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We are motivated by the idea that certain properties of delay differential and
difference equations with constant coefficients arise as a consequence of their
one-periodic nature. We apply the recently introduced definition of periodic-
ity for arbitrary isolated time scales to linear delay dynamic equations and a
class of nonlinear delay dynamic equations. Utilizing a derived identity of higher
order delta derivatives and delay terms, we rewrite the considered linear and
nonlinear delayed dynamic equations with one-periodic coefficients as a lin-
ear autonomous dynamic system with constant matrix. As the simplification
of a constant matrix is only obtained for one-periodic coefficients, dynamic
equations with one-periodic coefficients are the simplest form compared to the
commonly used constant coefficients.
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1 INTRODUCTION

When studying differential equations and difference equations, a common simplification is the assumption of constant
coefficients. For example, the delay differential equation with constant coefficient

𝑦′(t) = c𝑦(t − 𝜏), 𝑦(t) = 𝜙(t), t ∈ [−𝜏, 0],

where c ∈ R has the solution1

x(t) =
∞∑

k=−∞
Cke

1
𝜏

Wk(−c𝜏)t,

where Ck is determined by𝜙(t) and the Wk refer to the Lambert W function. The main reason is that the analysis simplifies
significantly under the assumption of a constant coefficient, compared to time-dependent coefficients.

Similarly, in the study of difference equations, higher order recurrences are often introduced by first considering
yt + k = cyt, see for example, Kelley and Peterson.2, Section 3.3 As in the continuous case, the assumption of a constant
coefficient simplifies the analysis compared to time-dependent coefficients as the roots 𝜆 to the characteristic polynomial
can be used to construct a solution. Once the coefficients are time-dependent, this method cannot be applied since the
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BOHNER ET AL.

characteristic polynomial will be time-dependent. Thus, the assumption of constant coefficients is commonly associated
with simplifying the corresponding analysis of (delayed) differential and difference equations.

Not surprisingly, this is being also expected from dynamic equations on time scales, a theory that aims to unify the
discrete and continuous calculus. Introduced by Stefan Hilger in 1988, the theory of time scales gains increasing attention
due to its unifying character as well as its applications to real-life processes, see for example, other studies3–9 and references
therein. Due to its unification property, dynamic equations on time scales are a generalization of differential and difference
equations. Thus, the study of dynamic equations on time scales replaces the separate study of corresponding models on
different time domains, including the discrete and continuous ones. For example, the behavior of solutions of the logistic
dynamic equation apply to the logistic differential equation as well as its time-scales discretization, which differs from
the logistic map. This example further highlights that time scales can provide a discretization of a continuous model
that differs to commonly considered discretizations but exhibits significantly different dynamics. The interested reader
is referred to the introductory books.10,11 Delay dynamic equations are well-studied objects, some prior investigations
may be seen in other studies.12–16 As mentioned, the assumption of constant coefficients is usually motivated by the
simplification of the analysis in the case of constant coefficients. As we will argue in this manuscript, the assumption of
one-periodic coefficients may be more appropriate since it simplifies the analysis to resemble the expected behavior from
constant coefficients.

In this study, we focus on isolated time scales T , that is, every t ∈ T has a positive distance to each of its closest
neighbors. Popular examples of such isolated time scales are the discrete domain Z and the quantum time scales qN0 =
{1, q, q2, …}with q> 1. The restriction to isolated time scales allows the applications of the recently introduced definition
of periodicity in Bohner et al17 and avoids the restrictive, but commonly applied, assumption of periodic time scales, see
Wang et al18 and the references therein. In the special case ofT = Z, a function is𝜔-periodic if f (n +𝜔)= f (n) for all n ∈ Z.
Thus, every constant function f (t)= c is also one-periodic, and every one-periodic function is constant in the discrete
time scale. The simplified assumption of constant coefficients is therefore equivalent to the assumption of one-periodic
coefficients if T = Z. However, for an arbitrary time scale T , a constant is not necessarily one-periodic. In fact, if
T = qN0 with q> 1, then a one-periodic function 𝑓 ∶ T → R is of the form 𝑓 (t) = c

t(q−1)
with c ∈ R. Thus, constant

functions differ from one-periodic functions on general time scales. While one assumption may simplify the analysis
significantly, the other assumption may not. The question we aim to address in this work is whether assuming constant
coefficients or one-periodic coefficients simplifies the analysis of delayed dynamic equations.

In Section 2, we give a brief introduction of time scales and the recently introduced periodicity for isolated time scales.
We also derive an identity between delay terms and higher order delta derivatives. In Section 3, we first focus on linear
delay dynamic equations with one-periodic coefficients and compare the result to the assumption of constant coeffi-
cients. We then, in Section 3.2, discuss a class of nonlinear delay dynamic equations with the assumption of one-periodic
coefficients. We argue that the periodicity property simplifies the analysis, not the assumption of constant coefficients.

2 PERIODIC FUNCTIONS ON TIME SCALES

A nonempty closed subset of the real numbers, a so-called time scale T, is isolated if 𝜎(t) ∶= inf{s ∈ T ∶ s > t} > t
and 𝜌(t) ∶= sup{s ∈ T ∶ s < t} < t for all t ∈ T. Henceforth, T represents an isolated time scale so that the following
periodicity definition is well-defined.

Definition 1 (see Bohner et al17, Definition 4.1 *). A function 𝑓 ∶ T → C is 𝜔-periodic provided

(𝜎𝜔)Δp𝜎𝜔 = p, (1)

or equivalently by using the definition of the Δ-derivative,

(𝜇p)𝜎
𝜔 = 𝜇p, (2)

*We note that although the original definition in Bohner et al17 only considered 𝑓 ∶ T → R, the definition can be extended to 𝑓 ∶ T → C.
We furthermore modify the original definition to consider T with finite cardinality by requiring (1) to hold for all t ∈ T with t≤𝜌𝜔(tm), where
tm = max{t ∈ T} if such tm exists.
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BOHNER ET AL.

where 𝜎𝜔 = 𝜎◦𝜎◦ … ◦𝜎
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝜔

. The set of all 𝜔-periodic functions p ∶ T → C is denoted by 𝜔.

By Bohner et al,17, Theorem 4.9 we have for t, t0 ∈ T and p ∈ 𝜔 regressive,

ep(t, 𝜌𝜔(t)) = ep(t0, 𝜌
𝜔(t0)). (3)

In Bohner et al,17, Lemma 4.6 the authors show that for all 𝜔 ∈ N1 = {1, 2, …}, 𝜔 ⊂ 2𝜔, that is, all 𝜔-periodic functions
are 2𝜔-periodic. We generalize this result in the proceeding lemma.

Lemma 2.1. If m|n and p is m-periodic, then p is n-periodic.

Proof. Since m|n, we may write n=md for some d ∈ N1. If d = 1, then the statement is trivially true. Now suppose
the statement is true for d> 1, and compute for n=m(d + 1),

(𝜇p)𝜎
n =

(
(𝜇p)𝜎

md
)𝜎m (2)

= (𝜇p)𝜎
m (2)
= 𝜇p,

completing the proof.

