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A B S T R A C T   

Chloride-induced steel corrosion seriously affects the durability of reinforced concrete structures. Rubber con-
crete, an environmentally friendly construction material in which waste rubber is recycled as a concrete 
component, has demonstrated superior resistance to chloride-induced steel corrosion and the subsequent con-
crete deterioration. However, quantitative evaluation of the degree of deterioration in rubber concrete based on 
nondestructive detection is challenging due to the complexity of the material. In this paper, reinforced concrete 
specimens with rubber contents of 0, 10% and 20% are subjected to the electrochemically accelerated corrosion 
experiments and monitored by ultrasonic testing. Six machine learning models are trained by the data derived 
from the ultrasonic testing to predict the corrosion degree based on ultrasonic traits. The results show that the 
machine learning models except for the linear model can accurately and robustly predict the corrosion degree 
under the interference of outlier amplitude and size of training set. Furthermore, the corrosion-induced deteri-
oration process is computed by mesoscale simulation based on the corrosion degree, so that the damages of 
specimens with different rubber contents are quantitatively evaluated. The experimental and computational 
studies prove that the addition of rubber into concrete effectively retards the corrosion of steel and the deteri-
oration of concrete.   

1. Introduction 

The durability of reinforced concrete structures is a major concern 
for the designers and operators of civil infrastructure. When exposed to 
marine environment, the reinforced concrete structures become 
vulnerable due to chloride-induced steel corrosion [1–3]. Corrosion 
occurred on the surface of the steel rebar expands over time and further 
results in deterioration and cracking of the concrete cover. The corre-
sponding maintenance process is time-consuming and costly. For 
instance, in 2014, the total cost of corrosion in China was estimated to be 
CNY 2127.8 billion. Thus, it is an urgent problem to resist chloride 
diffusion and prevent the steel corrosion and its resultant deterioration 
in infrastructure exposed to marine environment. 

As an environmentally friendly construction material developed 
from recycling of waste rubber, rubber concrete (RC) has been shown to 
be corrosion-resistant [4]. The mechanisms of this merit may include 

improved chloride penetration resistance (because the chloride ions can 
be confined in rubber chains during their penetration process [5]), 
increased electrical resistance of concrete, smaller expansion resulted 
from a specific extent of corrosion and improved cracking resistance of 
concrete [6,7]. In the past few decades, researchers mainly focused on 
the properties of chloride ions transportation in rubber concrete [8,9]. 
The corrosion inhibition mechanisms were also revealed by means of 
experiments. However, steel corrosion in reinforced concrete is nor-
mally concealed, and in most cases, it could lead to cracking, spalling 
and delamination of the concrete cover. For the prestressed concrete 
structures, the corrosion of the steel wires may even lead to brittle 
failure and possible sudden collapse. To secure marine infrastructure 
and promote the application of rubber concrete in marine environment, 
it is of great significance to monitor the corrosion degree of rebar (so to 
generate warning before catastrophic cumulation of corrosion) and 
quantitatively evaluate the deterioration degree of concrete considering 
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the incorporation of rubber. 
There are three main methods for estimating and predicting the 

extent of steel corrosion in concrete structures, namely, empirical 
methods, reaction control methods, and electrochemical methods. The 
empirical method assumes a direct relationship between corrosion rate 
and basic structural parameters such as water-to-cement ratio, chloride 
content, temperature, and relative humidity [10–12]. The reaction 
control method (quasi-empirical) considers the change of physical 
monitoring indicators (e.g., electrical resistivity, oxygen diffusion 
resistance, and electromagnetic properties) before and after corrosion of 
reinforced concrete [13,14]. The above two methods are relatively 
simple and convenient for engineers to operate, but the complicated 
relationship between physical monitoring indicators and corrosion de-
gree cannot be represented accurately. The electrochemical methods can 
reflect the corrosion mechanism as comprehensively as possible [15,16], 
but not as convenient as the other two types of methods when used in 
practice. Nondestructive testing methods, including measurements of 
physico-mechanical and electrochemical parameters, have been widely 
adopted to monitor the corrosion state of reinforcement in concrete in 
laboratories and field [17–20]. Ultrasonic testing is a well-developed 
nondestructive testing method, with strong penetrating ability to me-
dium. To detect the subtle changes of concrete structures that cannot be 
recognized by direct waves, advanced methods (e.g., coda wave) could 
be adopted to accurately monitor the behaviors of concrete [21,22]. A 
critical issue of nondestructive tests is that they normally test a single 
variable which is tied (linearly or non-linearly) to the target perfor-
mance, which is often arbitrary, unreliable, or case-dependent (when 
conventional data interpretation methods are used). Therefore, it is 
highly desirable to establish advanced data-processing methods and 
quantitative evaluation methods based on nondestructive tests in 
consideration of convenience and reliability for monitoring of 
corrosion-induced deterioration of concrete. 

