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ABSTRACT

Modern smart cities are focusing on smart transportation solu-

tions to detect and mitigate the effects of various traffic incidents

in the city. To materialize this, roadside units and ambient trans-

portation sensors are being deployed to collect vehicular data that

provides real-time traffic monitoring. In this paper, we first propose

a real-time data-driven anomaly-based traffic incident detection

framework for a city-scale smart transportation system. Specifically,

we propose an incremental region growing approximation algo-

rithm for optimal Spatio-temporal clustering of road segments and

their data; such that road segments are strategically divided into

highly correlated clusters. The highly correlated clusters enable

identifying a Pythagorean Mean-based invariant as an anomaly

detection metric that is highly stable under no incidents but shows

a deviation in the presence of incidents. We learn the bounds of

the invariants in a robust manner such that anomaly detection can

generalize to unseen events, even when learning from real noisy

data. We perform extensive experimental validation using mobility

data collected from the City of Nashville, Tennessee, and prove that

the method can detect incidents within each cluster in real-time.

KEYWORDS

Unsupervised Learning, Anomaly Detection, Smart Transportation,

Graph Algorithms, Cluster Analysis, Regression,Incident Detection

1 INTRODUCTION

Rapid urbanization has proliferated the number of vehicles in cities

leading to increasing congestion and a higher number of traffic acci-

dents. For any traffic accident, delayed detection and response from

first responders or emergency management agencies can worsen

into heavy city-wide congestion and even in the loss of life. This

∗Both authors contributed equally to this research.
‡ Corresponding Author

delay is one of the most important challenges faced by communities

across the globe [11].

To monitor the transportation infrastructure, three approaches

have emerged to increase the visibility of real-time road conditions:

(i) vehicular crowdsourcing, (ii) video-based anomaly detection;

and (iii) sensor-based data collection.

Vehicular crowdsourcing involves cities leveraging commercial

crowdsourcing platforms (such asWaze), to gather content reported

by citizen users on these platforms to get real-time observations

on traffic events. However, traffic incident detection is often unreli-

able and strong verification of the human reported data cannot be

guaranteed in real-time.

Video anomaly detection[4] leverages cameras and sensors de-

ployed by the city to detect traffic emergencies. This approach

requires expensive edge devices, longer model training times, and

continuous maintenance. Many environmental and connectivity

constraints also negatively influence video quality and real-time

availability. The computational resources needed to monitor and

identify traffic incidents are high and not community scalable.

To avoid the above problems in these two paradigms, smart cities

are deploying traffic sensors and Road Side Units (RSU) along roads

and highways that collect traffic data from speed sensors or smart

cars [8]. The RSU infrastructure is a typical IoT network that is

decentralized, low-powered, and resource-constrained in nature.

However, given the ubiquity and number of devices, the RSU

infrastructure can be utilized towork together in a distributed capac-

ity, to design intelligent lightweight anomaly-based traffic incident

detection in real-time that would otherwise be too computationally

intensive, geographically impossible, or costly.

Challenges:We view traffic incidents as anomalies that occur

between otherwise normal traffic patterns. However, characteriz-

ing a normal traffic pattern that works at a large city scale is not

straightforward due to (i) day-to-day variability of traffic, (ii) local

neighborhood dependencies, (iii) a large number of speed sensors
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and road segments. Hence, the nature of the problem falls under

smart living CPS, which, unlike industrial CPS, are not just bound

by tightly defined laws of physics. Therefore, the anomaly detection

problem is much more challenging and requires novel advances

compared to existing theories of anomaly detection in CPS.

Furthermore, some previous works on smart metering [1] have

attempted to solve the anomaly detection challenge in smart living

CPS. However, such efforts used data collected from small experi-

mental testbeds. Thus, the scale of the problem was smaller, and

training data was free from noise. In contrast, our transportation

CPS setting includes data collected from the wild, across a whole

city. This needs to be accounted for in the design. Specifically,

geospatial factors need to be blended with causal factors of the un-

derlying structure of the data that characterizes benign situations.