One of the results we will use is the generalization of the well-known discrete identity

𝑓 (t + n) =
n∑

k=0

(n
k

)
Δk𝑓 (t). (4)

We generalize (4) to arbitrary isolated time scales in Lemma 2.2 and will see that it simplifies the study of delay dynamic
equations significantly. It also provides the functional structure of periodic functions, see Theorem 2.3, extending a result
in Bohner et al17 to higher periods.

Lemma 2.2. If T is an isolated time scale, n ∈ N0, and 𝑓 ∶ T → C, then

𝑓𝜎n =
n∑

k=0

(n
k

)
Fk, (5)

where F0 = f and Fk+1 = 𝜇FΔ
k for all k ∈ N0.

Proof. The delta derivative of f on T is 𝑓Δ(t) = 𝑓 (𝜎(t))−𝑓 (t)
𝜇(t)

. We rewrite this as 𝜎̂𝑓 =
(
𝜇Δ̂ + id

)
𝑓 , where (𝜎̂𝑓 )(t) =

𝑓 (𝜎(t)) and
(
Δ̂𝑓

)
(t) = 𝑓Δ(t). Using an operator version of the binomial theorem, compute 𝜎̂n =

(
𝜇Δ̂ + id

)n =
n∑

k=0

(
n
k

) (
𝜇Δ̂

)k. The formula (5) follows after multiplying by f on the right, completing the proof.

Equation (5) can be used to identify the structure of periodic functions, generalizing Theorem 5.1 in Bohner et al.,17

which classified one-periodic functions as

𝑓 ∈ 1 if and only if there exists c ∈ R such that𝑓 (t) = c
𝜇(t)

for all t ∈ T . (6)

This implies in particular that for T = Z, 𝑓 is one-periodic if 𝑓 (t) ≡ C ∈ R, that is, f is a constant function. This is
consistent with our understanding of periodic functions on Z. Consider now the isolated time scale T = {ti}i∈N0

, with
t0 = 0 and ti + 1 = ti + 2 + (− 1)i for i ∈ N. The natural choice of a constant function as one-periodic does not coincide with
the introduced definition of periodicity on this time scales. Instead, a function 𝑓 ∶ T → R such that 𝑓 (ti) = 1 for even
i∈ {0, 2, 4, … } and 𝑓 (t𝑗) = 3 for odd j∈ {1, 3, 5, … } is one-periodic as it satisfies 𝑓 (t) = 3

𝜇(t)
for t ∈ T . This function, in

contrast to any constant function, is invariant with respect to integration in the sense that ∫ ti+1
ti

𝑓 (s)Δs = ∫ t𝑗+1
t𝑗

𝑓 (s)Δs for
any ti, t𝑗 ∈ T . For more examples of periodic functions on isolated time scales, we refer the reader to Section 5 in Bohner
et al.17
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BOHNER ET AL.

Theorem 2.3. 𝑓 ∈ 𝜔 if and only if there exists c = (c1, … , c𝜔)T ∈ C𝜔 such that 𝑓 (t) = ci(t)

𝜇(t)
, where i(t) = 1+ (kmod𝜔)

for t = 𝜎k(t0).

Proof. Let c = (c1, … , c𝜔)T ∈ C𝜔 and suppose 𝑓 (t) = ci(t)

𝜇(t)
. Then

𝜇(𝜎𝜔(t))𝑓 (𝜎𝜔(t)) = ci(𝜎𝜔(t)) = ci(t) = 𝜇(t)𝑓 (t).

Thus, by (2), 𝑓 ∈ 𝜔. To prove the converse, let f be 𝜔-periodic. Then, f satisfies (2), to which we apply (5) and obtain

𝜇(𝜎𝜔(t))
𝜔∑

i=0

(
𝜔

i

)
Fi(t) = 𝜇(t)𝑓 (t). (7)

If F = (F0,F1, … ,F𝜔−1)T , then (7) together with the definition of Fi becomes

FΔ(t) = A(t)F(t) with A(t) ∶=

[
0(𝜔−1)×1

1
𝜇(t)

I𝜔−1
1

𝜇(𝜎𝜔(t))
− 1

𝜇(t)
− 1

𝜇(t)
s

]
, (8)

where s =
((

𝜔

1

)
,
(

𝜔

2

)
, … ,

(
𝜔

𝜔−1

))
. Thus, (8) is a first-order linear dynamic system. We note that

B(t) ∶= I𝜔 + 𝜇(t)A(t) =
⎡⎢⎢⎢⎣

1 1 0 0 … 0
0 1 1 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮⋮⋮ ⋮

1
(𝜎𝜔)Δ(t)

− 1 −
(

𝜔

1

)
−
(

𝜔

2

)
−
(

𝜔

3

)
… 1 −

(
𝜔

𝜔−1

)
⎤⎥⎥⎥⎦ .

We have

det(B) = (−1)𝜔+1

{
𝜔∑
𝑗=1

(−1)𝑗−1B𝜔,𝑗

}

= (−1)𝜔+1

{
1

(𝜎𝜔)Δ(t)
− 1 +

𝜔−1∑
𝑗=1

− (−1)𝑗
(
𝜔

𝑗

)
+ (−1)𝜔−1

}

= (−1)𝜔+1

{
1

(𝜎𝜔)Δ(t)
+ (−1)

𝜔∑
𝑗=0

(−1)𝑗
(
𝜔

𝑗

)}
= (−1)𝜔+1

(𝜎𝜔)Δ(t)
≠ 0,

where, by the binomial expansion formula,
𝜔∑
𝑗=0

(−1)𝑗
(

𝜔

𝑗

)
= 0. Therefore, B is invertible, which implies that A is

regressive. Based on Theorem 5.8 in Bohner et al,11 (8) with initial value F(0) has a unique solution. This means,
that if 𝜔 consecutive values of a 𝜔-periodic function are known, then there is only one function 𝑓 ∶ T → R that
satisfies (1). This completes our claim, since 𝑓 (t) = ci(t)

𝜇(t)
is a solution and satisfies the initial value c = F(0).

Thus, the identity (5) was utilized in Theorem 2.3 to generalize the result in Theorem 5.1 in Bohner et al,17 where
one-periodic functions were classified, to periodic functions of higher periods. This useful identity will also be applied in
the proceeding section to simplify the expression of delay dynamic equations on isolated time scales.

3 DELAY DYNAMIC EQUATIONS WITH ONE-PERIODIC COEFFICIENTS

In this section, we apply the definition of periodicity as well as (5) to discuss the behavior of solutions to delay dynamic
equations. We will first focus on linear delay dynamic equations before considering a class of nonlinear delay equations,
also known as the delay logistic dynamic equation.

5824

 10991476, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8141 by M

issouri U
niversity O

f Science, W
iley O

nline L
ibrary on [21/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BOHNER ET AL.