Machine learning (ML) algorithms, supported by a large amount of 
data, can accurately express the nonlinear relationship between vari-
ables. ML has been successfully applied to the evaluation and prediction 
of concrete properties. Zhang et al. [23] and Cook et al. [24] predicted 
mechanical properties (e.g., compressive strength) of hydraulic concrete 
by ML algorithms, and the influences of mix proportion and curing 
conditions on mechanical properties are analyzed and validated quan-
titatively. Cai et al. [25] adopted ensemble ML to predict the surface 
chloride concentration of concrete in marine environment. ML also 

shows good applicability in solving problems of image identification, 
construction quality monitoring of dam [26], construction productivity 
evaluation [27] and so on. In the field of nondestructive testing 
(nondestructive testing, NDT), Zhang, et al. [28] coupled continuous 
wavelet transform and machine learning to detect the onset of ultrasonic 
signals obtained from the test of concrete piles. The favorable perfor-
mance of these methods shows the effectiveness and feasibility of 
interpreting data from NDTs with machine learning to improve their 
reliability. 

When it comes to post-corrosion deterioration of reinforced concrete, 
repeatable numerical simulations that can supplement the results of 
experiments have become an important class of methodologies [29,30]. 
Gebreyouhannes and Maekawa [31] simulated the corrosion profile 
considering the formation and migration of corrosion products. Kuntal 
et al. [32] integrated the technique of Model Predictive Control (MPC) 
with Rigid-Body-Spring Models (RBSM) for the simulation of 
corrosion-induced cracking in concrete. However, during the process of 
macro-scale simulation, the concrete was often assumed as a homoge-
neous continuous medium which deviate from the heterogeneous nature 
of concrete. Mesoscopic simulation is therefore desired for more accu-
rate evaluations of concrete deterioration induced by steel corrosion. 

At present, mesoscale simulations of concrete can be conducted 
following either continuous medium or discontinuous medium methods. 
Based on various damage constitutions, the continuum simulation 
methods assume concrete to be a multiphase composite material 
composed of aggregates, mortar, interfacial transition zone (ITZ) and 
gaps. The constitutions mesoscopic model can be established in the 
following two manners: (1) The accurate realistic mesoscopic model, 
constructed based on XCT scanning [33,34], which is difficult to be 
widely used due to its high cost; and (2) The simplified high-efficiency 
mesoscopic models, constructed based on various simplified aggregate 
delivery algorithms [35,36]. In the simplified models, the aggregate is 
spherical, ellipsoidal or polyhedral, which cannot reflect the true shape 
of aggregate and its refinement degree is not high. The discontinuous 
medium methods assume that the concrete mortar and aggregate are 
composed of several rigid spherical particles with different sizes. This 
method is mainly used to simulate the flow, compaction, aggregate 
crushing and irregular movement of fresh concrete [37,38]. A large 
number of particles are needed to preset before the discontinuous 
mesoscale simulation of concrete, which is inefficient in calculation and 
difficult in parameter calibration. It is a great challenge to ensure the 

Fig. 1. Methodology framework of this study.  
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solution accuracy and calculation efficiency simultaneously. 
The literature review has revealed the scientific significance and 

engineering value for developing a quantitative method to characterize 
the corrosion of steel bars and evaluate the deterioration of rubber 
concrete, which has high accuracy and can be used for on-site nonde-
structive testing of reinforced concrete structure. In this paper, concrete 
specimens with various rubber contents, reinforced by steel rebar, are 
prepared and subjected to electrochemically accelerated corrosion. Ul-
trasonic technology is employed to monitor the steel corrosion and po-
tential deterioration of concrete and extract degradation indicators, 
since it has been proven to be capable of evaluating concrete damage 
and cracks caused by corrosion of steel bars [39–42]. The ultrasonic 
parameters (e.g., amplitude and velocity), concrete mixture parameters 
(e.g., rubber content), and steel corrosion parameters (e.g., corrosion 
current and mass loss) are taken from experimental measurements to 
form a database, based on which machine learning prediction models for 
the corrosion degree of steel bar are trained and validated. The perfor-
mances of six machine learning models are compared from the view of 
accuracy and robustness to select the favorable corrosion degree pre-
diction model. Finally, to investigate the deterioration mechanism of 
rubber concrete, a micro-element volume fraction method, which can 
describe the geometric characteristics of real aggregate, is informed by 
the degree of steel corrosion (predicted by the machine learning model) 
and used for the refinement simulation of steel corrosion induced con-
crete deterioration at the mesoscopic scale. The overall methodology 
framework of this study and how various components are integrated are 
illustrated in Fig. 1. 

2. Methodology 

2.1. Experiments and data collection 

2.1.1. Specimen preparation 
Table 1 lists the mixture proportions of plain concrete (PC) and 

rubber concrete (RC). RC10 and RC20 refer to the rubber concrete with 
rubber replacing 10% and 20% of sand volume. Ordinary portland 
cement which meets the requirements of the ASTM C150 Type I was 
used as the cementitious material in the production of PC and RC. The 
fineness modulus of the selected sand is 2.6. In addition, Table 2 illus-
trates components of rubber particles adopted in the experiments. The 
apparent density of the rubber is 1050 kg/m3 and the diameter of over 
80% rubber particles is in the range of 1–2 mm as shown in Fig. 2. The 
gradation of coarse aggregate is given in Table 3. In addition, Q235 
ribbed steel bars with a diameter of 14 mm are set in the center of prism 
specimens poured by PC and RC. Mechanical vibration is selected for 
forming specimens with the size of 100 × 100 × 400 mm. These spec-
imens are demolded after 24 h, and then cured for 28 days at controlled 
temperature 20 ± 5 ◦C and relative humidity 95%. 