While many prior works exist in this area, the effort in this

paper takes the challenge for the whole city with a dataset analyzed

over one year to account for all seasonal and human behavioral

effects. The validation and the performance metrics reported are

very robust compared to existing works in [7, 13, 14].

Paper Contributions:We propose an unsupervised time series

based anomaly detection framework for large-scale smart trans-

portation networks that detects traffic incidents in real-time while

maintaining a low false alarm rate. The framework automatically

pinpoints the area of incident occurrence.

Specifically, we first show theoretical parallelism between the

transportation problem and an existing anomaly detection metric

(Harmonic to Arithmetic Mean ratios) previously developed for

anomaly detection in smart energy systems. Second, we propose

a region-growing approximation algorithm that allows to strate-

gically partition the smart transportation CPS into clusters where

the data is highly positively correlated. The strategic partitioning

guarantees 1) high invariance of the anomaly detection metric and

allows 2) decentralized cluster-wise implementation of our detec-

tion framework which enables the framework to pinpoint the area

of the incident. Third, we propose a data cleaning and augmentation

technique to enable learning the underlying structure of benign con-

ditions from the data collected from the wild to reduce false alarms.

Fourth, we give a technique to learn the bounds of the anomaly de-

tection metric in each of the strategic partitions under normal traffic

conditions to establish the anomaly detection criterion. Finally, we

validate our approach through extensive large-scale experiments

on real mobility datasets (6928 road segments over 1 year) acquired

from the City of Nashville, Tennessee. Results show that our model

is able to detect traffic incidents in real-time. The performance is

measured by comparing our framework’s decisions with a separate

ground truth dataset containing actual incidents recorded by the

Nashville Fire and Safety Department.

The rest of the paper is organized as follows: Section 2 discusses

the related work. Section 3 introduces the transportation system

model. Section 4 discusses the proposed framework. Experimental

results are discussed in Section 5 followed by conclusions.

2 PREVIOUS WORK

Existing research on automatic incident detection for cyber-physical

transportation systems broadly falls into two classes. They can

be classified into model-based and data-driven approaches. Model-

based approaches [6, 10] include probabilistic models [17], fuzzy C-

means clustering [16], and state-based methods which used Kalman

Filtering [9] to describe the state of monitored traffic so that usual

traffic behaviors can be learned and unusual incidents can be de-

tected. However, thesemethods require realistic assumptions for the

target area and assume that their forecasting models are represen-

tative of true uncertainty in the data. Thus, they require extensive

time-series validation.

Data-driven approaches, on the other hand, include classification

methods which typically include nearest neighbors [12], neural

networks, and support vector machines. These methods require

labeled data to train and introduce new challenges regarding user

data privacy. Techniques such as convolutional-LSTM models and

neural networks [18], consume a lot of time comparing real-time

data with historical data and have high computational costs limiting

their effectiveness in decentralized deployments.

3 SYSTEM MODEL DESCRIPTION

The smart transportation CPS monitors the physical world of road

conditions via TMC sensors that are deployed in each road segment.

In our setting, there is one TMC sensor per road segment, so the

number of TMC sensors equals the number of road segments. The

data collected from TMC is used for various operational decisions

that can control the appropriate volume of traffic to reduce the

disturbance in mobility and travel times.

The TMC sensors are small computational units with minimal

memory. Hence, each captured information is sent to a Road Side

unit [15] (RSU). Each RSU receives data from multiple TMCs and

has a larger computational power and memory. The RSUs usually

have a wired backhaul link to an edge or cloud server, where data

from all TMCs of an area of interest is accumulated. Depending

on implementation variations, the RSU itself could also serve as a

decentralized edge server for edge analytics. However, the system-

level implementation is out of the scope of our paper. We provide a

framework that can run on the edge or fog, based on the computa-

tional and networking capabilities available to the smart city.