3.1 Linear delay dynamic equations
We begin our analysis with a class of linear dynamic equations of the form

𝑦Δ(t) = p(t)𝑦(𝜌k(t)), (9)

with p ∶ T → R and k ∈ N1. We argue in this section that (9) with p ∈ 1 should be considered as the (isolated) time
scales analog of the difference equation

Δ𝑦t = c𝑦t−k, (10)

where c ∈ R, or equivalently, yt + 1 − yt = cyt− k. We note that yt + 1 depends not only on yt but also the k-th previous step
yt− k, making (10) a delay difference equation.19 Since T is an isolated time scale, we express (9) as

𝑦𝜎(t) − 𝑦(t)
𝜇(t)

= p(t)𝑦(𝜌k(t)), t ∈ [t0,∞) ∩ T ,

and by algebra, we obtain

𝑦𝜎
k+1(t) − 𝑦𝜎

k (t) = 𝜇𝜎k (t)p𝜎k (t)𝑦(t), t ∈ [𝜎k(t0),∞) ∩ T .

Thus, by (5),
k+1∑
𝑗=0

(
k + 1
𝑗

)
Y𝑗 −

k∑
𝑗=0

(
k
𝑗

)
Y𝑗 = 𝜇𝜎k p𝜎k

𝑦,

that is,

Yk+1 = 𝜇𝜎k p𝜎k Y0 −
k∑

𝑗=0

((
k + 1
𝑗

)
−
(

k
𝑗

))
Y𝑗 = 𝜇𝜎k p𝜎k Y0 −

k∑
𝑗=1

(
k

𝑗 − 1

)
Y𝑗 ,

that is,

YΔ = A(t)Y with A(t) ∶= 1
𝜇(t)

[
0k Ik

𝜇𝜎k (t)p𝜎k (t) −s

]
, (11)

where 0k = (0, 0, … , 0)T ∈ R1×k and s =
((

k
0

)
,
(

k
1

)
, … ,

(
k

k−1

))
∈ Rk×1. Define

B(t) ∶= Ik+1 + 𝜇(t)A(t) =
[

e1 Ik + Lk
𝜇𝜎k (t)p𝜎k (t) eT

k − s

]
, (12)

where Lk is a matrix in Rk×k with zeros except for ones in the subdiagonal and eT
i =

⎛⎜⎜⎝0, 0, … , 0, 1
⏟⏟⏟

i

, 0, … , 0
⎞⎟⎟⎠ ∈ Rk×1.

Expanding around the last row of (12), we obtain

det(Ik+1 + 𝜇(t)A(t)) = (−1)k𝜇𝜎k (t)p𝜎k (t). (13)

Thus, if A is regressive, then the explicit solution to (11) is given by

Y (t) = eA(t, t0)Y (t0) =
∏

𝜏∈[t0,t)∩T
(Ik+1 + 𝜇(𝜏)A(𝜏))Y (t0).

If p ∈ 1, p ≠ 0, then 𝜇𝜎k p𝜎k ∈ R∖{0}, from which we immediately conclude that A is regressive. Since p ∈ 1, p ≠ 0
implies by Theorem 2.3 p = c

𝜇
for c ∈ R∖{0}, and the expression of B in (12) simplifies to a constant matrix. Thus, the

following theorem is obtained.

5825

 10991476, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8141 by M

issouri U
niversity O

f Science, W
iley O

nline L
ibrary on [21/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BOHNER ET AL.

Theorem 3.1. Let p ∈ 1, p ≠ 0. The unique solution to (9) with initial values y(t0), y(𝜎(t0)), … , y(𝜎k(t0)) is given by

𝑦(t) = eT
1 eA(t, t0)F(t0) =

∏
𝜏∈[t0,t)∩T

eT
1 (Ik+1 + 𝜇(𝜏)A(𝜏))F(t0) = eT

1 B (t,t0)Y (t0), (14)

where  (t, t0) = card (T ∩ [t0, t)) , B(t) = Ik+1 + 𝜇(t)A(t) is constant, and Y (t0) = (Y0(t0),Y1(t0), … ,Yk(t0))T, where
Y0 = y and Yi+1 = 𝜇YΔ

i .

Remark 3.2. In the case of T = Z, the investigation of a delay difference equation is usually initiated with the
assumption of constant coefficients, that is, p ∈ R. In general, this simplifies the analysis and the corresponding
expression of the solution. For arbitrary time scales, it is however not immediately clear whether the same type of
simplification is to be expected from constant or one-periodic coefficients. We note that if p were chosen to be constant
in (9), then eA(t, t0) = Ik+1 + 𝜇(t)A(t) is not constant because the first entry in the (k + 1)st row, Ak + 1, 1, would be
constant and (𝜇(t)A)k + 1, 1 would depend on t (unless 𝜇(t) is independent of t, that is, T = R or T = Z). Thus, the
solution given in (14) would not simplify to powers of a constant matrix. As this type of simplification, here the
powers of a constant matrix, is however a desirable property, the choice of a one-periodic coefficient seems arguably
the preferred choice compared to constant coefficients.

By Theorem 3.1, the solution to the delay dynamic equation (9) reduces to the powers of a constant matrix B. An explicit
expression for such a matrix can be obtained by realizing that B can be brought into a companion matrix.20 If the calcu-
lation of powers of matrices is undesirable, then the convenient property of a constant matrix B allows alternatively the
calculation of the solution via the roots of a polynomial with constant coefficients.

We recall the trigonometric functions on time scales as defined in Bohner and Peterson10, Definition 3.25 as

cosp =
eip + e−ip

2
, sinp =

eip − e−ip

2i
,

and they consequently obey Euler's formula
eip = cosp + i sinp. (15)

Additionally, from the definition, it is immediately clear that sin−p = − sinp.

Theorem 3.3. Let p ∈ 1 and let x∗ ∈ C be a root of

G(x) = x(1 + x)k − 𝜇p. (16)

(i) If x∗ ∈ R, then

𝑦(t) = Ceq(t, t0), q(t) = x∗
𝜇(t)

,

with arbitrary C ∈ R, solves (9) for t ≥ 𝜎k(t0).
(ii) If x∗ ∉ R (i.e., x∗ = x∗1 + ix∗2 with x∗2 ≠ 0), then

𝑦1(t) = Ce𝛼(t, t0) cos𝛽 (t, t0) and 𝑦2(t) = De𝛼(t, t0) sin𝛽 (t, t0)

with arbitrary C,D ∈ R, 𝛼 = x∗1
𝜇(t)

, and 𝛽 = x∗2
𝜇(t)(1+x∗1 )

, solve (9). For C, D≠ 0, y1, y2 are two independent solutions
of (9).

Proof. Let p ∈ 1. By (6), there exists c ∈ R such that 𝜇p = c.

