

Missouri University of Science and Technology Scholars' Mine

Chemistry Faculty Research & Creative Works

Chemistry

01 Sep 2022

Crystal Structure, Electronic Structure, and Optical Properties of the Novel Li4cdge2s7, a Wide-Bandgap Quaternary Sulfide with a Polar Structure Derived from Lonsdaleite

Andrew J. Craig Seung Han Shin Jeong Bin Cho Srikanth Balijapelly

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/chem_facwork/3177

Follow this and additional works at: https://scholarsmine.mst.edu/chem_facwork

Part of the Chemistry Commons

Recommended Citation

A. J. Craig and S. H. Shin and J. B. Cho and S. Balijapelly and J. C. Kelly and S. S. Stoyko and A. Choudhury and J. I. Jang and J. A. Aitken and A. Sarjeant, "Crystal Structure, Electronic Structure, and Optical Properties of the Novel Li4cdge2s7, a Wide-Bandgap Quaternary Sulfide with a Polar Structure Derived from Lonsdaleite," *Acta Crystallographica Section C: Structural Chemistry*, vol. 78, no. Pt 9, pp. 470 - 480, International Union of Crystallography; Wiley, Sep 2022. The definitive version is available at https://doi.org/10.1107/S2053229622008014

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Chemistry Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

research papers

Received 30 June 2022 Accepted 8 August 2022

Edited by A. Sarjeant, Bristol-Myers Squibb, USA

Keywords: crystal structure; thiogermanate; diamond-like; wide bandgap; lonsdaleite; quaternary sulfide.

CCDC reference: 2195746

Supporting information: this article has supporting information at journals.iucr.org/c

Crystal structure, electronic structure, and optical properties of the novel Li₄CdGe₂S₇, a wide-bandgap quaternary sulfide with a polar structure derived from lonsdaleite

Andrew J. Craig,^a Seung Han Shin,^b Jeong Bin Cho,^b Srikanth Balijapelly,^c Jordan C. Kelly,^a Stanislav S. Stoyko,^a Amitava Choudhury,^c Joon I. Jang^{b*} and Jennifer A. Aitken^a*

^aDepartment of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA, ^bDepartment of Physics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea, and ^cDepartment of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA. *Correspondence e-mail: jjcoupling@sogang.ac.kr, aitkenj@duq.edu

The novel quaternary thiogermanate $Li_4CdGe_2S_7$ (tetralithium cadmium digermanium heptasulfide) was discovered from a solid-state reaction at 750 °C. Single-crystal X-ray diffraction data were collected and used to solve and refine the structure. $Li_4CdGe_2S_7$ is a member of the small, but growing, class of I_4 -II- IV_2-VI_7 diamond-like materials. The compound adopts the $Cu_5Si_2S_7$ structure type, which is a derivative of lonsdaleite. Crystallizing in the polar space group Cc, Li₄CdGe₂S₇ contains 14 crystallographically unique ions, all residing on general positions. Like all diamond-like structures, the compound is built of corner-sharing tetrahedral units that create a relatively dense three-dimensional assembly. The title compound is the major phase of the reaction product, as evidenced by powder X-ray diffraction and optical diffuse reflectance spectroscopy. While the compound exhibits a second-harmonic generation (SHG) response comparable to that of the AgGaS₂ (AGS) reference material in the IR region, its laser-induced damage threshold (LIDT) is over an order of magnitude greater than AGS for $\lambda = 1.064 \,\mu\text{m}$ and $\tau = 30 \,\text{ps}$. Bond valence sums, global instability index, minimum bounding ellipsoid (MBE) analysis, and electronic structure calculations using density functional theory (DFT) were used to further evaluate the crystal structure and electronic structure of the compound and provide a comparison with the analogous I2-II-IV-VI4 diamond-like compound Li_2CdGeS_4 . $Li_4CdGe_2S_7$ appears to be a better IR nonlinear optical (NLO) candidate than Li₂CdGeS₄ and one of the most promising contenders to date. The exceptional LIDT is likely due, at least in part, to the wider optical bandgap of \sim 3.6 eV.

1. Introduction

Diamond-like materials are those whose structures are based on a closest-packed array of anions with the cations filling half of the tetrahedral holes. There are two types of closest packing: cubic closest packing, which is the most common structure for diamonds, and hexagonal closest packing, which is more rarely encountered. Hexagonal diamond is named after the legendary crystallographer Professor Kathleen Lonsdale (Frondel & Marvin, 1967; Bundy & Kasper, 1967). This form of diamond was first discovered in 1967 in highpressure laboratory studies and at about the same time in nature at the Canyon Diablo iron meteorite site, where it was believed to have been created by the high pressure of the impact. Londaleite has since been identified in other geographical locations, for example, in impact melts from the Ries

crater in southern Germany (Hough *et al.*, 1995). There was some controversy surrounding the enigmatic londsdaleite for some time. However, researchers have observed, *via* ultrafast *in-situ* X-ray diffraction studies, the transition from pyrolytic graphite to lonsdaleite *via* shock compression at pressures exceeding 170 GPa (Kraus *et al.*, 2016). While the hexagonal form of diamond needs special conditions of high pressure to form, derivatives of this structure can be found in many common minerals, for example, wurtzite (Friedel, 1861), greenockite (Ulrich & Zachariasen, 1925), and enargite (Breithaupt & Plattner, 1850; Pauling & Weinbaum, 1934).

Compounds with diamond-like structures are called 'normal valence compounds' and follow basic valence electron rules and Pauling's principles (Pauling, 1929; Goryunova, 1965; Parthé, 1964; Pamplin, 1981). The average number of valence electrons, VE_{ave} , and valence electrons per anion, VE_A , should be four and eight, respectively. The total number of valence electrons for all ions in the formula unit is represented as ve_{total} and *n* is the number of ions or anions as seen in Equations (1) and (2) (Parthé, 1964; Goryunova, 1965).

$$VE_{ave} = ve_{total}/n_{ions}$$
 (1)

$$VE_A = ve_{total}/n_{anions}$$
 (2)

These principles allow for the prediction of all possible diamond-like compounds (Parthé, 1964; Goryunova, 1965; Pamplin, 1981). Several formulae are predicted for compounds that follow the above rules and possess local charge neutrality. For example, synthetic investigations into quaternary derivatives of the diamond structure began in earnest in the 1960s by several groups, mainly focused on compounds of the I₂-II-IV-VI₄ formula. These formulae are generally expressed by using Roman numerals to indicate the valence of the ions and the subscript provides the number of those ions per formula unit. However, based on the rules outlined above, other quaternary formulae are possible when local charge neutrality is not maintained, as in the I₄-II-IV₂-VI₇ family of compounds that were first reported in 1980 (Schäfer et al., 1980). These compounds, with crystal structures related to either cubic diamond (C2) or lonsdaleite (Cc), are valence precise, *i.e.* charge balanced; yet, the local charge is not satisfied for all of the anions in the structure and thus, as predicted by Pauling's second rule, the structures are less regular and feature subtle distortions of the respective tetrahedral units.

Table 1 lists all of the known I_4 –II– IV_2 – VI_7 compounds. Two of these compounds, $Li_4MnGe_2S_7$ and $Li_4MnSn_2Se_7$, have been proposed as potential anode materials for Li-ion batteries; they possess specific capacities of 585 and 725 mAh g⁻¹, respectively, exceeding the theoretical capacity of 372 mAh g⁻¹ for commercial-grade graphite, while exhibiting excellent cycling stability after 50 cycles with values of 450 and 660 mAh g⁻¹, respectively (Kaib *et al.*, 2013). Other I_4 –II– IV_2 – VI_7 compounds have been investigated for their potential as nonlinear optical (NLO) materials in the IR regime. $Li_4MgGe_2S_7$ boasts the widest optical bandgap among the known I_4 –II– IV_2 – VI_7 members, 4.12 eV, and a good phasematching (PM) second-harmonic generation (SHG) response of $0.7 \times \text{AgGaS}_2$ (AGS) at $\lambda = 2.09$ µm, and a significant laserinduced damage threshold (LIDT) of 7 \times AGS (λ = 1.064 μ m, pulse width, τ , = 10 ns) (Abudurusuli *et al.*, 2021). Li₄HgGe₂S₇, with a narrower optical bandgap of 2.75 eV, has a stronger SHG response of $1.5 \times AGS$ at $\lambda = 2.09 \,\mu\text{m}$, but a lower LIDT, $3.5 \times AGS \ (\lambda = 1.064 \ \mu m, \ \tau = 50 \ ns) \ (Wu \ et \ al., \ 2017).$ Li₄HgSn₂Se₇ possesses an even narrower bandgap of 2.10 eV, and exhibits a greater PM SHG response of $3.6 \times AGS$ at $\lambda =$ 2.09 µm (Guo et al., 2019). While Cu₄ZnGe₂Se₇ displays a very weak SHG response (Sinagra et al., 2021), Cu₄MnGe₂S₇ has a second-order NLO susceptibility, $\chi^{(2)}$, of 2.33 ± 0.86 pm V⁻¹, assessed at the static limit (Glenn et al., 2021). Recently, we have demonstrated that Li₄CdSn₂S₇ is the best I₄-II-IV₂-VI₇ IR-NLO candidate material to date, with an excellent balance of properties, an optical bandgap of 2.59 eV, an exceptional LIDT of 12.5 × AGS (λ = 1.064 µm, τ = 30 ps), and a χ ⁽²⁾ value of 35 pm V^{-1} at the static limit (Zhang, Stoyko *et al*, 2020). This material has the potential to surpass the benchmark AGS and AgGaSe₂ (AGSe) in difference frequency generation applications in the mid-IR.

