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Abstract

When participants are shown a series of stimuli, their responses differ depending on

whether they respond after each stimulus or only at the end of the series, in what we

call a measurement effect. These effects have received paltry attention compared

with more well-known order effects and pose a unique challenge to theories of

decision-making. In a series of two preregistered experiments, we consistently find

measurement effects such that responding to a stimulus reduces its impact on later

stimuli. While previous research has found such effects in noncumulative tasks,

where participants are instructed only to respond to the most recent stimulus, this

may be the first demonstration of these effects when participants are asked to

combine information across either two or four stimuli. We present modeling results

showing that although several extant classical and quantum models fail to predict the

direction of these effects, new versions can be created that can do so. Ways in which

these effects can be described using either quantum or classical models are

discussed, as well as potential connections with other well-known phenomena like

the dilution effect.

K E YWORD S
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1 | INTRODUCTION

It is said that the most trustworthy memory is the one which is never

recalled, because memories get reconstructed and somehow tainted

every time they are brought to mind. In a similar fashion, opinions and

evaluations of facts or arguments can be influenced by the simple act

of providing a response. When studying decision-making processes, it

can always seem like a good idea to collect more data: If we want to

watch the decision-making process unfold, it seems obvious that we

should have participants provide responses after each new piece of

evidence is presented. However, such repeated measurement can sys-

tematically distort the very data we are trying to collect!

The idea that the method by which responses are collected can

have a formative impact on the resulting opinions, sometimes referred

to as a measurement or constructive effect, has received attention in

more applied fields, especially marketing (Morwitz &

Fitzsimons, 2004). The effect has been discussed for measuring atti-

tudes like customer satisfaction and purchase intentions (Morwitz

et al., 1993) but has received comparably little attention in more cog-

nitive tasks. Researchers argued that in cases when the critical atti-

tude or response is not existing at the time of measurement, it will be

created and directly influenced by this measurement (Feldman &

Lynch, 1988). But even when the attitude of interest is already exist-

ing, the structure of the measurement can still have an influence on

the response (Feldman & Lynch, 1988). With a blind choice paradigm,

Sharot et al. (2010) addressed the common criticism that the measure-

ment does not change the attitudes and, instead, only reflects the

preferences. Their results supported the existence of measurement

effects in affective judgments by overruling alternative explanations.

But a measurement effect can also describe more than just mea-

surement error. It has been debated whether attitudes are con-

structed every time they are needed or just one time and then

recalled (Schwarz, 2007). While the classical approach holds the prop-

osition that it is difficult to change attitudes, the constructive view is

based on the assumption that it is difficult to not influence attitudes.

In his review, Schwarz provided support for the constructive
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perspective. First, he pointed out that only context-sensitive evalua-

tions are able to adapt to the current situation and guide behavior

with regard to actual conditions. Additionally, he explained how tem-

porally constructed attitudes can account for variability when the con-

text is changing, as well as for stability when the context remains

the same.

There has been some awareness of these effects in more basic

research as well. Hogarth and Einhorn (1992) drew an important dis-

tinction between two different data collection methodologies: a Step-

by-Step (SbS) task where responses are given after every piece of evi-

dence and an End-of-Sequence (EoS) task where a response is not

given until all pieces of evidence have been provided. They noted that

in 43 published experiments, those using an EoS response mode

tended to show primacy effects (at least for relatively simple argu-

ments), while those using a SbS format overwhelmingly produced

recency effects.

Hogarth and Einhorn (1992) proposed that both of these types of

tasks can be modeled through a sequential anchoring and adjustment

process where the impact of each piece of evidence depends on the

current belief state. SbS processing updates belief with every piece of

evidence, while EoS processing uses the first piece of evidence to set

the anchor and then performs a single adjustment step combining all

the remaining pieces of evidence. Hogarth and Einhorn (1992) point

out that while SbS tasks require the updating of belief after every

piece of evidence by requesting incremental responses, EoS tasks can-

not similarly require participants to withhold from updating their

beliefs until the end: They may implicitly update their beliefs in an SbS

manner, especially if there are many pieces of evidence or they are

complex in nature.

1.1 | Quantum models for order and measurement
effects

Quantum probability theory has been used as an alternative method

for describing the complexities of human decision-making. As quan-

tum probability theory readily includes order effects and measure-

ment effects, it was successfully used to explain these in several

experiments. Most studies have focused on the explanation of ques-

tion order effects (Boyer-Kassem et al., 2016), where the order in

which two ostensibly independent questions are asked is shown to

have an impact on the responses that people provide. It has been

shown that quantum models predict a previously unknown balance

between such order effects (regardless of parameterization) referred

to as the QQ-equality, and empirical data from more than 70 studies

have been shown to conform to these predictions (Wang &

Busemeyer, 2013; Wang et al., 2014). It should be noted that subse-

quent work has demonstrated that a family of classical models pro-

duces similar predictions (Kellen et al., 2018).

Kvam et al. (2015) and Busemeyer et al. (2019) have explored

measurement effects in a perceptual information accumulation con-

text using the random dot motion task. Participants were asked to

provide a fast response to the random dot stimulus and then rate their

confidence in the direction of motion after continuing to view it a lit-

tle longer. This was compared with a condition where the initial

response was replaced with a simple motor task (click the mouse).

They showed interference from the first response, such that confi-

dence judgments were less extreme following a choice than in the

control condition (though direction of motion accuracy remained con-

stant). They presented a quantum random walk model as an alterna-

tive to a classical Markov random walk model and showed that it

could produce the requisite interference patterns that the Markov

model could not (without additional augmentations).

One of the only other attempts to apply quantum models for

describing measurement effects has been by White et al. (2014, 2017)

with a paradigm where participants used a 9-point scale to indicate

how happy various advertisement images made them feel. In one ver-

sion (experiment 2), either a positively or negatively valenced image

was shown, followed by a contrasting image of the opposite valence.

In the double-rating condition, the first image was rated and then the

second was as well (SbS). However, in the single-rating condition, the

presentation was the same but a rating was only requested for the

second image (EoS).

Their results from all three experiments revealed that when the

second (contrasting) image was of positive valence, final responses

were more positive when an intermediate response had been given

(the double-rating condition) than if it had not (the single-rating condi-

tion). Similarly, if the second stimulus had negative valence, responses

were more negative in the double-rating condition. While intuitive

theories like “levels of processing” (Hyde & Jenkins, 1969) may pre-

dict that the intermediate evaluation would require participants to

engage with the first stimulus, increasing its memorability and impact

on the second rating, these results show the opposite: Issuing a

response to a preliminary stimulus reduced its impact on responses to

a subsequent stimulus. Further experimentation bolstered the reliabil-

ity of these effects and argued that they are not artifacts of differ-

ences in timing between the two conditions or the specific response

scale used (White et al., 2015).

To help explain this measurement effect, let us first consider what

a naive observer may predict in the task: Because the instructions do

not ask participants to combine information from the two stimuli (it is

not a cumulative task), we may expect that responses to the second

stimulus should be independent of the first stimulus. However, the

data show this to not be the case. Consistent with decades of

research on priming, contrast effects, and so on, responses to the sec-

ond stimulus are more like a weighted average between the two, with

most of the weight going to the second stimulus. While this lack of

independence is now unsurprising, the more novel finding was that

the impact of the first stimulus was diminished when participants

were asked to respond to it and had a stronger effect when they

did not.

The measurement effect shown by White et al. (2014) cannot be

explained by models of order effects, since order does not vary across

the two judgment conditions (though order effects definitely happen

in this experiment: Seeing a positive stimulus followed by a negative

is different than the reverse). White et al. further allege that the
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anchoring and adjustment models of Hogarth and Einhorn (1992) are

only able to predict such differences between EoS and SbS tasks for

tasks with more than two pieces of evidence and that their models

are identical when there are only two, though we note that this is only

the case under certain assumptions they made, and other parameteri-

zations of Hogarth and Einhorn's model can predict differences

between these conditions. Regardless, the third experiment from

White et al. (2014) casts further doubt on an anchoring and adjust-

ment explanation, as they did not find evidence for an anchoring

effect from experimentally provided judgments and found no signifi-

cant correlation between responses to the first and second stimuli in

any of their experiments, which would have been expected for these

models. There is also little theoretical motivation for why the anchor-

ing effect of the first stimulus should diminish when it is responded

to: It seems that being asked to assign a numerical response should

form a stronger and more concrete anchor rather than the opposite.