(i) Let x∗ ∈ R be a solution of (16). Define 𝑦(t) = Ceq(t, t0) with q(t) = x∗

𝜇(t)
for arbitrary C ∈ R. Then, by (6), q ∈ 1

and so, by (3), eq(t, 𝜌k(t))= eq(t0, 𝜌k(t0)). Thus,

𝑦Δ(t) = Cq(t)eq(t, 𝜌k(t))eq(𝜌k(t), t0)
(3)
= q(t)eq(t0, 𝜌

k(t0))𝑦(𝜌k(t))
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BOHNER ET AL.

and since, by (16),

q(t)eq(t0, 𝜌
k(t0)) =

x∗
𝜇(t)

∏
s∈[𝜌k(t0),t0)∩T

(
1 + 𝜇(s) x∗

𝜇(s)

)
= c

𝜇(t)
x∗(1 + x∗)k

c
= c

𝜇(t)
= p(t),

the proof of (i) is complete.
(ii) Let now x∗ ∉ R. Then x* = x1 + ix2 for x1, x2 ∈ R is also a root of (16). Let q(t) = x∗

𝜇(t)
and y(t)= eq(t, t0). Then,

𝑦Δ = Cq(t)eq(t, t0) = q(t)eq(t, 𝜌k(t))eq(𝜌k(t), t0) = q(t)
∏

s∈[𝜌k(t),t)∩T
(1 + 𝜇(s)q(s)) 𝑦(𝜌k(t)) = p(t)𝑦(𝜌k(t))

because

q(t)
∏

s∈[𝜌k(t),t)∩T
(1 + 𝜇(s)q(s)) = x∗

𝜇(t)
∏

s∈[𝜌k(t),t)∩T
(1 + x∗) = x∗(1 + x∗)k

𝜇(t)
(16)
= c

𝜇(t)
= p(t).

Since x∗ = x∗1 +ix∗2 is a root of (16), x∗ = x∗1 −ix∗2 is also a root of (16). Similarly, one can show that 𝑦̄(t) = Deq̄(t, t0)
also solves the delay dynamic equation, where q̄ = x∗

𝜇(t)
. Both of these solutions can be simplified by realizing

that q(t) = x∗

𝜇(t)
= x∗1

𝜇(t)
+ i x∗2

𝜇(t)
= 𝛼 ⊕ i𝛽 for 𝛼 = x∗1

𝜇(t)
and 𝛽 = x∗2

𝜇(1+x∗1 )
. Thus, q̄(t) = 𝛼 − i𝛽, and solutions of the delay

dynamic equation follow from (15) as

𝑦(t) = Ceq(t, t0) = Ce𝛼(t, t0)ei𝛽(t, t0) = Ce𝛼(t, t0)
(
cos𝛽(t, t0) + i sin𝛽(t, t0)

)
and

𝑦̄(t) = Deq̄(t, t0) = De𝛼(t, t0)e−i𝛽(t, t0) = De𝛼(t, t0)
(
cos𝛽(t, t0) − i sin𝛽(t, t0)

)
.

To obtain two real solutions z1, z2, we apply the superposition principle with C = D ∈ R to get

z1(t) = 𝑦(t) + 𝑦̄(t) = 2Ce𝛼(t, t0) cos𝛽 (t, t0)

and for C = D = A
i

with A ∈ R,

z2(t) = 𝑦(t) + 𝑦̄(t) = 2Ae𝛼(t, t0) sin𝛽 (t, t0).

It is easy to verify that z1, z2 are real solutions and are elements of the set of fundamental solutions, completing
the claim.

This completes the proof.

Remark 3.4. If p were chosen to be constant, then 𝜇p depends on t. In this case, the roots of (16) are functions
of t, increasing the complexity of the analysis outlined in Theorem 3.3. Thus, as argued for Theorem 3.1, the type
of simplification expected from the analysis of equations with constant coefficients is obtained for one-periodic
coefficients.

The explicit solution to (9) given in Theorem 3.1 may simplify the investigation of the global dynamics of solutions.
The following result regarding the stability of the only equilibrium of (9), namely the trivial one, can be immediately
concluded from Theorem 3.3.

Theorem 3.5. If supT = ∞, p ∈ 1, and there exists s ∈ T with p(s)> 0, then the trivial equilibrium of (9) is unstable.

Proof. If p(s)> 0, then p(t) = c
𝜇(t)

with c> 0. By Descartes' rule of signs, there exists exactly one positive real root, say

x̂ > 0. By Theorem 3.3, y(t)= eq(t, t0) with q(t) = x̂
𝜇(t)

is a solution of (9), and since x̂ > 0,

𝑦(t) = eq(t, t0) =
∏

s∈[t0,t)∩T

(1 + 𝜇(s)q(s)) = (1 + x̂) (t,t0) t→∞
→ ∞,
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BOHNER ET AL.

where  (t, t0) = card ([t0, t) ∩ T), completing the proof.

To study the stability of the only equilibrium, namely, the trivial equilibrium, one may apply classical methods, such as
the Jury condition.

Theorem 3.6. Let p ∶ T → R, p ∈ 1. If 𝜇p∈ (− 1, 0) is such that all roots of H(z)= z(z + 1)𝜔 −P are within the
unit-circle, that is, the Jury coefficients ai

k satisfy |ai
0| > |ai

n′ |, i = 1, … ,n − 2, where

a(i)
k ∶= det

[
a(i−1)

0 a(i−1)
n′−k

a(i−1)
n′ a(i−1)

k

]
, n′ = n − i + 1,

and a(0)
k ∶= ak for k = 1, … ,n, then the trivial solution of (9) is globally asymptotically stable.

Proof. We recall that solutions to the delay-dynamic equation under investigation (9) are of the form eq(t, t0) with
q(t) = x∗

𝜇(t)
, x∗ a root of G defined in (16). This function eq(t, t0) converges to 0 if x* ∈ (− 2,− 1). Using the fact that the

roots of G(x− 1) are in the unit-circle if and only if the roots of G(x) are in (− 2,− 1), enables the application of the
Jury stability criterion21 to

H(x) ∶= G(x − 1) = (x − 1)x𝜔 − 𝜇p = x𝜔+1 − x𝜔 − 𝜇p. (17)

For 𝜇p∈ (− 1, 0), the first three conditions of the Jury conditions are satisfied, that is,

|a0| = | − 𝜇p| = |𝜇p| < 1 = a𝜔+1, H(1) = −𝜇p > 0, H(−1) = (−1)𝜔+1 − (−1)𝜔 − P = (−2)𝜔+1 − 𝜇p,

which is positive if 𝜔+ 1 is even and negative if 𝜔+ 1 is odd. Thus, the first three Jury conditions are satisfied for
𝜇p∈ (− 1, 0), which leaves the required assumption to satisfy all Jury conditions.

To numerically investigate the values 𝜇p ∈ R for which the Jury conditions are satisfied, we divide the interval (− 1, 0)
into segments of length 0.01 and test if the Jury conditions are satisfied. The simulations reveal an exponential relation,
see Figure 1. Figure 1 illustrates that as the delay 𝜔 increases, the set of values 𝜇p that satisfy all Jury conditions shrinks.

FIGURE 1 Investigation of Jury stability criteria for different
values of P = 𝜇p ∈ R and the delay 𝜔. For parameter combinations in
the yellow area, the Jury conditions are satisfied, and the trivial
equilibrium of 𝑦Δ(t) = p(t)𝑦(𝜌𝜔(t)) with p ∈ 1 is globally
asymptotically stable. For parameter combinations within the green
area, the Jury condition is violated so that the trivial equilibrium is
not stable [Colour figure can be viewed at wileyonlinelibrary.com]
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BOHNER ET AL.

