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Abstract
Pattern formation in the classical and fractional Schnaken-

berg equations is studied to understand the nonlocal effects

of anomalous diffusion. Starting with linear stability anal-

ysis, we find that if the activator and inhibitor have the

same diffusion power, the Turing instability space depends

only on the ratio of diffusion coefficients 𝜅1∕𝜅2. However,

smaller diffusive powers might introduce larger unstable

wave numbers with wider band, implying that the patterns

may be more chaotic in the fractional cases. We then apply a

weakly nonlinear analysis to predict the parameter regimes

for spot, stripe, and mixed patterns in the Turing space. Our

numerical simulations confirm the analytical results and

demonstrate the differences of normal and anomalous dif-

fusion on pattern formation. We find that in the presence

of superdiffusion the patterns exhibit multiscale structures.

The smaller the diffusion powers, the larger the unstable

wave numbers, and the smaller the pattern scales.

KEYWORDS

anomalous diffusion, fractional Laplacian, pattern forma-

tion, Schnakenberg equations, Turing instability

1 INTRODUCTION

The reaction–diffusion equations have wide applications in many fields, including biology, chemistry,

ecology, geology, physics, finance, and so on. In classical reaction–diffusion equations, diffusion is

described by the standard Laplace operator Δ = 𝜕xx + 𝜕yy + 𝜕zz, characterizing the transport mechan-

ics due to the Brownian motion. Recently, it has been suggested that many complex (e.g., biological

and chemical) systems are indeed characterized by the Lévy flight, rather than the Brownian motion;

Numer Methods Partial Differential Eq. 2022;38:1843–1860. wileyonlinelibrary.com/journal/num © 2021 Wiley Periodicals LLC. 1843
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1844 KHUDHAIR ET AL.

see References [1–10] and references therein. Hence, the fractional reaction–diffusion equations

were proposed to model these systems, where the Lévy anomalous diffusion is described by the

fractional Laplacian (−Δ)𝛾 . So far, many studies can be found on the fractional reaction–diffusion

equations [11–13]. However, the anomalous diffusion and its interplay with nonlinear reactions on

pattern formation and selection have not been well understood yet.

In this paper, we study the pattern formation and selection in the Schnakenberg equation to compare

the effects of normal and anomalous diffusion. The Schnakenberg equation is one of the simplest

reaction–diffusion systems. It has been applied to study pattern formation in, such as animal skins

[14–16], plant root hair initiation [17], and fluid flows [18]. The Schnakenberg equation was first

introduced in Schnakenberg [19] to study the limit cycle behavior, that is, temporal periodic solutions.

It describes the following reactions: A ⇌ X, B → Y , and 2X+Y → 3X, with X Y , A, and B representing

different chemicals. In this study, we consider the Schnakenberg equation of the following form:

𝜕tu(x, t) = −𝜅1(−Δ)
𝛾1

2 u + A − u + u2v,

𝜕tv(x, t) = −𝜅2(−Δ)
𝛾2

2 v + B − u2v, (1)

where u and v denote the concentration of chemicals X and Y , respectively, and 𝜅1, 𝜅2 are their diffusion

coefficients. With a slight abuse of notation, we denote A and B as the concentrations of chemical A
and B, respectively. We assume that A and B are in abundance so that A and B are kept constant in the

model (1). The fractional Laplacian (−Δ)
𝛾

2 is defined as

(−Δ)
𝛾

2 u = −1[|k|𝛾 [u]], for 𝛾 > 0,

where  represents the Fourier transform, and 
−1

denotes the associated inverse transform. Prob-

abilistically, the fractional Laplacian represents the infinitesimal generator of a symmetric 𝛾-stable

Lévy process. In the special case of 𝛾1 = 𝛾2 = 2, the system (1) reduces to the classical Schnakenberg

equation [19]. In this study, we are interested in the diffusion power 𝛾1, 𝛾2 ∈ (1, 2].
Pattern formation and pattern selection have been one of the most important topics in the study of

reaction–diffusion equations. For the classical Schnakenberg equations, many theoretical results have

been reported in the literature, including the existence of steady states [17, 20, 21], various Turing

patterns and their stability [22–28], and Hopf bifurcation analysis [29, 30]. In contrast, the study of

the fractional Schnakenberg equation still remains scant. In Hammouch et al. [31], a finite difference

method is proposed to solve the variable-order fractional Schnakenberg equations. Recently, there is

growing interest in the fractional reaction–diffusion equations (see References [11, 13, 32–34] and

references therein), but the understanding of anomalous diffusion in pattern formation and selection

still remains limited. To the best of our knowledge, no report on pattern formations in the fractional

Schnakenberg equation can be found in the literature. Moreover, even though there are many theo-

retic studies on the classical Schnakenberg equation, few numerical studies can be found on pattern

formations.