2.1.2. Data collection techniques 
The electrically accelerated corrosion test is a method to simulate the 

corrosion of steel bars under natural conditions, which can greatly 

accelerate the corrosion rate [43,44]. After the curing of specimens, the 
electrically accelerated corrosion test is carried out and the circuit of this 
test is connected as shown in Fig. 3. In this case, the steel bar plays the 
role of the anode and the copper rod is used as the cathode. Part of the 
specimen (20 mm below the bare steel bars) is infiltrated into 3.5% NaCl 
solution, which is necessary to ensure the de-passivation of steel bar. The 
accelerated corrosion process is realized by direct-current stabilized 
power supply with the adjustment range of input 0 ~ 30V and 0 ~ 5A. 
The selected voltage for each specimen is a constant at 30 V to provide 
the same corrosion environment to explain the influence of rubber 
content on corrosion resistance. In addition, the total power-on duration 
is 450 h and the current is monitored in real time. 

As an NDT, ultrasonic testing has been used to investigate the 

Table 1 
Mix proportions of RC (kg/m3).  

NO. Cement Rubber Sand Coarse aggregate Water 

PC 337 0 506 607 135 
RC10 37 455 
RC20 74 405  

Table 2 
Components of rubber (%).  

Rubber hydrocarbon Carbon black Acetone extract Isoprene Ash Water Fiber Metal Others 

45.2 25.8 14.2 12.1 0.9 0.8 0.5 0.08 0.42  

Fig. 2. Morphology and particle size distribution of rubber.  

Table 3 
Gradation of the coarse aggregate.  

Sieve size (mm) Sieve residue (%) Accumulative sieve residue (%) 

26.5 0.51 0.51 
19 28.97 29.48 
16 22.86 52.34 
9.5 34.5 86.84 
4.75 12.24 99.08 
<4.75 0.46 99.54  

Fig. 3. Schematic of electrochemical accelerated experiment.  
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structural properties of various materials in real time in engineering 
[45–48]. Ultrasonic transmission method was used to detect the corro-
sion degree of rebar in the specimens during the process of accelerated 
corrosion. The measuring points, located in the middle of prism spec-
imen, were arranged at equal intervals of 80 mm as shown in Fig. 4 (a). 
Phenyl salicylate was adopted as the coupling agent to adhere the 
transducers to the measuring points on the surface of specimen. The 

transmission voltage and frequency of non-metallic ultrasonic detector, 
shown in Fig. 4 (b), were adjusted to 500 V and 50 kHz, respectively. The 
amplitude and velocity of ultrasonic were obtained at multiple time 
points during the range of 0–450 h. 

2.1.3. Data processing 
Continuous Wavelet Transform (CWT) can produce a time-frequency 

representation with high resolution. For a given mother wavelet ψ , the 
CWT of x(t) at scale a and time shift b is given by 

Wx(a, b)=
1̅
̅̅
a

√

∫ ∞

− ∞
x(t)ψ*

(
t − b

a

)

dt (1)  

where, the * is the complex conjugate, Wx(a, b) is the wavelet coefficient 
representing of x(t). Then the frequency of sampled ultrasonic signals 
can be obtained according to the wavelet coefficient. 

Mass loss can be used to represent the corrosion degree of steel bar at 
the laboratory level. According to Faraday’s law, the mass loss of steel 
corrosion could be estimated by the weight of the steel oxidized by the 
electric charge of steel bar by: 

Mloss =TC ×
EW

F
=

∫ te

ts
i(t)dt ×

EW

F
(2)  

where Mloss refers to the total mass loss for the steel bar (g), TC refers to 
the total quantity of electric charge, which could be expressed as an 
integral form of current i(t) versus time (from start time ti to end timete). 
The equivalent weight EW of carbon steel is 27.93 g/mol and the Faraday 

Fig. 4. The diagram of ultrasonic testing. (a) Arrangement of measuring points 
(b) Non-metallic ultrasonic detector. 

Table 4 
The parameters of different prediction models.  

Model Parameters Value Model Estimators 

Bayesian 
Ridge 

n_iter 1000 Voting/ 
Bagging 

Meta-estimator1: 
Random Forest-1 

α1, α2  10–6 Meta-estimator2: 
Random Forest-2 

λ1, λ2  10–6 Meta-estimator3: 
K Nearest 
Neighbors-1 

normalize True Meta-estimator4: 
K Nearest 
Neighbors-2 

verbose True Meta-estimator5: 
Gaussian 
Processes 

K Nearest 
Neighbors 

n_neighbors 5 Stacking Meta-estimator1: 
Random Forest-1 

leaf_size 30 Meta-estimator2: 
Random Forest-2 

metric minkowski Meta-estimator3: 
K Nearest 
Neighbors-1 

Random 
Forest 

n_estimators 100 Meta-estimator4: 
K Nearest 
Neighbors-2 

min_samples_split 2 Meta-estimator5: 
Gaussian 
Processes 

max_features auto Final-estimator: 
Gradient Boosting  

Table 5 
The description of collected data.  

Data type Variable name Unit Minimum Maximum Average 

Input Amplitude dB 37.96 109.3 67.69 
Velocity km/s 0.80 4.63 2.81 
Rubber content % 0 20 – 

Output Mass loss g 0 39.26 13.09  

Fig. 5. Chloride-induced uniform corrosion expansion.  
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constant F adopted in this study is 96494 A ⋅ s/mol. It is assumed that the 
current efficiency is 100%, which may be slightly different to the effi-
ciency of actual situation, which is lower than 100% initial stage and 
higher than 100% in the later stage of accelerated corrosion experiment 
[15]. 

