergence to a positive carrying capac-
ity. It is reasonable to assume a similar convergence behavior for the prey population
in the absence of the predator rather than the assumption of unbounded growth as in
the classical Lotka–Volterra model.

Thus, assuming logistic growth for the prey in the absence of the predator, one
obtains the modified predator–prey model

x ′ = r x
(
1 − x

K

)
− αxy, y′ = −dy + γ xy, (2)

where the parameters r , α, d, and γ have the same biological interpretation as in (1).
However, to account for intra-specific competition among the prey population, the
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additional parameter K > 0 that represents the carrying capacity of the prey popula-
tion was introduced. The dynamics of (2) differs from the behavior of solutions of the
classical Lotka–Volterra model (1). In contrast to (1), where solutions cycle periodi-
cally about the coexistence equilibrium with x-amplitude and y-amplitude dependent
on initial conditions, using the Bendixson–Dulac negative criterion (Kot 2001), it
can be proven that no periodic orbits exist for (2). If the prey consumption-energy
rate of the predator γ satisfies γ > d

K , then the coexistence equilibrium is globally
asymptotically stable. If, however, γ < d

K , then the prey-only equilibrium is globally
asymptotically stable (see Brauer and Castillo-Chavez 2011). The aim of this work is
to formulate a discrete predator–prey model based on the same assumptions as (2).

There are different reasons for using discrete mathematical models. While they are
often preferred due to their computational convenience, they are also more appropriate
for modelling nonoverlapping generations, such as monocarpic plants and semel-
parous fish species (see Kot 2001 for more examples). Independent of the motivation,
a common method to obtain a recurrence relation, presumably satisfying the same
assumptions as an underlying continuous model, is to apply a discretization pro-
cess, such as the Euler scheme, to an existing continuous model. The justification
that, as the stepsize approaches zero, a corresponding continuous model is retrieved
is particularly questionable when modeling non-overlapping generations where the
step-size represents the generation time. Applying the forward Euler method in the
case of the logistic growth model, x ′ = r x

(
1 − x

K

)
, the logistic difference equa-

tion, Xt+1 = Xt + r Xt

(
1 − Xt

K

)
, is obtained. However, this discretizaton displays

significantly different behavior compared to the behavior of the continuous logistic
differential equation. Nevertheless, the application of the Euler scheme to continuous
models remains a popular method for formulating discrete models that supposedly
satisfy the same assumptions as the underlying continuous model. This technique has
also been favored to formulate discrete predator–prey models. See for example (Chen
et al. 2013a, b; Choudhury 1992; Fan and Agarwal 2002; He and Li 2014; Wang et al.
2013).

In Zhao et al. (2016), the authors investigate the discrete predator–prey model

Xt+1 = r Xt (1 − Xt ) − αXtYt , Yt+1 = −dYt + γ XtYt , (3)

that results from applying the Euler scheme to (2) and choosing the carrying capacity
K = 1. The authors show that if the prey’s growth rate, r , and the predator’s death rate,
d, are both positive and less than 1, then the trivial solution is asymptotically stable.
For other parameter values, the prey-only equilibrium is locally asymptotically stable,
and conditions for the local stability of the coexistence equilibrium for which both
species survive are provided, but often require nonlinear relations between parameters.
Certain parameter combinations result in a flip bifurcation, that is, a period doubling
of the coexistence equilibrium as a parameter varies. Another combination of param-
eter values results in a Neimark–Sacker bifurcation of the coexistence equilibrium
as a parameter varies, that is, a closed invariant curve appears when a fixed point
changes stability (Guckenheimer and Holmes 1983; Zhang 2006; Wiggins 2003). The
analogue of such a bifurcation in continuous models is a Hopf bifurcation. Therefore,
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the dynamics of this discretization are different from the dynamics of the continuous
model (2). It can even be shown that the model can predict negative population values
for some positive parameters and positive initial conditions.

Another common method used to formulate discrete models exploits a Ricker-type
structure and prevents solutions from becoming negative. Such a discretization of (2)
is then given in Beddington et al. (1975), by

Xt+1 = Xte
r
(
1− Xt

K

)
− αYt , Yt+1 = dXt

(
1 − e−γYt

)
, (4)

with the same interpretation of the parameters as before. That is, r is the prey’s growth
rate and K is the prey’s carrying capacity. Consequently, the intra-specific competition
rate is determined by r

K . The predation rate of the prey by the predator is α. The
parameter d is the death rate of the predator and γ is the energy-conversion rate of
predation. The equilibrium (K , 0)of (4) is stable for r ∈ (0, 2), and for r > 2, solutions
of (4) are periodic (Beddington et al. 1975). The model further exhibits transcritical,
flip, and Neimark–Sacker bifurcations (see Beddington et al. 1975, 1978; May 1974).

Another discretization of (2) was introduced in Din (2013) as

Xt+1 = r Xt − αXtYt
1 + r

K Xt
, Yt+1 = ηYt + γ XtYt

1 + ϕYt
, (5)

with positive parameter values r , α, K , η, γ, and ϕ. The interpretation of the model
parameters follows the previous interpretations, with the parameter η representing a
growth contribution of the predator and ϕ representing the intra-specific competition
in the predator population. However, solutions can take negative values. Although not
argued by the authors, but given the structural similarities, we assume this formula-
tion of (5) was motivated by the Beverton–Holt model that is often considered to be
a discrete analogue of the continuous logistic growth model (Bohner and Streipert
2016; Bohner andWarth 2007; Brauer and Castillo-Chavez 2011). The authors of Din
(2013) prove that if r , η ∈ (0, 1), then the trivial equilibrium is locally asymptotically

stable. If r > 1, η < 1, and γ <
r
K (1−η)

r−1 , then the prey-only equilibrium is locally
asymptotically stable. In contrast with (2), the predator-only equilibrium can also be
stable if η > 1 and r < 1, and if rη > 1 and ϕ r

K �= αγ , then the coexistence
equilibrium (x∗, y∗) is globally asymptotically stable.

Adiscretization of a predator–preymodel that is related to ourmodelwas introduced
in Liu and Elaydi (2001) as

Xt+1 = (1 + r1ϕ1(h))Xt

1 + ϕ1(h)(a11Xt + a12Yt )
,

Yt+1 = (1 + r2ϕ2(h) − ϕ2(h)a21Xt )Yt
1 + ϕ2(h)a22Yt

.

(6)
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The model was derived by applying a modifiedMickens discretization scheme (Mick-
ens 1989, 1994a; Mickens and Smith 1990; Mickens 1994b) to the continuous model

x ′ = x(r1 − a11xt − a21y), y′ = y(r2 − a21x − a22y).

For a12 > 0 and a21 < 0, a predator–prey relation was obtained. We note that, if
additionally a22 = 0, then (2) is obtained. The authors, however, focus their stability
results on the cases of competition and cooperation between the species, leaving the
global analysis of the predator–prey difference equation an open problem. We empha-
size that our derivation comes from first principles, based directly on the assumptions
on population growth and decline, and not from discretizing a continuous model as in
Liu and Elaydi (2001).

In this work, we derive a discrete predator–prey model based on the same assump-
tions as (2). Instead of applying a discretization scheme, we derive the two-species
discrete model directly using first principles based on the assumptions. Starting out
with a single species model, we first assume that a population at time t + 1 is a
multiple of the population at time t , considering both the growth and the decline pro-
cesses. After establishing a general description of how a population changes over a
cycle, based on its growth and decline contribution, we then take into consideration
the model assumptions from (2) on how the prey and predators interact to formulate
a discrete predator–prey model in Sect. 2 that is analyzed in Sect. 3. We compare its
dynamics with that of the continuous model (2) and highlight the similarities. In both
models, if the product of the consumption-energy rate of the predator and the carry-
ing capacity is smaller than the death rate of the predator, the prey-only equilibrium
is globally asymptotically stable. If, however, this product is bigger than the death
rate of the predator, the two models differ slightly, as the asymptotic stability of the
coexistence equilibrium only holds in the discrete model when the parameters fall
within a certain interval. We illustrate our results with figures produced using Matlab
MATLAB (2020). We conclude the manuscript by summarizing the dynamic behav-
ior of our discrete predator–prey model and highlight its similarities and differences
compared to the continuous analogue (2).

2 Model Derivation

In this section, we propose a newderivationmethod to formulate discretemulti-species
models. We specifically apply this derivation technique to describe a predator–prey
relationship. Prior to formulating the two-speciesmodel,wemake a crucial observation
regarding single population models. The derivation of our model is based upon the
assumption that the population at time t + 1 can be described as a factor f (t) of
the population at time t , that is, Xt+1 = f (t)Xt . The (possibly time-dependent)
factor f (t) is determined by growth and decline processes. Thus, we may express the
population at time t + 1 as

Xt+1 = f (t)Xt = 1 + p(t)

1 + q(t)
Xt , (7)
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where p(t) captures the processes contributing to the increase of the population and
q(t) captures the processes contributing to the decrease in the population between time
steps t and t + 1. In fact, (7) is related to the solution of the continuous population
model

x ′(t) = (p(t) − q(t))x(t), (8)

where p, q describe the growth and decline, respectively, for infinitesimal time steps.
The solution of (8) satisfies

x(t + 1) = e
∫ t+1
t p(s) ds

e
∫ t+1
t q(s) ds

x(t) = f̃ (t)x(t). (9)

Equation (9) reveals similarities with the expression in (7), as the population at time
t + 1 is a multiple of the population at time t . The factor in (9) can be expressed as
a ratio of exponential terms, where the numerator describes the growth contribution
and the denominator the decay. Recalling that

lim
n→∞

(
1 + F

n

)n

= eF , (10)

we argue that if the processes were to take place discretely, n = 1 and eF would
be replaced by 1 + F , giving an additional interpretation of the model construction
in (7). The same observation is commonly applied in economics, where zero-coupon
bonds with only one payment P of interest are modelled by Pt+1 = (1+ r)Pt , where
r is the annual interest rate, while bonds with monthly coupons are modelled by
Pt+1 = (

1 + r
12

)12
Pt . Continuous payments then lead to Pt+1 = er Pt .