Considering the sparse number of I₄-II-IV₂-VI₇ compounds and their attractive physicochemical properties, we sought to expand this class of materials. In this work, we chose lithium as the monovalent ion because Li-containing sulfides generally have wider bandgaps and corresponding greater LIDTs compared to the analogous Cu- and Ag-containing phases. The relatively large and polarizable Cd was selected as the divalent metal due to the number of Cd-containing compounds with strong SHG, for example, diamond-like CdS and CdSe (Jackson et al., 1997; Cheng et al., 2019). We picked sulfur as the hexavalent ion because sulfides usually have the widest bandgaps in a series of chalcogenides, further increasing the odds of obtaining a material with a high LIDT. As the tin-containing compound, discussed above, had already been discovered and found to possess outstanding IR-NLO properties, we turned our attention to the next smallest tetrel and targeted the new compound Li₄CdGe₂S₇. Our efforts were successful, as here we report the synthesis, crystal structure, and optical bandgap of Li₄CdGe₂S₇. NLO property measurements in the IR region for an ungraded sample of this compound indicate a similar performance to the outstanding Li₄CdSn₂S₇ and a better performance than the analogous I₂-II-IV-VI₄ material Li₂CdGeS₄. Bond valence sums, global instability index, minimum bounding ellipsoid calculations, and electronic structure calculations performed using density functional theory (DFT) were carried out for both diamondlike compounds in the Li-Cd-Ge-S system to reveal their subtle structural differences.

2. Experimental

2.1. Reagents

Powders of lithium sulfide (Li_2S) (99.9%, Cerac), cadmium metal (99.999%, Strem), and sublimed sulfur (99.5%, Fisher Scientific) were used as obtained and without further purification. Chunks of germanium metal (99.999%, Strem) were

Table 1

Known I_4 –II–IV₂–VI₇ diamond-like compounds with structures derived from cubic diamond (*C*2) or lonsdaleite (*Cc*) with the corresponding SHG responses and optical bandgaps where applicable.

	Space		E_{g}	
Compound	group	SHG response [†]	(eV)	Reference
Li ₄ MgGe ₂ S ₇	Cc	$0.7 \times \text{AGS} (\lambda = 2.09 \mu\text{m})$	4.12	Abudurusuli <i>et al.</i> (2021)
Li ₄ MnGe ₂ S ₇	Cc			Kaib et al. (2013)
Li ₄ MnSn ₂ Se ₇	Cc			Kaib et al. (2013)
Li ₄ CdGe ₂ S ₇	Cc	$\sim 1 \times \text{AGS} (\lambda = 1.8 \mu\text{m})$	3.6	This work
$Li_4CdSn_2S_7$	Cc	$\chi^{(2)} = 35.0 \pm 3.5 \text{ pm V}^{-1}$	2.59	Zhang, Stoyko et al. (2020)
Li ₄ HgGe ₂ S ₇	Cc	$1.5 \times AGS (\lambda = 2.09 \mu m)$	2.75	Wu et al. (2017)
Li4HgSn2S7	Cc			Aitken (2001)
Li4HgSn2Se7	Cc	$3.6 \times AGS (\lambda = 2.09 \mu\text{m})$	2.1	Guo et al. (2019)
Ag ₄ CdGe ₂ S ₇	Cc			Gulay et al. (2002)
Ag ₄ HgGe ₂ S ₇	Сс			Gulay et al. (2002)
Cu ₄ MnGe ₂ S ₇	Cc	$\chi^{(2)} = 2.33 \times 0.86 \text{ pm V}^{-1}$	1.98	Glenn et al. (2021)
Cu ₄ FeGe ₂ S ₇	<i>C</i> 2			Craig et al. (2020)
Cu ₄ CoGe ₂ S ₇	<i>C</i> 2			Craig et al. (2020)
Cu ₄ NiSi ₂ S ₇	<i>C</i> 2			Schäfer et al. (1980)
Cu ₄ NiGe ₂ S ₇	<i>C</i> 2			Schäfer et al. (1980)
$Cu_4ZnGe_2Se_7$	<i>C</i> 2	weak	0.91	Sinagra et al. (2021)

 $\dagger \chi^{(2)}$ values are assessed at the static limit, where the sample and the reference are phase matching and multiphoton absorption is not a factor.

ground to a fine powder in an argon-filled glovebox using a Diamonite mortar and pestle prior to use. All reagents were stored in an inert-atmosphere glovebox.

2.2. Synthesis and crystallization

Li₄CdGe₂S₇ was prepared by high-temperature, solid-state synthesis. Stoichiometric quantities of the elemental reagents and a 10% excess of Li₂S were weighed in an argon-filled glovebox before being briefly ground together in an agate mortar and pestle. This mixture was then placed in a loosely capped graphite tube that was next loaded into a 12 mm o.d. fused-silica tube that was flame-sealed under $\sim 10^{-3}$ mbar pressure before being placed in a programmable box furnace. The sample was heated to 800 °C in 12 h and allowed to dwell at this temperature for 120 h. After this, the reaction was cooled to 600 °C over 100 h before being allowed to return ambiently to room temperature over 24 h. The reaction vessel was opened and the product was stored in the glovebox because it was deemed to be somewhat air/moisture sensitive. An optical microscope was used to inspect the product for single crystals suitable for X-ray diffraction analysis. A portion of this sample was used for NLO measurements, while the rest of the sample was ground and stored in a desiccator for further characterization.

2.3. Single-crystal X-ray diffraction and structure refinement

A colorless crystal was affixed to a glass fiber with cyanoacrylate glue. Single-crystal X-ray diffraction data were collected at room temperature with a Bruker APEXII CCD single-crystal X-ray diffractometer using Mo $K\alpha$ radiation, $\lambda =$ 0.71073 Å. Selected crystallographic data, data collection and structure refinement details are given in Table 2. Extinction was refined for this structure and the Flack parameter (Flack

Table	2
Experi	mental details.

-	
Crystal data	
Chemical formula	$Li_4CdGe_2S_7$
M _r	509.76
Crystal system, space group	Monoclinic, Cc
Temperature (K)	293
a, b, c (Å)	16.8354 (10), 6.7870 (4), 10.1499 (6)
β (°)	93.710 (3)
$V(Å^3)$	1157.32 (12)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	8.18
Crystal size (mm)	$0.21 \times 0.12 \times 0.11$
Data collection	
Diffractometer	Bruker SMART APEXII
Absorption correction	Multi-scan (<i>SADABS</i> ; Sheldrick, 2002)
T_{\min}, T_{\max}	0.549, 0.747
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7415, 2634, 2612
R _{int}	0.017
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.010, 0.024, 1.08
No. of reflections	2634
No. of parameters	129
No. of restraints	2
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.27, -0.21
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.001 (5)

Computer programs: APEX2 (Bruker, 2010), SMART (Bruker, 2010), SHELXT (Sheldrick, 2015*a*), SHELXL2018 (Sheldrick, 2015*b*), and CrystalMaker (Palmer, 2019).

& Bernardinelli, 1999) was refined to 0.001 (5). The largest peak and deepest hole in the difference Fourier map, 0.269 and $-0.210 \text{ e} \text{ Å}^{-3}$, were located 1.09 Å from Ge2 and 2.13 Å from Li4, respectively. Figures depicting the crystal structure were created using *CrystalMaker* (Palmer, 2019) and the resulting crystallographic information file (CIF).