2.2. Machine learning models 

2.2.1. Models and parameters 
This section briefly introduces six machine learning models, which 

have been implemented in this study, including three standalone models 
and three ensemble models. These algorithms can effectively use the 
large number of data collected in Section 2.1. (1) Bayesian ridge (BR) 
regression is a linear model. The predicted value is considered as a linear 
combination of input variables. To avoid multicollinearity of least 
squares regression, a penalty coefficient is imposed in the ridge regres-
sion. (2) K nearest neighbor (KNN) assumes that training data samples 
are represented by N-dimensional attributes, and training samples can 
be represented as a series of point sets in N-dimensional space [27]. The 
K nearest neighbor is measured by the Euclidean Distance or other 
distance of the spatial sample points. (3) Random forest: the core idea of 
random forest is to combine multiple weak regression trees into a forest 
by using certain rules, and realize cumulative effect by integrating 
multiple evaluators. In this way, the accuracy of tree models can be 
improved and the phenomenon of over-fitting can be effectively avoided 
[28]. (4) The other three methods, voting, bagging and stacking, are 
typical strategies of ensemble machine learning. The target of ensemble 
methods is to combine several meta estimators constructed by a given 
learning algorithm in order to improve the generalization ability or 
robustness over a single estimator. The above regression model is 
established by coding based on Scikit-learn, which is a free machine 
learning library for the Python programming language [49]. Further 
details and the optimum parameters of various machine learning models 
are provided in Table 4 and Supplementary Information 1. 

A total of 837 structured data, which can be properly processed by 
machine learning method, were collected from PC and RC specimens by 
the above experiment methods as shown in Supplementary Information 
2. The machine learning models is effective and suitable when dealing 
with regression of structured data, which has been proved by the 
research of our team (see reference [23,27–29]). Thus, 80% of the raw 
data is selected randomly to train the machine learning models and the 
rest is selected as the testing set to verify the accuracy of the models. The 
input and output variables of machine learning models are listed in 
Table 5. The features of each measured ultrasonic (Amplitude and Ve-
locity) corresponds to a calculated mass loss. It is worth noting that all 

Fig. 6. 3D scanning and selected aggregates.  

Fig. 7. Gradation curve of aggregates.  

Table 6 
The description of collected data.  

Rubber content 
(%) 

Corrosion degree ρ 
(%)  

Corrosion expansion thickness 
(mm) 

0 13.35 0.868 
10 11.05 0.732 
20 7.57 0.511  

Table 7 
Material mechanical properties.  

Rubber content 
(%) 

Rubber mortar Aggregate Interface transition zone 

Elastic modulus 
(GPa) 

Tensile strength 
(MPa) 

Compressive strength 
(MPa) 

Elastic modulus 
(GPa) 

Initial stiffness 
(GPa/mm) 

Tensile strength 
(MPa) 

Fracture energy (N/ 
mm) 

0 40.80 3.15 43.70 50 32.64 2.80 0.0013 
10 27.80 2.58 30.50 22.24 2.30 
20 23.92 2.14 21.60 19.14 1.90  

J. Zhang et al.                                                                                                                                                                                                                                   
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the input variables vary widely, indicating that these indicators can be 
adopted to machine learning models to reflect the corrosion state in this 
study. 

2.2.2. Evaluation measures 
The prediction accuracy of machine learning models was evaluated 

according to mean absolute error (MAE), mean squared error (MSE) and 
determination coefficient (R2), these measures can be calculated by the 
following formulas: 

MAE =
1
N

∑N

i=1
|y − y′

| (3)  

MSE =
1
N

∑N

i=1
(y − y′

)
2 (4)  

R2 = 1 −

∑N

i=1
(y − y′

)
2

∑N

i=1
(y − y)2

(5)  

where y refers to the actual value, y′ represents the predicted value andy 
represents the average of the actual value. N refers to the size of testing 
set. 

Fig. 8. Generation process of irregular aggregate in rubber concrete specimen.  

Fig. 9. 3D mesoscale model of rubber concrete specimen.  
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2.3. Mesoscale simulation of corrosion-induced deterioration 

2.3.1. Expansion model of corrosion products 
Corrosion rust progression around the reinforcement in concrete can 

be represented by various models such as non-uniform corrosion model, 
quadratic semicircle model, partly uniform model and so on [50,51]. 
According to the experiment section, the steel bars (D = 14 mm) are set 
in the center of prism specimens produced by PC and RC. Therefore, in 
this paper, it is assumed that the volumetric expansion of steel bars 
caused by corrosion products is uniform as shown in Fig. 5. The total 
volume per unit length of the corrosion products Vr and the corroded 

part of the steel bar Vs can be represent as formula (6) - (9), respectively 
[52]. 

Vr =Vr1 + Vr2 (6)  

Vs =Vs1 + Vs2 (7)  

Vr1 = 2πδ0 + Vs1 (8)  

Vr2 =Vc + Vs2 (9)  

where subscript 1 and 2 represent the volume changing at the stage of 

Fig. 10. Time-frequency and frequency distribution diagrams.  