Given the relation between the delay and the smallest possible P value that satisfies all Jury conditions indicated in
Figure 1, we fit a logistic curve of the form

𝜑(𝜔) = 1
1 + ea+b𝜔+c𝜔2 − 1,

where 𝜑(𝜔) is the smallest P value that satisfies all Jury conditions for a delay of 𝜔. This can be transformed to the linear
problem

log
(

−𝜑(𝜔)
1 + 𝜑(𝜔)

)
= a + b𝜔 + c𝜔3.

The parameters found via the Matlab function “polyfit” led to the values

a = 1.0769, b = −0.4506, c = 0.0163.

It will be of interest to verify this exponential relation analytically.
In Wu and Zhou,22 the condition securing uniform stability of the trivial solution reads in our case as

P(𝜔 + 1) ≥ −
{

3
2
+

mint∈T𝜇(t)
2maxt∈T(𝜇(t) + 𝜌𝜔(0))

}
and is therefore dependent on the choice of the time scale.

Based on Anderson et al,12 sufficient conditions for stability of the trivial equilibrium are provided in the proceeding
statements.

Theorem 3.7. Let T be unbounded above. If P∈ (− 1, 0) and there exists 𝛼 ∈ (0, 1) such that

|P|𝜔 2 + |P|
1 + |P| ≤ 𝛼, t ∈ T, (18)

where N(t, s) is the number of (isolated) points in the set [s, t) ∩ T, then all solutions to (9) converge to zero.

Proof. This is a consequence from applying Theorem 3.1 in Anderson et al12 by realizing that the delay-function in
Anderson et al12 is here 𝛿 = 𝜌𝜔 and (18) is Condition (3.4) in Anderson et al.12

Corollary 3.7.1. Let T be unbounded above. If P∈ (− 1, 0) such that there exists 𝛼 ∈ (0, 1) such that (18) is satisfied for
𝜔, then all solutions to (9) with p = P

𝜇
and k ≥ 𝜔 converge to zero.

Proof. Let P∈ (− 1, 0) satisfy (18). Then,

𝛼 ≥ |P|N(𝜌𝜔(t),t) + |P|
1 + |P| ∑

𝜏∈[t0,t)∩T

|P|N(𝜌𝜔(𝜏),t)

= 1|P| |P|N(𝜌𝜔+1(t),t) + |P|
1 + |P| ∑

𝜏∈[t0,t)∩T

1|P| |P|N(𝜌𝜔+1(𝜏),t)

≥ |P|N(𝜌𝜔+1(t),t) + |P|
1 + |P| ∑

𝜏∈[t0,t)∩T

|P|N(𝜌𝜔+1(𝜏),t),

and hence, the condition (18) is satisfied for 𝜔+ 1.

Theorem 3.8. Let p ∈ 1. If 𝜇p< 0 and (−𝜇p)k< 1, then the trivial solution of (9) is globally asymptotically stable.
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BOHNER ET AL.

Proof. Define 𝛼(t) = 𝜌k(t) and A(𝜂) = −p(𝜂) = −C
𝜇(𝜂)

, where C ∈ R. Then, 𝛼(t)≤t for all t ∈ T and Condition (A1)
in Braverman and Karpuz23 holds. Furthermore, ∫ ∞

t0
A(𝜂)Δ𝜂 =

∑∞
n=0(−P) = ∞ and Condition (24) in Braverman and

Karpuz 23 is satisfied. We note that

𝛼∗(𝜂) = inf{𝛼(𝜏) ∶ 𝜏 ∈ [t,∞) ∩ T} = 𝜌k(t),

so that
𝛼−1(t) = sup{𝜂 ∶ 𝛼∗(𝜂) ≤ t} = 𝜎k(t).

Thus,

∫
𝜎(t)

𝛼∗(t)
A(𝜂)Δ𝜂 =

𝜎k−1(t)∑
n=t

(−P) = (−P)k,

satisfying condition (5). Finally, since

∫
𝜎(t)

𝛼∗(t)
A(𝜂)Δ𝜂 =

t∑
n=𝜌k(t)

(−P) = (−P)k < 1,

condition (13) is satisfied and therefore, by Theorem 3.5 in Braverman and Karpuz,23 the trivial equilibrium is globally
asymptotically stable.

Clearly, one could apply other stability theorems for time scales models, such as presented in other studies.24–28

While we may understand the assumption of one-periodic coefficients on isolated time scales to replicate the constant
coefficient case in the continuous time scale, we may still want to consider the case of periodic coefficients with higher
prime period. In fact, Theorem 3.3 can be generalized to periodic coefficients of any period, but the corresponding (16)
becomes more elaborate. For example, if p ∈ 2, that is, 𝜇p∈ {c1, c2} with ci ∈ R for i = 1, 2, then (16) turns into

x∗i (1 + x∗i )
⌊ k

2
⌋(1 + x∗3−i)

⌊ k+1
2

⌋ = ci, (19)

for i = 1, 2. Let x∗1 , x∗2 be solutions of (19). Then, 𝑦 = Ceq(t, t0) with q(𝜎2k(t0)) =
x∗1
𝜇(t)

and q(𝜎2k+1(t0)) =
x∗2
𝜇(t)

is a solution
to (9) with p ∈ 2.

An analog of Theorem 3.5 for two-periodic coefficients is formulated below.

Theorem 3.9. If supT = ∞, p ∈ 2, and p(t0), p(𝜎(t0))> 0, then the trivial solution is unstable.

Proof. If p ∈ 2 with p(t0), p(𝜎(t0))> 0, then c1, c2 > 0 where p(𝜎2n(t0)) =
c1
𝜇(t)

and p(𝜎2n+1(t0)) =
c2
𝜇(t)

for all n ∈ N and
therefore p(t)> 0 for all t ∈ T .

We distinguish between two cases dependent on the delay k.

(i) k even, that is, there exists n ∈ N such that k = 2n. Let x∗1 , x∗2 be a pair of solutions to the equations in (19), that is,

x∗1(1 + x∗1)
n(1 + x∗2)

n =c1

x∗2(1 + x∗2)
n(1 + x∗1)

n =c2.

Since c1, c2 ≠ 0, x∗1 , x∗2 ≠ 0 and the division of both equations results in

x∗1
x∗2

= c1

c2
⇔ x∗2 = c2

c1
x∗1 . (20)

Plugging this into the first equation of (19) yields

x∗1(1 + x∗1)
n(1 + x∗2)

n = c1 ⇒ x∗1(1 + x∗1)
n
(

1 + c2

c1
x∗1

)n

− c1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓 (x∗1 )

= 0.
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BOHNER ET AL.

For c1, c2 > 0, the coefficients of f (x) have only one sign change, and thus, by Descartes' rule of signs, there
exists one positive root x∗1 . By (20), this results also in x∗2 > 0. Following the same argument as in the proof of
Theorem 3.5, the solution is unbounded.

(ii) k odd, that is, there exists n ∈ N such that k = 2n + 1. Then, by (19), we have

x∗1(1 + x∗1)
n(1 + x∗2)

n+1 = c1

x∗2(1 + x∗2)
n(1 + x∗1)

n+1 = c2.