2.4. Powder X-ray diffraction

The microcrystalline sample was ground well and deposited onto a zero-background silicon wafer. Powder X-ray diffraction data were collected using a Malvern Panalytical Empyrean 3 multipurpose powder X-ray diffractometer with an X'cellerator detector operating in Bragg-Brentano geometry and using Cu K α radiation, $\lambda = 1.541871$ Å. The tube was energized using 45 kV and 40 mA. Data were collected from 5 to $100^{\circ} \ 2\theta$ in steps of 0.0167° at a scan speed of 0.023537° s⁻¹. A 0.04 rad soller slit and a 2° anti-scatter slit were used on the incident side of the beam, while the diffracted beam optics consisted of a 0.04 rad soller slit, a programmable anti-scatter slit, and a nickel filter. Phase identification of crystalline components was carried out using the X'Pert HighScore Plus (Degen et al., 2014) software package and the International Centre for Diffraction Data (ICDD) powder diffraction file (PDF) database (Smith & Jenkins, 1996).

research papers

2.5. Optical diffuse reflectance UV-Vis-NIR spectroscopy

A Varian Cary 5000 UV–Vis–NIR spectrophotometer coupled with a diffuse reflectance accessory was used to collect data from 2500 to 200 nm at a rate of 600 nm min⁻¹. The 100% reflectance standard was $BaSO_4$ (Fisher Scientific, 99.92%). The sample was ground and pressed on top of the reference that was preloaded in the sample cup. Reflectance data were converted to absorption by employing the Kubelka– Munk equation (Kubelka & Munk, 1931) and plotted as a function of energy. The optical bandgap was estimated by extrapolation of the absorption edge to the baseline.

2.6. Nonlinear optical characterization

A microcrystalline sample of Li₄CdGe₂S₇ enclosed in a fused-silica capillary tube was provided for NLO characterization to assess SHG and the LIDT. It should be noted that this was an ungraded sample, *i.e.* the sample was not sieved into discrete particle size ranges. Determination of SHG dependence on particle size is necessary to assess phase matching; however, due to the fact that the sample containing the title compound is not phase pure, phase-matching results would likely be inaccurate. The absolute value of the SHG coefficient, together with the phase-matching behavior, will be determined for the title compound when phase-pure samples are obtained. The SHG measurements were carried out at room temperature using an input wavelength, λ , ranging from 1.0 to 1.8 µm. The LIDT was assessed at 1.064 µm based on the intensity dependence of the SHG response. Coherent light with a wavelength of 1.064 µm was initially produced using an EKSPLA PL-2250 series diode-pumped Nd:YAG laser with a pulse width (τ) of 30 ps and a repetition rate of 50 Hz to generate tunable pulses. The Nd:YAG laser pumped an EKSPLA Harmonics Unit (HU) H400 in which the input beam was frequency tripled to 0.355 µm by a series of NLO beam mixing. Two beams of 0.355 and 1.064 µm then entered an EKSPLA PG403-SH-DFG Optical Parametric Oscillator (OPO) composed of four main parts: (i) a double-pass parametric generator, (ii) a single-pass parametric amplifier, (iii) a second-harmonic (SH) generator, and (iv) a differencefrequency generator (DFG). A detailed description of our laser and detection setup can be found elsewhere (Zhang, Stoyko et al., 2020). The sample was compared to an opticalquality reference NLO material, AGS, from Gooch and Housego (Ohio) LLC. The reference, obtained as a commercial-grade single crystal, was ground to a powder for measurements.

2.7. Electronic structure calculations

Electronic band structure calculations were carried out using first principles at a DFT level using the *Quantum Espresso* plane-wave (PW) based software package (Giannozzi *et al.*, 2009). The revised Perdew–Burke–Ernzerhof generalized gradient approximation (PBESol) (Perdew *et al.*, 1996, 2008) was employed and the projected augmented wave (PAW) pseudopotential was used to describe the effect of the core electrons with the following states treated as valence states: 3s and 3p for S, 4s and 4p for Ge, 5s, 4p, and 4d for Cd, and 2s for Li. A kinetic-energy cutoff of 544 eV and a Monkhorst–Pack (Monkhorst & Pack, 1976) *k*-point grid size of $5 \times 4 \times 4$ was used for Brillouin zone integration. The total

Derivation of some diamond-like structures from that of hexagonal diamond, lonsdaleite, with blue arrows showing group-subgroup relationships.

Figure 1

energy convergence threshold of 10^{-6} eV was used. The structure was fully relaxed until the force on each atom was below 0.01 eV Å⁻¹. The density of states was calculated using a Gaussian smearing of 0.05 eV.

3. Results and discussion

3.1. Crystal structure

The title compound, Li₄CdGe₂S₇, crystallizes in the polar space group Cc (No. 9) and adopts the Cu₅Si₂S₇ structure type (Table 2) (Dogguy et al., 1982). Via group-subgroup relationships, this crystal structure can be considered a derivative of the hexagonal form of diamond, i.e. lonsdaleite (Fig. 1), where each atom in the formula unit occupies a crystallographically-unique general position in the structure. With the increase in the number of elements from the parent diamond structure to the title compound, a decrease in symmetry and a larger unit cell are observed. The 'honeycomb' pattern seen in all DLSs, regardless of these structural distortions, is evident in this structure and can be seen in Fig. 1. The noncentrosymmetric nature of the structure is obvious when visualized along the crystallographic *b* axis (Fig. 2, left); all metal-sulfur tetrahedra are unidirectionally aligned. Among the corner-sharing tetrahedra, there are adjacent GeS₄ tetrahedra that form $[Ge_2S_7]^{6-}$ subunits. The structures for the compounds of the I₄-II-IV₂-VI₇ stoichiometry exhibit a more complex cation ordering pattern than that seen in the diamond-like I2-II-IV-VI4 compounds. Fig. 2 (right) com-

Figure 2

Polyhedral representation of $Li_4CdGe_2S_7$ compared to Li_2CdGeS_4 . The alignment of all tetrahedral units along one crystallographic direction renders the structures noncentrosymmetric and capable of producing SHG.

pares the title compound to its analogous I_2 -II-IV-VI₄ phase Li_2CdGeS_4 (Lekse *et al.*, 2009).

As explained previously, the features of diamond-like compounds can be generally rationalized using Pauling's tenets with the second and fourth being most pertinent to the discussion of $Li_4CdGe_2S_7$ and its comparison to Li_2CdGeS_4 . The second rule, *i.e.* the electrostatic valence principle, states

that the charge of the anions should be balanced by cations

within the first coordination

sphere in order for that coor-

dination environment to be considered 'regular' (Pauling, 1929). This is the case for all anions within the structure of Li₂CdGeS₄; however, local charge neutrality is not completely achieved in Li4Cd-Ge₂S₇, as demonstrated in the extended connectivity table (Table 3) (Parthé, 1996). Each sulfur anion bears a -2 charge and each cation it is bound to contributes $\frac{1}{4}$ of its positive charge to that particular coordination polyhedron (Table 3). While S1, S2, S6, and S7 are locally charge compensated, each being bound to two Li, one Cd, and one Ge, S3 and S5 are undercompensated with respect to charge and the charge of S4 is overcompensated. Both S3 and S5 are

Table 3

 $Extended \ connectivity \ table \ for \ Li_4CdGe_2S_7 \ used \ to \ predict \ structural \ distortions \ in \ accordance \ with \ Pauling's \ second \ rule.$

	[1			Anions				Bond Strength
		S1	S2	\$3	S4	S5	S6	S7	Sums
	Li1		$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$			$\Sigma = 1$
	Li2	$\frac{1}{4}$				$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\Sigma = 1$
Cations	Li3	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				$\frac{1}{4}$	$\Sigma = 1$
	Li4			$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$		$\Sigma = 1$
	Cd	$\frac{2}{4}$	$\frac{2}{4}$				$\frac{2}{4}$	$\frac{2}{4}$	Σ = 2
	Ge1	$\frac{4}{4}$	$\frac{4}{4}$	$\frac{4}{4}$	$\frac{4}{4}$				Σ = 4
	Ge2				$\frac{4}{4}$	$\frac{4}{4}$	$\frac{4}{4}$	$\frac{4}{4}$	Σ = 4
Vertical Bond Strength Sums		Σ = 2	Σ = 2	$\Sigma = 1.75$	Σ = 2 .5	Σ = 1.75	Σ = 2	Σ = 2	
Charge compensation*		СМР	СМР	UNDER CMP	OVER CMP	UNDER CMP	СМР	СМР	

* CMP = compensated.

bound to three Li and one Ge,

such that the corresponding tetrahedra hold a local charge of -0.25. On the other hand, S4 is bound to two Li and two Ge, which overcompensates the local charge by +0.5. As a result of these local charge imbalances, the structure slightly distorts, as forecasted by Pauling (1929) and evident from the bond distances and angles displayed in Tables 4 and 5.