Fig. 11. Changing process of corrosion current and mass loss. (a) Corrosion current (b) Mass loss.  

J. Zhang et al.                                                                                                                                                                                                                                   
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free expansion and stress initiation, respectively. δ0 is the thickness of 
the interfacial layer between steel bar and concrete. Vc is the expansion 
volume of the surrounding concrete per unit length. The relationship 
between Vr and Vs can be described as following. 

Vr = nVs (10)  

where n = 3 is selected as the ratio of volume expansion of corrosion 
products [53]. Vs can be obtained by connecting formula (6) – (10). In 
addition, the corrosion degree ρ represent the percentage of steel mass 
loss to the original steel mass. 

ρ= Vs

πR2 × 100% (11) 

Fig. 12. Theoretical versus predicted mass loss results of ML models.  

Table 8 
Results of evaluation measures of ML models.   

R2 MAE (g) MSE (g2) 

BR 0.867 2.893 12.735 
KNN 0.970 1.256 2.880 
RF 0.971 1.221 2.820 
Voting 0.974 1.176 2.431 
Bagging 0.972 1.221 2.706 
Stacking 0.973 1.220 2.781 

*Highlighted in bold means the best performance measure of data mining model. 

Fig. 13. Feature importance of input variables.  

Fig. 14. The prediction accuracy versus interference of ML models.  
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Therefore, the expansion thickness of corrosion products at the end 
of the test can be calculated by the above formulas and the corrosion 
degree ρ measured by experiments as listed in Table 6. 

2.3.2. Constitutive model of rubber concrete 
In this study, different constitutive models are used for different 

zones. The elastic constitutive model is selected for aggregates. Concrete 
damage plasticity (CDP) model is adopted to investigate the compressive 
crushing and tensile cracking behavior of rubber mortar. The thickness 
of interface transition zone (ITZ) is 10–50 μm, which is much smaller 
than the element size. Thus, cohesive element without thickness is used 
to simulate the behavior of ITZ. Elastic modulus and strength of the ITZ 
are chosen to be approximately 80% of the mortar’s [53]. The selected 
failure criterion of cohesive element is Quadratic separation criterion as 
shown in the following formula: 
(

tn

tn0

)2

+

(
ts

ts0

)2

+

(
tt

tt0

)2

= 1 (12)  

where tn, ts, tt are the normal and shear stress of cohesive element, tn0, 
ts0, tt0 and represent the peak values of the contact stress (normal and 
shear stress). The material parameters of rubber concrete are obtained 
by the results of mechanical experiments as detailed in Table 7. 

2.3.3. Generation of real aggregate based stochastic model 
To realize the generation of mesoscale model with high detailed 

irregular aggregate in rubber concrete, three-dimensional laser scanning 
technology is adopted as shown in Fig. 6 (a). The spatial distribution of 
aggregate in concrete is discontinuous and discrete element method can 
accurately characterize the motion of discontinuous medium. In this 
study, the scanned geometric model of aggregates is transferred to the 
clumps for the generation and delivery of real-shaped irregular aggre-
gate. The generation process of irregular aggregate in rubber concrete 
model can be divided into the following four steps:  

(1) Delivering aggregate clumps into a prism space with the size of 
800mm × 400mm × 100mm according to the gradation shown in 
Fig. 7. The aggregate gradation of experiment and simulation are 
in good agreement, verifying the validity of aggregate 
distribution.  

(2) Two rigid extrusion plates and a steel bar are arranged at the 
boundaries and middle in the length direction. And then the two 
extrusion plates are controlled extruding the aggregates inward 
at a uniform speed, until the aggregate clumps move into a region 
within 100 mm, as shown in Fig. 8.  

(3) Extracting the size, position and rotation information of each 
aggregate as shown in Supplementary Information 3 and map-
ping the discrete delivered aggregates into continuous medium 
geometric model by the code developed by our team.  

(4) Finally, discretizing the geometric model is into finite element 
model with structured mesh. Assigning material parameters to 
aggregate, mortar and ITZ according to Table 7. The 3D meso-
scopic model of a rubber concrete specimen with highly detailed 
irregular aggregates is shown in Fig. 9. 

3. Results and discussion 

3.1. Results of electrochemical corrosion 

Fig. 10 illustrates that the time-frequency diagrams obtained by 
continuous wavelet transform are quite similar. The dominant frequency 
of signals and the frequency distribution of specimen PC, RC10 and 
RC20 are shown in Fig. 10 (d). Although the dominant frequency of 
signals sampled from RC20 is slightly smaller than that of PC and RC10, 
the frequency difference of each mix proportion is only 0.795 kHz. That 
means the rubber content has little effect on the dominant frequency of 
the active ultrasonic signals. 

Fig. 11 shows the changing process of current and corrosion degree 
of the specimen PC, RC10 and RC20. The following results can be ob-
tained: (1) The corrosion process of steel bars consists of three stages, 
including current stabilized phase, current dropping phase and current 
rising phase. (2) With the increase of rubber content, the stable time of 
current (in the first stage) becomes longer. (3) The corrosion degree of 
reinforced rubber concrete is a monotonically increasing function of 
power-on time. (4) In any process, the orders of current and corrosion 
degree are the same, from high to low is PC > RC10 >RC20. The reason 
is that the addition of rubber will increase the resistivity of concrete and 
prevent the penetration of chloride ions. Thus, higher rubber content in 
concrete could reduce the corrosion effect of chloride ions on steel bars. 