White et al. (2020) constructed a quantum model to capture

these measurement effects, which they now refer to as Evaluation

Bias. Quantum measurement effects can occur because a participant's

belief state is treated as existing in a superposition, which is then col-

lapsed or projected onto a specific dimension when they are asked to

provide a response. As White et al. describe it in their paper, the first

stimulus establishes the initial cognitive state, the second stimulus

rotates the belief vector according to its strength and valence, and

then the belief vector is projected onto either the positive or negative

affect ray in order to provide a response. The novel measurement

effect occurs in the SbS condition because the initial cognitive state

established by the first stimulus is projected onto the positive or nega-

tive affect ray for the intermediate judgment before the rotation for

the second stimulus is applied. White et al. (2015) interpret this as an

abstraction process, whereby some information about the first stimu-

lus is lost when participants are required to issue a response about

the stimulus.

However, it is unclear how this process would lead to the pattern

of data they observed. When an initial stimulus is rated positively, the

projection onto the positive affect ray should lose information incon-

sistent with a positive evaluation. This should increase the effect of

the first, positive stimulus on the second, negative stimulus, leading

the second response to be less negative in the SbS condition than in

the EoS single-rating condition (that does not entail an intermediate

projection). The data show the opposite pattern, however. White

et al. (2014) say that the more positive belief state resulting from the

intermediate projection “…would make more obvious the fact that the

second advert is negative, leading to a more negative rating,” but they
fail to provide an impression of how they would construct a model

where the second judgment was based on contrast with the preceding

belief state. Rather, they state that in their conception, a given stimu-

lus produces “a fixed shift from the current state toward the ray for

negative or positive affect,” which does not seem consistent with a

contrast effect, where this shift would have to be magnified based on

the discrepancy between the stimuli. The mechanism by which quan-

tum projection effects should reduce the impact of previous stimuli

following measurement has not been made clear.

The experiments by White et al. (2014) are similar to what have

sometimes been referred to as studies of question order, in that they

concern two responses which participants are supposed to consider

separately (not cumulatively). This is the type of order effect that

gives rise to the QQ-equality (Wang et al., 2014). Less well studied

are whether similar measurement effects occur in situations where

participants are explicitly supposed to combine subsequent pieces of

evidence in a cumulative process, tasks which have been delineated

as concerning information order. This is the type of task addressed by

Hogarth and Einhorn (1992), and Trueblood and Busemeyer (2011)

showed that quantum models naturally produce these order effects

as well.

To help illustrate the important difference between cumulative

and noncumulative tasks, let us return to the expectations of the

naive observer: In a cumulative task where two pieces of evidence are

supposed to be combined to yield a final judgment, we may expect

the two pieces to be equally weighted. However, in most situations,

the data violate this expectation by showing recency effects, where

the second piece of evidence has larger weight than the first

(Trueblood & Busemeyer, 2011). In this situation, it is not clear

whether we should expect to see similar measurement effects as

found by White et al. (2014): The contrast effect explanation no lon-

ger makes sense when the task instructs participants to combine the

first and second stimuli. If a measurement increases the extremity of

the first belief state, even if contrast effects then cause the second

stimulus to also appear more extreme, these effects should cancel out

when the two pieces of information are combined. Furthermore, both

the previous quantum models of Trueblood and Busemeyer (2011)

and the anchoring and adjustment models of Hogarth and Einhorn

(1992) predict that a more positive belief state following a first stimu-

lus would lead to a more positive final state after viewing a negative

second stimulus, opposite the pattern seen in the noncumulative task

used by White et al. (2014).

Yearsley and Pothos (2016) took the idea of information loss

through the projections required to issue intermediate responses and

pushed it to the extreme in a demonstration of the quantum Zeno

effect, where quantum physics predicts that an unstable particle

which is continuously observed will not decay due to the continuous

influences of measurement. They designed a task where participants

made judgments of guilt for a criminal trial in which they were pre-

sented with 12 relatively weak pieces of evidence for guilt. The crucial

manipulation was how often they were asked to issue a response:

One group of participants only issued an EoS judgment after all

12 arguments were presented, while others responded after every six

pieces of evidence, every four, three, two, or after each piece of evi-

dence. The more often they were asked to respond, the more the par-

ticipants resisted changing their opinion, despite having seen the

same collection of evidence. They modeled the results using both a

Bayesian and a quantum model in which all the parameters were fixed

using the data from the first response each participant provided

(before any measurement effects could emerge). The remaining data

could therefore be fit in a parameter free manner, demonstrating that

the superior fit of the quantum model is due to its inherent structure

MEASUREMENT EFFECTS IN DECISION-MAKING 3 of 17
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rather than specific parameter fits. Note that the quantum projection

here is reducing the impact of inconsistent information: An initial

belief in innocence is preserved in the face of weak contradictory evi-

dence when the participant continues to state that belief after every

piece of evidence.

Our understanding of how these measurement effects influence

judgment and decision-making is still in its infancy. While White et al.

(2014) provided intriguing evidence about how these effects can exist

even when participants are not attempting to combine pieces of infor-

mation, the nature of their noncumulative, affective task makes it

challenging to compare with previous work like that of Hogarth and

Einhorn (1992) and Trueblood and Busemeyer (2011). Similarly, while

Yearsley and Pothos (2016) provided a ground-breaking demonstra-

tion of the quantum Zeno effect in behavioral data, their paradigm

used the unique situation of 12 pieces of evidence that were meticu-

lously constructed to all be of approximately equal strength and all

weakly indicating guilt. Little-to-no research has yet investigated the

effect of intermediate measurement when conflicting information is

integrated to render a final decision, and the mechanisms by which

models can predict the pattern of measurement effects that have

been found remain elusive.

In this work, we present two experiments studying measurement

effects, both using a cumulative framework. Participants were asked

to integrate evidence from two (Experiment 1) or four (Experiment 2)

arguments to make a final decision, with the crucial manipulation

where half the time they only responded once after seeing all argu-

ments in a group and half the time they also provided intermediate

responses after every argument.

2 | EXPERIMENT 1

In this study, we focused on measurement effects and their poten-

tial interactions with order effects in a cognitive task with high rel-

evance to daily life: deciding whether to make behavioral changes

to be more environmentally conscious. Our experimental materials

paralleled those of the jury trial in Trueblood and Busemeyer

(2011) but with a methodological twist similar to White et al.

(2014), where some judgments were made only at the EoS of argu-

ments, what we will call the single-rating condition, and others

were made SbS after each argument, which we call the double-

rating condition.

Based on previous work by Trueblood and Busemeyer (2011) and

others, we expected to find recency effects such that the second

piece of evidence in a pair is weighted more heavily than the first. We

were especially interested in examining potential measurement

effects, as the quantum projection explanation leads us to anticipate

the opposite pattern of data that was shown in the noncumulative

tasks of White et al. (2014). Such an effect would be seen through a

dependency of the order effect on the measurement condition, such

that recency is smaller in the double-rating condition than in the

single-rating condition, since responding to the first stimulus should

strengthen its impact.

2.1 | Participants

Participants were recruited through Amazon's Mechanical Turk plat-

form. Participants were required to have their MTurk Masters qualifi-

cation (not related to educational attainment), live in the

United States, and have an approval rating greater than 90% with

more than 500 approved tasks. Participants were randomly assigned

to one of eight conditions which differed in terms of the question

order. To recruit 30–50 participants in each of the eight versions,

400 slots were available, and 370 responses were collected within the

allotted time window. The average completion time was 7.5 min, and

participants were compensated with $1.33 for their time, equivalent

to an hourly rate above $10. All participants completed an informed

consent document prior to participation.

Of the 370 submitted surveys, 25 were incomplete and 2 were

second submissions from the same participant, and these were

excluded. A further 19 were excluded for taking less than 2 min to

complete the survey and 25 for scoring lower than a 3 out of 4 on the

attention check question. This left 299 participants for all further ana-

lyses. The eight different versions of the survey (same arguments but

in different orders) had between 34 and 40 participants each. All

exclusion decisions were made before examining any data.

