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BCMNet: Cross-Layer Extraction Structure
and Multiscale Downsampling Network With

Bidirectional Transpose FPN for Fast Detection
of Wildfire Smoke

Jiayong Li , Guoxiong Zhou , Aibin Chen, Chao Lu, and Liujun Li

Abstract—At present, the wildfire smoke detection algorithm
based on YOLOv3 has problems, such as low accuracy and slow
detection speed. In this article, we propose a cross-layer extraction
structure and multiscale downsampling network with bidirectional
transpose FPN (BCMNet) for fast detection of wildfire smoke. First,
a cross-layer extraction module, which combines linear feature
multiplexing and receptive field amplification, is designed. It can
improve the speed and accuracy of wildfire smoke detection. Sec-
ond, a multiscale downsampling module with different convolution
kernels and maximum pooling operation is designed to preserve
the details of the image while downsampling. Then, a bidirectional
transposed FPN based on transposed convolution upsampling is
designed. It can bidirectionally fuse visual features of shallow layer
and semantic features of deep layer on the corresponding scale. The
feature information flow between smoke feature maps of different
resolution is emphasized. Finally, a wildfire smoke detection system
of the Internet of Things based on BCMNet is built by combining the
hardware and detection model. The experimental results show that
the proposed method achieves 85.50% mAP50 and 79.98% mAP75

at 40 FPS on NVIDIA Geforce RTX 2080 Ti, which is superior to
the common smoke detection methods.

Index Terms—Bidirectional transpose FPN (BTFPN), cross-
layer extraction module (CLEM), cross-layer extraction structure
and multiscale downsampling network with bidirectional transpose
FPN (BCMNet), Internet of Things (IoT), multiscale downsampling
module (MDSM), wildfire smoke detection.

I. INTRODUCTION

FOREST is the main part of the terrestrial ecosystem, and
plays an important role in regulating climate, conserving
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water, preventing wind and fixing sand, improving soil, and so
on. Wildfire is a sudden, destructive, and uncontrollable natural
disaster. Once a wildfire occurs, it will cause heavy losses of
natural resources and human property. In the early stage of a
fire, white smoke will be produced, and the diffusion of smoke
is irregular and easily affected by environment, climate, and
other factors, resulting in different concentrations, shapes, and
sizes. Thus, it is difficult to identify wildfire smoke or the speed
of smoke detection is slow. But, if we can detect this remarkable
visual feature at an early stage, we can forewarn the fire in its
cradle and reduce the loss to the minimum.

The early-day fire smoke detection systems mainly relied on
traditional point sensors. When the space becomes larger, they
cannot effectively detect smoke signals. In addition, because
the sensor is susceptible to dust, airflow, and human factors,
its detection efficiency is also greatly affected. With the devel-
opment of computer vision and image processing technology,
more and more researchers and institutions have begun to study
smoke detection. Typical characteristics of smoke include color,
texture, the direction of movement, etc. Chen et al. [1] mainly
studied the color characteristics and diffusion characteristics of
smoke and analyzed the rough distribution rules of smoke color
in RGB three channels. They studied the dynamic characteristics
of smoke diffusion movement, shape change, and growth rate to
detect smoke. Krstinić et al. [2] used the HSI model to describe
the color characteristics of smoke and enhance the separation
of smoke and nonsmoke, which is better than RGB, YCbCr,
CIELab, and HIS color models to a certain extent. However,
many objects in the natural environment are similar to the color
of smoke, so this method can only be used in the ideal environ-
ment. These methods are based on single characteristic. They
have limited generalization ability and are greatly disturbed by
the environment. Wang et al. [3] proposed a method for video
smoke detection using visual features, such as shape, color, and
dynamic texture of the image, which achieved good results.
Zen et al. [4] used Gaussian mixture model to segment moving
objects and then inputs the detection frame coordinates, area, and
fog speed as feature parameters into the classifier to determine
whether it is smoke.

With the rapid development of the Internet of Things (IoT)
and deep learning technology, we can get more accurate and
effective real-time features without the limitation of conven-
tional pattern recognition methods. The IoT can connect all
kinds of information sensing devices, such as infrared thermal
imagers and high-definition video, unmanned aerial systems,
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wireless sensor networks, radio frequency identification devices,
personal digital assistants, and the Internet. They form a huge
network [5], [6]. The IoT has become an important means to
obtain accurate and quantitative information and has achieved
great success in image processing. Therefore, the deep learning
algorithm has been applied to smoke detection. Conventional
smoke detection methods are based on shallow visual features,
so they have poor generalization ability, cannot cope with the
natural environment disturbance and the irregularity of smoke
diffusion, and cannot be transplanted. Compared with the shal-
low feature, the deep semantic feature is more stable and repre-
sentative. Yin et al. [7] proposed a new deep normalization and
convolutional neural network (CNN) model with 14 layers to
realize automatic feature extraction and classification. To speed
up the training process and improve the performance of smoke
detection, the network used a combination of normalization
and convolution to replace the conventional convolutional layer.
Cao et al. [8] proposed a novel attention-enhanced bidirectional
long-term short-term memory network (LSTM) for video-based
wildfire smoke recognition. It can not only capture the temporal
and spatial characteristics of smoke in video frames but also use
the attention mechanism to strengthen the temporal and spatial
characteristics. Qiang et al. [9] analyzed the characteristics of
smoke in each stage in detail and proposed a new method of
wildfire smoke detection that combines robust principal compo-
nent analysis in the time domain (TRPCA) and a dual-stream
combination of VGG and BLSTM (TSVB) model. The dy-
namic and static characteristics of smoke are extracted from
the time flow and spatial flow, and, finally, the two features are
merged to realize the detection of wildfire smoke. This method
achieves the accuracy of 90.6% on the self-built dataset, but
the detection speed is slow. Shi et al. [10] used the “labeling”
tool to label a dataset of fire and smoke and used YOLOv3
for detection. The results showed that YOLOv3 can better bal-
ance detection speed and accuracy. However, this structure will
introduce excessive parameters while improving the feature ex-
traction capability, increasing the detection time and calculation
cost.