3.2. Prediction performance of ML models 

The relationship between nondestructive results (ultrasonic testing) 
and corrosion degree by ML models are established. The predicted 
corrosion degree of six ML models tested in this study are shown in 
Fig. 12. Table 8 list the evaluation measures of 5-fold cross validation to 
avoid random errors as much as possible. By comparing the calculated 
corrosion degree with the predicted value, following results can be 
drawn: (1) There are several negative values of corrosion degree in the 
predicted results of BR, which is obvious incorrect; (2) All models except 
the linear model (BR) performs well in this regression problem; (3) The 
accuracy of KNN, RF, voting, bagging and stacking are quite close, with 

Fig. 15. The predicted performance of ML models trained by training sets with 
different size. 
(a) Accuracy (b) MSE. 
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voting performs slightly better than others; (4) The mass loss of rein-
forced concrete can be accurately predicted by ML models, indicating 
the relationship between the monitoring indicators of ultrasonic testing 
and corrosion degree can be expressed directly. 

The input variables can be treated as several features, and they have 
different effects on the corrosion degree in rubber concrete. The feature 
importance can be generalized by its average over all of the regression 
trees. According to the results, ultrasonic amplitude has the greatest 

contribution to predict the mass loss as shown in Fig. 13. Therefore, 
more attention should be paid to the monitoring accuracy of ultrasonic 
amplitude, so as to improve the prediction performance of ML models 
and obtain more accurate corrosion degree of steel bars in concrete 
structure. 

Fig. 16. Deterioration patterns of mortar and ITZ in concrete with different rubber content.  

Fig. 17. Tensile damage of the concrete with different rubber content.  
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3.3. Robustness validation of prediction model 

3.3.1. Abnormal ultrasonic amplitude 
During the collecting process of monitoring data, the on-site condi-

tions definitely interfere with the accuracy of collected data to varying 
degrees. It is an effective means to evaluate the robustness of models 
using the input variables, which are disturbed by outliers, to predict the 
corrosion degree of rebar in reinforced concrete structure. Due to the 
outstanding importance of ultrasonic amplitude, we add the random 
disturbance, whose range is [-k, k], to each original amplitude. k is a 
multiple of the original amplitudes. Fig. 14 displays the prediction ac-
curacy changes with increasing interference. The results show that the 
accuracy of all models decreases with the increase of amplitude distur-
bance, but the accuracy of all models except the BR still maintained at a 
high level (around 95%) under the interference of 20% amplitude, 
verifying the favorable robustness of the RF model. 

3.3.2. Influence of the size of training set 
Generally, the prediction performance of machine learning models is 

directly related to the size of the training set. There may be a limited 
amount of data collected for the training of ML models. Thus, the size of 
training set in this study is reduced to 16, 33, 66, 133, 267, 399, 534 and 
668, respectively. The same testing set with the size of 169 is selected for 
the verification of predicted models, which are trained by above training 
sets. Fig. 15 shows the prediction performance of ML models trained by 
different sizes of training sets. The results show that: (1) With the in-
crease of training data, the accuracy increases gradually, while the mean 
square error (MSE) decreases. (2) When the size of the training set is 
greater than 66, the prediction accuracy of all models is more than 90% 
except Bayesian Ridge; (3) Once the size of training set exceeds 133, the 
voting is very prominent, and when the size is less than 133, the random 
forest performs best. Therefore, to a certain extent, the robustness of the 
ML models can overcome the limitation of training set size. 

3.4. Deterioration pattern analysis of rubber concrete 

Corrosion damage of reinforced concrete structures is mainly due to 
the excessive tensile stress caused by volume expansion of steel bars 
after corrosion. The addition of rubber has both positive and negative 
influences on the durability of reinforced concrete structures. On the one 
hand, rubber will hinder the transmission of chloride ions in rubber 
concrete structures, prevent the production of corrosion products, and 
further reduce the volume expansion of steel bars, which is beneficial to 

preventing steel bars from corrosion. On the other hand, the addition of 
rubber will reduce the tensile strength of rubber concrete, which is 
unfavorable to the durability of reinforced concrete structures. There-
fore, in order to judge whether adding rubber is beneficial to improve-
ment of the durability of structure, this study quantitatively analyzes the 
deterioration process of rubber concrete caused by corrosion expansion 
through experiments and numerical simulation. 

Fig. 16 and Fig. 17 illustrates the simulation results of the deterio-
ration pattern of concrete with rubber content of 0%, 10% and 20%. The 
red area represents the area where the tensile damage occurred. The 
results indicate that both the mortar and interface transition zone of 
rubber concrete are deteriorated, which is consistent with the experi-
mental results. It can be seen that the damage gradually extends to the 
outer surface of rubber concrete along the holes of steel bars and finally 
form a set of intersecting cracks (see Fig. 18). 

Fig. 18 shows the relationship between the rubber concrete damage 
ratio (ratio of damaged region to total region) and the corrosion 
expansion thickness in the numerical simulation of steel expansion 
induced by corrosion. It can be seen that the damage ratio of rubber 
concrete in the initial period increases rapidly with the increase of the 
corrosion thickness of the steel bar, but when the corrosion thickness 
reaches 0.1 mm, the increase rate of the damage ratio slows down. With 
the increase of rubber content, the damage area of rubber concrete 
gradually decreases, indicating that the incorporation of rubber can 
effectively reduce the damage of concrete after the corrosion and 
expansion of steel bars. 