2.2 | Materials

The survey was implemented through Qualtrics following the general

design of Experiment 1 from Trueblood and Busemeyer (2011). Sce-

narios were designed around how likely participants thought an aver-

age American would be to make a change in four different domains:

adopting a new behavior around the house, purchasing a “greener”
appliance, voting for a new local energy policy, or changing their com-

muting behavior. For each of these domains, there were strong and

weak arguments for and against the decision. Participants were told

that arguments were left purposefully vague and that they were not

supposed to base their responses on any outside information beyond

what was explicitly provided.

An initial pilot test was conducted with a separate group of

50 MTurk participants who were asked to rate the strengths of the

16 arguments (4 for each domain). On a 21-point scale (�10 to 10),

strong arguments for were rated an average of 6.9, weak arguments

for averaged 4.6, weak arguments against were �3.6, and strong argu-

ments against were �5.9. Responses were reasonably consistent

across domains, with no specific argument average differing by more

than one point from the overall mean for that argument strength.

2.3 | Procedure

Participants were shown eight different pairs of arguments, with each

pair containing one argument for and one against each decision. Four

of these argument pairs (one for each domain) belonged to a double-

rating (SbS) condition where participants were asked to provide an

4 of 17 BURNS AND HOHNEMANN
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initial response to the first argument and then another response tak-

ing both arguments into account. The other four pairs of arguments

(again one in each domain) were in the single-rating (EoS) condition,

where participants read both arguments and then issued a single

response. For ease of discussion, arguments will be denoted using

S/W for strong or weak and F/A meaning for or against.

Arguments were arranged such that each participant saw each

argument only once, with the order of the arguments and the domains

balanced across eight different groups of participants. The decision

conditions were blocked such that half of the participants did all the

double-rating questions first and the other half did the single-rating

questions first. Participants were asked to estimate how likely an

average American would be to make a behavioral change in response

to the presented arguments using a 21-point scale, with �10 labeled

as not adopting a behavior, 10 as adopting it, and 0 labeled neutral.

Participants were instructed to not base their responses on any other

information they may have outside of the presented arguments. After

the survey, the participants completed an attention check question

which asked them which of the eight topic domains were featured in

the survey.

This procedure yielded a hybrid design where all of the variables

were manipulated within-participants (argument strength, response

condition, and topic domain) but not in a full factorial manner. For a

given topic domain, there are eight possible argument pairs: two

strengths of the for argument, two strengths of the against, and two

possible orders of which comes first. For each of the four topic

domains, each participant saw one argument pairing in a double-rating

format (e.g., SF-WA, meaning strong argument “for” and weak argu-

ment “against”) and then later a second pair using the remaining

unseen arguments for that domain in the opposite order and in the

single-rating format (e.g., SA-WF). So while every participant sees

every argument, other groups of participants would have seen the

other potential parings for a given domain (e.g., WF-WA-double-rat-

ing). This design prevents potential confounds with participants seeing

the same argument twice but does mean that data must be averaged

across participants to compare measurement conditions for a given

pair of arguments. The different topic domains were not intended as a

manipulation of interest but are merely four different sets of

arguments.

2.4 | Results

All data, analysis code, and experimental materials are shared through

the Open Science Foundation at osf.io/j3gy8.

Figure 1 shows response data averaged across all participants, the

four topic domains, and the different argument strengths. We see the

expected recency effects, with stimulus pairs ending with an argu-

ment for the behavior change being rated higher than those pairs that

end with an argument against (all pairs have one of each). Critically,

we see that this effect is moderated by measurement condition and is

substantially larger when participants provide an intermediate

response to the first argument in a pair (the double-measurement con-

dition). This can be thought of as the first argument having a weaker

impact on final judgments in this condition. This effect is in the same

direction as the one observed by White et al. (2014).

We used a linear mixed effects model to examine the size and sig-

nificance of these effects. Our main variables of interest were mea-

surement condition (single or double), recency (whether the final

argument was “for” or “against”), and the interaction between them,

but we also included fixed effects to account for the strength of the

“for” argument and the strength of the “against” argument. Finally,

random intercepts were fit for each participant and each topic domain

(with no random slopes). The reference levels were for the single-

rating condition where weak-for was followed by weak-against. The

model had a marginal R2 ¼ :24 and conditional R2 ¼ :43. As hypothe-

sized, there was no significant main effect of measurement condition,

tð497Þ¼1:10, p¼ :27, d¼ :08; a small significant recency effect in the

single-rating condition tð497Þ¼2:31, p¼ :02, d¼ :17; and a significant

interaction between recency and measurement, tð297Þ¼2:66,

F IGURE 1 Responses averaged across
participant, domain, and argument strength.
Responses were on a �10 to 10 scale
concerning how likely an average American
would be to make a “green” decision. We
see larger recency effects in the double-
measurement condition.
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p¼ :008, d¼ :51, resulting in a moderate recency effect for double-

ratings. There were also the expected effects of argument strength in

both the for (tð2085Þ¼14:73, p< :001, d¼ :52) and against

(tð2085Þ¼26:13, p< :001, d¼ :93) arguments. Estimates of these

effects on the original 21-point scale are shown with 95% confidence

intervals in Table 1. The primary result of interest is that the recency

effect was .78 points for single judgments but jumped to 2.35 points

for double judgments ð:78þ1:57Þ.

2.5 | Model specification

We fitted four different models to the averaged participant data for

the different stimulus combinations to evaluate their ability to fit the

results and display appropriate measurement effects. We used the

classical adding model (Hogarth & Einhorn, 1992), a quantum model in

the style of Trueblood and Busemeyer (2011), and new versions of

each with a novel mechanism we designed to produce measurement

effects. The measurement effects shown in the data are inconsistent

with the idea of a quantum projection that strengthens the effect of

the first argument, so we built different conceptualizations designed

to reduce the impact of the first argument, as the data show.

The obtained data were scores ranging from �10 to 10 indicating

how the participant thought “Joe, an average American” would

respond to arguments, specifically whether he would change his

behavior or not. The SbS double-rating condition provided data for

each of the four arguments as an intermediate response, after reading

a single argument, and the eight possible pairs of arguments for the

second response (any of the four arguments could be followed by

either of the two arguments of opposite valence). The EoS single-

rating condition only produced data for the eight pairs, as there were

no intermediate judgments in this condition, thus yielding 20 different

evaluation conditions in total.

2.5.1 | Adding models

The specific form of the adding model, as defined by Hogarth and Ein-

horn (1992), depends on whether the evidence is negative or positive

and defines the belief state after hearing the ktH piece of evidence as

Sk ¼
Sk�1þα∗Sk�1 ∗ sðxkÞ, ifsðxkÞ≤0

Sk�1þβ∗ ð1�Sk�1Þ∗ sðxkÞ, ifsðxkÞ>0
�

, ð1Þ

where 0≤ Sk�1 ≤1 is the previous belief state (with S0 being the prior),

�1≤ sðxkÞ≤1 is the subjective evaluation of the kth piece of

evidence, and 0≤ α,β ≤1 are constants representing sensitivity to neg-

ative and positive evidence, respectively. Following the lead of True-

blood and Busemeyer (2011), we set α¼ β¼1 for a more fair

comparison with the quantum model, though of course some degree

of improved fit would be expected by fitting these additional

parameters.

Basically, this adding model pushes belief a proportional distance

toward either extreme (0 or 1) based on evidence strength. With the

strongest possible evidence, sðxÞ¼�1 and the belief is changed to

1 or 0 (respectively), while if sðxÞ¼�:5, then belief is adjusted half of

the distance to the relevant extreme. The four parameters to fit to the

data are the sðxkÞ parameters corresponding to each of the four argu-

ments and are denoted as sWF ,sSF ,sWA, and sSA.

For the single-rating condition, where both arguments are read

before any response is given, Hogarth and Einhorn suggest that the

model should perform only one update step where the two presented

arguments are first combined together using a weighted average. We

introduced a fifth parameter, 0≤w ≤1, to account for this weighting

(thus allowing this model to show the observed recency effects). The

single condition then uses sðxÞ¼ ð1�wÞ∗ sðx1Þþw∗ sðx2Þ and

chooses the appropriate equation above based on the sign of this

value.