Define ui = 1 + x∗i for i = 1, 2. Then, the above reads as

(u1 − 1)un
1 un+1

2 = c1 (21)

(u2 − 1)un
2 un+1

1 = c2. (22)

By (21), we have
un+1

2 = c1

(u1 − 1)un
1

(23)

and plugging this into (22), we have

c2 = un+1
2 un+1

1 − un
2 un+1

1 = c1

(u1 − 1)un
1

un+1
1 − c1

(u1 − 1)un
1

un+1
1

u2
,

that is,
u2 = c1u1

(c1 − c2)u1 + c2
. (24)

By (24) and (23), we have
cn+1

1 un+1
1

((c1 − c2)u1 + c2)n+1 = c1

(u1 − 1)un
1
,

that is,

cn
1 u2n+1

1 = ((c1 − c2)u1 + c2)n+1

(u1 − 1)
.

That is, u1 is a root of

𝑓 (u) ∶= cn
1 u2n+2 − cn

1 u2n+1 −
n+1∑
i=0

(n + 1
i

)
(c1 − c2)iuicn+1−i

2 .

Since c1 > 0, limu→∞𝑓 (u) = ∞. Further, since

𝑓 (1) = cn
1 − cn

1 −
n+1∑
i=0

(n + 1
i

)
(c1 − c2)icn+1−i

2

= −(c1 − c2 + c2)n+1 < 0,

there exists a positive root u1 > 1, resulting in a positive root x∗1 > 0. Since u1 > 1, c2(1−u1)< 0 and therefore
c1u1 > (c1 − c2)u1 + c2, hence by (24), u2 > 1, resulting in a positive root x∗2 > 0. Thus, there exists an unbounded
solution also in this case.

This completes the proof.

3.2 Nonlinear dynamic equation: delay Beverton–Holt model
We now apply the results of Section 2 to a class of nonlinear dynamic equations, more precisely, a formulation in Bohner
and Warth29 of the logistic dynamic equation as defined in Bohner and Peterson,10

xΔ = 𝛼x𝜎
(

1 − x
K

)
, where 𝛼 ∈ (0, 1).
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BOHNER ET AL.

This logistic dynamic equation is a time-scale generalization of the popular logistic differential equation. The logistic dif-
ferential equation is mathematically of interest since it can be solved analytically despite its nonlinearity and biologically
due to its applications in population dynamics. The same reason, besides the purpose of generalizing it to time scales,
motivates a corresponding study on time scales.

Following the argument described in Bohner and Warth29 for the discrete case, the logistic dynamic equation on isolated
time scales can also be expressed as a Beverton–Holt model in the form

x𝜎 = 𝜈Kx
K + (𝜈 − 1)x

, where 𝜈 ∶= 1
1 − 𝛼

> 1. (25)

This can be understood as generalization of the popular logistic differential equation to isolated time scales. We note that
for the special case of the integers as isolated time scales, (25) reads as

xt+1 = 𝜈Kxt

K + (𝜈 − 1)xt
,

which is the well-known Beverton–Holt model that is often considered as metered model of the logistic differential
equation, see Brauer and Castillo-Chavez.30 In fact, the Beverton–Holt recurrence was derived from the logistic differen-
tial equation, as outlined in Beverton and Holt.31 In Bohner et al,32 a generalization via delay of (25) was considered for
the discrete case, namely,

xt+k = 𝜈Kxt

K + (𝜈 − 1)xt

was considered with K ∶ Z → R+ and 𝜈 > 1. Note that if k = 1, then, the delay equation is identical to the Beverton–Holt
model.29 Our aim is to generalize this delay model to arbitrary isolated time scales to formulate a delay logistic dynamic
equation on isolated time scales.

The class of nonlinear delay dynamic equations on isolated time scales we will consider is of the same structure, namely,

x𝜎k = 𝜈Kx
K + (𝜈 − 1)x

,

where k ∈ N1, 𝜈 > 1 is the proliferation rate, and K> 0 is the carrying capacity. We define the growth rate by 𝛼(t) = 𝜈−1
𝜇𝜈

so that 𝛼 ∈ 1 by (6), and consequently 𝜇𝛼 ∈ (0, 1). Now, we rewrite the previous equation as

x𝜎k = Kx
(1 − 𝜇𝛼)K + 𝜇𝛼x

. (26)

We investigate (26) with initial values x⃗0 = (x0, x1, … , xk−1) ∈ (0,∞)k. We note that if xi = 0 for all i = 0, … , k − 1, then
xt = 0 for all t ≥ k. If xi = 0 for some  ⊊ {0, 1, … , k − 1}, then xi+nk = 0 for all n ∈ N and if xi > 0, then xi + nk > 0 for all
n ∈ N and the solution of xi + nk can be obtained using the same procedure as described below.

Define z ∶= x
K

. Then, (26) becomes

z𝜎k = z
1
𝜈
+ (𝜈−1)

𝜈
z
= z

(1 − 𝜇𝛼) + 𝜇𝛼z
. (27)

Using 𝑦 ∶= 1
z

(for z≠ 0) yields the linear delay dynamic equation

𝑦𝜎
k = (1 − 𝜇𝛼)𝑦 + 𝜇𝛼. (28)

Apply (5) to the left-hand side of (28) to get

k∑
i=0

(
k
i

)
Yi = (1 − 𝜇𝛼)𝑦 + 𝜇𝛼,

5832

 10991476, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.8141 by M

issouri U
niversity O

f Science, W
iley O

nline L
ibrary on [21/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BOHNER ET AL.

and isolate Yk to obtain

Yk = −𝜇𝛼Y0 + 𝜇𝛼 −
k−1∑
i=1

(
k
i

)
Yi. (29)

We see that YΔ
i−1 = 1

𝜇
Yi so that (29) is

YΔ = A(t)Y + b(t) with A(t) ∶= 1
𝜇(t)

[
0k−1 Ik−1
−𝜇𝛼 −s

]
and b(t) =

(
0k−1
𝛼

)
, (30)

where s =
((

k
1

)
,
(

k
2

)
,
(

k
3

)
, … ,

(
k

k−1

))
and 0k−1 ∈ Rk−1×1 is vector of zeros.

Lemma 3.10. The matrix A defined in (30) is regressive.

Proof. By Definition 5.5 in Bohner et al,11 the matrix A is regressive if det(A + 𝜇I) ≠ 0, where I is the identity matrix.
First compute

B ∶= I + 𝜇A =
[

e1 Ik−1 + Lk−1
−𝜇𝛼 eT

k−1 − s

]
=

[
e1 Ik−1 + Lk−1
C eT

k−1 − s

]
, (31)

where eT
k−1 = (0, 0, … , 0, 1) ∈ R1×(k−1), C = − 𝜈−1

𝜈
∈ (−1, 0), and Lk−1 ∈ Rk−1×k−1 is the matrix that is zero except for

ones on the subdiagonal. Thus, expanding along the bottom row, we get

det(B) = (−1)k+1
(

C +
(

k
1

)
−
(

k
2

)
+ … + (−1)k+1

(
−
(

k
k − 1

)
+ 1

))
= 1 + (−1)k+1

(
C +

k−1∑
i=1

(−1)i+1
(

k
i

))
= 1 + (−1)k+1 (C + (−1)k + 1

)
= (−1)k+1(C + 1) ≠ 0,

since C∈ (− 1, 0).