All of the metal-sulfur bond distance ranges are wider for the title compound than those observed in the corresponding I₂-II-IV-VI₄ compound, while the average metal-sulfur bond distances for each type of cation are identical. These average Li-S, Cd-S, and Ge-S bond distances are comparable to those found in other diamond-like materials, for example, α-Li₂ZnGeS₄ (Zhang, Clark et al., 2020), β-Li₂ZnGeS₄ (Huang et al., 2019), Li₂CoGeS₄ (Brant et al., 2015), Ag₂CdGeS₄ (Brunetta et al., 2012), and Cu₂CdGeS₄ (Parasyuk et al., 2005). With the slight charge undercompensation present for S3 and S5, one would expect some shortening of the M-S bond distances. However, it should be noted that not all M-Sbonds involving these anions are the shortest; yet the shortest Ge1 and Ge2 distances to sulfur exist for S3 and S5, respectively. The charge overcompensation existing for S4 is double the magnitude of the undercompensation for S3 and S5, and, therefore, the distortion is more apparent for S4. The cationsulfur bonds containing S4 are the longest in each of their respective tetrahedra. Similar subtle structural distortions have been observed in other I₄-II-IV₂-VI₇ compounds, for example, Cu₄FeGe₂S₇, Cu₄CoGe₂S₇, Li₄CdSn₂S₇, Cu₄Mn-Ge₂S₇, and Cu₄ZnGe₂Se₇ (Craig et al., 2020; Zhang, Stoyko et al., 2020; Glenn et al., 2021; Sinagra et al., 2021).

The structural distortions are also present in the bond angles of the title compound (Table 5). The average tetrahedral bond angles in both $Li_4CdGe_2S_7$ and Li_2CdGeS_4 are, within estimated standard deviations, identical to one another and the ideal value for tetrahedra. The bond angle ranges for the tetrahedra in $Li_4CdGe_2S_7$ are broader than those found in

Figure 3

Displacement ellipsoid representation of $Li_4CdGe_2S_7$ drawn with 99% probability. Crystallographically unique atoms are labeled. Highlighted in the bottom right corner is one of the $[Ge_2S_7]^{6-}$ subunits.

Table 4	
Bond distances (Å) in $Li_4CdGe_2S_7$ and Li_2CdGeS_4 .	

Li ₄ CdGe ₂ S ₇	Bond distance	Li ₂ CdGeS ₄	Bond distance
Li1-S5	2.374 (10)	Li-S3	2.402 (9)
Li1-S2	2.408 (10)	Li-S1	2.41 (2)
Li1-S3	2.421 (10)	Li-S1	2.424 (7)
Li1-S4	2.559 (10)	Li-S2	2.446 (6)
Avg Li1-S	2.44 (2)	Avg Li-S	2.42 (2)
Li2-S1	2.380 (13)		
Li2-S5	2.401 (13)		
Li2-S7	2.437 (10)		
Li2-S6	2.447 (12)		
Avg Li2–S	2.42 (2)		
Li3-83	2.385 (10)		
Li3-S1	2.420 (12)		
Li3-S2	2.428 (7)		
Li3-S7	2.440 (12)		
Avg Li3–S	2.42 (2)		
Li4-85	2.392 (9)		
Li4-S3	2.397 (10)		
Li4-S6	2.428 (10)		
Li4-S4	2.567 (11)		
Avg Li4-S	2.45 (2)		
Avg Li-S	2.43 (4)		
Cd-S1	2.5235 (8)	Cd-S3	2.5204 (10)
Cd-S7	2.5440 (9)	Cd-S1	2.5493 (12)
Cd-S6	2.5487 (10)	Cd-S2	2.5568 (6)
Cd-S2	2.5575 (9)	Cd-S2	2.5568 (6)
Avg Cd-S	2.543 (2)	Avg Cd-S	2.546 (2)
Ge1-S3	2.1680 (8)	Ge-S3	2.2075 (14)
Ge1-S2	2.2055 (9)	Ge-S1	2.2099 (9)
Ge1-S1	2.2141 (8)	Ge-S2	2.2152 (6)
Ge1-S4	2.2862 (8)	Ge-S2	2.2152 (6)
Avg Ge1-S	2.218 (2)	Avg Ge-S	2.212 (2)
Ge2-S5	2.1577 (8)		
Ge2-S6	2.2024 (10)		
Ge2-S7	2.2045 (8)		
Ge2-S4	2.2926 (9)		
Avg Ge2-S	2.214 (2)		
Avg Ge-S	2.216 (2)		

Li₂CdGeS₄. For example, the S-Li-S bond angles in Li₄CdGe₂S₇ range from 101.4 (3) to 115.7 (4)°, while those occurring in Li₂CdGeS₄ span from 106.3 (5) to 113.4 (5)°.

Pauling's fourth rule states that in materials containing different cations, those with higher valency and small coordination number tend not to share corners, edges, or faces in order to spread out highly charged centers (Pauling, 1929). Each of the Si-, Ge-, and Sn-centered tetrahedra are separated from each other in all of the I₂-II-IV-VI₄ structure types. However, the GeS₄ tetrahedra share a corner in $Li_4CdGe_2S_7$, to form a $[Ge_2S_7]^{6-}$ subunit (Fig. 3). This may be due to the stoichiometry of the I₄-II-IV₂-VI₇ compounds or proof that 'covalent and electronic-structure effects' may take precedence over electrostatic phenomena, as proposed by George and co-workers for materials that infringe upon Pauling's fourth rule (George et al., 2020; Glenn et al., 2021). It should be noted that the longest Ge-S distances are those where the corners are shared; S4 serves as the bridge for the two GeS₄ tetrahedra to form the $[Ge_2S_7]^{6-}$ subunit.

Table 5				
Bond angles	$(^{\circ})$ for	Li ₄ CdGe ₂ S ₇	and Li ₂	CdGeS ₄ .

Li ₄ CdGe ₂ S ₇	Bond angle	Li ₂ CdGeS ₄	Bond angle
S5-Li1-S2	107.5 (4)	S3-Li-S2	110.3 (4)
\$5-Li1-\$3	113.8 (4)	S3-Li-S1	107.9 (5)
\$2-Li1-\$3	109.5 (4)	S2-Li-S1	109.9 (5)
\$5-Li1-\$4	112.5 (4)	\$3-Li-\$2	106.3 (5)
$s_2-Li_1-s_4$	106.8 (4)	S2-Li-S2	108.9 (5)
\$3-Li1-\$4	106.5(4)	S1 - Li - S2	1134(5)
Avg S_Li1_S	100.5(1)	Avg S-Li-S	109(1)
INGO EII O	105 (1)	Nigo Ei o	105(1)
S1-Li2-S5	108.3 (5)		
S1-Li2-S7	106.0 (5)		
\$5-Li2-\$7	104.4 (4)		
S1-Li2-S6	113.3 (4)		
S5-Li2-S6	110.4 (5)		
S7-Li2-S6	114.0 (5)		
Avg S-Li1-S	109 (1)		
\$3_Li3_\$1	109.9 (4)		
S3_Li3_S2	103.9(1) 113.8(5)		
S1-Li3-S2	101.4(3)		
S1-LI3-S2 S3_Li3_S7	101.4(3) 110.0(4)		
S1 L3 S7	110.0(4) 112.3(5)		
S1-LI3-S7 S2 Li3 S7	112.3(3) 100 3 (4)		
32 - Li = 37	109.3(4)		
Avg $3-L11-5$	109 (1)		
\$5-Li4-\$3	107.5 (4)		
S5-Li4-S6	111.9 (4)		
\$3-Li4-\$6	105.7 (4)		
\$5-Li4-\$4	110.0 (4)		
S3-Li4-S4	115.7(4)		
S6_Li4_S4	106.1(3)		
Avg S_Li1_S	100.1(5) 109(1)		
Avg S_Li_S	109(1) 109(2)		
Avg 5-LI-5	109 (2)		
S1-Cd-S7	112.35 (3)	S3-Cd-S1	110.32 (4)
S1-Cd-S6	112.75 (3)	S3-Cd-S2	110.10 (2)
S7-Cd-S6	105.41 (3)	S1-Cd-S2	108.14 (2)
S1-Cd-S2	110.77 (3)	S3-Cd-S2	110.10 (2)
S7-Cd-S2	109.69 (2)	S1-Cd-S2	108.14 (2)
S6-Cd-S2	105.52 (3)	S2-Cd-S2	110.01 (3)
Avg S-Cd-S	109.42 (7)	Avg S-Cd-S	109.47 (6)
S3-Ge1-S2	116.23 (3)		
S3-Ge1-S1	112 82 (3)		
$S^2 - Ge^1 - S^1$	107.87(3)		
$S_2 = Ge_1 = S_1$	107.07(3) 110.03(3)		
$S_{2}^{-}Ge_{1}^{-}S_{4}^{-}$	106.82(3)		
S1_Ge1_S4	100.02(3) 101.05(3)		
$Av\sigma S Ge1 S$	109.29 (7)		
Arg 3-001-3	107.27 (7)		
S5-Ge2-S6	111.99 (3)	S3-Ge-S1	110.69 (5)
S5-Ge2-S7	109.20 (3)	S3-Ge-S2	108.64 (3)
S6-Ge2-S7	111.08 (3)	S1-Ge-S2	111.15 (3)
\$5-Ge2-\$4	111.93 (3)	S3-Ge-S2	108.64 (3)
\$6-Ge2-\$4	104.90 (3)	S1-Ge-S2	111.15 (3)
\$7-Ge2-\$4	107.62 (3)	S2-Ge-S2	106.43 (4)
Avg S-Ge2-S	109.5 (5)	Avg S-Ge-S	109.45 (9)
Avg S-Ge-S	109.4 (5)	5	~ /

Minimum bounding ellipsoid (MBE) analysis of the coordination environments for the ions within $\text{Li}_4\text{CdGe}_2\text{S}_7$ and $\text{Li}_2\text{CdGeS}_4$ was carried out using the PIEFACE (Polyhedral-Inscribing Ellipsoids for Analyzing Crystallographic Environments) software package (Cumby & Attfield, 2017). With this method, the smallest ellipsoid volume that encompasses all atoms within the coordination polyhedron is analyzed for distortions (Table 6). The center displacements for the metal ions are larger in the title compound. In $\text{Li}_4\text{CdGe}_2\text{S}_7$, the *D*

476 Craig et al. • Wide-bandgap quaternary sulfide Li₄CdGe₂S₇

value for Cd is $\sim 3 \times$ and for Ge $\sim 2-3 \times$ those of the corresponding ions in Li₂CdGeS₄. Upon comparison of the $\sigma(R)$ values in both diamond-like compounds, it is evident that the values in Li₄CdGe₂S₇ are greater on average, indicating that there is more tetrahedral distortion in this compound, as one would anticipate bearing in mind Pauling's second rule.