This article proposes a cross-layer extraction structure and
multiscale downsampling network with bidirectional transpose
FPN (BCMNet) for fast detection of wildfire smoke based on
YOLOv3. In our implementation, the main contributions of this
article are as follows.

1) We proposed a cross-layer extraction module (CLEM),
which combines linear feature multiplexing and receptive
field amplification. On the main road, a linear feature mul-
tiplexing module was designed to reduce the parameters of
network training and the computing load of the processor.
On the vice-road, a zigzag hybrid dilated convolution was
designed to expand the receptive field. Different dilation
rates were selected to improve the receptive field and
ensure the integrity of smoke feature information. Finally,
the main road and the vice-road are fused crossing layers,
and it can improve the detection speed and accuracy of
smoke object.

2) We proposed a multiscale downsampling module
(MDSM). It preserves the details of the image while
downsampling by using different-size convolution
kernels and performing the maximum pooling operation
in the three branches, It solves the problem of information
loss caused by the traditional downsampling method.

Meanwhile, squeeze-and-excitation module (SE
attention) was used to emphasize the object area of
the smoke feature image and reduce the interference
caused by the fuzzy and other redundant information.

3) We proposed a bidirectional transposed FPN (BTFPN)
based on transposed convolution upsampling. It can bidi-
rectionally fuse visual features of the shallow layer and
semantic features after the deep transposed convolution
layer on the corresponding scale. Then, solve the problem
that FPN can only integrate the deep semantic features
into the shallow visual feature information in one direc-
tion, which leads to the insufficient utilization of feature
information, and improve the accuracy of smoke object
detection.

The structure of this article is as follows. Section II briefly
introduces the related work of smoke recognition. Section III
introduces BCMNet for fast detection of wildfire smoke. Sec-
tion IV conducts test verification and result analysis. Finally,
Section V concludes this article.

II. RELATED WORK

In the field of object detection, conventional methods are
divided into the following three steps:

1) information area selection;
2) feature extraction;
3) classification and positioning.
Cheng et al. [11] proposed a regional contrast based salient

object detection algorithm, which calculates both the global
contrast difference and the spatially weighted coherence. This
algorithm is simple and efficient and can generate multiscale,
high-resolution and high-quality maps. Lowe et al. [12] pro-
posed a scale-invariant feature transform algorithm in 2004. This
algorithm seeks the extreme point in space and extracts the loca-
tion of local features, which has good robustness. Zhou et al. [13]
proposed to use low-rank to represent objects with regional
continuity, and this model solved this problem by combining
the spatial distribution information of moving objects. However,
due to the greedy nature of decolor algorithm, the background
around moving objects would be misdetected as the foreground.
At present, the object detection algorithms based on deep learn-
ing are mainly divided into two categories: one-stage object
detection algorithms and two-stage object detection algorithms.
Two-stage object detection algorithms are: faster R-CNN, mask
R-CNN, and FPN. Girshick et al. [14] proposed the R-CNN
algorithm in 2014, which improved the average accuracy (mAP)
by more than 30% compared to the previous best results of VOC
2012. The algorithm applied high-capacity CNN to the candidate
region to locate and classify objects. In 2015, Faster R-CNN
[15] algorithm was proposed. It is a fast convolutional network
method based on candidate regions. Based on the previous
work of R-CNN, Faster R-CNN adopted several innovations to
improve the accuracy of object detection and the training speed
of the network was also improved. Lin et al. [16] proposed the
FPN algorithm in 2016. This algorithm combines high-level
semantic information and low-level semantic information to
detect objects of different scales in different feature layers after
fusion, thus forming a pyramid network structure, optimizing
the accuracy of object detection and solving the problem of
multiscale object detection. He et al. [17] proposed the mask
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R-CNN algorithm in 2018, which generates high-quality seg-
mentation masks for each object. It extends the faster R-CNN
algorithm by adding a parallel branch for predicting the object
mask to an existing branch for object recognition. A two-stage
algorithm often has higher accuracy, but there is a problem
that the model structure is complex and the detection speed is
slow. A one-stage algorithm can improve detection speed and
higher real-time due to simplifying screening and optimization
of the predictive box. The current object detection algorithm
is developed for mobile and lightweight development, so the
lightweight one-stage object detection algorithm is a hot trend
of current research. Liu et al. [18] proposed a method of detecting
objects in images with a single neural network in 2016 named
SSD, that is, a one-stage object detection algorithm. The SSD
algorithm is simple compared to the network that needs to
generate candidate regions because it eliminates the calculation
of feature resampling and generating a large number of candidate
regions, is easy to train, and can be directly integrated into other
systems. This algorithm achieved 74.3% of the mAP on the
VOC2007 test dataset. The research on an anchor is only an
important direction of object detection, which is mainly divided
into anchor-free and anchor-based. The earliest anchor-based
theory from the faster R-CNN refers to the designation of a set
of anchor boxes before training and then selection according to
the size of the object by clustering. Lin et al. [19] proposed the
RetinaNet in 2017. Its design focal loss can effectively solve the
problem of imbalance between positive and negative samples
caused by the anchor-based algorithm. In fact, most objects are
irregular, so it is quite complicated to design an anchor manually
in advance, and a large number of anchors will lead to the
problem of sample imbalance. Therefore, the algorithm based
on anchor-free appears. Law et al. [20] proposed the CornerNet
in 2018. It no longer uses the preset anchor, but to determine the
object through top-left and bottom-right points, at the same time,
the author also proposed a corner pooling. CornerNet reaches
42.2% of AP on the MSCOCO dataset, but the detection speed
is low. The advantage of an anchor-free algorithm is that its
greater and more flexible solution space and the accuracy of the
object box is higher theoretically. However, these algorithms
can only generate one object box for each key point. When the
object coincidence degree in the graph is high, there will be
missed detection. YOLO series was originally published in 2016.
YOLOv1 [21] is a typical anchor-free algorithm and the earliest
one-stage object detection algorithm, with a very high detection
speed. YOLOv2 [22] uses anchor boxes and the K-means algo-
rithm for clustering. YOLOv3 algorithm [23] was proposed by
Redmon and Farhadi in 2018. It used the DarkNet-53 network
structure. Integrated the idea of the FPN algorithm, it predicted
three different scales of boxes. Similarly, integrated multilayer
feature information solved the problem of poor results of a
one-stage object detection algorithm in small object detec-
tion. YOLOv4 [24] adds SPP, squeeze-and-excitation (SE), soft
NMS, DIoU NMS, etc., based on YOLOv3, and still uses
YOLOv3’s head section. But Yolov4’s Backbone is even more
huge, which does not meet lightweight and rapid develop-
ment trends to a certain extent. To detect early fire smoke
quickly and reduce the property loss and environmental harm
caused by fire, this article proposes BCMNct based on the
task framework of YOLOv3. As shown in Fig. 1, the net-
work mainly includes feature extraction, feature fusion, and
boundary box prediction. We have improved the feature ex-
traction and feature fusion to realize fast and accurate smoke
detection.