In this work, we analytically and numerically study pattern formation and selection in both clas-

sical and fractional Schnakenberg equations. As one of the simplest reaction–diffusion systems, the

study of pattern formations in the Schnakenberg equation provides insights to understand anomalous

diffusion in reaction–diffusion models and advances their practical applications. We find that the nec-

essary condition for Turing instabilities is 𝜅1 < 𝜅2. If 𝛾1 = 𝛾2, the fractional Schnakenberg equations

have the same Turing spaces as its classical counterpart, but the Turing space increases with the ratio

𝜅1∕𝜅2 or 𝛾1∕𝛾2. The smaller the power 𝛾1, the larger the unstable wave numbers and the smaller the pat-

tern scales. Our weakly nonlinear analysis predicts the parameter regimes for hexagon patterns, stripe

patterns, and their mixtures. Our numerical results confirmed the theoretical analysis and also pro-

vided new insights on the patterns in the fractional Schnakenberg equations. This paper is organized
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KHUDHAIR ET AL. 1845

as follows. In Section 2, we carry out a linear stability analysis to study Turing instability. In Section 3,

weakly nonlinear stability analysis and amplitude equation analysis are presented to study the patterns

of hexagons, stripes, and their coexistence. Numerical studies of patterns in the classical Schnaken-

berg equation are presented in Section 4, while Section 5 is devoted to patterns in the fractional cases.

Finally, some conclusions are made in Section 6.

2 LINEAR STABILITY ANALYSIS

In this section, we perform the linear stability analysis for the Schnakenberg model (1) and study the

conditions for Hopf and Turing bifurcations. For notational convenience, we let u = (u, v)T and denote

a = B − A and b = B + A; thus the system (1) can be reformulated as:

𝜕tu(x, t) = −𝜅1(−Δ)
𝛾1

2 u − u + u2v + b − a
2

,

𝜕tv(x, t) = −𝜅2(−Δ)
𝛾2

2 v − u2v + b + a
2

. (2)

Noticing that A,B > 0, we have b > 0 and a ∈ (−b, b) in Equation (2). In the absence of diffusion

(i.e., 𝜅1 = 𝜅2 = 0), the system (2) has a unique stationary state us ≡ (b, (a + b)∕2b2)T . Furthermore,

the Jacobian matrix of system (2) at us is given by

J|u=us =

(
a∕b b2

− (1 + a∕b) −b2

)

.

It is evident that the steady state us is stable, if the trace and determinant of J satisfy

tr(J) = a
b
− b2

< 0, det(J) = b2
> 0,

equivalently, we require a < b3
.

Next, we carry out linear stability analysis to understand the stability of us in the presence of

diffusion (i.e., 𝜅1, 𝜅2 ≠ 0). Consider a small perturbation of the steady state us, that is,

u = us + 𝜀 exp(𝜆t + ik ⋅ x), (3)

where 𝜀 = (𝜀1, 𝜀2)T with |𝜀1|, |𝜀2| ≪ 1 being the amplitudes of perturbations, i =
√
−1 is the

imaginary unit, 𝜆 is the growth rate of perturbation in time t, and k is the wave vector. Substituting

Equation (3) into (2) and linearizing the system, we obtain

(
𝜆 + 𝜅1|k|𝛾1 − a∕b −b2

1 + a∕b 𝜆 + 𝜅2|k|𝛾2 + b2

)(
𝜀1

𝜀2

)

=

(
0

0

)

.

Hence, the characteristic equation of the above system is

𝜆
2 −

(a
b
− b2 − 𝜅1|k|𝛾1 − 𝜅2|k|𝛾2

)

𝜆 +
[(

𝜅1|k|𝛾1 − a
b

)

(𝜅2|k|𝛾2 + b2) + b2

(

1 + a
b

)]

= 0. (4)

The Hopf bifurcation occurs when |k| = 0 and Re(𝜆) = 0, but Im(𝜆) ≠ 0. Thus, the boundary of

Hopf bifurcation is given by a = b3
.

If Re(𝜆(k)) > 0, the unstable wave number k will grow exponentially until the nonlinearity bounds

this growth. The onset of the instability occurs at 𝜆(k) = 0, that is, when

(

𝜅1|k|𝛾1 − a
b

)

(𝜅2|k|𝛾2 + b2) + b2

(

1 + a
b

)

= 0,
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1846 KHUDHAIR ET AL.

(a) (b)

FIGURE 1 Illustration of Turing spaces (i.e., region between the non-dotted line and dotted-line of min{b, b3}) for different

ratios of diffusion powers 𝜎 = 𝛾1∕𝛾2 (a) and coefficients 𝜅1∕𝜅2 (b)

which admits the single minimum (kcr, acr):

acr =
𝜅1

√
𝜅1𝜅2𝜎(𝜅1𝜗 + 𝜎 + 1)

[𝜅1𝜗(1 − 𝜎) + 1]3∕2
𝜗

3

2
+ 1

2𝜎 , kcr = |kcr| = 𝜗
1

𝛾1 . (5)

Here, we denote 𝜎 = 𝛾1∕𝛾2, implying that 𝜎 ∈
(

1

2
, 2

)

as 𝛾1, 𝛾2 ∈ (1, 2]. We define 𝜗 implicitly as:

𝜅1𝜅2𝜎𝜗
1+1∕𝜎

𝜅1(1 − 𝜎)𝜗 + 1
= b2

,

which implies that 𝜗 > 0 for 𝜎 ∈
(

1

2
, 1

]

, or 0 < 𝜗 < 1∕𝜅1(𝜎 − 1) for 𝜎 ∈ (1, 2). In the special case of

𝛾 ≔ 𝛾1 = 𝛾2, we have 𝜎 = 1 and 𝜗 = b∕
√
𝜅1𝜅2, and thus the critical values in Equation (5) reduce to

acr = b2r(br + 2), kcr =

(

b
√
𝜅1𝜅2

)1∕𝛾

, (6)

where we denote r =
√
𝜅1∕𝜅2, that is, the square root of the diffusion coefficient ratio.