For this paper, a traffic incident is an anomalous event such

as vehicular accidents, crime, or man-made disaster affecting traffic

flow, fire, non-recurring high duration congestion to which the police,

emergency, and fire safety required a response. The ground truth

information on incidents was collected from Nashville Fire and

Safety Department. This ground truth information contains the

location, time stamp, and date of each incident responded by the

City of Nashville in the year 2019.

Our goal in this paper is to develop a framework and learn the

parameters that automatically detect congestion in real-time in

the test/deployment stage. The ground truth information during

the testing set is used to measure the incident detection accuracy

of our anomaly detection framework. The ground truth informa-

tion during the training phase is used to cross-reference for data

augmentation and cleaning that enables efficient learning of the

underlying structure of data corresponding to benign conditions

in the transportation CPS. Each TMC at the end of a time win-

dow 𝑡 sends the following information to the RSU: timestamp, road
segment ID, mean speed over the 𝑡-th time window). The TMC
sensor is located at the center of each road segment. Therefore, the
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distance between two road segments is the distance between the

midpoint of any two road segments. The TMCs capture ambient

speeds as vehicles pass by over a particular road segment.

4 PROPOSED FRAMEWORK

First, we provide a high-level overview of the framework followed

by a summary of the notations used in this paper in Table 1. There

are five logical modules in which the contribution is divided:

Theoretical Intuition: We discuss the choice of harmonic mean

to arithmetic mean ratio metric [1] as an anomaly detection metric,

its relevance to the problem, and its advantages and modifications

necessary to fit the transportation application.

Region Growing Approximation: For the metric to achieve

invariance, we need spatial and temporal partitions of the high

dimensional data at which the positive correlation within each

partition is maximized, which is achieved through a region growing

approximation algorithm.

Invariant Design: Involves metric derivation after the region

growing approximation.

Pre-processing and Augmentation: Due to the characteristics

of real-world traffic data, the invariant contains the effects of ac-

cidents. This poses a practical problem for unsupervised learning

problems such as anomaly detection. Therefore, our framework

invokes a data cleaning and sanitization technique to augment

synthetic benign samples of the invariant.

Learning normal operating range of invariant: Once the

cleaning has been done, we obtain a low dimensional invariant

that is a suitable candidate for pattern recognition of this invariant

that remains stable when there are no incidents.

Anomaly Detection Criterion: We identify the best hyperpa-

rameter inputs to the training algorithm that gives the best output.

Table 1: List of symbols.

Symbol Description

𝐶 Total clusters in the target area

𝑐𝑘 𝑘𝑡ℎ cluster within the set of clusters𝐶

𝑆 Set of segments in the target area

𝑛 Number of segments

𝑆𝑐𝑘 Set of segments located in cluster 𝑐𝑘
𝑠𝑙𝑐𝑘 𝑙𝑡ℎ segment in the 𝑘𝑡ℎ cluster

𝑝 Speed correlation

𝑝 (𝑚𝑖𝑛) Correlation threshold

𝑝𝑐𝑢𝑡 Cut off correlation value

𝑡 Time slot, based on temporal granularity

𝑚 Number of time slots

𝑑
𝑠𝑙𝑐𝑘

(𝑡 ) Mean speed 𝑑 at segment 𝑙 within 𝑆𝑐𝑘 at time 𝑡

𝐻𝑀𝑐𝑘 (𝑡 ) Harmonic Mean of cluster 𝑐𝑘 at time window 𝑡

𝐴𝑀𝑐𝑘 (𝑡 ) Arithmetic Mean of cluster 𝑐𝑘 at time window 𝑡

𝑄𝑐𝑘 (𝑡 ) Q-ratio metric of cluster 𝑐𝑘 at time window 𝑡

Γ
ℎ𝑖𝑔ℎ
𝑐𝑘

(𝑡 ), Γ𝑙𝑜𝑤𝑐𝑘
(𝑡 ) Upper and lower Safe margins for the ratio of cluster 𝑐𝑘 at

time 𝑡 , exceeding these results in non-zero residuals

𝜏𝑚𝑎𝑥𝑐𝑘
(ℎ), 𝜏𝑚𝑖𝑛𝑐𝑘

(ℎ) Upper and lower standard limits of cluster 𝑐𝑘 over historical
data ℎ

∇𝑐𝑘 (𝑡 ) Residuals for the ratios of cluster 𝑐𝑘 , a non-zero residual
indicates a possible anomaly