In order to further evaluate the structure of $Li_4CdGe_2S_7$, the bond valence sums (BVSs) and global instability index (*G*) values were calculated. BVS calculations relate the bond length and bond valence through Equation (3).

$$BVS = \sum_{j} s_{ij}; s_{ij} = \exp\left[\left(r_0 - r_{ij}\right)/b\right]$$
(3)

In this equation, the term s_{ij} refers to the individual bond valences, r_0 is a constant for the cation–anion pair of interest, r_{ij} is the experimentally determined bond distance between ions *i* and *j*, and *b* is an empirically determined constant that is often found to be 0.37 Å, as is the case for the bonds present in the title compound (Brown & Altermatt, 1985; Brown, 1992; O'Keeffe, 1990). There is good agreement between the calculated BVSs and expected oxidation states for the ions in Li₄CdGe₂S₇, as well as those in Li₂CdGeS₄, which have been included for the purpose of comparison (Table 7).

The differences between the BVSs and expected oxidation states can be analyzed through the calculation of G values. This value helps to quantify the extent to which the valence sum rule is 'violated' throughout the entirety of the structure (Brown & Altermatt, 1985; Salinas-Sanchez *et al.*, 1992). This metric is calculated through Equation (4), where V_i is the expected valence of the particular ion and N represents the number of ions in the formula unit.

$$G = \sqrt{\frac{\sum_{i=1}^{N} (\text{BVS} - V_i)^2}{N}}$$
(4)

Using two slightly dissimilar r_0 for the Cd—S bond that are provided by two different sources, the two *G* values calculated for both Li₄CdGe₂S₇ and Li₂CdGeS₄, 0.08 (or 0.09) and 0.07 (or 0.09), respectively, are well within the range indicative of reasonable structural strain (0.05 < G < 0.2) (Table 7). These values are lower than those calculated for similar compounds reported by our group, for example, Cu₄ZnGe₂Se₇, Cu₂Mn-GeS₄, and Cu₄MnGe₂S₇, which range from 0.16 to 0.20 (Sinagra *et al.*, 2021; Glenn *et al.*, 2021). These results, in addition to the excellent refinement statistics of the singlecrystal structure, give us confidence in our structure solution and refinement for the title compound.

3.2. Powder X-ray diffraction

Powder X-ray diffraction data indicate that $Li_4CdGe_2S_7$ was prepared as the major phase of the reaction product (Fig. 4). The I₂-II-IV-VI₄ analog, namely Li₂CdGeS₄, is also present in a significant amount (Lekse *et al.*, 2009). Future work will involve optimizing the synthetic process necessary to achieve the phase-pure Li₄CdGe₂S₇ that will be needed for further NLO characterization. Several attempts to optimize the synthetic procedure were carried out, including the use of

Table 6 PIEFACE ellipsoid data (Å) for Li₄CdGe₂S₇ (top) and Li₂CdGeS₄ (bottom)[†].

Atom	<i>R</i> 1	<i>R</i> 2	R3	< <i>R</i> >	$\sigma(R)$	S	D	Coordination number
Li1	2.533	2.433	2.350	2.439	0.075	0.005	0.094	4
Li2	2.538	2.375	2.326	2.413	0.091	0.044	0.088	4
Li3	2.529	2.438	2.278	2.415	0.104	-0.029	0.079	4
Li4	2.596	2.444	2.290	2.444	0.125	-0.005	0.049	4
Cd	2.616	2.552	2.456	2.541	0.066	-0.013	0.088	4
Ge1	2.285	2.215	2.139	2.213	0.060	-0.004	0.145	4
Ge2	2.283	2.201	2.155	2.213	0.053	0.015	0.076	4
S1	2.524	2.338	2.227	2.363	0.122	0.026	0.317	4
S2	2.556	2.353	2.279	2.396	0.117	0.048	0.141	4
S3	2.418	2.332	2.265	2.338	0.062	0.006	0.169	4
S4	2.552	2.452	2.264	2.423	0.119	-0.037	0.147	4
S5	2.434	2.314	2.224	2.324	0.086	0.010	0.192	4
S6	2.500	2.363	2.332	2.399	0.073	0.042	0.221	4
S7	2.532	2.366	2.301	2.400	0.097	0.038	0.189	4
Li	2.493	2.424	2.338	2.418	0.063	-0.008	0.038	4
Cd	2.565	2.553	2.519	2.546	0.020	-0.008	0.032	4
Ge	2.256	2.205	2.173	2.211	0.034	0.008	0.044	4
S1	2.476	2.381	2.325	2.394	0.062	0.015	0.219	4
S2	2.500	2.382	2.326	2.403	0.072	0.024	0.162	4
S3	2.413	2.390	2.317	2.373	0.041	-0.021	0.233	4

 \dagger R1, R2, and R3 are the radii of the ellipsoids, <R> is the average ellipsoid radius, $\sigma(R)$ is the polyhedral distortion, S is the shape parameter, and D is the center displacement, which shows the atom displacement relative to the center of the ellipsoid.

different maximum holding temperatures (750, 800, and 850 °C), various holding times at high temperature (3, 5, and 7 d), and the addition of excess Li₂S (10 and 20%). As none of these conditions have yielded a phase-pure product, it seems that the ideal synthetic procedure will require the simultaneous tuning of multiple synthetic parameters, which may necessitate a significant amount of time.

3.3. Optical bandgap

Li₄CdGe₂S₇.

The diffuse reflectance spectrum for a microcrystalline sample of Li₄CdGe₂S₇ was converted to absorption and plotted as a function of energy. The optical bandgap, E_{g} , of the title compound was estimated to be \sim 3.6 eV, corresponding to \sim 345 nm in the ultraviolet region and correlating with the colorless nature of the crystals (see Fig. 5). The presence of both the I₄-II-IV₂-VI₇ and I₂-II-IV-VI₄ phases can be seen in the absorption edge, with the latter becoming apparent in the tail region of the absorption edge with a bandgap of

Figure 4

Laboratory-grade powder X-ray pattern of the reaction product targeting Li₄CdGe₂S₇ compared to the calculated patterns of Li₄CdGe₂S₇ and Li2CdGeS4.

conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Optical diffuse reflectance spectrum converted to absorption for

 \sim 3.2 eV (Fig. 5). This value agrees well with the value of 3.15 eV previously reported by our group for phase-pure samples of Li₂CdGeS₄ (Brant *et al.*, 2015). This spectrum also suggests that Li₄CdGe₂S₇ is the major phase.

3.4. NLO

Fig. 6(a) shows the SHG counts measured from the reference (black) and the title compound (red) at $\lambda = 1.8 \,\mu\text{m}$, where the SHG counts were averaged for the sieved AGS specimen prepared with eight different particle size ranges. It is not possible to reliably estimate the SHG coefficient of Li₄CdGe₂S₇, because PM was not determined. Nonetheless, this early result indicates that the compound's SHG coefficient should be comparable to that of the reference. It was found that the title compound exhibits a stronger SHG response in the visible range, compared with that of the reference, because the latter undergoes bandgap absorption of SHG at this wavelength. The excellent SHG performance of our sample across the entire visible spectrum is well demonstrated by Fig. 6(c), showing the color change of SHG radiation from the sample when λ was tuned from 1.0 to 1.3 µm with increments of 0.1 µm.

The intensity-dependent SHG counts (dots) for $Li_4CdGe_2S_7$ are plotted in Fig. 6(*b*), in which the ideal square-law case, *i.e.* when no laser-induced damage occurs, corresponds to the red dashed line. It was found that the data points start to deviate from the line representing the ideal case when the input intensity exceeds 10 GW cm⁻². This highly impressive LIDT, which is more than an order of magnitude greater than that of AGS, is likely due, at least in part, to the wide optical bandgap of the title compound, \sim 3.6 eV, which is far wider than the bandgap of 2.6 eV observed for AGS (Catella & Burlage, 1998).