Fig. 1. Schematic diagram of BCMNet.

Fig. 2. Schematic diagram of the wildfire smoke detection system of the IoT
based on BCMNet.

III. MATERIALS AND METHODS

A. Wildfire Smoke Detection System of IoT Based on BCMNet

This article combines BCMNet and hardware equipment to
build an IoT system of wildfire smoke detection based on BCM-
Net. The system mainly includes the smoke data acquisition
module, smoke image processing module, and upper computer
module. Smoke images were captured by using a high-definition
pan-head camera called Hikvision DS-2DYH277I-DU, which
has 2 million pixels and a resolution of 1920 × 1080. It is
capable of shooting in both horizontal 0◦∼360◦ and vertical
0◦∼45◦ directions. Shooting parameters are set and images are
acquired continuously in the surveillance area of the camera.
Then, the collected image data is transmitted to the server
through the network for image processing and object detection.
The detection results can be viewed in real-time on the upper
computer. The schematic diagram of the system is shown in
Fig. 2.

B. Data Acquisition

The original dataset of this article consists of the following
three parts.

1) Web crawler. We search from Baidu pictures, Google
pictures, Bing pictures, and other image search engines
according to keywords (smoke, forest fire, and wildfire),
and use the crawler program to automatically download
the pictures in the search results.

2) Field shooting. We artificially ignite wildfire burning in
Zhuzhou Forest Farm, then use HikVision DS-2DYH277I-
DU to shoot related smoke images.

3) Obtained through public dataset [25]. Then, we manually
filter the original dataset to remove irrelevant images,
flame images, duplicate images, similar images, blurred
images, and low-resolution images.
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Fig. 3. BCMNet structure diagram.

Finally, we collected a total of 1206 smoke images, forming
the wildfire smoke dataset of this article. The types and quantities
of smoke in this dataset are shown in Table Ⅰ. The smoke in
column a is clear and of moderate size, which can be easily
identified by conventional detection methods. Column b shows
that the smoke object is so large that it is difficult to accurately
locate it on the map. Column c shows that the shape of the smoke
is small and the distance is far, which is difficult for human
vision to detect. Column d shows that smoke concentration is
small and the texture, color, edge, and other features are not
obvious. Column e shows that the smoke is of high concentration
and appears in yellow or even black, which is quite different
from normal smoke. To sum up, due to the problem that the
diffusion of smoke is irregular, the concentration, shape and
size are changeable in the natural environment and it is difficult
for common smoke detection methods to accurately detect the
smoke in columns b–e. Therefore, it is necessary to propose a
wildfire smoke detection algorithm to deal with the images of
smoke with irregular diffusion.

C. BCMNet for Fast Detection of Wildfire Smoke

Section III-B shows that wildfire smoke in the natural en-
vironment is easily affected by the environment, climate, and
other factors due to its irregular diffusion, resulting in different
concentrations, shapes, and sizes of the smoke. Therefore, wild-
fire smoke detection is difficult. YOLOv3 algorithm has low
accuracy and slow detection speed. Therefore, we propose a
BCMNet for fast detection of wildfire smoke, which can better
balance the accuracy and detection speed of smoke detection.
The structure of BCMNet is shown in Fig. 3. The part connected

by the black arrow is the feature extraction part, which is mainly
composed of 12 CLEMs and 4 MSDMs. The part connected
by the red arrow is the feature fusion part, and the structure is
BTFPN.

1) Feature Extraction: In the feature extraction stage, we
designed a new backbone, which is mainly composed of CLEM
and MDSM. CLEM is an efficient smoke feature extraction
structure, which can effectively increase the size of the receptive
field. MDSM can retain the detailed information of the image
during the downsampling process. Meanwhile, SE Attention was
adopted to enhance the saliency of the object area of the smoke
feature map. The parameter setting of BCMNet’s backbone is
shown in Fig. 4.

a) CLEM: In the conventional neural network [26]–[30],
the large channel dimension can increase the expression of
the feature information, but the larger the channel dimension,
the heavier the learning burden of the neural network [31],
[32]. So, the channel dimension is the key factor affecting the
performance of the network. In the overall design of CLEM,
we first mapped the input of the low-dimensional channel to the
high-dimensional channel inside CLEM to enrich the expression
of smoke characteristics. Then, in the output part of CLEM,
we compressed the high-dimensional channel to reduce the
dimension and reduce the number of parameters to ensure the
overall faster calculation speed of BCMNet.