4. Conclusion 

In this paper, the corrosion degree of RC with various rubber content 
was evaluated by integrating machine learning and mesoscale simula-
tion. It provides a new nondestructive way to the evaluation of corrosion 
in concrete structures. The following conclusions can be drawn: 

(1) According to the value of corrosion current, higher rubber con-
tent in concrete can improve the corrosion resistance and reduce 
the corrosion effect of chloride ions on steel bars.  

(2) ML models excepted linear model can accurately predict the 
corrosion degree in rubber concrete, without complicated process 
of parameters adjustment. The excellent robustness of these 
models could guarantee the application prospect of the proposed 
idea.  

(3) As a nondestructive method, ultrasonic amplitude is the most 
important monitoring index to evaluate the corrosion in rubber 
concrete. The measurement accuracy of ultrasonic amplitude 
needs to be guaranteed in engineering practice.  

(4) The steel corrosion induced deterioration in reinforced concrete 
can be effectively mitigated by the incorporation of rubber, evi-
denced from lower damage ratios at the same steel corrosion 
degree. 

The deterioration extent of concrete with various rubber content 
caused by corrosion is quantitatively evaluated. Nevertheless, the 
research of this paper still has some limitations. The arrangement of 
steel bars in rubber concrete is relatively simple. The future work will 
focus on the applicability of model to detect the corrosion of rubber 
reinforced concrete formed by steel bars of various layouts. 
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Fig. 18. The relationship between rubber concrete damage ratio and corrosion 
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Appendix A. Descriptions of Machine Learning Models Used in This Study  

(1) Bayesian Ridge 

Bayesian Ridge algorithm is a Bayesian linear regression [54], which is based on Bayesian inference [55]. In the principle of Bayesian linear 
regression, the parameters of the linear model are regarded as random variables, and the posterior values of parameters are calculated by using prior 
knowledge. It is assumed that X = {x1, x2, …, xN} ∈ RN and y = {y1, y2, …, yN} are the training set, then the Bayesian linear regression model is: 

f (X) = XT w, y = f (X) + ε (A1)  

where ε is the residual, w is the weights. The variance of residuals follows the inverse gamma distribution: 
{

p(ε) = N
(
ε
⃒
⃒μn, σ2

n

)

σ2
n = Inv − Gamma

(
σ2

n

⃒
⃒a, b

) (A2)  

where, the mean of ε, μn, and (a, b) are determined by the prior knowledge. Because the w is independent of X and σ2
n , the posterior of w can be derived 

formula (S3) by the Bayes’ theorem. 

p
(
w
⃒
⃒X, y, σ2

n

)
=

p
(
y
⃒
⃒X,w, σ2

n

)
p(w)

p
(
y
⃒
⃒X, σ2

n

) (A3)  

where p(y
⃒
⃒X,w, σ2

n) is the likelihood, p(y
⃒
⃒X, σ2

n) is the marginal likelihood of y, and is only related to the training set X. Our goal is to maximize the 
likelihood. In this research, the Maximum A Posterior estimation (MAP) is used, as follows: 

p(w)=N
(
w
⃒
⃒0, σ2

w
)

(A4) 

There are four more hyperparameters, α1, α2, λ1, λ2 of the gamma prior distributions over α and λ. n_iter is the maximum number of iterations.  

(2) K-Nearest Neighbors 

K-Nearest Neighbors algorithm, is a relatively mature method, in theory, is also one of the simplest machine learning algorithms, supervised 
algorithm [56]. The idea is that a sample belongs to a category if most of the k most similar samples in the feature space belong to that category [57]. 

If each training sample is regarded as a point in n-dimensional space, all training samples can be stored in n-dimensional space. When a sample of 
an unknown category is given, k samples closest to the unknown sample are found by searching the n-dimensional feature space. If most of the k most 
similar (that is, the nearest neighbor in the feature space) samples of this sample belong to a certain category, then this sample also belongs to this 
category. Two samples X = {x1, x2, …, xn} and Y = {y1, y2, …, yn} is often described by Euclidean distance: 

D(X,Y)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − yi)

2

√

(A5) 

The following three factors affect the K-Nearest Neighbors:  

1) The value of K. The selected K value is large or small, and the number of samples in each category in the K neighborhood of the samples to be 
tested is also different.  

2) Distance measurement. The distance between the test sample and the training sample will be affected by the distance function. The selected 
metric in this study is minkowski.  

3) Decision rules. Different decision rules will lead to different classification scores, so the prediction results will be different.  
(3) Random forest 

Random forest algorithm is an integrated learning method based on a decision tree proposed by Leo Breiman and Adele Culter in 2001 [58]. It is a 
nonlinear modeling algorithm and can be used for classification and regression problem analysis. Among machine learning algorithms, the random 
forest algorithm has the advantages of high accuracy, insensitivity to multiple collinearities, and difficulty in over-fitting, and is widely used in 
medicine, biology, economy, and other fields [59]. 