From the above discussion and noticing a ∈ (−b, b), we see that the conditions for the Turing

instability (also known as diffusion-driven instability) are given by

acr < a < min{b, b3}, (7)

which is referred to as the Turing space. The conditions (5)–(7) suggest that the Turing space generally

depends on the diffusion coefficients 𝜅1 and 𝜅2, and the ratio 𝜎 of diffusion powers. Particularly, if

𝛾1 = 𝛾2 this dependence reduces to the ratio of diffusion coefficients (i.e., 𝜅1∕𝜅2), rather than the

values of 𝜅1 and 𝜅2. Comparing (6) and (7) suggests that for 𝛾1 = 𝛾2, the necessary condition of Turing

instability is 𝜅1 < 𝜅2, that is, the inhibitor v should diffuse faster.

Figure 1 illustrates the Turing spaces for different parameters. In Figure 1a, we fix the diffusion

coefficients 𝜅1 and 𝜅2, and compare the Turing spaces for different ratios 𝜎 of diffusive powers. It shows

that with the increase of 𝜎, the Turing space reduces quickly. Figure 1b shows the effects of diffusion

coefficients for 𝛾1 = 𝛾2. We find that the smaller the ratio 𝜅1∕𝜅2, the larger the Turing space, and our

extensive studies show that this observation is independent of 𝜎. In the special case of 𝛾1 = 𝛾2, to ensure

the existence of Turing space, the diffusion ratio r should satisfy r ≤ (−1 + min{
√

2,

√
1 + b2})∕b,

which implies that the maximum ratio allowed depends on parameter b.
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KHUDHAIR ET AL. 1847

(a) (b)

(c) (d)

FIGURE 2 Illustration of growth rates for different parameters, where a = 1.4 and b = 1.8 are fixed. The diffusion

coefficients 𝜅1 = 0.01 and 𝜅2 = 1 for (a) 𝛾1 ≥ 𝛾2; (b) 𝛾1 ≤ 𝛾2; (c) 𝛾1 = 𝛾2

Figure 2 compares the unstable bands of wave number k = |k| for different diffusive parameters.

Figure 2a–c show that for given 𝜅1 and 𝜅2, the ratio 𝜎 of diffusion powers play an important role in

determining the maximum growth rate (i.e., maxk Re(𝜆)) of unstable wave numbers. The maximum

growth rate decreases with increasing ratio 𝜎 = 𝛾1∕𝛾2, and thus maximum growth rates for both clas-

sical and fractional cases remain the same as long as 𝛾1 = 𝛾2; see Figure 2c. It further suggests that

the Turing instability could occur even if 𝛾1 ≥ 𝛾2, but not for 𝜅1 ≥ 𝜅2. On the other hand, the width of

unstable bands depends on the powers 𝛾1 and 𝛾2, rather than their ratio. Figure 2c shows that if 𝛾1 = 𝛾2,

the fractional Schnakenberg equation has more unstable wave numbers than its classical counterpart.

Moreover, the instability tends to occur at larger wave numbers. Figure 2d additionally compares the

unstable wave numbers for different diffusion ratio 𝜅1∕𝜅2, where 𝛾1 = 𝛾2 = 2. It shows that the

decrease of diffusion ratio 𝜅1∕𝜅2 broadens the unstable band and also increases the maximum growth

rate. Even though decreasing the ratio 𝜅1∕𝜅2 or the fractional power 𝛾 both lead to a wider unstable

band, they are essentially different diffusion mechanics (cf. Figure 2c,d).

3 WEAKLY NONLINEAR ANALYSIS

The linear stability analysis predicts unstable wave numbers in the system, but it fails to provide insights

on the nonlinear coupling of these unstable wave numbers. In the study of pattern formation, however,

the nonlinear terms dominate the growth of the unstable modes. In this section, we will perform a
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1848 KHUDHAIR ET AL.

weakly nonlinear analysis of the system (2) near the Turing instability threshold (kcr, acr), where the

solution of (2) can be written in the form

u = us +
∑

1≤j≤3

(Aj(t)eikj⋅x + Aj(t)e−ikj⋅x) (8)

where Aj = (Aj,u,Aj,v)T denotes the amplitude associated with wave number kj, and Aj represents its

complex conjugate. The wave number satisfies kj = kcr(cos(2j𝜋∕3), sin(2j𝜋∕3))T (for 1 ≤ j ≤ 3), and

thus k1 + k2 + k3 = 0. In the following, we will denote ej = eikj⋅x for notational simplicity, and will

focus on the analysis of 𝛾1 = 𝛾2 = 𝛾 .