The derivation of (7) can easily be extended to consider the interaction of several
species Xi , for i = 1, 2, . . . , k. In this case, species Xi at time t + 1 is expressed by

Xi (t + 1) = 1 + pi (t, X1, X2, . . . , Xk)

1 + qi (t, X1, X2, . . . , Xk)
Xi (t).

In our case, Xi , for i = 1, 2, represents the prey and the predator. We assume, as in
(2), that the prey population increases with a constant growth rate r > 0. Thus, the
growth contribution is p(t) = r . We also assume that competition and predation are
the factors responsible for any decline in the prey population. More precisely, for the
prey population, we consider

q(t) = r

K
Xt + αYt ,

where the carrying capacity is given by K > 0 and the intra-specific competition for
the prey population is given by r

K . Thus, r
K Xt captures the decline due to competition,
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and αYt , with predation rate α > 0, captures the decline due to predation.We therefore
obtain the recurrence for the prey as

Xt+1 = 1 + r

1 + r
K Xt + αYt

Xt . (11)

It is worth noting that in the absence of a predator, the prey recurrence in (11) collapses
to Xt+1 = (1+r)Xt

1+ r
K Xt

, which is equivalent to the Beverton–Holt model (Beverton and

Holt 1957). Solutions of the Beverton–Holt model are known to converge to K for
positive initial conditions (Beverton and Holt 1957; Bohner and Warth 2007). It is for
this reason that the model parameter K is often referred to as the “carrying capacity”.

For the predator population, we assume, as in (2), that the predator population
declines with a constant rate d > 0, resulting in q(t) = d, and the growth rate depends
on consumption of the prey, and hence is proportional to the size of the prey population.
We therefore consider p(t) = γ Xt , where γ > 0 is the prey consumption-energy rate
of the predator. This results in the recurrence for the predator

Yt+1 = 1 + γ Xt

1 + d
Yt . (12)

Combining (11) and (12), we arrive at the discrete predator–prey model

Xt+1 = f (Xt ,Yt ), Yt+1 = g(Xt ,Yt ), t ≥ 0

with f (x, y) = (1 + r)x

1 + r
K x + αy

, g(x, y) = (1 + γ x)y

1 + d
,

(13)

where the initial conditions X0,Y0 are assumed to be nonnegative and the parameters
r , K , α, γ, d are assumed to be positive.

Remark 1 Choosing the parameters in (6), derived in Liu and Elaydi (2001), as

a22 = 0, r1ϕ1(h) = r , a11ϕ1(h) = r

K
,

a12ϕ1(h) = α, r2ϕ2(h) = −d

1 + d
, a21ϕ2(h) = −γ

1 + d
,

results in our proposed model (13).

Remark 2 Themodel clearly satisfies theaxiomof parenthood (Edelstein-Keshet 1988;
Hutchinson 1978), that is, every organism must have parents. More precisely, this
means that if X0 = 0, then Xt = 0 for all t ≥ 0 and similarly, if Y0 = 0, then Yt = 0
for all t ≥ 0.

The partial derivatives of the functions f and g in (13) satisfy

fx = K 2(1 + r)(1 + αy)

(K + r x + αKy)2
> 0, fy = − αK 2(1 + r)x

(K + r x + αKy)2
< 0,

gx = γ y

1 + d
> 0, gy = 1 + γ x

1 + d
> 0,
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where hu = ∂h
∂u for h ∈ { f , g} and u ∈ {x, y}. Hence, f is monotone in each variable,

as it increases in x and decreases in y. Similarly, g is monotone since it increases in
each variable. However, (13) is not monotone in the sense of Smith (see Hirsch and
Smith 2005; Smith and Thieme 2013), because fy and gx do not necessarily have the
same sign. This property is called sign-symmetry and is required for the system to be
monotone in the sense of Smith.

We remind the reader that while Xt+1 = f (Xt ,Yt ) is increasing in Xt , it does
not imply that the sequence of iterates, Xt , is increasing. In fact, Xt is increasing if
the forward operator, �Xt = Xt+1 − Xt is positive. For system (13), the forward
operators are

�Xt = Xt+1 − Xt = (1 + r)Xt

1 + r
K Xt + αYt

− Xt = Xt

r
(
1 − Xt

K

)
− αYt

1 + r
K Xt + αYt

= Xt+1

1 + r

[
r

(
1 − Xt

K

)
− αYt

]
(14)

and

�Yt = Yt+1 − Yt = (1 + γ Xt )Yt
1 + d

− Yt = Yt
γ Xt − d

1 + d
. (15)

From (14), we see that Xt > 0 is increasing if and only if r
(
1 − Xt

K

)
> αYt , since

Xt+1 > 0 for Xt > 0. Thus, if (Xt ,Yt ) is above the line

y = �(x) := r

αK
(K − x) , (16)

Yt > �(Xt ), then the sequence of iterates, Xt , is decreasing and if Yt < �(Xt ), then Xt

is increasing. Similarly, from (15) it follows that Yt is increasing as long as γ Xt > d
and decreasing if γ Xt < d.

The model just derived differs from the existing models mentioned in the intro-
duction. Although (13) was derived under the same assumptions concerning growth
and decline as the continuous model (2), it differs from existing discretizations of (2).
In particular, (13) was not derived by applying a discretization scheme, such as the
forward Euler method. Instead it was derived from the assumptions, based on first
principles.

We remind the reader that in the absence of the predator, (13) is a single-species
model of the form

Xt+1 = (1 + r)Xt

1 + r
K Xt

.

This is the Beverton–Holt model, which can be understood as a discretization of the
logistic differential equation (Bohner et al. 2007; Brauer and Castillo-Chavez 2011),
and has been extended to quantum calculus (Bohner and R 2013; Bohner and Streipert
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2017) and time scales (Bohner and Warth 2007). In the presence of the predator, (13)
has the corresponding expression in time scales notation

x� = xσ (a − cx − by), y� = y(dx − e).

This model expression differs from existing predator–prey models on time scales (see
Fazly and Hesaaraki 2008a, b; Zhang et al. 2008).

3 Model Dynamics

We consider (13) with r , K , α, γ, d > 0 and nonnegative initial conditions X0,Y0.
The first lemma follows immediately from themodel structure and its proof is omitted.
The proofs of the other lemmas, propositions, and theorems in this section are collected
in the Appendix.

Lemma 1 Solutions of (13) with nonnegative initial conditions remain nonnegative. If
X0 = 0, then Xt = 0 for all t ≥ 0. If Y0 = 0, then Yt = 0 for all t ≥ 0. If X0 > 0 and
Y0 ≥ 0, then Xt > 0 for all t ≥ 0. If X0 ≥ 0 and Y0 > 0, then Yt > 0 for all t ≥ 0.

Lemma 2 Solutions of (13) with nonnegative initial conditions are bounded for t ≥ 0.
Additionally, Xt ∈ [0,max{X0, K }] for all t ≥ 0. If Xt < K for some T ≥ 0, then
Xt < K for all t ≥ T , and if Xt > K, then either {Xt } decreases monotonically to K
or there exists T such that Xt ≤ K for all t ≥ T .

Model (13) is a biologicallywell-posed system, since it satisfies the axiomof parent-
hood, solutions with nonnegative initial conditions remain nonnegative by Lemma 1,
and solutions are bounded by Lemma 2. This is in contrast with some existing discrete
predator–prey models, where the prey population at time t + 1, Xt+1, is defined by a
subtraction dependent on the predator population at time t , Yt . Predator–prey models
with a prey equation of the form Xt+1 = Xt (a − bXt ) − cXtYt with a, b, c > 0
require additional model assumptions to prevent solutions from becoming negative.
Recent predator–prey models that may give rise to negative population levels have
been discussed for example in Kangalgil and Isik (2020), Khan et al. (2020), Rana
(2019) and Rozikov and Shoyimardonov (2020).

To study the dynamics of the predator–prey model that we introduced, we observe
that its equilibria are given by

E0 = (0, 0), EK = (K , 0) , E∗ = (x∗, y∗) =
(
d

γ
,
r(γ K − d)

αγ K

)
, (17)

where the coexistence equilibrium, E∗, makes sense biologically only if γ K > d.

Remark 3 The equilibria in (17) are identical to the equilibria of the continuous model
(2). The equilibrium solutions of the common discretization (3) are also the same.
However, (3) does not satisfy the axiom of parenthood and can predict negative solu-
tions, unlike our model (13).
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The behavior of solutions with initial conditions on the boundary of the positive
quadrant is fully determined in the following lemma.

Lemma 3 Consider (13) with initial conditions (X0,Y0).

(a) If X0 = 0 and Y0 ≥ 0, then (Xt ,Yt ) converges to E0.
(b) If Y0 = 0 and X0 > 0, then (Xt ,Yt ) converges to EK .

To investigate the behavior of solutions with positive initial conditions, we linearize
(13) at (X̂ , Ŷ ), to obtain,

Zt+1 = JZt ,

where Zt = (Xt ,Yt ) and

J =
⎡
⎣

(1+r)(1+αŶ )

(1+ r
K X̂+αŶ )2

−(1+r)α X̂
(1+ r

K X̂+αŶ )2

γ Ŷ
1+d

1+γ X̂
1+d

⎤
⎦ . (18)

Theorem 4 Consider (13) with positive initial conditions. Then the following holds:

(a) E0 is unstable.
(b) If d ≥ γ K, then EK is locally asymptotically stable. If d < γ K, then EK is

unstable.
(c) If d < γ K < (1+ 2d), then E∗ is locally asymptotically stable. If γ K > 1+ 2d,

then E∗ is unstable. If d > γ K, then E∗ is not biologically relevant since y∗ < 0.

Remark 4 By (15),�Yt = g(Xt )Yt with g(Xt ) = γ Xt−d
1+d , so that g(K ) is the (discrete)

maximal rate of change/per-capita growth rate of the predator. Since Xt ≤ K for
X0 ∈ [0, K ], g(K ) is the maximal rate of change of the predator. The conditions of
Theorem 4 can therefore be expressed equivalently in terms of the maximal rate of
change of the predator, since

γ K ≤ d ⇐⇒ γ K

1 + d
≤ d

1 + d
⇐⇒ γ K − d

1 + d
≤ 0 ⇐⇒ g(K ) ≤ 0,

γ K ≤ 1 + 2d ⇐⇒ γ K

1 + d
≤ 1 + d

1 + d
⇐⇒ γ K − d

1 + d
≤ 1 ⇐⇒ g(K ) ≤ 1.