This method of producing different predictions for the single

and double-rating conditions does not parallel the theoretical

description of measurement effects from White et al. (2014). Their

conception of measurement effects is that rather than changing the

way single decision-making works, the double process should be

modified such that each evaluation produces a loss of information.

This broad framework can be applied to classical as well as quantum

models, so we created a new version of the adding model that we

call “Add-Forget.”
This new model is similar to the above Adding model, but single

judgments are made with two updates (the same way double judg-

ments are treated in the adding model) and the weighting parameter

is not used. Instead, the fifth parameter for this model, 0 < f <1, con-

trols the degree to which previous arguments are “forgotten” when

an intermediate response is provided in the double-rating condition.

This Add-Forget model is parameterized as above, but after the first

argument has been read and the intermediate response S1 provided,

the belief state is updated back toward the initial opinion S0 before

incorporating the second argument, reducing the impact of the first

argument:

S ∗
1 ¼ S1�S0 ∗ sðx1Þ∗ f, ifsðx1Þ≤0

S1�ð1�S0Þ∗ sðx1Þ∗ f, ifsðx1Þ>0

�
, ð2Þ

where f¼1 would imply full forgetting, and thus, S ∗
1 ¼ S0, while f¼0

implies no forgetting, and S ∗
1 ¼ S1.

TABLE 1 Estimates and 95% confidence intervals for effects as
computed by a linear mixed effects model with random intercepts for
each participant and topic domain

Effect Estimate 95% CI

Intercept (Single, WF-WA) 0.78 (�0.18, 1.74)

Measurement (double) �0.37 (�1.03, 0.29)

Recency (for) 0.78 (0.12, 1.44)

Strength (SA) �4.24 (�4.55, �3.92)

Strength (SF) 2.39 (2.07, 2.70)

Measurement (double) x Recency (for) 1.57 (0.41, 2.73)

Note: Numbers are on the �10 to 10 scale used by participants.
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2.5.2 | Quantum models

The base quantum model used in this work is built following the jury

trial model from Trueblood and Busemeyer (2011). The full technical

description of the model is presented in the Appendix, but here is a

conceptual overview of the relevant steps:

1. The initial belief state is represented as a vector in a four-

dimensional space.

2. Arguments impact the belief state through a rotation matrix that

depends on the valence and salience of the argument.

3. This rotated belief vector is projected to either the positive or neg-

ative evidence subspace in accordance with the valence of the

argument and is then normalized to maintain unit-length.

4. The intermediate response (for the double-rating condition) can

then be predicted by projecting the belief vector into the positive

or negative hypothesis subspace according to the valence of the

argument.

5. The second argument then rotates the belief vector according to

its valence and salience.

6. The belief is now projected to the evidence subspace correspond-

ing to the second argument and normalized.

7. The final response is obtained by projecting to the positive or neg-

ative hypothesis subspace according to the valence of the second

argument.

We then built a variant of this model along similar lines as the

Add-Forget model. In our “Quantum-Forget” model, we changed the

way that measurement effects are produced in step 4 (above) for the

double-rating condition. As in the quantum model, the belief state is

projected to the appropriate hypothesis subspace in order to provide

a response to the first argument. However, in contrast to the previous

model, this projection does not actually modify the belief state.

Instead, the belief state following the first stimulus is weakened by

shifting the amount of belief in the positive versus negative hypothe-

sis spaces as dictated by a single new parameter. This weakening hap-

pens before the rotation corresponding to the second argument is

applied. Although the idea behind this “forgetting” parameter is simi-

lar to the Add-Forget model, nonlinearities in the Quantum-Forget

model make interpreting the parameter value challenging.

2.5.3 | Fitting procedures

The basic quantum model only uses four parameters, while the other

three models each add a fifth parameter: the weighting parameter for

the classical adding model and the “forgetting” parameter for the two

novel models. All four models assume that participants' initial beliefs

start at the same point, which was computed as the average of all

intermediate responses (so as to not incorporate measurement

effects).

For model fitting, the parameters of each model were grouped

into a vector p. There were a total of 20 response averages taken

from experimental data: from the double-rating condition, we get four

intermediate judgments after reading the first argument and eight

final judgments after reading the second argument and then an addi-

tional eight judgments from the single-rating condition. These

20 responses were grouped into the vector vdata. Each model also pre-

dicted 20 responses, and these were grouped into the vector vpredict,

whose values depend on the parameters in the model, p. Thus, vpredict

can be denoted as vpredictðp; modelÞ. The fitting is thus an optimization

problem to minimize the cost function jjvdata�vpredictjj, where jj jj is
the L2 norm. Both versions of the adding model are linear, and so the

fminunc function in Matlab was used to find the minimum. Each

parameter of the adding models was searched for in the interval of

(�1, 1). The quantum models are highly nonlinear and have many local

minima. In order to find the global minimum for the quantum model,

we ran the minimization 2000 times with a genetic algorithm. In each

run, a random value in the interval of (�30, 30) was assigned as the

initial value of each parameter, and the minimization was also per-

formed in (�30, 30). Each run gives a local minimum, and the lowest

among them was taken as the global minimum.

2.6 | Model comparison

Participant data and model fits can be seen in Figure 2. The black lines

(data) are the same for every facet. The slope of the lines indicate

recency effects, and comparing the slope for the solid (double) versus

dashed (single) lines shows the measurement effect.

The adding model matches the slopes well but puts the single-

measurement responses much higher than the data indicate. Swap-

ping the weighting parameter for our forgetting parameter matches

the data more closely, though it slightly overestimates the recency

effect in the single-measurement condition. The four-parameter

Quantum model shows little differences across the four final

response conditions, with almost no recency effects, and the small

difference between slopes for the single and double conditions is in

the wrong direction. The Quantum-Forget model fares much better

but underestimates the recency effect in double-measurement

trials.

Summed squared error and Akaike Infomation Criteria (AIC)

values for the four models are shown in Table 2. AIC is calculated

as 2∗kþn∗ lnðSSeÞ, where k is the number of parameters

(4 for Quantum, 5 for the others) and n is the number of data

points, which is 20 in this case (4 initial and 16 final judgments).

The Bayesian Information Criterion (BIC) is calculated similarly but

with a larger penalty on the number of parameters:

logðnÞ∗kþn∗ lnðSSEÞ.
AIC and BIC are a more fair comparison between models than

raw SSE values since they provide the quantum model an extra allow-

ance for making do with only four parameters compared with the five

parameters used in the other models. These values indicate that the

original adding and quantum models perform worse than the new ver-

sions we developed. The Quantum-Forget model was preferred to the

Add-Forget model but either was much better than the other two.
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The relative weight of evidence for one model compared with another

can be examined using Bayes factor, which Wagenmakers (2007)

showed could be approximated using expððBIC1�BIC2Þ=2Þ. According
to this approximation, the Quantum-Forget model had 13.49 as much

evidence as the Add-Forget model.

2.7 | Discussion

These results show the same type of measurement effects seen in

White et al. (2014): Providing an intermediate response following the

first stimulus decreases its impact on the response following the sec-

ond stimulus. While diminishing the impact of the first stimulus can be

seen as desirable in the noncumulative task that they had used (partic-

ipants were just supposed to respond to the second stimulus), our

task explicitly asked participants to combine information across the

two arguments for a final judgment. In this case, reducing the weight

given to the first stimulus (increasing the recency effect) is likely an

undesirable outcome. Finding the same pattern under these opposite

task demands could indicate that measurement effects are an inherent

feature of decision-making that is difficult to “turn off.”
The adding model and quantum models that we used from previ-

ous work provided moderate fits to the data, but the quantum model

failed to replicate the patterns of recency and measurement effects

F IGURE 2 Final responses (after seeing two arguments) averaged across participant, topic domain, and argument strength to compare the

data with the model fits

TABLE 2 Summed squared error, AIC, and BIC values for the four
models of interest

Model SSE AIC BIC

Adding 26.48 75.52 80.51

Add-Forget 9.20 54.39 59.37

Quantum 20.61 68.51 72.49

Quantum-Forget 7.10 49.19 54.17

Note: Lower values indicate a better (or more parsimonious) fit.