Next, we derive the amplitude equations for Aj. Introducing the slow time 𝜏 = 𝜀2t, we then expand

u − us and the bifurcation parameter a as:

u − us = 𝜀u1 + 𝜀2u2 + 𝜀3u3 + (𝜀4), a = acr + 𝜀2â + (𝜀3), (9)

where ui ≔ ui(x, 𝜏) = (ui, vi)T for i = 1, 2, 3. Substituting Equation (9) into (2), and collecting like

powers of 𝜀, we obtain the sequence of equations as

(𝜀) ∶ u1 = 0, (10)

(𝜀2) ∶ u2 = c
(

2bu1v1 +
1

2b

(

1 + acr

b

)

u2

1

)

, (11)

(𝜀3) ∶ u3 = 𝜕𝜏u1 + c
(

u2

1
v1 + 2b(u1v2 + u2v1) +

1

b

(

1 + acr

b

)

u1u2 +
â
b

u1

)

, (12)

where the vector c = (−1, 1)T , and  denotes the linear operator of the system at the Turing instability

threshold, that is,

 =
⎛
⎜
⎜
⎝

− 𝜅1(−Δ)
𝛾

2 + a
cr

b
b2

−
(

1 + a
cr

b

)

−𝜅2(−Δ)
𝛾

2 − b2

⎞
⎟
⎟
⎠

.

At (𝜀), we seek the solution of (10) of the form:

u1 =

(
û1

v̂1

)
∑

1≤j≤3

(Wj(𝜏)ej +Wj(𝜏)ej), (13)

where Wj denotes the amplitude of the wave number kj at the first order perturbation (i.e., at (𝜀)).
Substituting (13) into (10) and noticing the values of acr and kcr in (6), we obtain

û1 = b, v̂1 = −r(br + 1). (14)

At (𝜀2), we can rewrite Equation (11) as:

u2 = c𝜉(Θ + Θ)2 = c𝜉
∑

1≤j≤4

(Θj + Θj), (15)

by taking Equations (13) and (14) into account, where we denote

𝜉 = b
2
− b2r

(

1 + 3

2
br
)

, Θ =
∑

1≤j≤3

Wjej, Θ1 = |W|2 ≔
∑

1≤j≤3

|Wj|
2
,

Θ2 =
∑

1≤j≤3

W2

j e2

j , Θ3 = 2

∑

j=1,2

j<l≤3

WjWl ejel, Θ4 = 2(W1W2 e3 +W1W3 e2 +W2W3 e1).
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KHUDHAIR ET AL. 1849

The Θ4 terms are introduced by the resonant interactions between models ej, which are usually

considered to be small [13]. Hence, we will neglect the terms ofΘ4 in the following discussion. Solving

Equation (15) gives the solution u2 as

u2 = 𝜉

[(
û21

v̂21

)

(Θ1 + Θ1) +

(
û22

v̂22

)

(Θ2 + Θ2) +

(
û23

v̂23

)

(Θ3 + Θ3)

]

, (16)

where we define z2 = 2
𝛾

and z3 = (
√

3)𝛾 , and then

(
û21

v̂21

)

= − 1

b2

(
0

1

)

;

(
û2j

v̂2j

)

= − 1

b2r(zj − 1)2

(
− zjb

zjbr2 + r

)

, j = 2, 3.

At (𝜀3), substituting Equations (13) and (16) into (12), we get

u3 = 𝜕𝜏u1 + c(Θ + Θ)

(

â
b

û1 +
∑

1≤j≤3

𝜂j(Θj + Θj)

)

, (17)

where the coefficient 𝜂j is computed by

𝜂j = û2

1
v̂1 + 2b𝜉 (̂v1û2j + û1v̂2j) + 𝜉

(
1

b
+ br2 + 2r

)

û1û2j, 1 ≤ j ≤ 3.

By simple calculation, we obtain that

(Θ + Θ)(Θ1 + Θ1) = 2 |W|2
∑

1≤j≤3

(Wj ej +Wj ej),

(Θ + Θ)(Θ2 + Θ2) =
∑

1≤j≤3

|Wj|
2(Wj ej +Wj ej) + 2

(Θ + Θ)(Θ3 + Θ3) = 2

∑

1≤j≤3

(|W|2 − |Wj|
2)(Wj ej +Wj ej) + 3,

where we have used the relation k1+k2+k3 = 0. The terms l (for l = 2, 3) are the residual terms, which

can be ignored in deriving the amplitude equations. Substituting the above results into Equation (17)

and neglecting residual terms l yields

u3 = 𝜕𝜏u1 + c
∑

1≤j,k,l≤3

j≠k,l

(

(2𝜂1 + 𝜂2)|Wj|
2 + 2(𝜂1 + 𝜂3)(|Wl|

2 + |Wk|
2) + â

b
û1

)

(Wj ej +Wj ej).