We were not able to estimate the three-photon absorption coefficient as the sample was ungraded; however, the data seem to indicate the case for saturable absorption, a phenomenon that we have also observed for other diamondlike compounds (Zhang, Stoyko *et al.*, 2020; Glenn *et al.*, 2021). For example, Cu₂MnGeS₄ (Glenn *et al.*, 2021), Li₄CdSn₂S₇ (Zhang, Stoyko *et al.*, 2020), and Li₂CdGeS₄ (Jang *et al.*, 2014) have also been found to exhibit saturable absorption. It should be noted that the LIDT for Li₄CdGe₂S₇ is much greater than that of the analogous I₂–II–IV–VI₄ phase Li₂CdGeS₄ (Jang *et al.*, 2014), and would likely be even higher when prepared in a phase-pure form.

3.5. Electronic structure calculations

The calculated electronic band diagram for $Li_4CdGe_2S_7$ is displayed on the left-hand side of Fig. 7. The dispersion of the bands along the high-symmetry points in the Brillouin zone (Fig. 7) indicates the direct nature of the bandgap. The top of the valence and bottom of the conduction band occur at the Γ point. The calculated band gap of 2.55 eV represents the widebandgap semiconductor nature of the compound. However,

Figure 6

(a) Relative SHG counts from the reference (black) and $Li_4CdGe_2S_7$ (red). (b) SHG counts versus input intensity at 1.064 µm. The red line is the case for ideal SHG. (c) Representative photos, showing strong SHG signals from $Li_4CdGe_2S_7$ enclosed in the fused-silica tube over the visible range, when excited at $\lambda = 1.0, 1.1, 1.2, and 1.3 \mu m$, from left to right, respectively.

Calculated BVSs and G values for Li₄CdGe₂S₇ and Li₂CdGeS₄. Cd^{2+} S^{2-} (avg) Ge4+ (avg) G 1.96 4.04 2.05 0.08 2.070.09 2.10 4.04 1.95 4.06 2.06 0.07 2.08 4.06 2.090.09 † Cd-S r_0 value from Brown & Altermatt (1985). \ddagger Cd-S r_0 value from Palenik the bandgap is underestimated as is usually the case for bandgap determination by conventional DFT methods (Nakamura et al., 2010; Chen & Ravindra, 2013; Khyzhun et al., 2015; Choi et al., 2015). The calculated projected density of

states (DOS) showing the different atomic orbital contributions for $Li_4CdGe_2S_7$ is shown on the right-hand side of Fig. 7. The states below the Fermi level, $E_{\rm F}$, at the top of the valence band are dominated by bands with S 3p character; smaller contributions arising from bands of Cd 4d and 4p, Li 2s, and Ge 4p character can also be discerned (Fig. 7). The conduction band minimum is mainly comprised of bands with S 3p and Ge 4s character, most likely arising from the Ge-S antibonding states, and smaller contributions from the Cd p. Qualitatively, there is a close agreement between the calculated electronic structure of Li₄CdGe₂S₇ compared to that reported for Li2CdGeS4.

4. Conclusion

Table 7

Compound

Li4CdGe2S7†

Li4CdGe2S7‡

Li2CdGeS4†

Li2CdGeS4‡

(2006).

Li⁺ (avg)

1.07

1.07

1.10

1.10

Li₄CdGe₂S₇ and Li₂CdGeS₄ have qualitatively similar electronic structures and crystal structures that can be considered derivatives of lonsdaleite. The differences between the two compounds lie in the increased tetrahedral distortions found in Li₄CdGe2S₇ and the wider optical bandgap that seemingly leads to enhanced IR-NLO performance. The SHG and LIDT

measurements indicate that Li₄CdGe₂S₇ is among the front runners as an excellent candidate for IR-NLO devices. Based on the large LIDT demonstrated here, Li₄CdGe₂S₇ would be very useful in high-powered laser applications. Further synthetic efforts are currently underway to prepare Li₄CdGe₂S₇ as a phase-pure microcrystalline powder and as sizeable single crystals to more precisely assess the NLO properties of this material. Based on the results presented here, as well as those previously reported for Li₄CdSn₂S₇, other lithium-containing I₄-II-IV₂-VI₇ compounds should be pursued for their IR-NLO properties.

Acknowledgements

JAA, SSS and AJC acknowledge the support of the National Science Foundation of the United States. JIJ acknowledges support from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Korean government. AC and SB acknowledge the National Science Foundation of the United States for funding. The authors gratefully acknowledge Gooch and Housego (Ohio) LLC for providing the optical-quality commercial-grade AgGaS₂ and AgGaSe₂ single-crystal reference materials. A special thanks goes to Gary Catella for inspiration and help with obtaining the commercial-grade samples. JAA thanks the late Professor Erwin Parthé for fruitful discussions and encouragement.

Funding information

Funding for this research was provided by: National Science Foundation of the United States (grant No. DMR-1611198 to JAA; grant No. DMR-1809128 to AJC and SB); National Research Foundation of Korea (grant No. 2021R1A2C2013625 to JIJ).

Electronic band structure and partial density of states (DOS) plotted from left to right for $Li_4CdGe_2S_7$. The Fermi level is indicated as E_F .

References

- Abudurusuli, A., Huang, J., Wang, P., Yang, Z., Pan, S. & Li, J. (2021). *Angew. Chem. Int. Ed.* **60**, 24131–24136.
- Aitken, J. A. (2001). PhD thesis, Michigan State University, Ann Arbor, USA.
- Brant, J. A., Devlin, K. P., Bischoff, C., Watson, D., Martin, S. W., Gross, M. D. & Aitken, J. A. (2015). *Solid State Ionics*, **278**, 268–274.Breithaupt, J. F. A. & Plattner, C. F. (1850). *Ann. Phys.* **80**, 383–391.
- Brown, I. D. (1992). Z. Kristallogr. 199, 255–272.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Bruker (2010). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Brunetta, C. D., Minsterman, W. C., Lake, C. H. & Aitken, J. A. (2012). J. Solid State Chem. 187, 177–185.
- Bundy, F. P. & Kasper, J. S. (1967). J. Chem. Phys. 46, 3437-3446.
- Catella, G. C. & Burlage, D. (1998). MRS Bull. 23, 28-36.
- Chen, D. & Ravindra, N. M. (2013). J. Alloys Compd. 579, 468–472.
 Cheng, X., Whangbo, M.-H., Hong, M. & Deng, S. (2019). Inorg.
 Chem. 58, 9572–9575.
- Choi, S. G., Park, J. S., Donohue, A. L., Christensen, S. T., To, B., Beall, C., Wei, S. H. & Repins, I. L. (2015). *Phys. Rev. Appl.* **4**, 054006.
- Craig, A. J., Stoyko, S. S., Bonnoni, A. & Aitken, J. A. (2020). Acta Cryst. E76, 1117-1121.
- Cumby, J. & Attfield, J. P. (2017). Nat. Commun. 8, 14235.
- Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. (2014). Powder Diffr. 29 (Suppl. S2), S13–S18.
- Dogguy, M., Jaulmes, S., Laruelle, P. & Rivet, J. (1982). Acta Cryst. B38, 2014–2016.
- Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.
- Friedel, C. (1861). C. R. Acad. Sci. Paris, pp. 983-985.
- Frondel, C. & Marvin, U. B. (1967). Nature, 214, 587-589.
- George, J., Waroquiers, D., Di Stefano, D., Petretto, G., Rignanese, G.-M. & Hautier, G. (2020). Angew. Chem. Int. Ed. 59, 7569–7575.
- Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. & Wentzcovitch, R. M. (2009). J. Phys. Condens. Matter, 21, 395502.
- Glenn, J. R., Cho, J. B., Wang, Y., Craig, A. J., Zhang, J.-H., Cribbs, M., Stoyko, S. S., Rosello, K. E., Barton, C., Bonnoni, A., Grima-Gallardo, P., MacNeil, J. H., Rondinelli, J. M., Jang, J. I. & Aitken, J. A. (2021). *Dalton Trans.* **50**, 17524–17537.
- Goryunova, N. A. (1965). In *The Chemistry of Diamond-like Semiconductors*. Cambridge, MA: Massachusetts Insitute of Technology.
- Gulay, L. D., Olekseyuk, I. D. & Parasyuk, O. V. (2002). J. Alloys Compd. 340, 157–166.
- Guo, Y., Liang, F., Li, Z., Xing, W., Lin, Z., Yao, J. & Wu, Y. (2019). Cryst. Growth Des. 19, 5494–5497.
- Hough, R. M., Gilmour, I., Pillinger, C. T., Arden, J. W., Gilkess, K. W. R., Yuan, J. & Milledge, H. J. (1995). *Nature*, **378**, 41–44.
- Huang, Y., Wu, K., Cheng, J., Chu, Y., Yang, Z. & Pan, S. (2019). Dalton Trans. 48, 4484–4488.
- Jackson, A. G., Ohmer, M. C. & LeClair, S. R. (1997). Infrared Phys. Technol. 38, 233–244.
- Jang, J. I., Clark, D. J., Brant, J. A., Aitken, J. A. & Kim, Y. S. (2014). *Opt. Lett.* **39**, 4579–4582.