Remark 3.11. The assumption of 𝛼 ∈ 1 results in a constant matrix B, which would not be the case if 𝛼 were chosen
to be constant. As we will see in the proceeding results, the solution significantly simplifies for constant matrices B.
Note that these type of simplifications are usually known to arise in the case of constant coefficients for differential
and difference equations. Thus, it gives reason to believe that one-periodic coefficients replace the purpose of constant
coefficients in dynamic equations of time scales.

By Theorem 5.24 in Bohner et al11 and Lemma 3.10, the solution of (30) is

Y (t) = eA(t, t0)Y (t0) +
⎛⎜⎜⎝

∑
s∈[t0,t)∩T

𝜇(s)eA(t, 𝜎(s))b(s)
⎞⎟⎟⎠ = B (t,t0)Y (t0) +

⎛⎜⎜⎝
∑

s∈[t0,t)∩T

𝜇(s)B (t,𝜎(s))b(s)
⎞⎟⎟⎠ , (32)

where  (t, t0) = card (T ∩ [t0, t)). The second identity holds because B = A + 𝜇I has only constant entries.
To simplify the expression (32) and avoid the calculation of matrix powers, we use the following lemma.

Lemma 3.12. Let B ∈ Rk×k be given by (31). Then

eT
1 Bm = (1 + C)𝓁

r∑
𝑗=0

(
r
𝑗

)
eT
𝑗+1, (33)

for m = 𝓁k + r, 0 ≤ r < k with C = 1−𝜈
𝜈

.
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BOHNER ET AL.

Lemma 3.12 is proven via induction. Since it is not difficult to prove but is rather long, the details are moved to the
appendix. Lemma 3.12 now significantly simplifies the expression of the solution to the delay logistic dynamic equation.

Theorem 3.13. If 𝛼 ∈ 1 with 𝜇𝛼 ∈ (0, 1) and K> 0, then the solution to (26) with initial values (x(t0), x(𝜎(t0)),
… , x(𝜎k− 1(t0))) is given by

x(t) = K

(1 + C)𝓁K
r∑

𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1 + 1 − (1 + C)𝓁+1

, (34)

where t = 𝜎m(t0) for some m = 𝓁k + r, 0 ≤ r < k and C = 1−𝜈
𝜈

and Y (t0) = (Y0(t0),Y1(t0), … ,Yk−1(t0)) with Y0 = 𝑦 = K
x

and Yi+1 = 𝜇YΔ
i .

Proof. Recall that the solution of (30) is given by (32). Given the construction of (30), the first component, 𝑦 = eT
1 Y

solves (28). Note that for  (t, t0) = 𝓁k + r and  (t, 𝜎(𝜏)) = 𝓁𝜏k + r𝜏 and therefore

𝑦(t) = eT
1 Y = eT

1 eA(t, t0)Y (t0) +
∑

𝜏∈[t0,t)∩T

𝜇(𝜏)eT
1 eA(t, 𝜎(𝜏))b(𝜏) = eT

1 B (t,t0)Y (t0) +
∑

𝜏∈[t0,t)∩T

𝜇(𝜏)eT
1 B (t,𝜎(𝜏))b(𝜏)

= (1 + C)𝓁
r∑

𝑗=0

(
r
𝑗

)
eT
𝑗+1Y (t0) +

∑
𝜏∈[t0,t)∩T

(1 + C)𝓁𝜏

r𝜏∑
𝑗=0

𝜇(𝜏)eT
𝑗+1b(𝜏).

Since 𝜇(𝜏)b(𝜏) = (0, 0, … , 0,−C)T , we have

𝑦(t) = (1 + C)𝓁
r∑

𝑗=0

(
r
𝑗

)
eT
𝑗+1Y (t0) +

∑
𝜏∈[t0,t)∩T

(1 + C)𝓁𝜏 𝜒𝜏 ,

where 𝜒𝜏 =

{
0 if r𝜏 < k − 1
−C if r𝜏 = k − 1

. Thus, if m ∶=  (t, t0) = 𝓁k + r with r< k− 1, then

𝑦(𝜎m(t0)) = (1 + C)𝓁
r∑

𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1 − C

𝓁∑
𝑗=0

(1 + C)𝑗 = (1 + C)𝓁
r∑

𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1 − C 1 − (1 + C)𝓁+1

1 − (1 + C)

= (1 + C)𝓁
r∑

𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1 + 1 − (1 + C)𝓁+1,

where (Y (t0))j is the jth component of Y(t0). Since w1 = 𝑦 = 1
z
= K

x
, we have with initial values x(𝜎i(t0))> 0 for

i = 0, 1, … , k − 1,

x(t) = x(𝜎𝓁k+r(t0)) =
K

(1 + C)𝓁
∑r

𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1 + 1 − (1 + C)𝓁+1

.

To show that this is in fact a solution to (26), if t = 𝜎𝓁k+r(t0), then 𝜎k(t) = 𝜎(𝓁+1)k+r(t0) and therefore,

x𝜎k (t) = K

(1 + C)𝓁+1 ∑r
𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1 + 1 − (1 + C)𝓁+2

= K

(1 + C)𝓁+1 ∑r
𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1 + 1 − (1 + C)𝓁+2

= K

(1 + C)𝓁+1 ∑r
𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1 + 1 − (1 + C)𝓁+2
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BOHNER ET AL.

FIGURE 2 Behavior of the solution of (26) with parameter values
K = 10, k = 4, 𝜈 = 5 on a randomly chosen time scale T =
{2, 3, 5, 9, 12,13, 16,18, 21,22, 23,26, 29,32, 36,37, 39,42, 43,46, 47,48,
50,53, 54,56, 58,59, 61,68, 70} and initial values (1.0976,
9.3376, 1.8746, 2.6618). Panel (A) displays the behavior of the solution
x, and (B) visualizes the behavior of 𝜇x. Recall that if 𝜇x is constant,
then x is one-periodic [Colour figure can be viewed at
wileyonlinelibrary.com]

and, similarly,

Kx
(1 − 𝜇𝛼)K + 𝜇𝛼x

= K

K
(1+C)𝓁

∑r
𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1+1−(1+C)𝓁+1

(1 + C)K + 𝜇𝛼 K
(1+C)𝓁

∑r
𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1+1−(1+C)𝓁+1

= K

(1 + C)(1 + C)𝓁
∑r

𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1 + (1 + C) − (1 + C)𝓁+2 + 𝜇𝛼

= K

(1 + C)𝓁+1 ∑r
𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1 + 1 − (1 + C)𝓁+2

.

Comparing both expressions and recalling that C = −𝜇𝛼, yields the desired equation x𝜎k = Kx
(1−𝜇𝛼)K+𝜇𝛼x

, which
completes the proof.