Visualize the features after passing through the first residual
structure of YOLOv3 as shown in Fig. 5 and we can find several
features that are very similar. When the neural network further
analyzes these similar features, it will obtain a lot of redundant
information, which is actually unnecessary. Therefore, only
some of the features will be further convoluted to extract deeper
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Fig. 4. Backbone’s structure parameter settings.

information, whereas the other similar features will be directly
fused with deeper features, which can not only ensure that the
neural network has a more comprehensive understanding of the
input data but also reduce the computational burden. So, we
designed a linear feature multiplexing structure on the main road
of CLEM, and the structure of CLEM is shown in Fig. 3. We only
perform convolution operations on half of the high-dimensional
channels in CLEM to get the benchmark feature map Y, then
perform linear deep convolution operations on Y to generate

Fig. 5. Features behind the first residual structure of YOLOv3.

feature maps Y ′ of the same channel dimension, and then
multiplex the Y feature and linearly fuse with Y ′ to form the
feature graph W with a high-dimensional channel. The formula
is as follows:

Y = X ∗ f + b (1)

where X ∈ Rc×h×w is the input feature map with channel
number c, width w, and height h, ∗ is the convolution operation,
b is the bias term, f ∈ Rc×k×k×n is the convolution kernel of
this layer, and Y ∈ Rn×h×w is the benchmark feature map with
the number of channels n. Then, Y is calculated to get the new
feature graph given as

Y ′ = ϕ(Y ) + b (2)

where ϕ is the linear convolution operation and Y ′ ∈ Rn×h×w

is the input feature map with channel number n. Finally, Y and
Y ′ are merged to obtain a high-dimensional feature map W, and
the formula is as follows:

W = φ[Y, Y ′] (3)

where φ is the fusion of channel dimensions and W ∈
R2×n×h×w is the high-dimensional feature map after fusion.

Compared with the conventional neural network using con-
volution to increase the channel dimension, the linear feature
multiplexing structure can effectively improve detection speed.
Besides, the feature map generated by linear operation has higher
information relevance. It is beneficial to the supplementary
expression of smoke characteristic information. On the vice-
road, we designed a receptive field amplification module using
a zigzag hybrid cavity convolution combination. This kind of
zigzag expansion convolution uses different expansion rates,
which can effectively maintain the continuity of the smoke
characteristic information during continuous convolution, im-
prove the receptive field, and ensure the integrity of the smoke
characteristic information. Then, a cross-layer fusion of the main
road and branch road will further increase the receptive field of
CLEM. CLEM can well retain the spatial characteristics of the
smoke, and will not lose the characteristic information of the
smoke. We can intuitively deduce the size of the receptive field
amplification through the formula, and the calculation method
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for the receptive field of the nth layer is

ln = ln−1 +

(
(kn − 1) ∗

n−1∏
i=1

si

)
(4)

where ln−1 is the size of the receptive field of the (n−1)th layer,
kn is the size of the convolution kernel of the nth layer, and si
is the step size of the ith layer. It can be calculated by formula
(4) that the receptive field between the two layers increases by
((kn − 1) ∗∏n−1

i=1 si).
We use dilated convolution, and the increase in expansion rate

can be intuitively reflected by transforming the convolution ker-
nel, and then the convolution kernel in the expanded convolution
layer can be transformed into

ktrans = (r − 1) ∗ (k − 1) + k (5)

where r is the dilate rate, and k is the actual convolution kernel
of the current layer.

b) MDSM: Downsampling is one of the important opera-
tions in neural networks. It can proportionally reduce the size
of the feature map, increase the receptive field, simplify the
computational complexity of the network, and prevent overfit-
ting. Pooling is the most common type of downsampling. It can
filter the features in the receptive domain and extract the most
significant features in the area. However, pooling will cause the
network model to lose translation invariance. Meanwhile, for
smoke objects with blurred edges, multiple downsampling will
cause some information such as smoke posture and spatial posi-
tion in the image to be lost, resulting in inaccurate positioning.
On the other hand, pooling is a static operation that cannot be
learned, and it is difficult to deal with smoke detection with
complex interference factors and changeable posture. Therefore,
we proposed MDSM, which can retain the detailed information
of the image while downsampling, and its structure is shown
in Fig. 3. We split the input into three branches for different
operations. Since the deep convolution with less computation
is used, a larger convolution kernel can be used to increase the
receptive field. Therefore, in the first branch and the second
branch, the convolution kernel of 5 × 5 and 7 × 7 with strides of
2 are, respectively, used to carry out the convolution operation
to reflect the smoke characteristics more comprehensively. In
the third branch, a maximum pooling operation with strides of 2
is carried out to extract more significant smoke characteristics.
Then the outputs of the three branches are fused to further
enrich the smoke feature information. Then, a 1×1 convolution
is used to compress the channel and reduce the dimensionality.
Meanwhile, the multiscale smoke feature information extracted
from the three channels is integrated. Finally, to ensure that the
module can pay more attention to the characteristics of smoke,
SE attention [33] was adopted to enhance the saliency of the
object area of the smoke feature map, and reduce the interference
caused by redundant information such as blurring of the smoke
image. SE attention is a channel-based attention mechanism,
which can be divided into two stages: Squeeze and Excitation.

The squeezing process is as follows:
Global average pooling for the feature with an input of

w × h× C, and get a feature map of 1× 1× C with a global

receptive field. For the ith channel, there is

zi =
1

w × h

W∑
p=1

H∑
q=1

ui(p, q) (6)

where w × h represents the resolution of the original feature
map; ui(p, q) represents the element whose coordinates of the
ith channel layer is (p, q), and the total number of channels is C;
and zi is the feature mapping amount of the channel. The one-
dimensional vector z ∈ RC of 1× 1× C is obtained through
this compression process. The Excitation process is as follow:

s = σ(g(z,W )) = σ(W2δ(W1z)). (7)

First, reduce the number of channels to C/r of the original
amount through a pointwise convolution layer with weight W1,
where r is the reduction ratio. Then, enter the pointwise convo-
lution layer with weight W2 to restore the channel dimension
after ReLU (δ) activation, and, finally, use the Sigmoid function
(σ) to generate normalization channel weight s ∈ RC . The scale
is 1× 1× C. Multiply the normalized channel weight and the
corresponding channel of the original feature map to obtain the
channel attention feature map.