- Kaib, T., Haddadpour, S., Andersen, H. F., Mayrhofer, L., Järvi, T. T., Moseler, M., Möller, K.-C. & Dehnen, S. (2013). Adv. Funct. Mater. 23, 5693–5699.
- Khyzhun, O. Y., Bekenev, V. L., Ocheretova, V. A., Fedorchuk, A. O. & Parasyuk, O. V. (2015). *Physica B*, **461**, 75–84.
- Kraus, D., Ravasio, A., Gauthier, M., Gericke, D. O., Vorberger, J., Frydrych, S., Helfrich, J., Fletcher, L. B., Schaumann, G., Nagler, B., Barbrel, B., Bachmann, B., Gamboa, E. J., Göde, S., Granados, E., Gregori, G., Lee, H. J., Neumayer, P., Schumaker, W., Döppner, T., Falcone, R. W., Glenzer, S. H. & Roth, M. (2016). *Nat. Commun.* 7, 10970.
- Kubelka, P. & Munk, F. (1931). Ein Beitrag zur Optik von Farbanstrichen. Z. Techn. Phys. 12, 593-601.
- Lekse, J. W., Moreau, M. A., McNerny, K. L., Yeon, J., Halasyamani, P. S. & Aitken, J. A. (2009). *Inorg. Chem.* 48, 7516–7518.
- Monkhorst, H. J. & Pack, J. D. (1976). Phys. Rev. B, 13, 5188-5192.
- Nakamura, S., Maeda, T. & Wada, T. (2010). Jpn. J. Appl. Phys. 49, 121203.
- O'Keeffe, M. (1990). Acta Cryst. A46, 138-142.
- Palenik, G. J. (2006). Can. J. Chem. 84, 99-104.
- Palmer, D. (2019). *CrystalMaker*. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. http://crystalmaker.com/.
- Pamplin, B. (1981). Prog. Cryst. Growth Charact. 3, 179-192.
- Parasyuk, O. V., Romanyuk, Y. E. & Olekseyuk, I. D. (2005). J. Cryst. Growth, 275, e159–e162.
- Parthé, E. (1964). In *Crystal Chemistry of Tetrahedral Structures*. New York, NY: Gordon and Breach Science Publishers, Inc.
- Parthé, E. (1996). In Elements of Inorganic Structural Chemistry: Selected Efforts to Predict Structural Features, 2nd ed. Geneva: K. Sutter Parthé.
- Pauling, L. (1929). J. Am. Chem. Soc. 51, 1010-1026.
- Pauling, L. & Weinbaum, S. (1934). Z. Kristallogr. 88, 48-53.
- Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868.
- Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X. & Burke, K. (2008). *Phys. Rev. Lett.* **100**, 136406.
- Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211.
- Schäfer, W., Scheunemann, K. & Nitsche, R. (1980). Mater. Res. Bull. 15, 933–937.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sinagra, C. W., Saouma, F. O., Otieno, C. O., Lapidus, S. H., Zhang, J.-H., Craig, A. J., Grima-Gallardo, P., Brant, J. A., Rosmus, K. A., Rosello, K. E., Jang, J. I. & Aitken, J. A. (2021). *J. Alloys Compd.* 888, 161499.
- Smith, D. K. & Jenkins, R. (1996). J. Res. Natl Inst. Stand. Technol. 101, 259–271.
- Ulrich, F. & Zachariasen, W. (1925). Z. Kristallogr. Cryst. Mater. 62, 260–273.
- Wu, K., Yang, Z. & Pan, S. (2017). Chem. Commun. 53, 3010-3013.
- Zhang, J.-H., Clark, D. J., Brant, J. A., Rosmus, K. A., Grima, P., Lekse, J. W., Jang, J. I. & Aitken, J. A. (2020). *Chem. Mater.* 32, 8947–8955.
- Zhang, J.-H., Stoyko, S. S., Craig, A. J., Grima, P., Kotchey, J. W., Jang, J. I. & Aitken, J. A. (2020). *Chem. Mater.* **32**, 10045–10054.

Acta Cryst. (2022). C78, 470-480 [https://doi.org/10.1107/S2053229622008014]

Crystal structure, electronic structure, and optical properties of the novel Li₄CdGe₂S₇, a wide-bandgap quaternary sulfide with a polar structure derived from lonsdaleite

Andrew J. Craig, Seung Han Shin, Jeong Bin Cho, Srikanth Balijapelly, Jordan C. Kelly, Stanislav S. Stoyko, Amitava Choudhury, Joon I. Jang and Jennifer A. Aitken

Computing details

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SMART* (Bruker, 2010); data reduction: *SMART* (Bruker, 2010); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *CrystalMaker* (Palmer, 2019); software used to prepare material for publication: *SHELXL2018* (Sheldrick, 2015b).

Tetralithium cadmium digermanium heptasulfide

Crystal data

Li₄CdGe₂S₇ $M_r = 509.76$ Monoclinic, Cc a = 16.8354 (10) Å b = 6.7870 (4) Å c = 10.1499 (6) Å $\beta = 93.710 (3)^{\circ}$ $V = 1157.32 (12) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEXII diffractometer φ and ω scan Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\min} = 0.549, T_{\max} = 0.747$ 7415 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.010$ $wR(F^2) = 0.024$ S = 1.082634 reflections 129 parameters F(000) = 944 $D_x = 2.926 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7524 reflections $\theta = 2.4-33.0^{\circ}$ $\mu = 8.18 \text{ mm}^{-1}$ T = 293 KPolyhedra, colourless $0.21 \times 0.12 \times 0.11 \text{ mm}$

2634 independent reflections 2612 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -21 \rightarrow 21$ $k = -8 \rightarrow 8$ $l = -13 \rightarrow 13$

2 restraints $w = 1/[\sigma^2(F_o^2) + (0.0097P)^2 + 0.0293P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.27 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$

Extinction correction: SHELXL2018 (Sheldrick, 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00183 (7) Absolute structure: Refined as an inversion twin. Absolute structure parameter: 0.001 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Lil	0.3309 (6)	0.1842 (15)	0.5012 (10)	0.0224 (18)	
Li2	0.1207 (8)	0.3276 (14)	0.4190 (13)	0.025 (2)	
Li3	0.9764 (7)	0.3297 (11)	0.7180 (11)	0.0199 (19)	
Li4	0.7674 (6)	0.1619 (14)	0.6423 (10)	0.025 (2)	
Cd	0.54849 (2)	0.36329 (3)	0.56327 (4)	0.01770 (6)	
Gel	0.40538 (2)	0.33494 (7)	0.84280(2)	0.01042 (11)	
Ge2	0.19465 (2)	0.17688 (7)	0.77467 (2)	0.01045 (10)	
S1	0.50089 (4)	0.29460 (12)	0.00091 (8)	0.01425 (15)	
S2	0.43895 (5)	0.16838 (12)	0.66829(7)	0.01398 (16)	
S3	0.37399 (5)	0.35832 (12)	0.31017 (8)	0.01570 (17)	
S4	0.30151 (5)	0.16992 (11)	0.92654 (7)	0.01258 (16)	
S5	0.22120 (5)	0.33369 (13)	0.59790 (8)	0.01651 (18)	
S6	0.66610 (5)	0.36507 (11)	0.73450 (8)	0.01491 (16)	
S7	0.09614 (4)	0.32632 (13)	0.86708 (8)	0.01446 (16)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters (A ²)
--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Lil	0.022 (4)	0.025 (4)	0.021 (3)	-0.001 (3)	0.006 (3)	-0.001 (3)
Li2	0.028 (4)	0.021 (4)	0.025 (4)	-0.002 (3)	0.000 (3)	0.001 (3)
Li3	0.021 (3)	0.023 (4)	0.016 (4)	0.000 (3)	0.004 (3)	0.002 (3)
Li4	0.026 (4)	0.025 (4)	0.024 (4)	0.003 (3)	-0.003 (3)	-0.001 (3)
Cd	0.01709 (9)	0.01891 (11)	0.01720 (9)	0.00053 (13)	0.00176 (6)	0.00054 (13)
Gel	0.00954 (19)	0.0111 (2)	0.01056 (18)	-0.00010 (12)	0.00062 (14)	-0.00022 (12)
Ge2	0.00921 (18)	0.01191 (19)	0.01018 (18)	-0.00051 (13)	0.00025 (13)	-0.00008 (13)
S1	0.0124 (3)	0.0164 (4)	0.0135 (3)	-0.0005 (3)	-0.0020 (2)	0.0005 (3)
S2	0.0160 (3)	0.0138 (4)	0.0124 (3)	-0.0002 (3)	0.0032 (3)	-0.0021 (3)
S3	0.0179 (4)	0.0117 (4)	0.0175 (4)	-0.0012 (3)	0.0018 (3)	-0.0008(3)
S4	0.0098 (3)	0.0163 (4)	0.0115 (3)	-0.0024 (3)	-0.0002 (3)	0.0023 (3)
S5	0.0173 (4)	0.0203 (4)	0.0120 (4)	-0.0021 (3)	0.0011 (3)	0.0036 (3)
S 6	0.0150 (4)	0.0124 (4)	0.0171 (3)	-0.0010 (3)	-0.0013 (3)	-0.0017 (3)
S7	0.0130 (4)	0.0146 (4)	0.0161 (3)	0.0020 (3)	0.0035 (3)	-0.0005 (3)