𝜅 Scalar Factor Hyperparameter

𝑆𝐹 Sliding Frame Size Hyperparameter

4.1 Theoretical Intuition

For a large scale CPS application such as smart transportation, the

anomaly detection metric should have the following properties:

(1) Invariance Under Benign Conditions: Under no incidents, the

metric should show minimal change across time and across history.

This is important to reduce false alarms given the low base rate of

incident occurrence.

(2) Deviation Under Incidents: Under incidents, the metric should

have properties that cause quick and discernible deviation in the

metric. This is important to increase detection accuracy.

As a starting point, we leverage a recent result from [1] that

showed that a collection of positively correlated random variables

sampled repeatedly over time can be represented as a time series

of ratio between the harmonic to the arithmetic mean of the aggre-

gate data; and can be used as an anomaly detection metric. This is

because this the metric is stationary in its time series as long as a

positive co-variance structure can be preserved. Any unforeseen

data falsification attack that disturbs the space-time covariance

structure will cause deviations in the otherwise stationary time

series of Harmonic Means to Arithmetic Means. In the following,

we explain the theoretical explanation of why the HM to AM ratio

is a good starting point for our problem and examine what novel

theoretical and applied contributions are necessary to make it work

for incident detection for a transportation CPS.

4.1.1 Invariance Under Benign Conditions. Here we explain

why the harmonic to the arithmetic mean ratio is a candidate for an

anomaly detection metric that is invariant under benign conditions.

The basic premise is that humans react with some shared driving

behavior based on the time of the day, traffic level on the road,

road type (highway or city lanes), and road width, etc. Such shared

driving behavior in the absence of incidents causes driving speeds

to increase or decrease together, or remain similar that in turn man-

ifests itself as having high positive correlation among data points.

One of the achievements of [1] is that it proved that the upper

bound on the absolute difference between the arithmetic mean and

harmonic mean of the data collected from a positively correlated

system depends on two things: (1) minimum possible value of the

data (denoted by 𝑑𝑚𝑖𝑛) and (2) the average difference in data ob-

served between any two arbitrary sensing end-points averaged

over an appropriate time granularity (say, 𝑇 ), (denoted by 𝜉 (𝑇 )).
As long as it can be guaranteed that 𝑑𝑚𝑖𝑛 and 𝜉 (𝑇 ) do not change

with time, the invariance in the harmonic to the arithmetic mean

ratio is guaranteed. We identified, however, that 𝜉 (𝑇 ) does not
change only under strategic spatial and temporal partitions which is

nontrivial to achieve for a transportation CPS.

Note that, the studies [1, 2] worked with a small experimental

micro-grid. Furthermore, weather in a city affects all areas equally

which implicitly preserves similar city-wide power consumption

patterns. For the above reasons, a positive correlation was implicitly

guaranteed in the advanced metering infrastructure (AMI) applica-

tion. However, this is not the case with transportation applications.

In a transportation CPS, data is collected from the wild, and

cities are a complex mix of narrower lanes and highways. The

data is also affected by the uniqueness of the neighborhoods (e.g.

downtown vs uptown) and thus a positive co-variance structure is
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not implicitly guaranteed. Therefore, a computationally tractable

clustering method is required to achieve invariance.