2) Feature Fusion: FPN [34] is the most popular feature
fusion method among current object detection algorithms. It can
represent objects of different scales and improve the accuracy
of detection. The original YOLOv3 designed a one-way fusion
method, which can simply merge the smoke features from top
to bottom and integrate the smoke features of different scales.
However, this one-way fusion method does not fully utilize
features, so we designed a BTFPN, as shown in Fig. 3. First
of all, in the upsampling part, a transposed convolution with
kernel size = 3 × 3 and strides = 2 was used instead of the
original interpolation method in YOLOv3. It has the advantages
of low information redundancy and a strong ability of mapping
features of smoke, which can ensure the consistency of original
smoke feature information. In the downsampling part, a strided
convolution with strides = 2 and kernel size = 3 × 3 was used.
The feature map is reduced by half in the spatial dimension.
Finally, the shallow visual features and deep semantic features
were bidirectionally fused in the channel dimension, which
emphasized the feature information flow between smoke feature
maps of different resolutions. The detection and positioning
accuracy of smoke objects were improved.

3) Loss Function: BCMNet’s loss function is the same
as YOLOv3. The loss function of BCMNet is divided into
three parts: the object location offset loss Lloc(l, g), the target
confidence loss Lconf(o, c), and the object classification loss
Lcla(O,C)

L(O, o, C, c, l, g) = Lconf(o, c) + Lcla(O,C) + Lloc(l, g).
(8)

The formula to calculate Lconf(o, c) is as follows:

Lconf(o, c) = −
∑

(oi ln(ĉi) + (1−oi) ln(1− ĉi)) (9)

ĉi = Sigmoid(ci) (10)

where oi =∈ {0, 1} and ĉirepresents the Sigmoid probability
that there is an object in the prediction object boundary box i.

The formula to calculate Lcla(O,C) is as follows:
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TABLE I
WILDFIRE SMOKE DATASET STATISTICS

TABLE II
HARDWARE AND SOFTWARE PARAMETERS

TABLE III
PARAMETER SETTING OF BCMNET

TABLE IV
INFLUENCE OF DIFFERENT INPUT SIZE ON BCMNET

TABLE V
COMPARISON OF MODEL EVALUATION

Lcla(O,C) = −
∑
i∈Pos

∑
i∈cla

(Oij ln(Ĉij)

+ (1−Oij) ln(1− Ĉij)) (11)

Ĉij = Sigmoid(Cij) (12)

where oij ∈ {0, 1}represents whether there is actually the jth
category of the object in the prediction object boundary box i.

The formula to calculate Lloc(l, g) is as follows:

Lloc(l, g) =
∑
i∈Pos

∑
m∈(x,y,w,h)

(l̂mi −ĝmi )2 (13)

where l̂ represents the coordinate offset of the prediction rectan-
gular box. ĝrepresents the coordinate offset between the match-
ing ground true box and the default box.

IV. EXPERIMENTAL ANALYSIS

A. Experimental Environment

To verify the performance of BCMNET proposed in this
article, all experiments in this article are run in the same hard-
ware and software environment. The specific environmental
parameters are shown in Table Ⅱ.

In this article, we first shuffle the dataset, and then use tenfold
cross-validation to train the model. For all input images, we re-
size them to 416× 416. To accelerate the convergence speed and
improve the stability of the model, an Adam optimizer was used
in this article and a cosine annealing algorithm was used to set
the learning rate. For the first 400 epochs, the maximum learning
rate was set at 1e-3 and the minimum was 1e-6. In the subsequent
training, the maximum learning rate was set at 1e-4 and the
minimum was 1e-6. We use K-means to cluster wildfire smoke
dataset labels, get the anchor of nine groups of different sizes:
(62,64), (107,96), (182,198), (273,166), (431,372), (481,247),
(667,404), (833,733), and (1817,1790). Batch normalization
layer uses Keras default hyperparameters and the momentum
is 0.99. Other training parameter settings are shown in TableⅢ.

B. Evaluation Index

In this article, the performance of the model is evaluated by
precision (P), recall (R), mAP, AR, FPS, parameter size, and
FLOPs.

We divide the test results into the following categories: pre-
cision (P) is the proportion of correct classification. Recall (R)
is the ratio of the amount of relevant information detected to the
total amount. The formula is defined as

P =
TP

TP + FP
(14)

R =
TP

TP + FN
(15)

where TP is true positive, FP is false positive, TN is true
negative, and FN is false negative.

Mean average accuracy (mAP) is a quantitative indicator
to evaluate the detection effect of multicategory objects. The
formula to calculate mAP is as follows:

mAP =

∑k
i=1 APi

k
(16)

AP =

n∑
i=1

P (i)Δr(i) (17)

where k is the class number,P (i) is the Precision at the threshold
i, and Δr(i)is the change in recall between i and i+1.
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TABLE VI
INDIVIDUAL PERFORMANCE STATISTICS FOR EACH TYPE OF SMOKE

TABLE VII
VISUAL COMPARISON OF TEST RESULTS

Average recall (AR) is an indicator of the missed detection of
the detector. The formula to calculate AR is as follows:

AR =
Recall
n

(18)

where n is the number of detected object frames.
Frames per second (FPS) is an important indicator to measure

the detection speed. The formula to calculate FPS is as follows:

FPS =
1

t
(19)

where t is the time required to process each picture frame.
Parameter size and FLOPs are indicators used to measure the

complexity of the model.