(19)

Thus, if the maximal rate of change of the predator is non-positive, that is, g(K ) ≤ 0,
then EK is asymptotically stable and the predator goes extinct for small initial values.
If the maximal rate of change of the predator is positive, but less than one, that is,
0 < g(K ) < 1, then the coexistence equilibrium is asymptotically stable.

As for the continuous model (2), the asymptotic stability of (13) depends, therefore,
on the sign of d − γ K . In particular, if d > γ K , EK is asymptotically stable. This
condition is the same stability condition for the prey-only equilibrium of the contin-
uous model (2), as discussed in (Brauer and Castillo-Chavez 2011). However, in the
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continuous model (2), the coexistence equilibrium is globally asymptotically stable
as long as d < γ K , whereas in model (13), it is unstable if γ K > 1 + 2d. Thus,
the system exhibits the paradox of enrichment, that is, the equilibrium destabilizes
as the prey carrying capacity increases past a critical value, giving rise to sustained
oscillatory behavior, as in the classical Rosenzweig–MacArthur model (Rosenzweig
1971).

While Theorem 4 addresses the local asymptotic stability of the nonnegative equi-
libria, the remainder of this section investigates the global behavior of solutions. By
Lemma 2, solutions remain in the first quadrant for all nonnegative initial conditions.
In fact, by Lemma 2, if XT ≤ K , then Xt ≤ K for all t ≥ T . We divide the first
quadrant into regions based on the component-wise monotonicity obtained by solving
Xt+1 = Xt and Yt+1 = Yt . The curves along which (13) satisfies �Xt = 0 and
�Yt = 0 are given by the lines

Yt = �(Xt ) = r

αK
(K − Xt ) and Xt = d

γ
, (20)

respectively. We refer to these curves as nullclines. Note that these two nullclines are
exactly the same as the nullclines obtained for the continuous model (2). These two
curves divide the first quadrant into four regions Ri (i = 1, 2, 3, 4) if d

γ
< K and

three regions otherwise (see Fig. 1). When d = γ K , the vertical nullcline is the line
x = K .

We define the regions

R1 : =
{
(Xt ,Yt ) ∈ (0,∞)2 : Xt >

d

γ
and Yt ≥ �(Xt )

}
,

R2 : =
{
(Xt ,Yt ) ∈ (0,∞)2 : Xt ≤ d

γ
and Yt > �(Xt )

}
,

R3 : =
{
(Xt ,Yt ) ∈ (0,∞)2 : Xt <

d

γ
and Yt ≤ �(Xt )

}
, (21)

R4 : =
{
(Xt ,Yt ) ∈ (0,∞)2 : Xt ≥ d

γ
and Yt < �(Xt )

}
.

For γ K ≤ d, R4 = ∅ and R3 = {(Xt ,Yt ) ∈ (0,∞)2 : Xt < K and Yt ≤ �(Xt )}.
We emphasize that the interior ofR3 is the set of points (Xt ,Yt ) ∈ (0,∞)2 such that
Xt is increasing and Yt is decreasing, that is, �Xt > 0 and �Yt < 0, and the points
on the boundary of R3 such that Yt = �(Xt ) are in R3, while the points such that
Xt = d

γ
are not in R3. A similar property, that is, one inequality in the definition of

each region is strict and the other is not, holds for all of the regions.
We define the function

L(Xt ,Yt ) := Yt+1 − �(Xt+1), (22)

where � was defined in (16). If L(Xt ,Yt ) = 0, then the point (Xt ,Yt ) is mapped to
the nullcline Yt = �(Xt ). If L(Xt ,Yt ) > 0, then the next iterate (Xt+1,Yt+1) lies
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Fig. 1 The phase plane. The gray dashed curves correspond to the predator nullclines and the black dashed
curves correspond to the prey nullclines. A horizontal arrow pointing to the right (left) represents Xt+1 −
Xt > 0 (< 0) and a vertical arrow pointing up (down) represents Yt+1 − Yt > 0 (< 0). Subfigure (a) is a
schematic image if γ K < d, while (b) shows the case when γ K > d. Note that in (a), there is no region
R4 in the first quadrant

above the nullcline Yt = �(Xt ), and if L(Xt ,Yt ) < 0, then (Xt+1,Yt+1) lies below
the nullcline Yt = �(Xt ). We call the curve defined implicitly by L(Xt ,Yt ) = 0, the
next iterate root-curve associated with the prey nullcline, or in short root-curve. In the
case of (13), this curve defines a unique function Ŷ (Xt ).

Lemma 5 Consider (22). Then there exists a unique positive function Ŷ (Xt ) such
that L(Xt , Ŷ (Xt )) = 0 and L(Xt ,Yt ) > 0 for Yt > Ŷ (Xt ) and L(Xt ,Yt ) < 0 for
Yt < Ŷ (Xt ).

The uniqueness of this root-curve is especially useful for the global analysis. Fig-
ure 2 illustrates how to use the root-curve together with the nullclines and the direction
field to obtain properties of the solutions. The gray dashed curves correspond to the
predator nullclines and the black dashed curves to the prey nullclines. The black solid
curve corresponds to Yt = Ŷ (Xt ), the next iterate root-curve associated with the prey
nullcline. This curve Ŷ (Xt ) divides the first quadrant into two regions, one above the
root-curve where L(Xt ,Yt ) > 0, indicated in Fig. 2 by +, and the other below the
root-curve where L(Xt ,Yt ) < 0, indicated by −. Any point below the root-curve is
mapped below the prey nullcline so that Yt+1 < �(Xt+1), and any point above the
root-curve is mapped above the prey nullcline. Points on the root-curve are mapped
onto the prey nullcline, so that Yt+1 = �(Xt+1).

First, consider the case illustrated in Fig. 2a where E0 and EK are the only equi-
libria with both components nonnegative. Since, by Lemma 2, all orbits are bounded,
from the direction field in R1 it follows immediately that no orbit can remain in R1
indefinitely. Any orbit that visits R1 must eventually enter R2 above the nullcline
Yt = �(Xt ), since L(Xt ,Yt ) > 0, as indicated by the + symbol in R1. From the
direction field, in R21 = R2 ∩ {Yt > Ŷ (Xt )}, any orbit must then either converge to
EK or eventually enter region R22 = R2\R21 . Points in R22 are mapped into R3 in
one iteration because of the sign of L in R22 , indicated by −. In particular, points in
the interior ofR22 are mapped into the interior ofR3, since L < 0. Since the sign of
L is negative for points insideR3, points inR3 are mapped below the prey nullcline,
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Fig. 2 The phase plane. The gray dashed curves correspond to the predator nullclines and the black dashed
curves to the prey nullclines. The black solid curve corresponds to the next iterate root-curve, Yt = Ŷ (Xt ),
associated with the prey nullcline, Yt = �(Xt ). It divides the first quadrant into two regions, the region
above the curve whereL(Xt , Yt ) > 0 (indicted by+) and the region belowwhereL(Xt , Yt ) < 0 (indicated
by −). Any point in a region where L(Xt , Yt ) > 0 must map to a point above Yt = �(Xt ) and any point
in a region where L(Xt , Yt ) < 0 must map to a point below Yt = �(Xt ). In (a), there is no equilibrium
with both components positive. The root-curve dividesR2 into sub-regions:R21 andR22 , so that the first
quadrant is now divided into four regions. In (b), an equilibrium with both components positive, E∗, exists
inside the positive quadrant. The root-curve together with the non-trivial nullclines now divide the positive
quadrant into six regions:R1,R21 ,R22 ,R3,R41 , andR42

and hence R3 is positively invariant. Thus, any orbit is trapped in R3 and the orbit
must converge to EK .

Next, consider the case illustrated in Fig. 2b, in which, in addition to equilibria E0
and EK , there is a positive equilibrium, E∗. Reasoning as in the previous case, the
direction field together with the positioning of the root-curve indicate that orbits in
R1 must either converge to E∗ or, since all solutions are bounded, must eventually
enter R2 = R21 ∪ R22 . No orbit can remain in R21 indefinitely due to the direction
field and the positioning of the equilibria, but must eventually enter R22 due also to
the sign of L. Similarly, no orbit can remain in R41 indefinitely due to the direction
field and the positioning of the equilibria, but must eventually enter R42 due also to
the sign of L. As well, any orbit inR22 is mapped immediately intoR3, and any orbit
in R42 is mapped immediately into R1. Any orbit in R3 must either converge to E∗
or eventually enter R4 = R41 ∪ R42 . Thus, all orbits with positive initial conditions
either converge to E∗ or cycle indefinitely, entering all four regions at least once in
every cycle.

Theorem 6 If d ≥ γ K, then EK is globally asymptotically stable with respect to all
initial conditions such that X0 > 0 and Y0 ≥ 0.

Theorem 6 states that if the decay rate of the predator exceeds the threshold γ K ,
or equivalently, if the carrying capacity of the prey population is smaller than the ratio
of the death rate and consumption-energy rate of the predator population, then the
predator goes extinct and the prey population approaches its carrying capacity K . The
extinction of the predator population is due to either a large decay rate or due to a
low carrying capacity that results in low prey values and hence prevents the predator
population from overcoming its decline rate. Based on the discussion in Remark 4,
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Fig. 3 Simulations using Matlab (MATLAB 2020) for 100 iterations for each pair of initial conditions
(X0, Y0) and parameters: r = 0.5, K = 1, α = 0.5, γ = 3, and d = 1.5. Note that 1+d < γ K < 1+2d.
In (a)–(c), X0 = 0.8 and the Y0 values differ. The legends for (b) and (c) are the same as in (a). In (d)–(f),
Y0 = 1.5 and the X0 values differ. The legends for (e) and (f) are the same as given in (d). In all cases, the
orbits spiral towards E∗ = (0.5, 0.5)

Theorem 6 implies that if the maximal rate of change of the predator is non-positive,
then the predator goes extinct.