Abbreviations: AIC, Akaike Infomation Criteria; BIC, Bayesian Information

Criterion.
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that we saw in the data. The two modified models we created, where

the impact of the first stimulus was reduced after an intermediate judg-

ment was provided, showed much better fits to the data, potentially

indicating that this is an important step in the decision-making process.

3 | EXPERIMENT 2

The differences between single-measurement (EoS) and double-

measurement (SbS) response conditions should be exaggerated when

more arguments are being combined, so we conducted a second

experiment using a series of four arguments instead of the pairs used

in experiment 1. We used the exact same set of stimuli but put all four

arguments for a given topic domain into a question, with participants

asked to respond either after each argument (Quadruple-rating) or

only after all four (Single).

This design also allowed us to test for dilution effects: When a

strong argument or piece of evidence is followed by neutral or weakly

consistent evidence, responses sometimes decease in extremity, with

a previously strong belief being “diluted” by the additional weaker

information. Some of the earliest research into this topic was done by

Nisbett et al. (1981), who looked at how probability judgments were

influenced by nondiagnostic (irrelevant) information and found that it

decreased the influence of the diagnostic information, “watering it

down,” so to speak. They interpreted this effect as stemming from the

representativeness heuristic: Adding nondiagnostic information

reduced the similarity between the target and the outcome, reducing

the extremity of the response.

The previously mentioned McKenzie et al. (2002) study used a

jury trial paradigm to investigate how evidence is combined, and they

found evidence of something akin to an extreme dilution effect

(though they did not use that label). They found that when a strong

case by the prosecution was followed by a weak defense, belief in

guilt often increased in reaction to the weak contradictory evidence.

They admitted that this effect may not extend to other situations and

may depend strongly on the particular adversarial context of a jury

trial. There is an assumption that the defense will present the stron-

gest evidence available, so while participants initially may have with-

held belief in the prosecution's case (due to the biased source), a

flimsy defense can lead to a full embrace.

McKenzie et al. (2002) advocated that this data supported a Mini-

mum Acceptable Strength (MAS) adding model, where arguments

weaker than the MAS reference point will have zero or potentially

negative effect. However, Trueblood and Busemeyer (2011) reana-

lyzed their data and showed that a quantum model could also predict

the same pattern of data. They also conducted several follow-up

experiments based on this jury trial paradigm but using more experi-

mental conditions and more participants. These experiments did not

show any cases where belief was adjusted in the opposite direction of

the argument, however. No further applications of quantum models

to explain the dilution effect appear to have been published, though

White et al. (2015) briefly mention that they should be well suited for

doing so.

We preregistered this experiment through OSF at https://osf.io/

j3gy8/ predicting the same pattern of measurement and recency

effects found in experiment 1 in addition to the newly predicted dilu-

tion effects.

3.1 | Participants

Participants were recruited in the same manner as experiment 1, with

543 total responses. Of these, 25 were incomplete, 1 was a second

submission from the same participant, 42 were submitted in under

two minutes (the average duration was 10 min), and 56 had attention

check scores less than three out of four. Excluding these left 419 par-

ticipants for analysis. This experiment had participants grouped by

16 different question orders and had between 23 and 30 usable par-

ticipants in each group.

3.2 | Procedure

Experiment 2 used the exact same materials as experiment 1, but this

time, all four arguments in a given topic domain were presented

before final judgments were made. The SbS condition had participants

respond after each of the four arguments, and they were explicitly

instructed to have each of these judgments be cumulative

(e.g., “based on the three arguments you have read so far, please rate

your opinion”). In the end of sequence condition, participants only

responded after reading all four. Each participant completed only four

trials, one for each topic domain, so that no arguments were repeated:

two single-rating trials and two quadruple-rating trials, alternating

between the two styles, with half of the participants starting with sin-

gle and the other half with quadruple. The order in which the argu-

ments were presented and the measurement condition used for a

particular topic domain was varied across participants, who were ran-

domly assigned into 16 different groups. By having a sequence of four

arguments, we could now have trials in which arguments of the same

valence (for or against) were blocked together (e.g., WF-SF-SA-WA)

or mixed (e.g., WF-SA-SF-WA), and each participant had two topics

presented in each fashion. No trials were used in which the first and

last arguments were of the same valence (e.g., WF-SA-WA-SF) to try

to keep the total number of possible orders tractable.

This design yielded a total of 64 different conditions. In the

quadruple-rating condition, there were four possible first arguments,

12 possible ratings following the first pair (each of the four arguments

could be followed by any of the other 3), 16 different ratings for sets

of three arguments (the four blocked pairs could be followed by the

other pair in either order, but the eight mixed pairs can only be fol-

lowed by a single argument, e.g., SA-WF has to be followed by WA in

our design), and finally 16 possible orders of all four. The single-rating

condition only provides data for the 16 combinations of all four argu-

ments. Each participant contributed data to 10 of these conditions:

four for each of the two quadruple-rating trials and a single data point

for each of the two single-rating trials.

MEASUREMENT EFFECTS IN DECISION-MAKING 9 of 17
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3.3 | Results

Figure 3 shows final response data after seeing all four arguments,

averaged across all participants, the four topic domains, and different

orders of the first three arguments. We again see strong recency

effects in the quadruple-measurement condition (responses were

higher when the last argument was “for”) and a much weaker effect

of recency in the single-rating condition.

We again used a linear mixed effects model to examine the size

and significance of these effects. Because all four arguments were

used every time (in different orders), the model is slightly different

than that used for experiment 1. Rather than including variables for

the strengths of the for and against argument, we instead have fixed

effects for the strength (weak or strong) and valence (for or against)

of the argument shown fourth (since recency effects dominate), the

measurement condition (single or quad), and all interactions between

them. As before, random intercepts were fit for each participant and

each topic domain (with no random slopes).

The model had a marginal R2 ¼ :11 and conditional R2 ¼ :38. The

reference levels in the model were for a single response where the

final argument is weak-against, and this did not differ significantly

from the corresponding quad condition, tð1387Þ¼0:70, p¼ :48,

d¼ :06. The single condition had a weak but significant recency effect,

with responses being higher when the final argument was for rather

than against, tð1427Þ¼2:20, p¼ :03, d¼ :19. Single responses did

not, however, depend on the strength of the final argument,

tð1504Þ¼0:12, p¼ :90, d¼ :01, and there was no significant interac-

tion between the final argument's strength and valence (for or against)

for single-ratings, tð1551Þ¼0:01, p¼ :99, d< :01. These nonsignifi-

cant results are reflected in the almost-flat segments on either side of

the single-measurement line in Figure 3, while the recency effect is

the central, weakly positively sloped portion.

Significant interactions indicate that the quadruple-rating (SbS)

condition showed a moderate effect of the fourth argument's strength

tð1498Þ¼4:21, p< :001, d¼ :52; a small-to-moderate recency effect

for weak arguments, tð1512Þ¼1:70, p¼ :09, d¼ :40; and a large

recency effect for strong arguments, tð1641Þ¼4:66, p< :001,

d¼1:27. Estimates of these effects on the original 21-point scale are

shown with 95% confidence intervals in Table 3. The primary result of

interest is that the recency effect was only .86 for single judgments,

regardless of argument strength but increased by .96 to 1.82 for

quadruple-ratings ending in a weak argument and by a further 3.99 all

the way up to 5.81 for quad-ratings ending in a strong argument.

Tests of the dilution effect were conducted using the responses

from the quadruple-rating condition when the first argument was

strong and the second argument was weak and of the same valence

(either SF-WF or SA-WA). Paired samples t-tests were conducted to

compare the first response to the second, within-participants, and topic

domains. Participants' initial responses to the strong-for argument were

on average 0.92 higher (sd¼3:54) than after it was followed with a

weak-for argument, tð110Þ¼2:76, p¼ :007, 95% CI¼ð:26,1:60Þ,
d¼0:26. An even stronger difference was found in the against argu-

ments, with initial responses to the strong argument 1.66 lower

(sd¼3:24) than after it was followed by the consistent weak argu-

ment, tð105Þ¼5:27, p< :001, 95% CI¼ð�2:29,�1:04Þ, d¼ :51.