C. Performance of the BCMNet Method

To demonstrate the effectiveness of our approach, we con-
ducted a series of tracking experiments on the same dataset.
To evaluate our network model comprehensively, we figured
out the experimental results of a series of indicators such as
mAP, FPS, and AR. We discuss the performance of BCMNet in
image resolution commonly used in object detection, as shown
in Table Ⅳ. The input size of the image affects the accuracy
and speed of wildfire smoke detection. The higher the image
resolution, the accuracy of the detection will be improved, but the
detection speed will also be reduced. To compare more rigorous

Fig. 6. Comparison of miss rate under different IOU.

experiments with other methods, we set the input size of all
models to 416 × 416 in addition to Section IV-F.

First, this article compared the detection effects of two net-
work models under different IOU thresholds, as shown in Table
Ⅴ. Regarding accuracy, mAP50 and mAP75 of our model were,
respectively, 11.11% and 13.62% higher than that of YOLOv3.
The AR has increased by 5.66%. Those indicated the effec-
tiveness of BCMNET in feature extraction and feature fusion.
Regarding the detection speed, our model reached 40 FPS, which
not only met the requirement of real-time detection but was
far faster than the detection speed of YOLOv3. Moreover, the
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TABLE VIII
ABLATION EXPERIMENT RESULTS

Fig. 7. PR curve at IoU threshold = 0.5.

Fig. 8. PR curve at IoU threshold = 0.75.

parameters and FLOPs of BCMNet were only 37% and 35%
of those of YOLOv3. This is because CLEM adopts the linear
feature multiplexing structure and reasonable channel design
strategy, which has fewer parameters.

Then, this article compared the miss rate of BCMNet with
YOLOv3. The histogram of the smoke detection loss rate of the
two models is shown in Fig. 6. Under the two thresholds, our loss
rates are both lower. The PR curves of the two network models
on the wildfire smoke dataset are shown in Figs. 7 and 8. It can
be seen that BCMNet performs better.

We separated the different types of smoke in the test set
for statistics, then calculated mAP for each case, and finally,
compared the results with YOLOv3, as shown in Table VI. To
analyze BCMNet more intuitively, we visualize the detection
results of YOLOv3 and the network model designed by us. As
shown in Table Ⅶ, the smoke frame, category and confidence
level are displayed on the detection result graph.

In group a, the smoke objects are clear and of moderate size.
Both models perform very well. Compared with YOLOv3’s

confidence of 96%, our methods all achieved 100%. It can be
seen that the positioning of BCMNet is more accurate than that
of YOLOv3.

The smoke object in the image of group b is huge and it is
difficult to locate it. Compared to YOLOv3, BCMNet is not
only more accurate in positioning, but also has a 25% increase
in confidence. This is because CLEM has a larger receptive field
and can better retain the spatial characteristics of large object
smoke.

In group c, the smoke object is small and far away. Our method
can effectively monitor small-scale smoke objects. On the one
hand, this is because of the strong feature extraction capability
of CLEM. On the other hand, we adopted MDSM, which will
not lose smoke information in the continuous process of down-
sampling and can effectively retain the salient features of smoke
objects of different scales. Therefore, for small object smoke,
BCMNet’s mAP is 33.73% higher than YOLOv3. In group d,
the concentration of smoke objects was low, and the shallow
visual characteristics were not obvious. YOLOv3 cannot detect
it, whereas the confidence of our method reached 100%. At
the same time, BCMNet increases mAP by 19.81%. This is
because BTFPN combines the shallow visual features and deep
semantic features of smoke to enhance the significance of smoke
features.

In group e, the smoke concentration was high, and the
color was yellow or even black, which was different from the
conventional gray-white smoke. Although all the methods can
detect the smoke object, our method is more accurate and has
higher confidence. This not only reflects the excellent feature
extraction ability of BCMNet but also shows its powerful gen-
eralization ability.

It can be seen from the five groups of experimental results that
BCMNET’s performance is very excellent, especially for small
objectives and objects with no obvious characteristics.

D. Ablation Experiment

To verify the effectiveness of the method proposed in
this article, we conducted verification experiments on each
innovation point in the framework of YOLOv3 and conducted
ablation experiments of BCMNet.

The settings and results of the ablation experiment are shown
in TableⅦI. Based on BCMNet, we used control variables to re-
move CLEM, MDSM, and BTFPN one by one, and replace them
with Res_block (residual block), DarknetConv2D_BN_Leaky
(followed by Conv2D, batch normalization, and leaky ReLU
operations), and YOLO_FPN (FPN structure in YOLOv3) with
corresponding functions in YOLOv3. Among them, the first
group is BCMNet, and the eighth group is YOLOv3.
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TABLE IX
COMPARISON OF DETECTION EFFECTS OF BCMNET MODEL AND OTHER NETWORKS

The comparison between group 7 and group 8 shows that the
BTFPN structure can improve the index mAP of smoke detection
while it increased the amount of model calculation to a small
extent and reduced 1 FPS. This is because of the increment
of parameters while upsampling using transposed convolution
instead of interpolation. The comparison between group 6 and
group 8 shows that MDSM is effective in improving both mAP
and FPS. This is because MDSM can retain smoke details
during the downsampling process, and on the other hand, the
use of depthwise convolution reduced parameter calculation. A
comparison of group 5 and group 8 shows that CLEM increased
the indexes mAP50 and mAP75 by 7.07% and 12.73%, and FPS
increased by 14, which proves that the channel design strategy of
CLEM and multiplexing of linear characteristics helps improve
real-time performance while getting a lightweight model. It
can keep the integrity of smoke information while expanding
the receptive field. The comparison results of the eight-group
experiments can fully prove that CLEM, MDSM, and BTFPN
have better extraction capabilities for smoke characteristics,
and BCMNet has higher detection speed and accuracy than
YOLOv3.