Theorem 7 If d < γ K, then (13) is persistent, that is, lim inf t→∞ Xt > 0 and
lim inf t→∞ Yt > 0 for all solutions with X0, Y0 > 0.

Simulations provide support that if d < γ K < 1 + 2d, then E∗ is in fact globally
asymptotically stable (see Fig. 3). Independent of the value of the positive initial
conditions, solutions converge to the coexistence equilibrium as long as d < γ K <

1 + 2d. Thus, we believe that E∗ is globally asymptotically stable if these parameter
inequalities are satisfied and we formulate the following conjecture.

Conjecture 1 If d < γ K < 1 + 2d, then E∗ is globally asymptotically stable with
respect to solutions with positive initial conditions.

A potential difficulty with respect to proving Conjecture 1 is that no positively
invariant rectangle I := [a1, b1] × [a2, b2] with E∗ ∈ I exists for (13) because for
(Xt ,Yt ) = (b1, b2), Yt+1 = g(b1, b2) = (1+γ b1)

1+d b2 > b2, resulting in (Xt+1,Yt+1) /∈
I . However, the following results may contribute to the resolution of Conjecture 1.

Proposition 8 If d < γ K and (X0,Y0) ∈ (0,∞)2, then there exists T ≥ 0 such that
Xt < K for all t ≥ T .

Lemma 9 If d < γ K and (X0,Y0) ∈ (0,∞)2, then lim supt→∞ Xt ≤ K and

lim supt→∞ Yt ≤ 1+r
α

(
γ K
d · (1+γ K )

(1+d)
− 1

)
=: S.
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Fig. 4 One-parameter bifurcation diagrams showing how the stability of the equilibria depend on the
parameter γ > 0. Solid curves represent (a) the Xt -component and (b) the Yt -component of the stable
equilibria and dashed curves the respective unstable component. A transcritical bifurcation occurs when
γ = d

K , where EK = E∗ and a Neimark–Sacker bifurcation occurs when γ = 1+2d
K . These representative

diagrams were produced using the same parameter values as in Fig. 3

Proposition 10 If d < γ K and (X0,Y0) ∈ (0,∞)2, then the only possibilities are

(a) (Xt ,Yt ) converges to E∗ in finite time.
(b) There exists T ∈ N and j ∈ {1, 3} such that (Xt ,Yt ) ∈ R j for all t ≥ T . Then

(Xt ,Yt ) converges to E∗.
(c) Solutions cycle from regionR1 toR2 toR3 toR4 and back toR1 indefinitely. In

each cycle, solutions lie in each region R22 and R42 exactly once.

This proposition leads immediately to the following corollary.

Corollary 11 If d < γ K and (X0,Y0) ∈ (0,∞)2, then there are no orbits with prime
period 2 and no orbits with prime period 3.

Based on Theorem 4, we obtain the bifurcation diagram in Fig. 4. We observe that
there are two bifurcations, one when γ K = d and the second when γ K = 1 + 2d.

Theorem 12 If d = γ K, then EK = E∗ and (13) undergoes a transcritical bifurca-
tion.

Theorem 13 System (13) undergoes a supercritical Neimark–Sacker bifurcation at E∗
when γ = γcrit := 1+2d

K . There exists δ > 0 such that a unique stable closed invariant
curve bifurcates from the coexistence equilibrium and exists for γcrit < γ < γcrit + δ.

Based on the discussion in Remark 4, this implies that if the maximal rate of
change of the predator g(K ) exceeds the critical threshold of one, then the prey and
predator population converge to a closed curve around the coexistence equilibrium.
We illustrate the Neimark–Sacker bifurcation using γ as the bifurcation parameter
and the other parameters as in Fig. 3. By Theorem 4, the fixed point E∗ is stable
when d

K < γ < 1+2d
K and E∗ loses its stability, but remains positive for γ > 1+2d

K .
An attractive invariant cycle exists near E∗ for γ > 1+2d

K . Bifurcation diagrams in
the (γ, x)-plane and the (γ, y)-plane for the above parameters are given in Fig. 4.
The corresponding phase portraits are given in Fig. 5. They depict how a smooth
invariant cycle bifurcates from the fixed point E∗. We point out that by Lemma 9,
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Fig. 5 Phase portraits for (13) with the same parameter values as in Figs. 3 and 4, but different values of
γ and 10,000 iterations: in (a) γ K = 3 < 1 + 2d, in (b) γ K = 4 = 1 + 2d (with 50,000 iterations), in
(c) γ K = 4.5 > 1 + 2d, and in (d) γ K = 10 >> 1 + 2d, and initial point (1.0, 2.0). As expected, the
convergence is to the unique positive fixed point in (a) and in (b) and to a closed invariant curve in (c) and
in (d).

the amplitude of the Y -component of the orbit resulting from the Neimark–Sacker
bifurcation is bounded by S, a bound independent of the initial conditions. For the
specific parameter values in Fig. 3, S = 6.6.

It is worth noting that the dynamics of (13) and the dynamics of the continuous
predator–prey model with Holling-II functional response,

x ′ = r x
(
1 − x

K

)
− α

x

1 + δx
y, y′ = −dy + γ

x

1 + δx
y. (23)

are similar (see for example Sugie and Saito 2012; Wolkowicz 1988; Cheng 1981).
Both models (13) and (23) have three equilibria, E0 = (0, 0), EK = (K , 0), and a
positive equilibrium E∗, (although the components of the positive equilibrium E∗ are
different). In both models, both components of the third equilibrium, E∗, are positive
if and only if γ K > c1, where c1 for each model where c1 for each model is given
in Table 1 and E∗ loses stability when γ K increases through c2, where the value
of c2 for each model is also given in Table 1. In both models EK is asymptotically
stable if γ K ∈ (0, c1) and unstable if γ K > c1, and E∗ is asymptotically stable if
γ K ∈ (c1, c2), and unstable if γ K ∈ (c2,∞) and when E∗ exists and is unstable
there is sustained oscillatory behavior. The criteria for stability of the equilibria is
summarized in Table 2.

These similarities with our proposed discrete predator–prey model (23) might be
explained by recalling that (23) can be derived assuming a handling time, here δ (Dawes
and Souza 2013). For larger values of δ, the predator’s available time to search for prey
is reduced, resulting indirectly in a delay. To some extent, any discrete model may
contain an implicit delay as the update of the population is not instant. Additionally, in

our model, we specifically exploit that the discrete version of e
∫ t+1
t p(s) ds is 1 + p(t)

(see (9) and (10)), which can be interpreted as the left-end point approximation and
therefore “dating back” to p(t) to model processes for the time interval (t, t + 1).
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Table 1 Bifurcation values c1
and c2 for the continuous model
(23) and our proposed discrete
model (13)

Eq. (23) Eq. (13)

c1 d + δKd d

c2 δKd + d + γ
d 1 + 2d

Both, (23) and (13) have a tanscritical bifurcation when γ K = c1 and
a Hopf bifurcation (Neimark–Sacker bifurcation) when γ K = c2

Table 2 Stability of the
equilibria for the continuous
model (23) and our proposed
discrete model (13)

γ K (0, c1) (c1, c2) (c2, ∞)

E0 Unstable Unstable Unstable

EK Stable Unstable Unstable

E∗ DNE Stable Unstable

Both, (23) and (13) share the same local asymptotic stability of the
equilibria for γ K in the intervals provided. Here, DNE means that E∗
is not biologically meaningful because it is negative

Another interesting relation is observed by recalling the behavior known for the
classical Lotka–Volterra predator–prey model, where both species grow/decline expo-
nentially in the absence of the other, and the predator–preymodel,where the prey grows
logistically. While solutions to

x ′ = r x
(
1 − x

K

)
− αxy, y′ = −dy + γ xy (24)

converge to the unique positive equilibrium for positive initial conditions, the solutions
of

x ′ = r x − αxy, y′ = −dy + γ xy (25)

are all closed invariant curves surrounding the unique positive equilibriumwith ampli-
tude depending on the initial conditions. Interestingly, if, in our discrete model (13),
K exceeds the threshold 1+2d

γ
, then solutions also converge to a closed curve. Thus,

our model can be considered as intermediate between (24) and (25). This relation may
be explained by realizing that the larger K is, the weaker the intraspecific competi-
tion, and as K → ∞, (24) approaches (25). Since our derivation method uses a left
approximation of exponential contributions due to the zero bond coupon analogy, the
effect of intraspecific competition in our model may be weaker than in the continuous
model (24).

4 Conclusion

In thiswork,we derived a discrete predator–preymodel baed on the assumption that the
prey population grows logistically to a carrying capacity in the absence of the predator
population and the predator cannot survive in the absence of the prey population. The
derivation is based on expressing the population at time t + 1 as a multiple of the
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population at time t . This factor was constructed by including the contributions to
growth in the numerator and decline processes in the denominator. More precisely, the
numerator is expressed as 1 + p(t), where p contains the processes contributing to
growth, and the denominator is expressed as 1+ q(t), where q contains the processes
contributing to decline. This formulation resembles a technique known in economic

modeling, where the continuous analogue of 1 + p(t) is of the form e
∫ t+1
t p(s) ds (see

(9) and (10)). The method of deriving the model in this work differs from commonly
used methods to obtain discrete models in which discretization schemes such as the
Euler scheme are applied to continuous models.

In contrast to some other discretizations of predator–prey systems, the model intro-
duced in this work was derived under the same model assumptions as the well-studied
continuousmodel (2) and exhibits many identical properties. For example, our discrete
model (13) satisfies the axiom of parenthood. Also, solutions of (13) with nonneg-
ative initial conditions remain nonnegative and bounded, while other discretizations
of (2) with supposedly the same model assumptions, such as (3) and (5), can result
in negative solutions. Except for the recurrence (5) that has an additional predator-
only equilibrium, the continuous model (2) and the discretizations (3), (4), and our
model (13), share the same equilibria structure. That is, each of the four models has
two boundary equilibria, namely the trivial and the prey-only equilibrium, as well as
(under certain model dependent parameter conditions) one interior equilibrium, the
coexistence equilibrium. It is, however, only our recurrence where the nullclines and
hence the components of equilibria, as functions of the parameters, are identical to the
nullclines and components of the equilibria of (2), with the same interpretation of the
parameters.