For a linear system v = r, the Fredholm solvability condition suggests that the existence of a

nontrivial solution is ensured if the right-hand vector r is orthogonal to the zero eigenvectors of the

adjoint operator 
⋆

. Here, we have the zero eigenvector of 
⋆

as:

u⋆ =
(

1 + br
br

, 1

)T
ej, j = 1, 2, 3. (19)

Combining Equations (11) and (12) to obtain a system of (𝜀2u2 + 𝜀
3u3), we then apply the

Fredholm solvability condition to its right hand side and get

𝜀b(1 − r2)(br + 1)𝜕𝜏Wj = 2𝜉WkWl + 𝜀[(2𝜂1 + 𝜂2)|Wj|
2 + 2(𝜂1 + 𝜂3)(|Wl|

2 + |Wk|
2) + â]Wj, (20)

for permutations of j, k, l = 1, 2, 3.
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1850 KHUDHAIR ET AL.

For notational simplicity, we denote Aj(t) ≔ Aj,u(t) for j = 1, 2, 3. Then Equations (8), (9) and (13)

indicate the relation:

Aj(t) = 𝜀û1Wj(𝜏) + (𝜀2), j = 1, 2, 3; 𝜏 = 𝜀2t; 𝜀
2â = a − acr.

Here, we will only focus on the amplitude equations for u-component, as Aj,v = v̂1Aj,u∕û1.

Substituting the above relation into Equation (20) and reorganizing the terms yields the amplitude

equations:

c0𝜕tAj(t) = c1(a − acr)Aj + c2AkAl + (c3|Aj|
2 + c4(|Ak|

2 + |Al|
2))Aj, (21)

for the permutations of j, k, l = 1, 2, 3, where the coefficients:

c0 = b3(1 − r2)(br + 1), c1 = b2
, c2 = 2b𝜉, c3 = 2𝜂1 + 𝜂2, c4 = 2(𝜂1 + 𝜂3).

To study pattern selections, we will carry out the linear stability analysis on the amplitude

Equations (21). Rewrite the amplitude function Aj = 𝜌j(t) ei𝜑j(t) (for j = 1, 2, 3). Substituting it into

Equation (21) leads to the systems for density 𝜌j and phase 𝜑 = 𝜑1 + 𝜑2 + 𝜑3 as:

c0𝜕t𝜌j(t) = c1(a − acr)𝜌j + c2𝜌k𝜌l cos(𝜑) + (c3𝜌
2

j + c4(𝜌2

k + 𝜌2

l ))𝜌j,

c0𝜕t𝜑(t) = −c2

𝜌
2

1
𝜌

2

2
+ 𝜌2

1
𝜌

2

3
+ 𝜌2

2
𝜌

2

3

𝜌1𝜌2𝜌3

sin(𝜑), (22)

for the permutation of j, k, l = 1, 2, 3. The density 𝜌1 = 𝜌2 = 𝜌3 = 0 for a spatial homogeneous

steady state, while for stripe patterns 𝜌1 ≠ 0 and 𝜌2 = 𝜌3 = 0. For the hexagon (or spot) patterns,

the density 𝜌1 = 𝜌2 = 𝜌3 ≠ 0 and phase 𝜑 = 0 or 𝜋. Furthermore, the hexagon patterns with

𝜑 = 0 and 𝜋 are referred to as positive (denoted as H0) and negative (denoted as H𝜋) hexagons,

respectively. In the following, we will study the parameter regimes of stripe and spot patterns and their

stability.

3.1 Stripe patterns

In the case of steady stripe patterns, the density function 𝜌j reduces to

𝜌
s
1
=
√

−c1(a − acr)
c3

, 𝜌
s
2
= 𝜌s

3
≡ 0. (23)

It implies that the stripe pattern exists when c3 < 0, since c1 > 0 and a−acr > 0. To understand the

stability of stripe patterns, we perform the linear stability analysis on the system (22) around the steady

state (23). For brevity, we omit the detailed calculations. Here, we obtain the characteristic equation:

[c1(a − acr) + 3c3(𝜌s
1
)2 − c0𝜆][(c1(a − acr) + c4(𝜌s

1
)2 − c0𝜆)2 − c2

2
(𝜌s

1
)2] = 0.

Substituting the value of 𝜌1s in Equation (23), we obtain:

𝜆1 = −
2c1(a − acr)

c0

, 𝜆2,3 = −
c1(a − acr)

c0c3

(

c4 − c3 ± |c2|

√
c3

−c1(a − acr)

)

. (24)

It is evident that 𝜆1 is always negative. Note that c3 < 0 to ensure the existence of stripes. To ensure

the existence of steady stripes, we require that Re(𝜆j) < 0 for j = 2, 3, which is true if the following

conditions are satisfied:

c4 < c3 < 0, c1 > −
c3c2

2

(c3 − c4)2(a − acr)
.