E. Comparison Experiment of Different Detection Models

To verify the performance of the BCMNet model, we
compared it with some classic or advanced object detection
methods under the same dataset. The result is shown in Table IX.

In the same input size, BCMNet is better than other algorithms
in the YOLO series. Compared to YOLOv3, YOLOv4, YOLOF,
and YOLOR, BCMNet is better in detection accuracy and detec-
tion speed. YOLOv5-s and YOLOX-s have very fast detection
speeds, but the mAP is 14.88% and 14.35% lower than BCMNet,
respectively. Although the mAP of YOLOv5-x and YOLOX-x
is higher than the BCMNet, their detection speed is very low,
which is 20FPS and 24FPS lower than BCMNet. Compared with
other classical target detection algorithms (faster R-CNN, SSD
series, RetinaNet, and Cornernet-Lite), the detection speed and
accuracy of BCMNet are also better.

Therefore, through the experimental comparison, it can be
concluded that BCMNet can not only meet the requirements of

Fig. 9. Experimental comparison. Class A refers to the situation where the
smoke density and size are moderate. Class B refers to the situation where the
smoke density is small and the characteristics are not obvious. Class C refers to
the situation where the smoke object is small and difficult to find.

real-time testing but also have a very high accuracy rate for wild-
fire smoke detection. BCMNet is an excellent wildfire detection
algorithm that can balance detection speed and accuracy.

F. Testing of Real Applications

We conducted a simulation experiment of wildfire combustion
at Zhuzhou Forest Farm. To ensure the integrity of image infor-
mation, we used the original resolution (1920 × 1080) taken
by the Hikvision DS-2DYH277I-DU camera as the input size.
In the case of high resolution, the detection speed of BCMNet
can reach 28FPS to meet real-time detection requirements. In
addition, we simulated 30 times of smoke in three states and
compared the number of smoke recognition using YOLOv3 and
BCMNet. As can be seen from Fig. 9, BCMNet has a higher
recognition rate for wildfire smoke and provides more effective
ideas for wildfire prevention.

We show some smoke images that are difficult to detect, as
shown in Fig. 10. Fig. 10(a) shows the situation where the smoke
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Fig. 10. Real applications. (a) Low concentration smoke image. (b) Remote
smoke image. (c) Small object smoke image.

area is large but the concentration is small, and the method
proposed in this article can effectively detect it. Fig. 10(b) shows
the case where the smoke object is small, and our method can
also detect small objects effectively. In Fig. 10(c), the smoke
object is small and its concentration is low, and BCMNet can
detect it well. It fully demonstrates the excellence of BCMNet
for smoke detection tasks.

V. CONCLUSION

To improve the effectiveness and the speed of detection of
smoke, a BCMNet for fast detection of wildfire smoke is pro-
posed in this article. Compared with the YOLOv3, the improve-
ments of the method proposed in this article are as follows.

1) BCMNet has reached 40 FPS on NVIDIA Geforce RTX
2080. This is because the linear feature multiplexing struc-
ture and reasonable channel strategy are widely used in
CLEM.

2) On the self-built smoke dataset, the proposed BCMNet
achieves 85.50% mAP50, 79.98% mAP75, and 46.16%
AR. Visualization of test results and comparison of ex-
periments show that BCMNet can effectively improve the
accuracy of smoke detection. This is because CLEM has
a larger receptive field. Meanwhile, MDSM can ensure
the integrity of smoke feature information during the
downsampling operation. BTFPN can bidirectionally fuse
visual features of the shallow layer and semantic features
of the deep layer on the corresponding scale. The feature
information flow between smoke feature maps of different
resolutions is emphasized.

3) This article designs a wildfire smoke detection system
based on BCMNet, and it is used in practice. It can detect
smoke and predict the occurrence of wildfire in time
and accurately, which is of great significance to protect
ecological resources and reduce losses.

Although BCMNet has a good performance in smoke detec-
tion, it still has a high false detection rate for smoke-like objects,
such as lens flares and water droplets, on the lens. In the next step,
we will in-depth study the difference between the characteristics
of smoke and these interference objects, and further, improve the
accuracy while ensuring a faster detection speed. At the same
time, our research will not be limited to the detection of visible
light images, and we will further explore some other types of
smoke images for wildfire detection, such as infrared images
and hyperspectral images.
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segmentation in forest fire detection system,” Inf. Technol. Control, vol. 38,
no. 3, pp. 237–244, 2009.

[3] S. Wang, Y. He, H. Yang, K. Wang, and J. Wang, “Video smoke detection
using shape, color, and dynamic features,” J. Intell. Fuzzy Syst., vol. 33,
no. 1, pp. 305–313, 2017.

[4] R. I. Zen, M. R. Widyanto, G. Kiswanto, G. Dharsono, and Y. S. Nugroho,
“Dangerous smoke classification using mathematical model of meaning,”
Procedia Eng., vol. 62, pp. 963–971, 2013.

[5] J. E. Siegel, S. Kumar, and S. E. Sarma, “The future internet of things:
Secure, efficient, and model-based,” IEEE Internet Things J., vol. 5, no. 4,
pp. 2386–2398, Apr. 2017.

[6] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella, “IoT:
Internet of threats? A survey of practical security vulnerabilities in real IoT
devices,” IEEE Internet Things J., vol. 6, no. 5, pp. 8182–8201, May 2019.

[7] Z. Yin, B. Wan, F. Yuan, X. Xia, and J. Shi, “A deep normalization and
convolutional neural network for image smoke detection,” IEEE Access,
vol. 5, pp. 18429–18438, 2017.

[8] Y. Cao, F. Yang Y., Q. Tang, and X. Lu, “An attention enhanced bidirec-
tional LSTM for early forest fire smoke recognition,” IEEE Access, vol. 7,
pp. 154732–154742, 2019.

[9] X. Qiang, G. Zhou, A. Chen, X. Zhang, and W. Zhang, “Forest fire smoke
detection under complex backgrounds using TRPCA and TSVB,” Int. J.
Wildland Fire, vol. 30, no. 5, pp. 329–350, 2021.