In both the continuous model and the recurrence introduced in this work, the trivial
equilibrium that represents extinction of both populations is unstable. This behavior
differs from the discretizations (3) and (5), where parameter values exist for which the
zero fixed point is stable. We proved that the prey-only equilibrium of (13) is globally
asymptotically stable for the same parameter set as in the continuous case, namely as
long as the death rate d of the predator exceeds the threshold γ K . Equivalently, if the
maximal rate of change of the predator is non-positive, then the predator goes extinct.
As the death rate declines below this threshold, the system undergoes a transcritical
bifurcation, as is also the case in the continuous model. While, in the continuous
model, the coexistence equilibrium is locally asymptotically stable whenever it exists,
that is for all γ K > d, this only remains true for certain parameter values, namely
d < γ K < 1 + 2d in our discrete model. We also related this stability condition
to the value of the maximal rate of change of the predator g(K ). If the maximal
rate of change of the predator remains below the critical threshold of one(see(19)),
populations near the unique positive equilibrium converge to it. Simulations suggest
that the coexistence equilibrium of (13) is globally asymptotically stable whenever
it is locally asymptotically stable. This is again identical to the dynamics of (2) and
significantly differs from the behavior of orbits of the discretizations mentioned in (4),
(5), and (3).

The difference in the dynamics predicted between the model introduced here and
the analogous continuous model is that there is a supercritical Neimark–Sacker bifur-
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cation at the parameter combination, γ K = 1 + 2d, or equivalently at g(K ) = 1.
Consequently, the coexistence equilibrium remains positive, but loses its local sta-
bility and orbits are attracted to a closed curve. Simulations illustrate that even for
large γ K , orbits converge to a closed curve. While this behavior does not exist in the
corresponding continuous predator–prey model (2), Hopf bifurcations are observed in
analogous continuousmodels that differ only when themass action term is replaced by
Holling type II interaction between the prey and the predator (Rosenzweig 1971). In
fact, theHolling type II functional response in the continuous predator–preymodel can
be derived assuming the predator requires time to handle the prey (Dawes and Souza
2013). This reduces the predator growth rate and can be considered as providing an
implicit delay.

This cyclic behaviormay explain behavior observed in Lotka (1920)who developed
amodel similar to (2)motivated by their observation of cyclic behavior in nature.While
(4) satisfies some desired properties such as nonnegativity of solutions and instability
of the trivial solution, it does exhibit chaotic behavior for large r values and therefore
differs from the dynamics of the model we presented.

Given the overlap inmodel assumptions, aswell as the similarities in the behavior of
the solutions, we believe the discrete predator–prey model introduced in this paper to
be the natural discrete analogue of the continuous Lotka–Volterra model with logistic
growth in the prey population. The dynamics of the discrete predator–prey model
introduced in this work exhibits similarities known from the continuous predator–
prey model with Holling type II functional response that assumes a handling time
that reduces the predation rate and introduces an implicit delay. We assumed that
the decline processes are captured by (1 + q(t))−1, which can be understood as the

left-point approximation of
(
e
∫ t+1
t q(s) ds

)−1
. Thus, the discretization 1 + q(t) also

contains an implicit time lag when compared to the continuous model. Interestingly,
the discrete predator–prey model captures dynamics known for the classical Lotka–
Volterra predator–prey model (25), where each species grows exponentially in the
absence of each other and solutions are periodic, and the predator–prey model where
the prey grows logistically in the absence of the predator and solutions converge to
the unique positive equilibrium (24).

Themainmathematical contribution of thiswork lies in the formulation of a discrete
phase plane approach to discuss the global dynamics of a planar map. Furthermore,
the derivation technique introduced in this paper to construct discrete multi-species
models is mathematically and biologically relevant. Here, we specifically applied the
method to formulate a predator–prey model, but as mentioned in Sect. 2, it can eas-
ily be extended to describe other types of interactions among species. As compared
to popular methods of formulating discrete population models, our technique ensures
biologically relevant models as the axiom of parenthood and the positivity of solutions
with positive initial conditions are satisfied. The interpretation of the stability condi-
tions by introducing the maximal rate of change of the predator provides a biological
interpretation of the dynamics.
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Appendix

In this appendix, we provide the proofs of our results.

Proof of Lemma 2 By Lemma 1, Xt ,Yt ≥ 0 for nonnegative initial conditions.We first
show in (i) that Xt is bounded and then, in (ii), that Yt is bounded for all t ≥ 0.

(i) Since f is increasing in the first variable, we have for Xt ≤ K ,

Xt+1 = f (Xt ,Yt ) ≤ f (K ,Yt ) = (1 + r)K

1 + r + αYt
≤ K .

By (14), for Xt > K ,

Xt+1 − Xt = Xt+1

[
r

1 + r

(
1 − Xt

K

)
− α

1 + r
Yt

]
< 0. (A1)

Hence, Xt decreases for Xt > K . Suppose Xt ≥ K for all t ≥ 0. Then Xt is
monotone decreasing and therefore convergent. Suppose Xt does not converge to
K . Then limt→∞ Xt = X̄ > K . However, since

X̄ = lim
t→∞ Xt+1 = lim

t→∞
(1 + r)Xt

1 + r
K Xt + αYt

≤ lim
t→∞

(1 + r)Xt

1 + r
K Xt

<
(1 + r)X̄

1 + r
= X̄ ,

this results in a contradiction. Thus, X̄ = K if Xt ≥ K for all t ≥ 0. This
confirms that for Xt ≥ K for all t ≥ 0, then Xt converges to K . This implies
that Xt ≤ max{K , X0} for all t ≥ 0. This confirms the additional statements in
Lemma 2 regarding the X -component of the solution.

(ii) Next we show that Yt is bounded.We consider two cases: (a) Xt > K for all t ≥ 0,
and (b) there exists t ≥ 0 such that Xt ≤ K .

Case (a):We prove that Yt is bounded using proof by contradiction. By assumption,
Xt > K for all t ≥ 0 and by (i), {Xt } decreases monotonically to X̄ = K . Suppose
Yt is unbounded. Then there exists a subsequence {Yti } and j such that Yti > 1 for all
i ≥ j . This, however, implies that for the subsequence Xti+1,

X∗ = lim
ti→∞ Xti+1 = lim

ti→∞
(1 + r)Xti

1 + r
Xti
K + αYti

≤ lim
ti→∞

(1 + r)Xti

1 + r
Xti
K + α

= (1 + r)X∗

1 + r X∗
K + α

≤ (1 + r)X∗

1 + r + α
< X∗,

123



Derivation and Analysis of a Discrete Predator–Prey Model Page 21 of 34 67

resulting in a contradiction. Thus, Yt is bounded for t ≥ 0.
Case (b): Without loss of generality, let j ≥ 0 denote the first iterate such that

X j ≤ K . Then, by the previous argument, Xt ≤ K for all t ≥ j and

Yt+1 = 1 + γ Xt

1 + d
Yt = 1

1 + d
Yt + γ

1 + d
XtYt

= 1

1 + d
Yt +

(
γ

1 + d

)(
(1 + r)Xt−1

1 + r
K Xt−1 + αYt−1

)(
(1 + γ Xt−1)Yt−1

1 + d

)

≤ 1

1 + d
Yt +

(
γ

1 + d

)(
(1 + r)K

1 + r + αYt−1

)(
(1 + γ K )Yt−1

1 + d

)

for all t > j . Consider the recurrence

Ŷt+1 = H(Ŷt , Ŷt−1) = 1

1 + d
Ŷ + A

(
Ŷt−1

1 + r + αŶt−1

)
,

where A = γ K (1 + r)(1 + γ K )

(1 + d)2
> 0, t ≥ j, (A2)

with initial condition Ŷ j = Y j and Ŷ j+1 = Y j+1. We prove by induction that Yt+1 ≤
Ŷt+1 for all t > j . Since z

1+r+αz is increasing in z, we have for YT ≤ ŶT and

YT−1 ≤ ŶT−1,

YT+1 ≤ 1

1 + d
YT + A

YT−1

1 + r + αYt−1

≤ 1

1 + d
ŶT + A

ŶT−1

1 + r + αŶT−1
= ŶT+1,

completing the induction argument. To show that Yt is bounded, it therefore suffices
to show that Ŷt is bounded, that is, there exists M > 0 such that for Ŷ j , Ŷ j+1 ≤ M ,
Ŷt ≤ M , for all t > j . By (A2), Ŷt+1 increases in Ŷt and Ŷt−1, and we have

Ŷt+1 ≤ 1

1 + d
M + A

M

1 + r + αM
.

It therefore suffices to show the existence of M > 0 such that

M

1 + d
+ A

M

1 + r + αM
≤ M .

Solving this inequality for M > 0 yields

M ≥ A(1 + d) − (1 + r)d

dα
. (A3)
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Hence, for Ȳ = maxi=0,1,..., j, j+1 Yi , there exists M > max
{
Ȳ ,

A(1+d)−(1+r)d
dα

}
such

that Yt ≤ M for all t ≥ 0. Thus, Yt is bounded for all t ≥ 0 with a bound dependent
on the initial conditions X0,Y0. This completes the proof. ��
Proof of Lemma 3 (a) Since f (0,Yt ) = 0, Xt = 0 for all t ≥ 0 if X0 = 0. In that case,
Yt+1 = 1

(1+d)t
Y0. This converges to zero for d > 0. (b) If Y0 = 0, then Yt = 0 for all

t ≥ 0. In the absence of a predator, Xt satisfies a Beverton–Holt recurrence and hence
converges to K . ��
Proof of Theorem 4 The Jacobian of system (13) at (X̂ , Ŷ ) is given in (18).