F IGURE 3 Final responses after seeing
all four arguments, averaged across
participant, domain, and the sequence of the

first three arguments

TABLE 3 Estimates and 95% confidence intervals for effects as
computed by a linear mixed effects model with random intercepts for
each participant and topic domain

Effect Estimate 95% CI

Intercept (Single, WA) �1.23 (�2.03, �0.44)

Measurement (Quad) 0.27 (�0.49, 1.03)

Recency (For) 0.86 (0.10, 1.63)

Strength (Strong) 0.05 (�0.75, 0.84)

Recency (For)) x Strength (Strong) 0.01 (�1.12, 1.14)

Measurement (Quad) x Strength

(Strong)

�2.41 (�3.53, �1.29)

Measurement (Quad) x Recency (For) 0.96 (�0.14, 2.07)

Measurement (Quad) x Strength

(Strong) x Recency (For)

3.99 (2.31, 5.67)

Note: Numbers are on the �10 to 10 scale used by participants.
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Dilution effects were also found for the final pair of arguments in

the quad condition. Participants' responses when the third argument

was strong-for were on average 0.89 higher ðsd¼2:82Þ than after it

was followed with the weak-for argument, tð110Þ¼3:33Þ,
p< :001, d¼0:32, 95% CI¼ð:36,1:42Þ. Again, a stronger difference

was found in the against arguments, with responses when the third

argument was strong-against 2.63 lower ðsd¼4:36Þ than after hear-

ing the weak-against the fourth argument, tð103Þ¼
6:16, p< :001, 95% CI¼ð�3:48,�1:79Þ, d¼ :60.

3.4 | Fitting procedures

We applied the same models and fitting procedures as for experiment

1, continuing to use only five parameters for all models except the

basic Quantum model, which only has four. Rather than the 20 differ-

ent response averages from experiment 1, experiment 2 has 64, as

described in the procedure section. The Adding model fits the single-

rating condition by creating a weighted average of all four arguments,

where the w parameter determines the weight of the final argument

and all three previous arguments are equally weighted (additional

parameters could provide extra flexibility, but such additional flexibil-

ity did not justify the additional complexity in model testing). Add-

Forget again uses the same formula and SbS updating rule for both

rating conditions but has the additional “forgetting” step after each

response in quadruple-rating condition (so three times before the final

judgments). The basic quantum model distinguishes single and quad

through a projection step after each response, while the Quantum-

Forget model instead applies a “forgetting” step after each response,

similar to Add-Forget.

3.5 | Model comparison

Measurement and recency effects are shown in Figure 4 for the data

and each of our four models. As in experiment 1, the Adding model

F IGURE 4 Responses averaged across participant, domain, and the sequence of the first three arguments
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predicts that responses in the single-response condition would be

overall higher than they were but seems to capture other data pat-

terns fairly well, approximately matching the slopes for both condi-

tions, thus capturing recency and measurement effects. The four-

parameter Quantum models fit the single-response data reasonably

well but was a poor fit for quadruple-response, predicting much

weaker effects of recency and expecting quad judgments to be con-

sistently more positive than single. Add-Forget and Quantum-Forget

both captured quad data well but predicted larger recency effects for

the single condition than were seen in the data, thus underestimating

measurement effects.

To illustrate the dilution effects, we present one particular

sequence of arguments that produces two such effects: SA-WA-SF-

WF. As can be seen in Figure 5, participants' negative views following

the strong-against argument lessen when it is followed by the weak-

against argument, demonstrating dilution. Similarly, positive responses

following the third argument, strong-for, move back toward neutral

when the weak-for argument comes afterwards. While the Add-Forget

and Quantum-Forget models capture both of these qualitative pat-

terns, the four-parameter Quantum model misses the latter, and the

Adding model misses both, instead predicting that the additional con-

sistent information from the weak arguments should strengthen belief.

Fit statistics are shown in Table 4. The four-parameter Quantum

model had much higher error than the others, and even after penaliz-

ing the others for their higher complexity, it does not come close. This

is likely because this model provided a good fit to single-judgment

data but poor fit to the quad condition, while the other three showed

the reverse pattern. Because the quad condition produces four times

as many judgments (and therefore data points) as the single condition,

those errors are more costly overall.

The Adding model shows similar overall fit to the Quantum-

Forget model, though the latter is slightly preferred. The most signifi-

cant result, however, is that the Add-Forget model provides a clearly

superior fit compared with the other three. Figure 5 shows that this

model provides an excellent description of the dilution effects, though

Figure 4 does not show notably better performance at capturing mea-

surement and recency effects.

3.6 | Discussion

This second experiment showed the same measurement effects found

in experiment 1, with intermittent responses increasing the relative

weight of the final argument, producing much stronger recency

effects. Similar to the “Quantum Zeno” effect found by Yearsley and

Pothos (2016), these repeated measurements appear to interfere with

the accumulation of evidence, leading final responses to be based to a

greater degree just on the last argument which was presented.

The fact that this paradigm also produced dilution effects offers

the tantalizing possibility that it is produced by the same mechanism.

If issuing a response decreases the impact of previous stimuli in favor

of the most recent, then reading a weak argument after a strong one

would be expected to decrease response extremity, as shown in these

data. A critical test of this hypothesis that was not available in with

our experimental design would be to test if dilution effects diminish

or disappear when no response is provided to the first stimulus.

F IGURE 5 Data and model fits for the
argument sequence SA-WA-SF-WF to
demonstrate dilution effects.

TABLE 4 Summed squared error, AIC, and BIC values for the four
models of interest

Model SSE AIC BIC

Adding 123.64 318.31 329.10

Add-Forget 70.62 282.47 293.27

Quantum 304.04 373.90 382.53

Quantum-Forget 113.73 312.96 323.76

Note: Lower values indicate a better (or more parsimonious) fit.

Abbreviations: AIC, Akaike Infomation Criteria; BIC, Bayesian Information

Criterion.
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The modeling results showed that the Quantum model from True-

blood and Busemeyer (2011) did not fare well, with a lower quantita-

tive fit than the three others, most notably underestimating the size

of recency and measurement effects in the quadruple-rating condi-

tion. The Adding model from Hogarth and Einhorn (1992) had a better

quantitative fit but was incapable of producing dilution effects.

Quantum-Forget provided a similar overall fit as the Adding model

but successfully captured the important qualitative patterns in the

data. The Add-Forget model was the clear winner for this data, with a

near perfect fit of the dilution effects, suggesting that measurement

effects could be well modeled by an appropriately constructed classi-

cal probability model.

4 | GENERAL DISCUSSION

Simple conceptions of rational decision-making predict that it should

make no difference which of a pair of arguments is presented first.

However, in agreement with a host of previous investigations, we

found recency effects with participants reliably biased in the direction

of the final argument they heard. We also found robust evidence of

less well-known measurement effects, where final responses

depended on whether participants were asked to provide intermedi-

ate responses to previous arguments.

Our data showed that recency effects were present for both deci-

sion conditions but that these effects were substantially larger in con-

ditions where responses were give after every stimulus (double-/

quadruple-rating or SbS) compared with only responding after all stim-

uli (single-rating or EoS). In our first experiment using sequences of

two arguments, the recency effect was only .8 points on a 21-point

scale for the single-rating condition but tripled to 2.4 points for

double-rating. Experiment 2 used sequences of four arguments and

similarly found a recency effect of .9 for single judgments, 1.8 points

for quadruple judgments where the final argument was weak, and a

whopping 5.8 for quad with a strong final argument. These findings

are generally consonant with the data pattern found by White et al.

(2014) but extend them in several important ways by showing that

similar patterns hold even when using a cumulative task and showing

that the size of the effect increases the way we would expect when

using larger stimulus sets.

A coherent explanatory mechanism for these measurement

effects is still largely lacking. While White and colleagues produced

similar measurement effects in their task, they have only used noncu-

mulative tasks and have not postulated whether such effects should

be expected to remain similar in a cumulative framework or why.

Their explanation for measurement effects is that the process

involved in making a response entails a loss of information. When a

response is required, a participant's belief is projected down onto the

relevant dimension for the response in a nonlinear operation. How-

ever, as detailed in Section 1, this mechanism should selectively lose

information about the prior stimuli that is inconsistent with the

response provided, which should increase the impact of this argument

instead of lessening it. An important caveat is that the impact of this

projection depends on the way in which the model is constructed, and

further explorations of such models would be appreciated.