 10982426, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.22842 by M
issouri U

niversity O
f Science, W

iley O
nline L

ibrary on [21/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KHUDHAIR ET AL. 1851

FIGURE 3 Illustration of stripe (red asterisk), H0 hexagon (green circle), and H
𝜋

hexagon (blue circle) in the Turing space

for different diffusion ratios, where 𝛾1 = 𝛾2 = 2

3.2 Hexagon patterns

If steady hexagon (or spot) patterns exist, their densities satisfy

𝜌1 = 𝜌2 = 𝜌3 = 𝜌h, (25)

where 𝜌h is defined implicitly by

(c3 + 2c4)𝜌2

h + |c2|𝜌h + c1(a − acr) = 0. (26)

It immediately implies that the positive density 𝜌h > 0 exists only when c3 + 2c4 < 0. Then using

the linear stability analysis and Equation (26), we obtain the growth rate of perturbations as

𝜆1 = −
1

c0

[2c1(a − acr) + |c2|𝜌h], 𝜆2,3 =
2

c0

[(c3 − c4)𝜌h − |c2|]𝜌h.

If 𝜌h > 0 exists, there is always 𝜆1 < 0, and thus the spot patterns are stable if (c3 − c4)𝜌h < |c2|.

Summarizing the above discussion, we obtain the conditions for stable spot patterns as

c3 + 2c4 < 0, (c3 − c4)𝜌h < |c2|.

Furthermore, if c2 > 0 (resp. < 0) the patterns are H0 (resp. H𝜋) hexagons.

Figure 3 illustrates the parameter regimes of steady stripe and hexagon patterns in the Turing space

of classical Schnakenberg equations. It shows that H0 and H𝜋 hexagon patterns exist at the two ends of

the Turing space, while stripe patterns are found between these two regions. The overlap of stripe and

spot regions are observed, where the stability conditions for both stripes and spots are satisfied. Hence,

the mixed patterns of spots and stripes occur in the overlapping regions. We find that even though the

diffusion ratio affects the Turing space, the distribution regions of steady patterns are qualitatively the

same. Additionally, the parameter regions for classical and fractional cases with 𝛾1 = 𝛾2 are almost the

same, although their amplitude equations (21) are different (because c3 and c4 depend on 𝛾).

Our weakly nonlinear analysis predicts the parameter regimes for different patterns. In Sections 4

and 5, we will perform numerical simulations to study pattern formation in both classical and frac-

tional Schnakenberg equations and compare them with our theoretical predictions. To this end, the

two-dimensional Schnakenberg Equation (2) with periodic boundary condition is discretized by the

Fourier pseudospectral method in space and fourth-order Runge–Kutta method in time. The Fourier

pseudospectral methods for spatial fractional partial differential equations can be found in the literature
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1852 KHUDHAIR ET AL.

(a) (b)

(c) (d)

FIGURE 4 Illustration of patterns in the classical Schnakenberg equation with 𝜅1 = 0.01

[35–37]. In our simulations, we will choose the domain Ω = [−4, 4]2 with number of grid points

Nx = Ny = 1024 and time step Δt = 0.005. The initial condition is taken as the steady states us with

a small perturbation on [−0.01,0.01]2. We have refined the mesh size and time step to make sure the

conclusions are independent of these numerical parameters. In all pattern plots, only patterns of u1

are presented, where red and blue represent the highest and lowest values of u1, respectively. Unless

otherwise stated, we will always choose 𝜅2 = 1 in the following simulations.

4 PATTERN FORMATION WITH NORMAL DIFFUSION

So far, pattern formations in the Schnakenberg equation have not been well understood, even in the

classical (i.e., 𝛾1 = 𝛾2 = 2) cases. Studies on some special parameters are reported in the literature [38,

39], but no exhaustive report can be found on pattern formation and selection across different parameter

regimes. To study the normal and anomalous diffusive effects, we will thus start with patterns in the

classical Schnakenberg equation with different regimes of parameters a, b, and r =
√
𝜅1∕𝜅2. Our

extensive simulations show that patterns exist only when a ≥ acr, confirming the analytical results in

Section 2. In particular, steady patterns at a = acr could vary greatly for different values of b.

Figure 4 illustrates for representative patterns in the Turing space of the classical Schnakenberg

equation with 𝜅1 = 0.01, where we could divide the Turing space into two regimes. In Regime I but

a ≫ acr, only spot patterns are observed (i.e., Figure 4a). By contrast, patterns in Regime II are more

complicated. Various patterns, including stripes, spots, and mixture of stripes and spots, are observed

(Figure 4b–d), depending on the combination of a, b, and r. Hexagon patterns are observed in both

Regime I and II, which are H0 hexagons in Regime I and H𝜋 hexagons in Regime II (cf. Figure 4a,d).

These numerical observations confirm our weakly nonlinear analysis predictions in Figure 3.