(a) The Jacobian at E0 is

J |(0,0)=
[
(1 + r) 0

0 1
1+d

]
, (A4)

with eigenvalues λ1 = 1 + r and λ2 = 1
1+d . Since λ1 > 1, the trivial equilibrium

is unstable.
(b) The Jacobian at EK is

J |(K ,0)=
⎡
⎣

(1+r)
(1+r)2

− (1+r)αK
(1+r)2

0 1+γ K
1+d

⎤
⎦ =

[ 1
1+r − αK

1+r

0 1+γ K
1+d

]
. (A5)

The eigenvalues of J are λ1 = 1
1+r and λ2 = 1+γ K

1+d . Hence, the equilibrium is
asymptotically stable if γ K < d and unstable if γ K > d.

(c) At E∗ = (X∗,Y ∗), using β = r
K (γ K − d) > 0, the Jacobian is

J |(X∗,Y ∗)=

⎡
⎢⎢⎣

(1+r)
(
1+ β

γ

)
(
1+ r

K
d
γ

+ β
γ

)2
−(1+r)α d

γ(
1+ r

K
d
γ

+ β
γ

)2

γ
β
αγ

1+d

1+γ d
γ

1+d

⎤
⎥⎥⎦ =

⎡
⎣

(
1+ β

γ

)

(1+r)
−αd

γ (1+r)
β

α(1+d)
1

⎤
⎦ , (A6)

since the denominators in the first row simplify to (1 + r)2. The characteristic
equation is

λ2 − λ

(
1 + 1 + β

γ

1 + r

)
+ 1 + β

γ

1 + r
+ dβ

γ (1 + r)(1 + d)
= 0.

Applying the Jury stability test (Ogata 1995, p. 185) to the characteristic equation

P(λ) = λ2 + a1λ + a2 (A7)

with

a1 = −
(
1 + 1 + β

γ

1 + r

)
, a2 = 1 + β

γ

1 + r
+ dβ

γ (1 + r)(1 + d)
,
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yields the sufficient condition for stability

1 + β
γ

1 + r
+ dβ

γ (1 + r)(1 + d)
< 1.

Rearranging yields the equivalent expression

(1 + d) + (1 + 2d)
β

γ
< (1 + r)(1 + d) ⇐⇒ β < γ

r(1 + d)

1 + 2d
, (A8)

and recalling β = r
K (γ K − d), we have

r

K
(γ K − d) < γ

r(1 + d)

1 + 2d
⇐⇒ γ <

1 + 2d

K
.

Hence, the coexistence equilibrium is stable if γ K < 1 + 2d. If instead, γ K >

1 + 2d, then, by (A8), β
γ

>
r(1+d)
1+2d implies

(1 + 2d)
β

γ
> r(1 + d). (A9)

Thus

a2 = 1 + β
γ

1 + r
+ d β

γ

(1 + r)(1 + d)
= 1 + d + (1 + 2d)

β
γ

(1 + r)(1 + d)

(A9)
>

1 + d + r(1 + d)

(1 + r)(1 + d)
= 1.

We also note that β = r
K (γ K − d) implies that β

γ
< r since the parameters are

positive. Then, 0 < −a1 = 1 + 1+ β
γ

1+r < 2. Thus a21 − 4a2 < 0, implying that

P(λ) has two complex roots with moduli
a21+(4a2−a21 )

4 = a2 > 1, resulting in the
instability of E∗. This completes the proof.

��
Proof of Lemma 5 Let 0 < X0 < K , L be defined as in (22). Using (22) and simplify-
ing the expression, we obtain

L(Xt , Yt ) = Yt+1 − �(Xt+1) = 1 + γ Xt

1 + d
Yt − r

αK

(
K − (1 + r)

1 + r
K Xt + αYt

Xt

)

= αK (1 + γ Xt )(1 + r
K Xt + αYt )Yt − r K (1 + d)(1 + r

K Xt + αYt ) + r(1 + d)(1 + r)Xt

αK (1 + d)(1 + r
K Xt + αYt )

= α2K (1 + γ Xt )Y 2
t + [

αK (1 + γ Xt )(1 + r
K Xt ) − r K (1 + d)α

]
Yt

αK (1 + d)(1 + r
K Xt + αYt )

+ −r K (1 + d)(1 + r
K Xt ) + r(1 + d)(1 + r)Xt

αK (1 + d)(1 + r
K Xt + αYt )

=
∑2

i=0 ci Y
i
t

α(1 + d)(K + r Xt + αKYt )
, (A10)
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with

c0 = r(1 + d)(Xt − K ),

c1 = α(1 + γ Xt )(K + r Xt ) − αr K (1 + d),

c2 = α2K (1 + γ Xt ). (A11)

These calculations can be verified usingMathematica (WolframResearch Inc. 2020).1

Note that c2 > 0. The sign of L(Xt ,Yt ) is determined by the sign of the numerator in
(A10), the quadratic function in the variable Yt . Although the coefficients ci are in fact
dependent on Xt , c0 < 0, for all Xt < K and c2 > 0 for all Xt > 0. Hence, there exists
a unique Ŷ (Xt ), such that

∑2
i=0 ciY

i
t < 0 for 0 < Yt < Ŷ (Xt ) and

∑2
i=0 ciY

i
t > 0

for Ŷ (Xt ) < Yt . This completes the first claim. Replacing Yt by �(Xt ) in (22), we
have

α(1 + d)(K + r Xt + αK�(Xt )) = α(1 + d)
(
K + r Xt + αK

r

αK
(K − Xt )

)

= α(1 + d)K (1 + r)

and

c0 + c2�
2(Xt ) + c1�(Xt )

= r(1 + d)(Xt − K ) + α2K (1 + γ Xt )
( r

αK
(K − Xt )

)2

+ α(1 + γ Xt )(K + r Xt )
r

αK
(K − Xt ) − αr K (1 + d)

r

αK
(K − Xt )

= r(1 + d)(Xt − K ) + (1 + γ Xt )
r2

K
(K − Xt )

2

+ (1 + γ Xt )r(K − Xt ) + (1 + γ Xt )Xt
r2

K
(K − Xt ) − r2(1 + d)(K − Xt )

= r(1 + d)(Xt − K )(1 + r) + (1 + γ Xt )
r2

K
(K − Xt )(K − Xt + Xt )

+ (1 + γ Xt )r(K − Xt )

= r(1 + d)(Xt − K )(1 + r) + (1 + γ Xt )r
2(K − Xt ) + (1 + γ Xt )r(K − Xt )

= r(1 + d)(Xt − K )(1 + r) + (1 + γ Xt )r(K − Xt )(1 + r)

= (1 + r)r(K − Xt ) (−(1 + d) + (1 + γ Xt )) .

Thus,

L(Xt , �(Xt )) =
∑2

i=0 ci�
i (Xt )

α(1 + d)(K + r Xt + αK�(Xt ))

1 The expression for L(X , Y ) can be obtained by the Mathematica command: T = Together[(1 + γ ∗
X)/(1 + d) ∗ Y − r/(α ∗ K ) ∗ (K − (1 + r)/(1 + r/K ∗ X + α ∗ Y ) ∗ X)] The coefficients ci can be
obtained by the command: Simplify[Coefficient[Numerator[T],Y,i]] for i = 0, 1, 2.
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= (1 + r)r(K − Xt ) (−(1 + d) + (1 + γ Xt ))

α(1 + d)K (1 + r)

= r(K − Xt ) (γ Xt − d)

α(1 + d)K
. (A12)

The expression can be verified usingMathematica (WolframResearch Inc. 2020).2 ��
Proof of Theorem 6 Let X0,Y0 > 0. When d ≥ γ K , the set of nonnegative equilibria
in the first quadrant is E = {E0, EK }. Without loss of generality, assume that X0 < K ,
since for X0 > 0, by Lemma 2, Xt either converges to K , so that (Xt ,Yt ) converges to
EK , or there exists T > 0 such that Xt < K for all t ≥ T . If d ≥ γ K , the nullclines
defined in (20) divide phase space into the three regionsRi (i = 1, 2, 3) (see Fig. 1b).
Observe that

(a) If (Xt ,Yt ) ∈ R1 for all t ≥ 0, by the boundedness of solutions proved in Lemma 2
and the monotonicity (Xt+1 < Xt and Yt+1 > Yt ), the solution must converge to
a point in E . However, since the Yt -component of the points in E are zero, but the
Yt -component of the sequence of iterates is increasing for all points inR1, this is
impossible, and hence the solution must eventually enter B12 ∪ R2 ∪ B23 ∪ R3.

(b) Let (Xt ,Yt ) ∈ R2. If (Xt ,Yt ) remains inR2 indefinitely, then (Xt ,Yt ) converges
to EK . Otherwise, by the direction field, there exists T > 0 with (XT ,YT ) ∈ R3.

(c) If (Xt ,Yt ) ∈ R3, then Xt < K and therefore, Xt+1 < K so that (Xt+1,Yt+1) /∈
R1. We now show that (Xt+1,Yt+1) /∈ R2, and hence must remain in R3. By
Lemma 5 iii), there exists a unique positive Ŷ (Xt ) such that

∑2
i=0 ciY

i
t changes

sign at Yt = Ŷ (Xt ) and
∑2

i=0 ciY
i
t > 0 for all Yt > Ŷt (Xt ). Furthermore, since

L(Xt , �(Xt )) < 0 by (A12) for Xt < K < d
γ
, Yt+1 remains below the line �(Xt ).

Thus, (Xt ,Yt ) remains in the interior of R3 and converges to EK . Therefore, in
all cases, solutions converge to EK .

We provide an alternative proof for d > γ K using a Lyapunov function. If Xt ≥ K
for all t , then by Lemma 2, Xt converges to K and by (b), limt→∞ Yt = 0. Assume
now, without loss of generality, that X0 < K . We claim that

V (Xt ,Yt ) = (Xt − K )2 + cYt , where c = 4
αK 2(1 + d)

γ (1 + r)
(
d
γ

− K
) > 0

is a Lyapunov function for (13). Clearly, V (K , 0) = 0 and V (Xt ,Yt ) > 0 for
(Xt ,Yt ) �= (K , 0). Next, we show that �V (Xt ,Yt ) < 0.