Our second experiment also allowed us to investigate dilution

effects within the same task structure. When participants read a

strong argument followed by a weak argument of the same valence

(both arguments either for or against), their responses following the

weak argument were less extreme (more neutral) than they were

before it, despite the additional congruent information. This again vio-

lates naive expectations, and most existing models of anchoring and

adjustment do not produce this pattern. White et al. (2015) claim that

quantum models can produce these effects but have not actually

demonstrated them doing so.

This raises the question of whether dilution effects can find their

explanation in a response-triggered “forgetting” story in a way similar

to measurement effects. An important test of this possibility would be

to look for dilution effects in an EoS (single-rating) task that should

not induce such forgetting. We eagerly await the results of such a test

in future experimentation, as such a comparison was not possible with

our data set.

It is worth noting an important distinction between the way that

White et al. (2020) characterize these measurement effects

(or Evaluation Bias, to use their term): Here we refer to the measure-

ment reducing the impact of the previous stimulus, while they refer to

it strengthening the impact of the subsequent stimulus. In many situa-

tions, these will be indistinguishable, but we have at least two argu-

ments to support our conception. Firstly, if dilution effects can indeed

be explained through measurement effects, they are clearly a case of

reducing the impact of the first (stronger) argument rather than

strengthening the second (weaker but consistent) argument, which

would have the opposite result. Secondly, we assert that it makes

more sense for measurement to impact a currently held belief rather

than having an effect on a future stimulus, for cleaner causality.

These findings also provide reason to reexamine previous investi-

gations of order effects that have used a SbS double-rating procedure,

such as Trueblood and Busemeyer (2011) and many others. Since our

results show that this procedure enlarges recency effects (presumably

by reducing the impact of the first piece of evidence), it is likely that

the order effects found in such prior research are larger than they

would be with a single-rating procedure and may in some cases over-

estimate what would be expected in real-world scenarios where inter-

mediate judgments are not mandatory. For example, in a real jury trial,

there is no formalized preliminary assessment of the prosecution's

case, so this should be treated as an EoS situation.

Although this experiment and others that inspired it have tended

to show recency effects, there are other quite similar paradigms

where researchers tend to find primacy effects. The body of work on

Information Distortion (DeKay, 2015; Kostopoulou et al., 2012) has

found that participants stick with an initial opinion formed by early

evidence and interpret subsequent evidence in a way that is more

consistent with their initial belief. Such paradigms typically use a SbS

measurement procedure, and to our knowledge, these researchers

have not compared that with single-rating conditions, but it would be

interesting to see if measurement effects also strengthen primacy
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effects where they occur, exacerbating order effects in either direc-

tion, or if they continue to diminish earlier evidence, fighting against

primacy.

The other main topic requiring further elaboration is what

counts as “measurement.” Are participants required to issue a

numeric response in order for measurement effects to occur?

Would such effects be qualitatively different if participants instead

provided a free-form linguistic description regarding their impression

of the argument? And what if we just ask participants to think

about their impression but not provide any response? Does a pro-

cess of Bayesian belief updating in response to new evidence

necessitate such a measurement effect? We cannot always expect

them whenever new evidence is incorporated and beliefs are

updated, or else we would expect the same results in SbS and EoS

conditions, so they seem to only apply when an actual response is

required. These questions are important for understanding the exis-

tence of measurement effects. It is notable that participants were

always asked the same question, to estimate “what Joe would do”
following the argument(s), and yet the measurement effect differed

following “for” or “against” arguments. This seems to imply that the

measurement/projection effects do not depend only on the ques-

tion asked but to some degree on the valence of the stimulus

and/or the participant's reaction to it.

5 | CONCLUSION

In this work, we present robust evidence for the importance of mea-

surement effects. It is counter-intuitive that such effects should con-

sistently reduce the impact of previous stimuli across both cumulative

and noncumulative tasks, when participants should desire to forget

previous stimuli in the latter but strive not to in the former.

A coherent theoretical explanation for these effects remains elu-

sive, although much important work in this direction has been done

by White et al. (2020), who advocate the use of quantum models but

show that the classical anchoring and adjustment model from Hogarth

and Einhorn (1992) can also capture them. Our work indicates that

neither of these models provided a great fit to our data but that aug-

menting either one with a parameter responsible for “forgetting” pre-
vious stimuli each time a response is provided could prove sufficient.

Modeling results from experiment 2 show that the classical adding

model provided the best fit of any of our models once such a parame-

ter was added, so perhaps quantum probability is unnecessary to cap-

ture these effects.

Previous arguments from White et al. (2015) and other quantum

advocates have held that although classical models can be augmented

with ad hoc parameters to simulate the breadth of behavioral patterns

observed, quantum models are to be preferred because they can pro-

duce them naturally. This was not the case for this data with the par-

ticular instantiation of models we fit, though it should clearly be

stated that there are a wide variety of approaches to constructing

quantum models and we have only investigated one approach here.

According to Trueblood et al. (2017), an alternative quantum model of

lower dimensionality may be able to be developed for this application,

and it would be expected to show a larger degree of contextual

effects. Such characterizations of models which can vary in the

amount of assumed incompatibility also show promise in describing

individual differences in these effects (Mistry et al., 2018). More

investigation is needed, as well as a greater recognition of how mea-

surement effects could be inflating the presence of order effects in

many paradigms.
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APPENDIX A: MODELING DETAILS

For the quantum model, there are two hypotheses and two kinds of

evidence. The two hypotheses are jh1⟩, Joe will adopt the change, and

jh2⟩, he will not. The two kinds of evidence are positive evidence je1⟩
(both of the for arguments) and negative evidence je2⟩ (both of the

against arguments). The hypotheses and evidence can be represented

as two-dimensional basis vectors:

jh1⟩¼
1

0

� �
, jh2⟩¼

0

1

� �
, je1⟩¼

1

0

� �
, je2⟩¼

0

1

� �
, ðA1Þ

using the ket notation j � ⟩ commonly used in quantum mechanics to

represent a column state vector. The belief state is represented as a

superposition state:

jψ⟩¼
X

i,j � f1,2g
ωijjNij⟩: ðA2Þ

This is a vector that takes complex values, with jNij⟩ being the basis

state. As an event, Nij is the intersection of the participant being

exposed to evidence ej and adopting the hypothesis hi , that is,

Nij ¼hi\ej. For example, N11 means that the participant decides that

Joe will adopt the change after reading a “for” argument. As a vector,

jNij⟩ is the Kronecker product of jhi⟩ and jej⟩, that is,

jNij⟩¼ jhi⟩
O

jej⟩: ðA3Þ

The coefficient ωij is the amplitude of jNij⟩. In quantum mechanics,

when the superposition state is measured, it will collapse onto one of

its basis states. When jψ⟩ is measured, the probability of getting jNij⟩

is jωijj2. Therefore,

X
i,j � f1,2g

jωijj2 ¼1: ðA4Þ

In this work, the prior (initial belief in Joe's probability to adopt the

change) was not directly measured (to prevent additional measure-

ment effects!) and instead is estimated empirically as the average of

the four different intermediate responses:

Pini ¼ ½PrðWFÞþPrðWAÞþPrðSFÞþPrðSAÞ�=4, ðA5Þ

where PrðWFÞ is the average response across participants after seeing

the “weak-for” argument, converted from the �10 to 10 scale used

into a 0 to 1 scale for computational convenience, and the other three

probabilities are defined in similar ways. The initial belief state is then

set as
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jψ⟩¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Pini=2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
Pini=2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�PiniÞ=2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�PiniÞ=2

p

2
66664

3
77775: ðA6Þ

In our quantum cognition model, making a decision is modeled by

measuring the superposition belief state of the decision maker. The

decision is just the basis state to which the superposition state

collapses. The measurement is performed with the measurement

operatorM:

jψ⟩! Mjψ⟩ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟨ψjM†Mjψ⟩

q : ðA7Þ

M can be represented by a matrix and M† is the transpose conjugate

of M. Measurement occurs via a family of projectors that sum to

1. For example, applying the measurement operator regarding the

basis of h1\e1 to jψ⟩ leads to

M11jψ⟩¼

1

0

0

0

2
6664

3
7775

ω11

ω12

ω21

ω22

2
6664

3
7775: ðA8Þ

The outcome of the measurement is thus

M11jψ⟩ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟨ψjM†

11M11jψ⟩
q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω ∗
11ω11

p
ω11

0

0

0

2
6664

3
7775¼ 1

jω11j

ω11

0

0

0

2
6664

3
7775: ðA9Þ

When ω11 is a positive real number, the subsequent state is just [1 0

0 0]T . Similarly, the result of measurement regarding jh1⟩ is

Mh1 jψ⟩ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟨ψjM†

h1
Mh1 jψ⟩

q ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

⟨ψjM†
h1
Mh1 jψ⟩

q
1

1
0

0

2
664

3
775

ω11

ω12

ω21

ω22

2
664

3
775

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jω11j2þjω12j2
q

ω11

ω12

0
0

2
664

3
775:

ðA10Þ

In quantum probability theory, some events are treated as incompati-

ble, with their joint probability space undefined, relying instead on

order dependent conditional probabilities. Recent work (Trueblood

et al., 2017) has examined the effects of varying the degree of incom-

patibility using different quantum models and has found that more

incompatibility produces more of the context-dependent effects

quantum models are often chosen for. In this work, the events regard-

ing the four types of arguments (SA, SF, WA, WF) are considered to

be incompatible. The same belief state should be described in differ-

ent bases when considering incompatible events. Such different bases

can be considered as corresponding to different points of view. Let

jNij⟩ still be the basis for the event hi\ej and let jAij⟩ and jBij⟩ be the

bases corresponding to the SA and SF arguments (different bases

correspond to WA and WF). Then the same quantum belief state of

the participant can be expressed with respect to any one of these

three points of view:

jψ⟩¼
X

ωijjNij⟩¼
X

αijjAij⟩¼
X

βijjBij⟩: ðA11Þ

where αij and βij are still in the sense of hi\ej just like ωij.

When incompatible events are concerned, measurement cannot

be applied directly. The basis of the belief state must be changed to

that which corresponds to that event. The basis is changed by multi-

plying the state vector with a unitary operator U (U†U¼UU† ¼ I,

where I is the identity matrix). The belief state can be changed to the

SA basis jAij⟩ from the initial basis jNij⟩ via UAN, such that

jα⟩¼UANjω⟩, and can similarly be changed back to the initial basis via

U†
AN. While this change of basis is reversible, the unitary rotation

described here refers only to a coordinate change and not to an actual

change of the state vector. In contrast, the measurement operator is

not unitary, and so these operators do not commute, which is why we

see measurement effects.

A.1 | Application of the quantum model

Let us consider the double judgment case where the participant reads

the SF argument first, provides a response, and then reads the SA

argument and is asked to respond to both. The quantum model

describes this situation as follows:

1. Change basis to the SF point of view: Let the belief state in the ini-

tial basis be jω⟩. When the participant is exposed to the SF argu-

ment, the basis of the belief state is changed by the unitary

operator UN 7! SF so that the same belief state in the new basis is

denoted by jα⟩:

jα⟩¼UN 7! SFjω⟩: ðA12Þ

2. Project to positive evidence subspace: When the participant con-

siders a “for” argument, the belief state is projected to the positive

evidence subspace je1⟩ by the measurement operator Me1

(because the SF argument contains positive evidence):

Me1 jα⟩¼

1

0

1

0

2
6664

3
7775jα⟩: ðA13Þ

3. Normalize: The obtained new belief state is defined as jαe1 ⟩:

jαe1⟩¼
Me1 jα⟩ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

⟨αjM†
e1Me1 jα⟩

q : ðA14Þ

4. Predict the first judgment in double-rating condition: The rated

probability that Joe will adopt the change at this point is

⟨αe1 jM†
H1
MH1 jαe1 ⟩, where Mh1 is the measurement operator that

projects the belief state to the positive hypothesis subspace jh1⟩:

16 of 17 BURNS AND HOHNEMANN

 10990771, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bdm

.2311 by M
issouri U

niversity O
f Science, W

iley O
nline L

ibrary on [22/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Mh1 ¼

1

1

0

0

2
6664

3
7775: ðA15Þ

This is where the measurement effect occurs, as this step is not

done in the single-rating condition where participants do not

respond to the first argument.

5. Change basis to the SA point of view: When the participant is

exposed to the SA argument, the basis of the belief state is chan-

ged by the unitary operator UN 7! SA. Before that, we need to

change back to the initial basis from the SF basis. The same belief

state in the new basis is denoted by the following:

jβ⟩¼UN 7! SAU
†
N 7! SF

Mh1 jαe1 ⟩ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟨αe1 jM†

h1
Mh1 jαe1 ⟩

q : ðA16Þ

Note that in the single-rating condition, there is no measurement

step following the first stimulus, so this change of basis would just

be jβ⟩¼UN 7! SAU
†
N 7! SF jαe1 ⟩.

6. Project to negative evidence subspace: When the participant con-

siders this second argument, the belief state is projected to the

negative evidence subspace je2⟩ by the measurement operator

Me2 (because the SA argument contains negative evidence):

Me2 jβ⟩¼

0

1

0

1

2
6664

3
7775jβ⟩: ðA17Þ

7. Normalize: The obtained new belief state is jβe2 ⟩ as follows:

jβe2 ⟩¼
Me2 jβ⟩ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

⟨βjM†
e2
Me2 jβ⟩

q : ðA18Þ

8. Predict the final judgment. The participant's rating that Joe will

adopt the change at this point is ⟨βe2 jM†
H1
Mh1 jβe2 ⟩.

Predictions can be made for other combinations of arguments in

a similar fashion. In order to predict all probability ratings, the four

unitary matrices are needed, namely, UN 7! SA, UN 7!WA, UN 7!WF , and

UN 7! SF . They can be considered parameters of the quantum cognition

model and should be found by fitting experimental data. However,

these matrices are all in the dimension of 4�4 and thus each have

16 elements. In order to reduce the number of parameters, the follow-

ing property of unitary matrices is utilized: any unitary matrix U can

be constructed from a Hermitian matrix H as U¼ e�iθH.

Note that a Hermitian matrix satisfies H† ¼H and i is the imagi-

nary unit. If all four unitary matrices share a common H, then there

are only four scalar parameters to fit, namely, θSA, θWA , θWF , and θSF .

Then the remaining question is which H to use. In this work, we use

the proposal from Trueblood and Busemeyer (2011), where H1 is cho-

sen to strengthen and weaken evidence amplitudes to the greatest

extent possible, while H2 is chosen to function similarly on hypothesis

amplitudes:

H ¼
1ffiffiffi
2

p ðH00
1þH00

2Þ

¼
1ffiffiffi
2

p
1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

2
664

3
775þ

1 0 1 0
0 �1 0 1
1 0 �1 0
0 1 0 1

2
664

3
775

0
BB@

1
CCA

¼
1ffiffiffi
2

p
2 1 1 0
1 �2 0 1
1 0 0 1
0 1 1 0

2
664

3
775:

ðA19Þ

We then built a variant of this model along similar lines as the

Add-Forget model. In our “Quantum-Forget” model, we changed the

way that measurement effects are produced in step 4 (above) for the

double-rating condition. As in the quantum model, the belief state

state is projected to the appropriate hypothesis subspace in order to

provide a response to the first argument. However, in contrast to the

previous model, this projection does not actually modify the belief

state. Instead, the belief state following the first stimulus is weakened

by shifting the amount of belief in the positive versus negative

hypothesis spaces as dictated by a single parameter, 0 < f <1, which is

used to define a diagonal matrix which takes the form

diag
ffiffi
f

p
,

ffiffi
f

p
,

ffiffiffiffiffiffiffiffiffiffi
1� f

p
,

ffiffiffiffiffiffiffiffiffiffi
1� f

p� �� 	
when the first argument supported

the positive hypothesis, H1, and diag
ffiffiffiffiffiffiffiffiffiffi
1� f

p
,

ffiffiffiffiffiffiffiffiffiffi
1� f

p
,

ffiffi
f

p
,

ffiffi
f

p� �� 	
if it

supported H2. The belief state following the initial response in the

double-rating condition is multiplied by this matrix before the rotation

corresponding to the second argument is applied. Although the idea

behind this “forgetting” parameter is similar to the Add-Forget model,

nonlinearities in the Quantum-Forget model make interpreting the

parameter value challenging.
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