Figure 5 further demonstrates the patterns and corresponding dispersion relation for various b and

a ∈ (acr, b], where 𝜅1 = 0.01. For b = 1, the weakly nonlinear analysis shows that only spot patterns

exist for any a, which is confirmed by our numerical results in Figure 5. It shows that the patterns are

qualitatively the same, but the larger the value of a, the denser the spots. For different a, the dispersion

relation reaches its maximum at the same wave number, but the growth rate and unstable band increase

with a. We additionally find that in Regime I, the density of spots in the steady patterns generally

increases with the value of b. Different from b = 1, spots start to connect when b = 2.9, locating in
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KHUDHAIR ET AL. 1853

FIGURE 5 Patterns and dispersion relation in the classical Schnakenberg equation with 𝜅1 = 0.01

FIGURE 6 Patterns in the classical Schnakenberg equation with 𝜅1 = 0.01

transition regime between I and II. The patterns for b = 3.6 are more complex, depending on the value

of a. Stripe patterns are observed for a slightly larger than acr = 3.0586 (see Figure 5 with a = 3.1).

As a increases, the stripes start to deform, and spots appear in the pattern, resulting in a mixed pattern

of spots and stripes. It also shows that the growth rate in this case is much smaller.

In Figure 6, we study the patterns at the critical value, that is, a = acr. It shows that for a given b,

patterns start appearing from a = acr, but they are significantly different from those when a ≫ acr.

Even though the analysis of amplitude equations predicts the existence of spot and stripe patterns, it

could not provide the information at the critical values. Hence, numerical studies play an important

role in this regime. To the best of our knowledge, no reports of patterns at the critical value a = acr

can be found in the literature.

Next, we move to study the effects of diffusion coefficients 𝜅1 and 𝜅2 on pattern selection. Our

linear stability analysis suggests that the Turing space depends only on the ratio 𝜅1∕𝜅2, and it expands

as the ratio decreases. For given parameters a and b, the weakly nonlinear analysis further suggests
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1854 KHUDHAIR ET AL.

FIGURE 7 Patterns in the classical Schnakenberg equation with a = 3.4 and b = 3.5

FIGURE 8 Dispersion relation for patterns in Figure 7

that the steady patterns remain the same if ratio 𝜅1∕𝜅2 is the same. However, do the values of 𝜅1 and

𝜅2 play a role on in pattern formation? To understand it, we show the patterns for various 𝜅1 and

𝜅2 in Figure 7, where b = 3.5 and a = 3.4. Note that the pattern for 𝜅1 = 0.01 and 𝜅2 = 1 can

be found in Figure 4c. The same initial conditions and numerical parameters are used for Figure 4c

and 7. For ratio 𝜅1∕𝜅2 = 0.01, mixed and stripe patterns are observed in Figures 4c and 7, respec-

tively. This might be because a = 3.4 and b = 3.5 is on the boundary between the stripe region and

mixed region (see Figure 3), and thus a small perturbation can change the steady patterns. As the

ratio 𝜅1∕𝜅2 decreases, the H0 spot patterns become more favorable, consistent with our prediction in

Figure 3. On the other hand, the patterns generally remain the same for fixed 𝜅1∕𝜅2, but their scales

are much smaller with the decrease of product 𝜅1𝜅2, which could be also understood from their dis-

persion relation in Figure 8. It shows that for the same diffusion ratio 𝜅1∕𝜅2, the smaller the product

𝜅1𝜅2, the larger the unstable wave numbers, and thus the finer the pattern scales. Hence, the com-

putations of patterns with smaller 𝜅1𝜅2 become more challenging. The above observations suggest

the limitations of the linear stability analysis and weakly nonlinear analysis in the study of pattern

formations.

5 PATTERN FORMATION WITH SUPERDIFFUSION

In this section, we study the pattern formation in the Schnakenberg equations when superdiffusion is

present in one or both components, that is, 𝛾1, 𝛾2 ≤ 2. We will divide our studies into two cases, that is,

𝛾1 = 𝛾2, and 𝛾1 ≠ 𝛾2. The effects of superdiffusion on pattern formation will be studied by comparing

to the results in Section 4 for the classical Schnakenberg equations.
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KHUDHAIR ET AL. 1855

FIGURE 9 Comparison of patterns in the classical and fractional Schnakenberg equations with 𝜅1 = 0.01 and 𝜅2 = 1

5.1 Same superdiffusion power 𝛾1 = 𝛾2

For simplicity, we denote 𝛾1 = 𝛾2 = 𝛾 . Our linear stability analysis shows that the Turing space in this

case is identical to that of the classical Schnakenberg equations. In other words, if 𝛾1 = 𝛾2, the diffusion

powers play no role in the Turing instability, but they may affect the pattern selections according to

our weakly nonlinear analysis. To further our understanding, we compare patterns in the classical and

fractional cases in Figure 9, and when 𝛾 = 2 they are the four representative patterns in Figure 4.

It shows that the patterns in the classical and fractional Schnakenberg equations are qualitatively the

same, if a and b are far from the region of mixed patterns (see row 1 and 3 in Figure 9. However, if a
and b are close to or in the region of mixed patterns, the superdiffusion has stronger effects on pattern

selection, and a small change of power 𝛾 could alter the type of patterns. Generally, the smaller the

power 𝛾 , the stronger the superdiffusion, the finer the scales of patterns. This can be also indicated in

the dispersion relation in Figure 2c—the smaller the power 𝛾 , the larger the unstable wave numbers,

implying the finer scales of patterns. Computationally, smaller mesh size and time step are demanded
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1856 KHUDHAIR ET AL.