Geometric parameters (Å, °)

Li1—S5	2.374 (10)	Li4—S6	2.428 (10)
Li1—S2	2.408 (10)	Li4—S4 ^{ix}	2.567 (11)
Li1—S3	2.421 (10)	Cd—S1 ^x	2.5235 (8)
Li1—S4 ⁱ	2.559 (10)	Cd—S7 ^{ix}	2.5441 (9)
Li2—S1 ⁱⁱ	2.380 (13)	Cd—S6	2.5487 (10)
Li2—S5	2.401 (13)	Cd—S2	2.5576 (9)
Li2—S7 ⁱⁱⁱ	2.437 (10)	Ge1—S3 ^x	2.1680 (8)
Li2—S6 ^{iv}	2.447 (12)	Ge1—S2	2.2055 (9)
Li3—S3 ^v	2.385 (10)	Ge1—S1 ^{xi}	2.2141 (8)
Li3—S1 ^v	2.420 (12)	Ge1—S4	2.2862 (8)
Li3—S2 ^{vi}	2.428 (7)	Ge2—S5	2.1577 (8)
Li3—S7 ^{vii}	2.440 (12)	Ge2—S6 ^{xii}	2.2024 (10)
Li4—S5 ^{viii}	2.393 (9)	Ge2—S7	2.2045 (8)
Li4—S3 ^v	2.397 (10)	Ge2—S4	2.2926 (9)
S5—Li1—S2	107.5 (4)	Ge1 ^{xiii} —S1—Li2 ^{ix}	112.5 (3)
S5—Li1—S3	113.8 (4)	Ge1 ^{xiii} —S1—Li3 ^{iv}	123.0 (3)
S2—Li1—S3	109.5 (4)	Li2 ^{ix} —S1—Li3 ^{iv}	113.2 (4)
S5—Li1—S4 ⁱ	112.5 (4)	Ge1 ^{xiii} —S1—Cd ⁱⁱⁱ	105.78 (3)
S2—Li1—S4 ⁱ	106.8 (4)	Li2 ^{ix} —S1—Cd ⁱⁱⁱ	98.4 (3)
S3—Li1—S4 ⁱ	106.5 (4)	Li3 ^{iv} —S1—Cd ⁱⁱⁱ	99.34 (19)
S1 ⁱⁱ —Li2—S5	108.3 (5)	Ge1—S2—Li1	108.8 (2)
S1 ⁱⁱ —Li2—S7 ⁱⁱⁱ	106.0 (5)	Ge1—S2—Li3 ^{xii}	113.3 (3)
S5—Li2—S7 ⁱⁱⁱ	104.4 (4)	Li1—S2—Li3 ^{xii}	111.3 (4)
$S1^{ii}$ — $Li2$ — $S6^{iv}$	113.2 (4)	Ge1—S2—Cd	107.38 (3)
S5—Li2—S6 ^{iv}	110.4 (5)	Li1—S2—Cd	102.5 (2)
S7 ⁱⁱⁱ —Li2—S6 ^{iv}	114.0 (5)	Li3 ^{xii} —S2—Cd	113.0 (3)
S3 ^v —Li3—S1 ^v	109.9 (4)	Ge1 ⁱⁱⁱ —S3—Li3 ^{iv}	113.5 (2)
S3 ^v —Li3—S2 ^{vi}	113.8 (5)	Ge1 ⁱⁱⁱ —S3—Li4 ^{iv}	109.1 (2)
S1 ^v —Li3—S2 ^{vi}	101.4 (3)	$Li3^{iv}$ —S3— $Li4^{iv}$	102.6 (4)
S3 ^v —Li3—S7 ^{vii}	110.0 (4)	Ge1 ⁱⁱⁱ —S3—Li1	115.4 (2)
S1 ^v —Li3—S7 ^{vii}	112.3 (5)	Li3 ^{iv} —S3—Li1	108.3 (3)
S2 ^{vi} —Li3—S7 ^{vii}	109.3 (4)	Li4 ^{iv} —S3—Li1	107.0 (4)
S5 ^{viii} —Li4—S3 ^v	107.5 (4)	Ge1—S4—Ge2	109.01 (3)
S5 ^{viii} —Li4—S6	111.9 (4)	Ge1—S4—Li1 ^{xiv}	115.6 (2)
S3 ^v —Li4—S6	105.7 (4)	Ge2—S4—Li1 ^{xiv}	110.3 (2)
S5 ^{viii} —Li4—S4 ^{ix}	110.0 (4)	Ge1—S4—Li4 ⁱⁱ	108.5 (2)
S3 ^v —Li4—S4 ^{ix}	115.7 (4)	Ge2—S4—Li4 ⁱⁱ	110.8 (2)
S6—Li4—S4 ^{ix}	106.1 (3)	Li1 ^{xiv} —S4—Li4 ⁱⁱ	102.4 (4)
$S1^{x}$ —Cd— $S7^{ix}$	112.35 (3)	Ge2—S5—Li1	110.0 (2)
S1 ^x —Cd—S6	112.75 (3)	Ge2—S5—Li4 ^{xv}	112.6 (3)
S7 ^{ix} —Cd—S6	105.41 (3)	Li1—S5—Li4 ^{xv}	102.9 (4)
S1 ^x —Cd—S2	110.77 (3)	Ge2—S5—Li2	116.5 (3)
S7 ^{ix} —Cd—S2	109.70 (2)	Li1—S5—Li2	102.1 (4)
S6—Cd—S2	105.52 (3)	Li4 ^{xv} —S5—Li2	111.3 (3)
S3 ^x —Ge1—S2	116.24 (3)	Ge2 ^{vi} —S6—Li4	117.8 (2)

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

s20532296, 2022.9, Downloaded from https://onlinelibrary.wiley.com/doi/10.1107/S2053229622008014 by Missouri University Of Science, Wiley Online Library on [21/022023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

$S3^{x}$ —Ge1—S1 ^{xi}	112.82 (3)	Ge2 ^{vi} —S6—Li2 ^v	116.6 (2)
S2—Ge1—S1 ^{xi}	107.87 (3)	Li4—S6—Li2 ^v	104.7 (3)
S3 ^x —Ge1—S4	110.03 (3)	Ge2 ^{vi} —S6—Cd	106.34 (3)
S2—Ge1—S4	106.82 (3)	Li4—S6—Cd	105.6 (2)
S1 ^{xi} —Ge1—S4	101.95 (3)	Li2 ^v —S6—Cd	104.6 (3)
S5—Ge2—S6 ^{xii}	111.99 (3)	Ge2—S7—Li2 ^x	114.4 (3)
S5—Ge2—S7	109.20 (3)	Ge2—S7—Li3 ^{xvi}	110.8 (3)
S6 ^{xii} —Ge2—S7	111.08 (3)	Li2 ^x —S7—Li3 ^{xvi}	104.3 (4)
S5—Ge2—S4	111.93 (3)	Ge2—S7—Cd ⁱⁱ	112.60 (3)
S6 ^{xii} —Ge2—S4	104.90 (3)	Li2 ^x —S7—Cd ⁱⁱ	112.1 (3)
S7—Ge2—S4	107.62 (3)	Li3 ^{xvi} —S7—Cd ⁱⁱ	101.6 (2)

Symmetry codes: (i) x, -y, z-1/2; (ii) x-1/2, -y+1/2, z+1/2; (iii) x, -y+1, z-1/2; (iv) x-1/2, -y+1/2, z-1/2; (v) x+1/2, -y+1/2, z+1/2; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y-1/2, z; (vii) x+1/2, -y+1/2, z-1/2; (x) x, -y+1, z+1/2; (xi) x, y, z+1; (xii) x-1/2, y-1/2, z; (xiii) x, y, z-1; (xiv) x, -y, z+1/2; (xv) x-1/2, y+1/2, z; (xvi) x-1, y, z.