4.1.2 Deviation Under Incidents. Another key achievement

of [1] and [2] is that it proved that any short-lived disturbance

on the covariance structure will lead to deviation in any metric that

combines Harmonic and Arithmetic Mean calculated from a highly

positively correlated set of random variables. This is attributed to

an asymmetry in Schur Concavity properties. The Harmonic Mean

is strictly Schur Concave while Arithmetic Mean is Schur Convex.

This imbalance causes deviations in the HM to AM ratio metric

whenever any event triggers a decrease in the correlation.

4.1.3 Domain-Specific Challenges: We need to realize the fol-

lowing domain-specific adaptations:

First, in [1], the strength of the positive correlation was implicit

in smart metering CPS. However, in transportation CPS, several

localized factors affect traffic data patterns in sub-areas of the city.

This requires intelligent clustering that preserves a high space-time

covariance structure strategically. Second, [1] was designed for

power consumption data from smart meters for a small experimen-

tal micro-grid. In such applications, geospatial factors play little

role, which is not the case with city-wide smart transportation

CPS. This requires bounding the clustering region size. Third, AMI

application had only one observation per hour and the framework

proposed was suitable for attack detection and not incident detec-

tion. The time for detection of attacks was in the order of hours.

In our CPS use case, incident detection needs to happen within

minutes. This requires too many detection rounds, increases the

false alarm reduction challenge. Fourth, in [1] the data was free

from anomalies due to a controlled environment of an experimental

micro-grid. Instead, this application contains data from the wild

from a real city and therefore framework adaptions are necessary

to learn the underlying structure of the benign pattern of the CPS.

4.2 Region Growing Clustering Algorithm

This is the main theoretical core of the contribution which mainly

addresses the first two challenges. We need to strategically group

the road segments into spatial clusters such that the speed data has

maximum positive correlation which leads to the highest invari-

ance. At the same time, the clustering needs to be geographically

proximate for disturbances in the co-variance structure to have a

causal link to the traffic incidents.

All the road segments exhibiting correlations above a thresh-

old may be grouped together to form a cluster. Thereafter, if 𝐶 =
{𝑐1, ...𝑐𝑘 , ...𝑐𝐾 } is a candidate cluster set and 𝑠𝑖 and 𝑠 𝑗 are any two
road segments where 𝑖 ≠ 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛 such that 𝑠𝑖 and 𝑠 𝑗 are in
the same cluster 𝑐𝑘 , we can formalize the problem as the following:

max
∑
𝑐∈𝐶

∑
{𝑠𝑖 ,𝑠 𝑗 }∈𝑐

𝐶𝑜𝑟 (𝑠𝑖 , 𝑠 𝑗 )

s.t. 𝐶𝑜𝑟 (𝑠𝑖 , 𝑠 𝑗 ) > 𝑝
(𝑚𝑖𝑛)

(1)

In the above optimization 𝐶𝑜𝑟 (𝑠𝑖 , 𝑠 𝑗 ) represents the correlation

between two road segments and 𝑝 (𝑚𝑖𝑛) is a threshold. The above

optimization problem is 𝑁𝑃 hard since with |𝑆 | number of road
segments, there is an exponential number of possible solutions

which is computationally intractable. We need an approximation

to the exact solution. This is done by first converting the clustering

problem into a graph problem.p g p p

Figure 1: Problem Reformulation to Graph Problem

Reformulation into a Graph ProblemWe convert our opti-

mal clustering problem into a graph problem, where we visualize

each road segment as a vertex on the graph 𝐺 ′ and the road seg-
ment connections as an edge. The weight of an edge is equal to

the correlation between the road segments (vertices) it connects.

Fig. 1 shows the remapped graph abstraction from the original road

network to our reformulated graph mapping.

Theoretically, a correlation may exist between any pair of road

segments. Therefore the initial graph 𝐺 ′ is a complete graph. How-
ever, since all road segments are not necessarily positively corre-

lated (e.g. geographically distant, city roads to highways in the

same geographical area), there will be edges with negative or zero

weights and relatively low weights. Let there be a bound on the

minimum correlation value 𝑝𝑐𝑢𝑡 > 0 necessary to be considered a

feasible edge of the graph. All edges whose weights are less than

𝑝𝑐𝑢𝑡 are pruned from the complete graph. A low 𝑝𝑐𝑢𝑡 affects the
level of invariance in the ratio invariant which is key to a low false

alarm and improved detection performance.