�V (Xt ,Yt ) = V (Xt+1,Yt+1) − V (Xt ,Yt )

= X2
t+1 − 2Xt+1K − X2

t + 2Xt K + c(Yt+1 − Yt )

= (Xt+1 − Xt )(Xt+1 + Xt − 2K ) + c(Yt+1 − Yt ),

2 The expression for L(X , �(X)) can be obtained by using T found via the Mathematica command in
footnote 1: Simplify[T /.Y− > r/(alpha ∗ K ) ∗ (K − X)]

123



67 Page 26 of 34 S. H. Streipert et al.

so that �V (K , 0) = 0. Replacing Xt+1 − Xt and Yt+1 − Yt with (14) and (15) yields

�V (Xt , Yt ) = (Xt+1 − Xt )(Xt+1 + Xt − 2K ) + c(Yt+1 − Yt )

= Xt+1

(
r

1 + r

(
1 − Xt

K

)
− α

1 + r
Yt

)
(Xt+1 + Xt − 2K ) + c

γ

1 + d
Yt

(
Xt − d

γ

)

= r

1 + r
Xt+1

(
1 − Xt

K

)
(Xt − K ) + r

1 + r
Xt+1

(
1 − Xt

K

)
(Xt+1 − K )

− α

1 + r
Xt+1Yt (Xt − K ) − α

1 + r
Xt+1Yt (Xt+1 − K ) + c

γ

1 + d
Yt

(
Xt − d

γ

)

= −r

K (1 + r)
Xt+1(K − Xt )

2 − r

K (1 + r)
Xt+1(K − Xt )(K − Xt+1)

− Yt

(
c

γ

1 + d

(
d

γ
− Xt

)
− α

1 + r
Xt+1 (K − Xt ) − α

1 + r
Xt+1(K − Xt+1)

)
.

The first two terms are negative, since by Lemma 2, 0 < Xt < K for all t ≥ 0.
Furthermore,

h(Xt ) := c
γ

1 + d

(
d

γ
− Xt

)
− α

1 + r
Xt+1(K − Xt ) − α

1 + r
Xt+1(K − Xt+1)

> 4
αK 2(1 + d)

γ (1 + r)
(
d
γ

− K
)
(

γ

1 + d

(
d

γ
− K

))
− 2

α

1 + r
K 2 > 0,

completing the proof using (Kelley and Peterson 2001, Theorem 4.18), if d > γ K . ��
Proof of Theorem 7 Assume that d < γ K . We verify the assumptions (B1)–(B6) and
(H1)–(H3) in (Freedman and So 1989, Theorem 3.3).

(B1) Let R2+ = {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0}. Then consider the metric space

〈R2+, d̃〉 with the Euclidean metric d̃.
(B2) Let the set ∂R2+ = {(x, y) ∈ R

2+ : xy = 0}, that is, the boundary of R2+. Then
∂R2+ is a closed subset of R2+.

(B3) ( f , g) : R2+ → R
2+ is continuous, where f and g are defined in (13).

(B4) By Lemma 1, ( f , g)(∂R2+) ⊂ ∂R2+.
(B5) By Lemma 1, ( f , g)(R2+ \ ∂R2+) ⊂ R

2+ \ ∂R2+.
(B6) By Lemma 2, the closure of any positive orbit through any (X0,Y0) ∈ R

2+ is
compact.

(H1) ( f , g) |∂R2+ is dissipative since any orbit with X0 = 0 and Y0 ≥ 0 converges to
E0 and any point with X0 > 0 and Y0 = 0 converges to EK .

(H2) ( f , g) |∂R2+ has acyclic covering {E0, EK }.
(H3) From the local stability analysis given in the proof of Theorem 4, E0 and EK

are both saddles and each has a one-dimensional stable manifold. In particular,
the stable manifold of E0 is W+(E0) = {(x, y) ∈ ∂R2+ : x = 0}, and the
stable manifold of EK is W+(EK ) = {(x, y) ∈ ∂R2+ : x > 0}, and hence
W+(E0) ∩ R

2+ \ ∂R2+ = ∅ and W+(EK ) ∩ R
2+ \ ∂R2+ = ∅.
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Since all of the hypotheses of (Freedman and So 1989, Theorem 3.3) are satisfied,
(13) is persistent. ��
Proof of Proposition 8 Assume d < γ K . If Xt ≤ K and Yt > 0, then Xt+1 =

(1+r)Xt
1+ r

K Xt+αYt
<

(1+r)Xt
1+ r

K Xt
≤ Xt ≤ K , so that Xt+1 < K . Assume now that Xt > K for

all t ≥ 0. Then, by (14) and (A1), Xt is monotone decreasing for K ≤ Xt+1 < Xt .
Also, since Xt > K > d

γ
, by (15), Yt is monotone increasing. Thus, Yt > Y0 > 0 and

X̄ := lim
t→∞ Xt ≥ K exists. Suppose X̄ ≥ K . Then,

X̄ = lim
t→∞ Xt+1 = lim

t→∞
(1 + r)Xt

1 + r
K Xt + αYt

≤ lim
t→∞

(1 + r)Xt

1 + r
K Xt + αY0

= (1 + r)X̄

1 + r
K X̄ + αY0

.

Therefore, 1+r X̄
K +αY0 ≤ 1+r , or equivalently,αY0 ≤ r

(
1 − X̄

K

)
≤ 0, contradicting

Y0 > 0. ��
Proof of Lemma 9 Assume that d < γ K and (X0,Y0) ∈ (0,∞)2. By Lemma 2,
Xt ,Yt are bounded for t ≥ 0. The claim lim supt→∞ Xt ≤ K follows immediately
from Lemma 2. By Lemma 1, since Y0 > 0, Yt > 0 for all t ≥ 0. Thus, there exists
T ≥ 0 such that Xt < K for all t ≥ T , since otherwise, if Xt ≥ K for all t ≥ 0,
then (Xt ,Yt ) ∈ R1 ∪ {(Xt ,Yt ) : Xt = K } indefinitely. This is, however, not possible,
since Yt is bounded by Lemma 2. By the direction field, this implies that there exists
T such that (XT ,YT ) ∈ R2, and therefore XT ≤ K . Note that if XT = K , then since
YT > 0, XT+1 < K . Therefore, there exists T ≥ 0 such that XT < K . Recall that the
boundedness of Yt was obtained by proving an upper bound for the upper solution Ŷt ,
where Ŷt satisfies (A2). To show that lim supt→∞ Yt is uniformly bounded, it suffices
to prove there is a unique value Ȳ such that all solutions of the upper solution of (A2)
converge to Ȳ , since then, for U ≥ Ȳ , lim supt→∞ Ŷt = limt→∞ Ŷt = Ŷ ∗ ≤ U , and
the claim is justified. The map H in (A2) satisfies

∂H(u, v)

∂u
= 1

1 + d
> 0,

∂H(u, v)

∂v
= A(1 + r)

(1 + r + αv)2
> 0

and is therefore component-wise monotone and (strictly) increasing in both variables.
For M defined in (A3), Ŷt ≤ M for all t ≥ 0 as long as 0 ≤ Ŷ0, Ŷ1 ≤ M . Note that
for γ K > d,

A(1 + d) − d(1 + r) = γ K (1 + r)(1 + γ K )

(1 + d)
− d(1 + r)

>
d(1 + r)(1 + d)

(1 + d)
− d(1 + r) = 0,

and therefore M > 0. Furthermore, for 0 < m ≤ A(1+d)−d(1+r)
dα

,

Ŷt+1 = H(Ŷt , Ŷt−1) ≥ H(m,m) = m

1 + d
+ Am

1 + r + αm
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= m

(
1 + A(1 + d)

(1 + d)(1 + r + αm)

)

≥ m

(
1 + A(1 + d)

(1 + d)(1 + r + α
A(1+d)−d(1+r)

dα
)

)

= m

(
1 + A(1 + d)

(1 + d)
A(1+d)

d

)
> m.

Thus, H : [m, M] → [m, M]. To apply (Grove and Ladas 2004, Theorem 1.15), we
note that the only solution (s, S) ∈ [m, M] of

s = H(s, s), S = H(S, S)

is s = S = s∗ = A(1+d)−d(1+r)
αd > 0 and s∗ ∈ [m, M]. Thus, by (Grove and

Ladas 2004, Theorem 1.15), s∗ is globally attracting, and therefore limt→∞ Ŷt =
s∗ = A(1+d)−d(1+r)

αd . Choosing U > s∗ results in lim supt→∞ Yt ≤ lim supt→∞ Ŷt =
limt→∞ Ŷt = s∗ < U . ��
Proof of Proposition 10 Let Ri , i = 1, 2, 3, 4, be the regions defined in (21) (see
Fig. 1b). Lemma 5 and (22) will also be used to prove Theorem 10. Define E =
{E0, EK , E∗}, the set of equilibria of (13).
(a) Clearly one possibility is that the solution converges to E∗ in finite time, e.g., the

solution with (X0,Y0) = E∗.
(b) We show that if the solution remains in the single region R j , j = 1 or j = 3,

for all sufficiently large t , then it must converge to E∗. Assume that there exists
j ∈ {1, 3} and T > 0 such that (Xt ,Yt ) ∈ R j for all t ≥ T .

• If j = 1, that is, there exists T such that (Xt ,Yt ) ∈ R1 for all t ≥ T , then
by boundedness and monotonicity, the solution must converge to a point in E .
Given the direction field in R1, the orbit converges to E∗.

• If j = 3, that is, there exists T such that (Xt ,Yt ) ∈ R3 for all t ≥ T , then
again by monotonicity and boundedness, the solution must converge to a point
in E . Given the direction field inR3, the orbit converges to E∗.

(c) First we show that the solution cannot remain inR2 for all sufficiently large t or in
R4 for all sufficiently large t . Suppose there exists T > 0 such that (Xt ,Yt ) ∈ R2
for all t ≥ T . Then due to the monotonicity and boundedness of solutions, by
Lemma 2, in this region, the solution would have to converge to a point in E .
The intersection of E with the closure of R2 contains only E∗. Since, in R2,
Xt+1 < Xt < X∗, for all t ≥ T , convergence to E∗ is impossible. Similarly,
suppose there exists T > 0 such that (Xt ,Yt ) ∈ R4 for all t ≥ T . Then the
solution is bounded and monotone, and hence it must converge to a point in E .
The intersection of E with the closure of R4 contains only {EK , E∗}. Since, for
all t ≥ T , in R4, Yt+1 ≥ Yt > 0, convergence to EK is impossible and since
Xt+1 > Xt > d

γ
= X∗, convergence to E∗ = (X∗,Y ∗) is also impossible.
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Assume now that the solution (Xt ,Yt ) of (13) does not converge to E∗ in finite
time nor does it eventually remain in one of the four regions,Ri for i = 1, 2, 3, 4.
We now show that it must enter each of the four regions indefinitely.
Since Xt < K , for all sufficiently large t , we assume, without loss of generality,
that X0 < K .