[10] F. Shi, H. Qian, W. Chen, M. Huang, and Z. Wan, “A fire monitoring and
alarm system based on YOLOv3 with OHEM,” in Proc. IEEE 39th Chin.
Control Conf., 2020, pp. 7322–7327.

[11] M. M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S. M. Hu, “Global
contrast based salient region detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 3, pp. 569–582, Mar. 2014.

[12] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[13] X. Zhou, C. Yang, and W. Yu, “Moving object detection by detecting
contiguous outliers in the low-rank representation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 3, pp. 597–610, Mar. 2013.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:43:05 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE SYSTEMS JOURNAL

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2014. pp. 580–587.

[15] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 1440–1448.

[16] T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks detection for object recognition,” in Proc.
IEEE Conf. Comput. Vis. Pattern, 2017, pp. 2117–2125.

[17] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis., 2017, pp. 2961–2969.

[18] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis., 2016, pp. 21–37.

[19] Y. Wang, C. Wang, H. Zhang, Y. Dong, and S. Wei, “Automatic ship
detection based on RetinaNet using multi-resolution Gaofen-3 imagery,”
Remote Sens., vol. 11, no. 5, 2019, Art. no. 531.

[20] H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,”
in Proc. Eur. Conf. Comput. Vis., 2018, pp. 734–750.

[21] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 779–788.

[22] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 7263–7271.

[23] J. Redmon and A. Farhadi, “ YoLov3: An incremental improvement,” 2018,
arXiv.1804.02767.

[24] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YoLov4: Optimal speed
and accuracy of object detection,” 2020, arXiv.2004.10934.

[25] Q. X. Zhang, G. H. Lin, Y. M. Zhang, G. Xu, and J. J. Wang, “Wildland
forest fire smoke detection based on faster R-CNN using synthetic smoke
images,” Procedia Eng., vol. 211, pp. 441–446, 2018.

[26] G. Zhou, W. Zhang, A. Chen, M. He, and X. Ma, “Rapid detection of
rice disease based on FCM-KM and faster R-CNN fusion,” IEEE Access,
vol. 7, pp. 143190–143206, 2019.

[27] W. Zhang, J. Hu, G. Zhou, and M. He, “Detection of apple defects based on
the FCM-NPGA and a multivariate image analysis,” IEEE Access, vol. 8,
pp. 38833–38845, 2020.

[28] X. Chen, G. Zhou, A. Chen, J. Yi, W. Zhang, and Y. Hu, “Identification
of tomato leaf diseases based on combination of ABCK-BWTR and B-
ARNet,” Comput. Electron. Agriculture, vol. 178, 2020, Art. no. 105730.

[29] A. Tan, G. Zhou, and M. He, “Surface defect identification of citrus based
on KF-2D-Renyi and ABC-SVM,” Multimedia Tools Appl., vol. 80, no. 6,
pp. 9109–9136, 2021.

[30] W. Zhang et al., “A method for classifying citrus surface defects based on
machine vision,” J. Food Meas. Characterization, vol. 15, pp. 2877–2888,
2021.

[31] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet: More
features from cheap operations,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 1580–1589.

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “Mo-
bileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[33] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132–7141.

[34] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 2117–2125.

[35] H. Law, Y. Teng, O. Russakovsky, and J. Deng, “Cornernet-lite: Efficient
keypoint based object detection,” 2019, arXiv:1904.08900.

[36] Q. Chen, Y. Wang, T. Yang, X. Zhang, J. Cheng, and J. Sun, “You only
look one-level feature,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2021, pp. 13039–13048.

[37] C. Y. Wang, I. H. Yeh, and H. Y. M. Liao, “You only learn one represen-
tation: Unified network for multiple tasks,” 2021, arXiv:2105.04206.

[38] G. Jocher, 2021. [Online]. Available: https://github.com/ultralytics/yolov5
[39] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding Yolo series

in 2021,” 2021, arXiv:2107.08430.

Jiayong Li received the B.Sc. degree in computer
science and technology (major) from Shandong Agri-
cultural University, Tai’an, China, in 2018. He is cur-
rently working toward the M.Sc. degree in computer
application technology with Central South University
of Forestry and Technology, Changsha, China.

His research interests include deep learning and
graphics and image processing.

Guoxiong Zhou received the Ph.D. degree in control
science and engineering from Central South Univer-
sity, Changsha, China, in 2010.

He is currently an Associate Professor with Central
South University of Forestry and Technology, Chang-
sha, China. His research interests include forest fire
prevention and robotics.

Aibin Chen received the Ph.D. degree in computer
application technology from Central South Univer-
sity, Changsha, China, in 2010.

He is currently a Professor with Central South
University of Forestry and Technology, Changsha,
China. His main research interests include artificial
intelligence and forest information engineering.

Chao Lu received the B.Sc. degree in software en-
gineering (major) from Anhui Normal University,
Wuhu, China, in 2019. He is currently working to-
ward the M.Sc. degree in software engineering with
Central South University of Forestry and Technology,
Changsha, China.

His main research interests include deep learning
and graphics and image processing.

Liujun Li received the B.Sc. degree in automa-
tion from Hunan Agricultural University, Changsha,
China, in 2002, and the M.Sc. degree in materials
engineering and the Ph.D. degree in mechanical en-
gineering from Central South University, Changsha,
China, in 2005 and 2012, respectively.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:43:05 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/ultralytics/yolov5

	BCMNet: Cross-Layer Extraction Structure and Multiscale Downsampling Network with Bidirectional Transpose FPN for Fast Detection of Wildfire Smoke
	Recommended Citation

	BCMNet: Cross-Layer Extraction Structure and Multiscale Downsampling Network With Bidirectional Transpose FPN for Fast Detection of Wildfire Smoke