Formally, this reduced graph is denoted as 𝐺 = (𝑉 , 𝐸), where 𝑉
is the set of vertices and 𝐸 is the set of edges. The set of vertices
and edges are indexed by 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸. Each edge 𝑒 is assigned
a weight 𝑝𝑒 that is equal to the correlation between its two vertices,
𝑣𝑖 and 𝑣 𝑗≠𝑖 , where 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 .
Edge Preference Hyper-parameter (𝑝𝑐𝑢𝑡 ): From the feasible set, we

introduce a notion of desirability to form the strongest grouping

of clusters. Note, only using Euclidean distance is not appropriate

for causal link because a narrow lane may have a highway road

segment running over it. Geographically they are close, but even

if one incident is affecting a ramp connecting the two, the corre-

lation will not be as strong due to inherent differences in their

physical characteristics. Also, some roads are long and can see an

incident’s effect quickly propagate, and segments not geographi-

cally very close still become affected by that same incident when

not geographically close. Hence, we bring in a notion of edge pref-

erence hyper-parameter 𝑝𝑐𝑢𝑡 < 𝑝
(𝑚𝑖𝑛) < 1. Using 𝑝 (𝑚𝑖𝑛) separates

all edges 𝐸 into two subsets. We let the set 𝐸𝑠
′
include all edges

whose 𝑝𝑒 < 𝑝 (𝑚𝑖𝑛) while the set 𝐸𝑠 include those edges whose

𝑝𝑒 ≥ 𝑝
(𝑚𝑖𝑛) . This separation improves causal linkage.

Distance Weight Variable (𝑥𝑒 ): As explained earlier, geographically

closer road segments will be affected by the same incident. Hence,

the distance should be factored in the clustering too. Each edge 𝑒 ∈ 𝐸
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can be visualized as associated with a weight variable, 𝑥𝑒 ∈ (0, 1]

.

The weight 𝑥𝑒 equals the normalized distance between two vertices

(road segments) such that 𝑥𝑒 = 𝑑𝑑𝑒
𝑑𝑑𝑚𝑎𝑥

, where 𝑑𝑑𝑒 is the distances

between two vertices of edge 𝑒 and 𝑑𝑑𝑚𝑎𝑥 is the maximum distance

among all distances between any pair of vertices.

Many optimization problems are formulated as error minimiza-

tion problems where error is an unfavorable outcome that needs to

be minimized. In our setting, two kinds of errors happen for any

candidate solution (cluster). First, the two end vertices {𝑣𝑖 , 𝑣 𝑗 } of

an edge 𝑒 has correlation value 𝑝𝑒 > 𝑝 (𝑚𝑖𝑛) but they are in two

different candidate clusters (positive error). Second, the two end

vertices {𝑣𝑖 , 𝑣 𝑗 } of an edge 𝑒 has correlation value 𝑝𝑒 < 𝑝𝑚𝑖𝑛 but

they are in the same cluster negative error. By minimizing these

two errors, the optimal clustering can be achieved, maximizing the

correlations in a cluster.

Transformed Optimization Problem: In the graph-theoreticmap-

ping of the original network, the original optimization can then be

re-written as the following:

argmin
𝐶

[ ∑
𝑒∈𝐸𝑠

𝑝𝑒𝑥𝑒 +
∑
𝑒∈𝐸𝑠′

𝑝𝑒 (1 − 𝑥𝑒 )
]

s.t. 𝑥𝑒 ∈ (0, 1]

(2)

In the above optimization, the first term includes all positive

errors for a given candidate solution 𝐶 , when 𝑒 ∈ 𝐸𝑠 (they have

𝑝𝑒 ≥ 𝑝
(𝑚𝑖𝑛) ) and {𝑣𝑖 , 𝑣 𝑗 } are not in the same candidate cluster 𝐶

.