• If (Xt ,Yt ) ∈ R1, then we show that (Xt+1,Yt+1) must be above the line
Yt = �(Xt ). For (Xt ,Yt ) ∈ R1, �(Xt ) ≤ Yt and Xt > X∗. By (A12),
L(Xt , �(Xt )) > 0 and since c2 > 0 by (A11), by Lemma 5 (iii),L(Xt ,Yt ) > 0
for all Yt ≥ �(Xt ). Thus, Yt+1 > �(Xt+1), so that (Xt+1,Yt+1) ∈ R1 ∪ R2.
Since by assumption, this solution does not remain in a single region, there
exists T such that (XT ,YT ) ∈ R1 and (XT+1,YT+1) ∈ R2.

• If (Xt ,Yt ) ∈ R2, then Xt+1 < Xt < X∗, and by the direction field in R2,
(see Fig. 1b) as well as the assumption that solutions do not remain in a
single region indefinitely, there exists T ≥ t such that (XT ,YT ) ∈ R2 and
(XT+1,YT+1) ∈ R3. This specifically implies that (XT ,YT ) ∈ R22 since
L(Xt ,Yt ) must be nonpositive for the next iterate to be in R3. Note that two
subsequent iterates cannot be inR22 because L(XT ,YT ) ≤ 0 inR22 .

• If (Xt ,Yt ) ∈ R3, then we show that (Xt+1,Yt+1) must be below the line
Yt = �(Xt ). If (Xt ,Yt ) ∈ R3, then 0 < Yt ≤ �(Xt ). Since Xt < X∗, by
(A12), L(Xt , �(Xt )) < 0, and therefore, by Lemma 5 (iii), L(Xt ,Yt ) < 0 for
all 0 < Yt ≤ �(Xt ). Thus, Yt+1 < �(Xt+1) and (Xt+1,Yt+1) ∈ R3 ∪ R4.
By assumption, the solution does not remain in a single region indefinitely,
and given the direction field, there exists T such that (XT ,YT ) ∈ R3 and
(XT+1,YT+1) ∈ R4.

• If (Xt ,Yt ) ∈ R4, then by the monotonicity of each component of the solution
in that region (see Fig. 1b) the solution does not remain in R4. Thus, there
exists T such that (XT ,YT ) ∈ R4 and (XT+1,YT+1) ∈ R1. This specifically
implies that (XT ,YT ) ∈ R42 sinceL(Xt ,Yt )must be nonnegative for the next
iterate to be inR1. Note that two subsequent iterates cannot be inR42 because
L(XT ,YT ) ≥ 0 inR42 .

Therefore, in case (c), the solution rotates counterclockwise about E∗, entering
each region Ri for i = 1, 2, 3, 4, indefinitely. Furthermore, the solutions lie in R22
and R42 exactly once in each cycle. This completes the proof. ��
Proof of Theorem 12 For d = γ K , the equilibria EK and E∗ coalesce. The Jacobian
evaluated at EK given in (A5) has eigenvalues λ1 = 1

1+r and λ2 = 1. As well, the

branches EK and E∗ are unique and exchange stability as γ passes through d
γ
, that

is, when d − γ K changes sign. Thus, there is a transcritical bifurcation. ��
Proof of Theorem 13 Define β = r

K (Kγ − d). For γ = 1+2d
K , β

γ
= r 1+d

1+2d . The
characteristic equation obtained for the Jacobian about E∗ given in (A6) when γcrit =
1+2d
K is

λ2 − Bλ + C = λ2 − λ

(
1 + 1 + r 1+d

1+2d

(1 + r)

)
+ 1 + r 1+d

1+2d

1 + r
+ rd 1+d

1+2d

(1 + r)(1 + d)

123



67 Page 30 of 34 S. H. Streipert et al.

= λ2 − λ

(
1 + 1 + r 1+d

1+2d

(1 + r)

)
+ 1 = 0,

and

B2 − 4C =
(
1 + 1 + r 1+d

1+2d

(1 + r)

)2

− 4 = −rd(7rd + 8d + 4(r + 1))

(1 + 2d)2(1 + r)2
< 0.

Hence, when γ = γcrit , the two eigenvalues are complex with ‖λ‖2 = C = 1. The
characteristic equation for the coexistence equilibrium at E∗ for γ = γcrit + δ was
given in (A7), that is, λ2 + a1λ + a2 = 0 with

a1 = −
(
1 + 1 + β

γ

1 + r

)
and a2 = −(a1 + 1) + d β

γ

(1 + d)(1 + r)
.

The eigenvalues in polar form are λ = R(γ )e±iθ(γ ), where R(γ ) = √
a2(γ ) and

R′(γcrit) = a′
2(γcrit)

2
√
a2(γcrit)

= x

= 1

2
√
a2(γcrit)

(1 + 2d)

(1 + d)(1 + r)

(
β ′(γ )γ − β(γ )

γ 2

)
|γ=γcrit .

Since a2(γcrit) = 1 and β ′(γ )γ − β(γ ) = r
K d �= 0, the first degeneracy condition is

satisfied. To show that the second is also satisfied, note that tan(θ0) =
√
4a2−a21
(−a1)

and

ekiθ0 �= 1 for k = 1, 2, 3, 4 for r , d > 0. Hence there is a Neimark–Sacker bifurcation
at γ = γcrit. In order to use the formula in Guckenheimer and Holmes (1983) to
determine the criticality of the bifurcation, we translate E∗ to the origin. Let

Wt := Xt − X∗ = Xt − d

γ
and Zt := Yt − Y ∗ = Yt − β

αγ
.

Then, (13) in the variables of Wt , Zt becomes

Wt+1 = h1(Wt , Zt , γ ), Zt+1 = h2(Wt , Zt , γ ),

where

h1(w, z, γ ) : = − d

γ
+

(1 + r)
(
d
γ

+ w
)

1 + r
K w + r + αz

,

h2(w, z, γ ) : = − β

αγ
+

(
1 + γ

(
d
γ

+ w
)) (

β
αγ

+ z
)

1 + d
.

(A13)
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The Jacobian of (A13) at (Wt , Zt , γ ) = (0, 0, γcrit) is given by

J(0,0,γcrit) =
[ 1+2d+r(1+d)

(1+2d)(1+r)
−αdK

(1+2d)(1+r)
r
Kα

1

]

with eigenvalues

λ1 = (2 + 4d + 2r + 3dr)

2(1 + 2d)(1 + r)︸ ︷︷ ︸
λ11

+i

√
dr(4 + 8d + 4r + 7dr)

2(1 + 2d)(1 + r)︸ ︷︷ ︸
λ12

,

and λ2, the complex conjugate of λ1. The corresponding eigenvectors are

vλ1 =
( −αdK

2(1+2d)(1+r)
1

)

︸ ︷︷ ︸
U1

+i

(
αK

√
dr(4+8d+4r+7dr)
2r(1+2d)(1+r)

0

)

︸ ︷︷ ︸
U2

,

and vλ2 , the complex conjugate of vλ1 . Define the matrix T := [
U2 U1

]
. Applying

the transformation (u, v)T = T−1(w, z)T , where

T−1 =
(

2r(1+2d)(1+r)
αK

√
dr(4+8d+4r+7dr)

dr√
dr(4+8d+4r+7dr)

0 1

)
,

yields

(
ut+1
vt+1

)
=

[
λ11 −λ12
λ12 λ11

](
ut
vt

)
+

(
F(u, v)

G(u, v)

)
.

The nonlinear terms are

F(u, v) = dvα(u
√
dr(4 + 8d + 4r + 7dr) − drv)

2(1 + d)(1 + r)
√
dr(4 + 8d + 4r + 7dr)

− N

D

G(u, v) = αv(u
√
dr(4 + 8d + 4r + 7dr) − drv)

2r(1 + d)(1 + r)
,

where

N = 2α(u
√
dr(4 + 8d + 4r + 7dr) + v(2 + 4d + 2r + 3dr))×

× (u
√
dr(4 + 8d + 4r + 7dr)(1 + r + d(2 + r)) − vdr(3 + 6d + 3r + 5dr))

D = 2(1 + r)
(
dr(4 + 8d + 4r + 7dr)[(1 + 2d)(2 + 2r2 + α

√
dr(4 + 8d + 4r + 7dr)u

+2αv + 2r(2 + αv) + d(4 + 4r2 + 4αv + r(8 + 3αv)))]
) 1

2
.
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According to the formula in Guckenheimer and Holmes (1983) and Iooss and Joseph
(1980), the criticality of the bifurcation at γ = γcrit is determined by the sign of

ϕ = −Re

[
(1 − 2λ)λ̄2

1 − λ
ξ11ξ20

]
− 1

2
‖ξ11‖2 − ‖ξ02‖2 + Re(λ̄ξ21),

where

ξ20 = 1

8
(Fuu − Fvv + 2Guv + i(Guu − Gvv − 2Fuv)) |(0,0),

ξ11 = 1

4
(Fuu + Fvv + i(Guu + Gvv)) |(0,0),

ξ02 = 1

8
(Fuu − Fvv − 2Guv + i(Guu − Gvv + 2Fuv)) |(0,0),

ξ21 = 1

16
(Fuuu + Fuvv + Guuv + Gvvv + i(Guuu + Guvv − Fuuv − Fvvv)) |(0,0) .

Since

ϕ = −α2d(2(1 + r) + 4d2(1 + r) + d(6 + 5r))

8(1 + d)2(1 + 2d)(1 + r)3
< 0,

the Neimark–Sacker bifurcation at γ = γcrit is supercritical. ��
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