The random forest regression algorithm is a model composed of a series of regression decision subtrees. The output value of the random forest 
regression model is the average value of the results of all decision subtrees in the random forest, which can be expressed as: 
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h(x)=
1
T
∑T

t=1
{h(x, θt)} (A6) 

In this study, the number of trees in the forest is 100 and the minimum number of samples required to split an internal node is 2. The process of 
random forest regression algorithm is as follows: 1) Bagging idea is applied to generate the sample set of each subtree; 2) Using the idea of random 
subspace, k features are randomly selected for node splitting to construct a single regression decision subtree; 3) Repeat steps 1) and 2) to construct T 
regression decision subtrees and form forests; 4) Take the average predicted value of T regression decision subtree as the final result of random forest 
regression.  

(4) Voting 

The idea behind the Voting Regressor is to combine conceptually different machine learning regressors and return the average predicted values. 
Such a regressor can be useful for a set of equally well performing models in order to balance out their individual weaknesses. Fig. A1 shows the Voting 
Regressor in this study.

Fig. A1. Voting Regressor in this study.  

(5) Bagging 

In ensemble algorithms, bagging methods form a class of algorithms which build several instances of a black-box estimator on random subsets of 
the original training set and then aggregate their individual predictions to form a final prediction [60]. These methods are used as a method to reduce 
the variance of basic estimators by introducing randomization into its construction process and then integrating it. In many cases, bagging methods is a 
very simple method to improve a single model without modifying the underlying basic algorithm. Because they provide a method to reduce 
over-fitting, bagging methods works best in the strong model and complex models, which is in contrast with the enhancement methods which usually 
works best in the weak models.  

(6) Stacking 

Stacking is a method for combining estimators to reduce their biases [61]. More precisely, the predictions of each independent estimator are 
superimposed and used as input of the final estimator to calculate the prediction. This final estimator is trained through cross-validation. In practice, a 
stacking predictor predicts as well as the best predictor of the base layer and even sometimes outperforms it by combining the different strengths of 
these predictors. However, the computational cost of training a stack predictor is high. Fig. A2 shows the Stacking Regressor in this study.

Fig. A2. Stacking Regressor in this study.  

Appendix B. Computation theory of aggregate placement in This Study 

In the discontinuous medium model, the aggregate “particle cluster” model contains three important information: size information, rotation in-
formation and location information. The data of each aggregate can be transmitted to the finite element model after scaling, rotation and translation. 
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(1) Scaling of the aggregate 

The unified particle model of particles is established, and he aggregate scaling size is γ. Assuming that the coordinate before scaling is (x0, y0, z0)

and the coordinate after scaling is (x1,y1, z1), then the new coordinate can be obtained through the following scaling transformation: 

(x1, y1, z1)= γ⋅(x0, y0, z0) (B1)    

(2) Rotation of the aggregate 

In order to transfer the coordinate rotation of the aggregate particles to the finite element, the Euler angle transformation is carried out, and the 
random aggregate particle model is established in the finite element. Therefore, it is necessary to convert the quaternion to the Euler angle, which is 
expressed by the yaw angle rotating around the z axis φ, the pitch angle rotating around the y axis θ and the roll angle rotating around the x axis φ. The 
coordinate before the rotation of the aggregate is (x1,y1,z1), and the coordinate after the rotation is (x2,y2,z2). The expression of the quaternion is as 
follows: 

Q= q0 + q1i + q2j + q3k (B2) 

The coordinate relation of aggregate before and after rotation is: 

⎡

⎣
x2
y2
z2

⎤

⎦=

⎡

⎢
⎢
⎣

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q0q3 + q1q2) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

⎤

⎥
⎥
⎦

⎡

⎣
x0
y0
z0

⎤

⎦ (B3) 

The Euler angle is used to represent the coordinate relationship before and after rotation in the order of z, y, x, as shown in formula (S4): 
⎡

⎣
x2
y2
z2

⎤

⎦=

⎡

⎣
cos φ cos θ sin φ cos θ − sin θ
cos φ sin θ sin φ − sin φ cos φ sin φ sin θ sin φ + cos φ cos φ cos θ sin φ
cos φ sin θ cos φ + sin φ sin φ sin φ sin θ cos φ − cos φ sin φ cos θ cos φ

⎤

⎦

⎡

⎣
x0
y0
z0

⎤

⎦ (B4) 

Corresponding the matrix of formula (B3) and formula (B4) one by one, the calculation formula of Euler angle is obtained. The following formula 
shows: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tan φ =
2(q1q2 − q0q3)

q2
0 + q2

1 − q2
2 − q2

3

sin θ = − 2(q0q2 + q1q3)

tan φ =
2(q2q3 − q0q1)

q2
0 − q2

1 − q2
2 + q2

3

(B5)  

when rotating in the order of z, y and x, the new coordinate axis needs to rotate in the following way: 1) The rotation angle is around the z axis, and the 
vector of z axis is defined as (0, 0,1) in the finite element. 2) rotate around the new y axis, where the vector of the new y axis is ( − sin φ,cos φ,0). 3) 
Rotation around the new x axis, the vector of the new x axis is (cos φ cos θ, sin φ cos θ, − sin θ).  

(3) Translation of the aggregate 

If the position information of aggregate particles in the discontinuous method is (a,b,c), and the coordinate of rotation of particles is (x3,y3,z3), then 
the following equation should be satisfied: 

(x3, y3, z3)= (x2 + a, y2 + b, z2 + c) (B6)  
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