Similarly, the second term includes all negative errors for the same

candidate solution 𝐶 , when 𝑒 ∈ 𝐸𝑠
′

(they have 𝑝𝑒 < 𝑝 (𝑚𝑖𝑛) ) and

{𝑣𝑖 , 𝑣 𝑗 } are in the same candidate solution 𝐶 . We need to find the

solution 𝐶 which jointly minimizes both errors.

In [3], a clustering problem for a weighted graph which has the

same form as Eqn. 2, was solved. Their study revealed that the

relaxed form of the integer problem has an Ω(log𝑛) integrality gap.
Hence, the best-known factor of the approximation can be𝑂 (log𝑛)

.

Hence, it ensures theoretical guarantees to our approach.

Approximation Algorithm: To understand the core idea of the

approximation algorithm, which is based on growing a region with

radius 𝑟 from some random starting point, we first need to define

some key elements.

Region: A 𝑅𝑒𝑔𝑖𝑜𝑛(𝑣𝑖𝑛𝑖𝑡 , 𝑟 ) is the set of road segments 𝑣 ∈ 𝑉 that

are within the area with radius 𝑟 from an initial vertex 𝑣𝑖𝑛𝑖𝑡 .
Cut: A 𝑐𝑢𝑡 (𝑐), where 𝑐 ∈ 𝐶 , is the sum of the weights of the edges

𝑒 ∈ 𝐸𝑠 with 𝑝𝑒 > 𝑝 (𝑚𝑖𝑛) where each edge 𝑒 has one vertex 𝑣𝑖 ,
within 𝑐 and the other 𝑣 𝑗 , is outside.

𝑐𝑢𝑡 (𝑐) =
∑

{𝑣𝑖 ,𝑣𝑗 }∩𝑐=1
𝑒∈𝐸𝑠

𝑝𝑒 (3)

Volume: 𝑣𝑜𝑙 (𝑐) is also the total sum of the weights of the edges

𝑒 ∈ 𝐸𝑠 , with 𝑝𝑒 > 𝑝 (𝑚𝑖𝑛) , where at least one vertex 𝑣𝑖 or 𝑣 𝑗 is inside
the cluster.

𝑣𝑜𝑙 (𝑐) =
∑

{𝑣𝑖 ,𝑣𝑗 }∈𝑐
𝑒∈𝐸𝑠

𝑝𝑒𝑥𝑒 (4)

The algorithm 1 returns the set of different clusters. The forma-

tion of one cluster happens via the region growing process. The core

of the region growing approximation corresponds to the lines 3-7

Algorithm 1: Approximation Algorithm

Input:𝐺 = (𝑉 , 𝐸)
Output:𝐶 = 𝑐1, ..., 𝑐𝐾
Initialize: 𝑘 = 1,𝐶 = {}

1 begin

2 while𝐺 𝑖𝑠 𝑛𝑜𝑡 ∅ do

3 𝑠𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑖𝑛𝑖𝑡 ∈ 𝑉

4 𝑟 → 𝑟𝑖𝑛𝑖𝑡
5 while 𝑐𝑢𝑡 (𝑅𝑒𝑔𝑖𝑜𝑛 (𝑣𝑖𝑛𝑖𝑡 , 𝑟 )) ≥ 𝑣𝑜𝑙 (𝑅𝑒𝑔𝑖𝑜𝑛 (𝑣𝑖𝑛𝑖𝑡 , 𝑟 )) do
6 𝑟 → 𝑟 +min 𝑣∈𝑉

𝑣∉𝑅𝑒𝑔𝑖𝑜𝑛 (𝑣𝑖𝑛𝑖𝑡 ,𝑟 )
(𝑑𝑣𝑖𝑛𝑖𝑡 ,𝑣 − 𝑟 )