FIGURE 10 Dynamics of pattern formation in the classical (top row) and fractional (bottom row) Schnakenberg equations

with a = 2.7 and b = 3.2

in order to capture the pattern details in the fractional cases, which greatly increases the computational

costs and makes the simulations more challenging.

In Figure 10, we compare the time evolution of the pattern growth in the classical and fractional

cases with a = 2.7 and b = 3.2. The pattern initially emerges as spirals from the center of perturbation

and then radiates toward the boundary. For both classical and fractional cases, the spirals would break

into spots once they reach the boundary. Then the spots in the classical cases will reconnect and form

into steady stripe patterns, but remain spot patterns in the fractional cases. Moreover, we find that

the fractional cases take much longer time to reach the steady patterns. We also study the effects of

diffusion coefficients 𝜅1 and 𝜅2 on pattern formation and find similar results as in the classical cases.

It shows that decreasing either the ratio 𝜅1∕𝜅2 or power 𝛾 could lead to patterns with smaller scales,

but the patterns from decreasing power 𝛾 are much denser. For brevity, we will omit showing these

patterns here.

5.2 Different superdiffusion power 𝛾1 ≠ 𝛾2

In the following, we explore the patterns in the fractional Schnakenberg equations when two com-

ponents have different diffusion powers. We will divide our discussion into two cases: 𝛾1 < 𝛾2 and

𝛾1 > 𝛾2. Figure 11 compares the Turing spaces of different powers 𝛾1 and 𝛾2. As discussed previously,

the Turing space increases as the ratio 𝛾1∕𝛾2 decreases, and thus the spatially homogenous steady state

us is more unstable. The necessary conditions for the Turing instability is 𝜅1 < 𝜅2, but the diffusion

power 𝛾1 can be larger than 𝛾2. Thus, the fractional models introduce more degrees of freedom to start

patterns.

Figure 11 shows the patterns for 𝛾1 < 𝛾2, where we fix 𝛾2 = 2 and 𝜅1 = 0.01. It shows

that even a small reduction of 𝛾1 leads to different patterns. For a fixed power 𝛾2, decreasing 𝛾1

would expand the Turing space and consequently enlarge the H0 spot regions. This is confirmed

by our results in Figure 12—the spot patterns become more favorable as 𝛾1 decreases. More-

over, the pattern scale reduces with the ratio 𝛾1∕𝛾2, as larger unstable wave numbers are presented

(see Figure 2b).
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KHUDHAIR ET AL. 1857

(a) (b)

FIGURE 11 Comparison of Turing spaces (i.e., region between the non-dotted line and dotted-line of min{b, b3}) for

different diffusion powers 𝛾1 and 𝛾2

FIGURE 12 Patterns in the fractional Schnakenberg equations with 𝛾2 = 2, 𝜅1 = 0.01 and 𝜅2 = 1

On the other hand, Figure 13 presents the patterns for 𝛾1 > 𝛾2, where 𝛾1 = 2, 𝜅1 = 0.01, and b = 1.8

are fixed. For 𝛾2 = 1.9, the patterns are located in the H0 spot regime, and thus similar patterns are

observed for all acr < a < b. With the decrease of 𝛾2, the Turing space quickly shrinks (see Figure 11b),

and the parameter b = 1.8 is now around the boundary of H0 spots and mixed pattern regions. Thus

different patterns may be observed for different values of a (see Figure 13 with 𝛾2 = 1.5). Note that

the dispersion relation of this case is similar to that in Figure 2a.

6 CONCLUSIONS

We studied the pattern formation in the classical and fractional Schnakenberg equations and compared

the effects of normal and super diffusion on pattern selection. Our studies not only provided a sys-

tematic understanding of Turing patterns in the classical Schnakenberg equations but also presented
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1858 KHUDHAIR ET AL.

FIGURE 13 Patterns in the fractional Schnakenberg equation with 𝛾1 = 2, 𝜅1 = 0.01, 𝜅2 = 1, and b = 1.8

detailed comparisons of patterns in classical and fractional models with different parameters. Our lin-

ear stability analysis suggested that the Turing space depends on both ratios of 𝜅1∕𝜅2 and 𝛾1∕𝛾2, which

implies that the classical and fractional model with 𝛾1 = 𝛾2 have the same Turing space. The Turing

space increases as the ratio 𝜅1∕𝜅2 or 𝛾1∕𝛾2 decreases, and the necessary condition of Turing insta-

bility is 𝜅1 < 𝜅2. On the other hand, the unstable wave numbers and their growth rates are sensitive

to the values of 𝜅l and 𝛾l for l = 1, 2. Generally, the smaller the power 𝛾1, the larger the unstable

wave numbers and the smaller the pattern scales. Our weakly nonlinear analysis predicted the param-

eter regimes where hexagons, stripes, and their coexistence are expected in the Turing space. We

numerically explored the interactions of diffusion coefficients and diffusion powers on the emergence

of Turing patterns. Our numerical results confirmed the theoretical analysis and also provided new

insights on the patterns in the fractional Schnakenberg equations.
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