The expression of the solution simplifies the study of the dynamics, and we obtain the following theorem regarding the
global asymptotic stability of K.

Theorem 3.14. If supT = ∞ and 𝛼 ∈ 1 with 𝜇𝛼 ∈ (0, 1) and K> 0, then solutions to (26) with positive initial values
converge to K.

Proof. By Theorem 3.13, the solution of (26) is given by (34). Since 1+C = 1
𝜈
< 1 for 𝜈 > 1, we have lim

𝓁→∞
(1 + C)𝓁 = 0.

Thus,
K∑r

𝑗=0

(
r
𝑗

)
(Y (t0))𝑗+1 lim

𝓁→∞
(1 + C)𝓁 + 1 − lim

𝓁→∞
(1 + C)𝓁+1

= K,

completing the claim.

As described in Theorem 3.14, solutions converge to the carrying capacity K for one-periodic parameters 𝛼, see
Figure 2A. Interestingly, the solution is not necessarily one-periodic, that is, 𝜇x ∉ R, as panel (B) suggests.

4 CONCLUSION

We applied the recently introduced definition of periodicity for arbitrary isolated time scales17 to delay dynamic equations.
In Section 2, an identity relating delays to a combination of higher order delta derivatives is formulated, see Theorem 2.2.
This formula also reveals the structure of periodic functions, see Theorem 2.3, and simplifies the analysis of delay dynamic
equations. In Section 3, we analyzed first linear and then a class of nonlinear dynamic equations with one-periodic coef-
ficients. The class of nonlinear dynamic equations we consider is related to the logistic differential equation, a popular
nonlinear model that is commonly used in population dynamics. Thus, the discussion of the corresponding model on iso-
lated time scales is the first step towards extending this model to time scales and to provide a wider range of applications
as the underlying time domain does not have to be continuous nor entirely discrete with equidistant points. Although
constant coefficients are commonly used as simplification, we argued that it is indeed the one-periodicity trait inherited
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BOHNER ET AL.

by constant parameters that simplifies the analysis significantly. Formulae for the exact solution to the linear and non-
linear dynamic equations with delay were provided. We furthermore provide sufficient conditions to discuss the global
asymptotic stability of equilibria for both the linear and nonlinear models. For the linear case, we use for example the
Jury conditions to discuss global asymptotic stability of the trivial equilibrium, and apply stability theorems to the spe-
cific delay system introduced in this manuscript. To discuss stability of the positive equilibrium for the nonlinear model,
we use the explicit solution. It will be interesting to extend this study to periodic coefficients with higher periods. As out-
lined in Section 3.1, the analysis of two-periodic coefficients is already more complicated as hinted upon. It will also be
interesting to extend the study to systems of dynamic equations on isolated time scales. We further believe that stability
analysis can be intensified, which may be subject of future work.
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APPENDIX A

Proof of Lemma 3.12. We begin the induction with the base case, that is, m = 0. In this case, 𝓁 = 0 and r = 0. Then,

eT
1 B0 = eT

1 I = (1 + C)0e1,

confirming (33) for m = 0. We write

eT
1 Bm+1 = eT

1 BmB =
(
eT

1 Bm)
B,

where eT
1 Bm is the first row of Bm. We now write the induction hypothesis

eT
1 Bm =

{
(1 + C)𝓁eT

1 if m = 𝓁k
(1 + C)𝓁( r

0
, r

1
, … , r

r
, 0, … 0)T if m = 𝓁k + r (1 ≤ r < k).

Case 1. There exists 𝓁 ∈ N such that m = 𝓁k and r = 0. We then have

eT
1 Bm̂ = eT

1 Bm+1 = eT
1 BmB

(33)
= (1 + C)𝓁

0∑
𝑗=0

(
0
𝑗

)
eT
𝑗+1B = (1 + C)𝓁

(0
0

)
eT

1 B = (1 + C)𝓁eT
1 B = (1 + C)𝓁(eT

1 + eT
2 ),

which coincides with (33) for m̂ = m + 1 = 𝓁k + 1.
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Case 2. m = 𝓁k+ r with 0< r< k− 1, thus m̂ = m+1 = 𝓁k+(r+1) = 𝓁k+ r̂ where r̂ = r+1 < k. We therefore have

(1 + C)−𝓁eT
1 Bm̂ = (1 + C)−𝓁eT

1 BmB
(33)
=

r∑
𝑗=0

(
r
𝑗

)
eT
𝑗+1B

= eT
1 B +

r∑
𝑗=1

(
r
𝑗

)
eT
𝑗+1B = eT

1 + eT
2 +

r∑
𝑗=1

(
r
𝑗

)
(eT

𝑗+1 + eT
𝑗+2)

= eT
1 +

( r
0

)
eT

2 +
r∑

𝑗=1

(
r
𝑗

)
eT
𝑗+1 +

r+1∑
𝑗=2

(
r

( 𝑗 − 1)

)
eT
𝑗+1

= eT
1 +

(( r
0

)
+
( r

1

))
eT

2 +
r∑

𝑗=2

((
r
𝑗

)
+
(

r
𝑗 − 1

))
eT
𝑗+1 + eT

r+1

= eT
1 +

( r + 1
1

)
eT

2 +
r∑

𝑗=2

(
r + 1
𝑗

)
eT
𝑗+1 +

( r + 1
r + 1

)
eT

r+1

=
r+1∑
𝑗=0

(
r + 1
𝑗

)
eT
𝑗+1.

This is consistent with (33) for m̂ = m + 1 = 𝓁k + r + 1 with r + 1< k, after multiplying both sides with (1 + C)𝓁 .
Case 3. m = 𝓁k + (k − 1), that is, r= k− 1. In this case, m̂ = (𝓁 + 1)k. Thus, we have

(1 + C)−𝓁eT
1 Bm̂ = (1 + C)−𝓁eT

1 BmB
(33)
=

k−1∑
𝑗=0

(
k − 1
𝑗

)
eT
𝑗+1B

= eT
1 B +

k−2∑
𝑗=1

(
k − 1
𝑗

)
eT
𝑗+1B + eT

k B

= eT
1 + eT

2 +
k−2∑
𝑗=1

(
k − 1
𝑗

)
(eT

𝑗+1 + eT
𝑗+2) + eT

k B

= eT
1 + eT

2 +
(

k − 1
1

)
eT

2 +
(

k − 1
k − 2

)
eT

k +
k−2∑
𝑗=2

(
k
𝑗

)
eT
𝑗+1 + CeT

1 −
k−1∑
𝑗=1

(
k
𝑗

)
eT
𝑗+1 + eT

k

= eT
1 +

(
k
1

)
eT

2 +
(

k − 1
k − 2

)
eT

k + CeT
1 −

(
k
1

)
eT

2 −
(

k
k − 1

)
eT

k +
(

k − 1
k − 1

)
eT

k

= eT
1 +

(
k

k − 1

)
eT

k + CeT
1 −

(
k

k − 1

)
eT

k = (1 + C)eT
1 ,

which is consistent with (33), after multiplying both sides with (1 + C)𝓁 .
This completes the proof.
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