7 𝑐𝑘 = 𝑅𝑒𝑔𝑖𝑜𝑛 (𝑣𝑖𝑛𝑖𝑡 , 𝑟 )

8 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑐𝑘 ,𝐶)

9 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑐𝑘 ,𝐺)

10 𝑘 → 𝑘 + 1

11 return𝐶 = 𝑐1, 𝑐2, ...𝑐𝐾

in Algorithm 1 which decides what is included in one cluster, while

the rest of the algorithm repeats the process of finding clusters for

the whole graph. It starts at a random vertex 𝑣𝑖𝑛𝑖𝑡 with an initial ra-
dius 𝑟1 = 𝑟𝑖𝑛𝑖𝑡 > 0, that forms an initial region 𝑅𝑒𝑔𝑖𝑜𝑛(𝑣𝑖𝑛𝑖𝑡 , 𝑟1). To
illustrate, Fig. 2a represents an initial region centered on a random

vertex (shaded in red) with radius 𝑟1.
Next it finds nearest vertex 𝑣 , in the neighborhood of the initial

region. To find the nearest vertex, it lists all other vertices 𝑣𝑛𝑒𝑎𝑟
such that each vertex in set 𝑣𝑛𝑒𝑎𝑟 includes only vertices that are
directly connected to the region𝑅𝑒𝑔𝑖𝑜𝑛(𝑣𝑖𝑛𝑖𝑡 , 𝑟1). The term “directly

connected to the region” implies that an edge exists between a

vertex in 𝑣𝑛𝑒𝑎𝑟 and any vertex inside 𝑅𝑒𝑔𝑖𝑜𝑛(𝑣𝑖𝑛𝑖𝑡 , 𝑟1) (any vertex
shaded red). For illustration, in Fig. 2a, 𝑣1 and 𝑣2 are the only vertices
directly connected to the 𝑅𝑒𝑔𝑖𝑜𝑛(𝑣𝑖𝑛𝑖𝑡 , 𝑟1).
It then calculates the euclidean distance from 𝑣𝑖𝑛𝑖𝑡 to each vertex

in 𝑣𝑛𝑒𝑎𝑟 and selects the vertex 𝑣 that is nearest 𝑣𝑖𝑛𝑖𝑡 . Let this smallest
distance (from 𝑣𝑖𝑛𝑖𝑡 ) be denoted as 𝑑 (𝑣𝑖𝑛𝑖𝑡 ,𝑣) . This distance is used as
the radius of the new region such that 𝑟2 = 𝑑 (𝑣𝑖𝑛𝑖𝑡 ,𝑣) . Since 𝑟2 > 𝑟1,
the region grows from the initial region, hence the term region

growing approximation. This is illustrated in Fig. 2b, where 𝑟2 is
formed by the distance between the nearest vertex 𝑣1 and 𝑣𝑖𝑛𝑖𝑡 .
Note, that with the new region, the set 𝑣𝑛𝑒𝑎𝑟 now includes 𝑣2

and 𝑣3. For simplicity, let’s drop the suffix of the radius parame-
ter such that the radius at any iteration of region growth is de-

noted simply by 𝑟 . The region then continuously grows until the
𝑣𝑜𝑙 (𝑅𝑒𝑔𝑖𝑜𝑛(𝑣𝑖𝑛𝑖𝑡 , 𝑟 )) is greater than 𝑐𝑢𝑡 (𝑅𝑒𝑔𝑖𝑜𝑛(𝑣𝑖𝑛𝑖𝑡 , 𝑟 )) (See line
5 in Algorithm 1). When this stopping condition is met, the region

stops growing and we achieve our first cluster 𝑐𝑘 = 𝑐1 where 𝑘 = 1.

We insert this first cluster into our final cluster set denoted by 𝐶
(See line 8 in Algorithm 1).

All the vertices in cluster 𝑐1 are then removed from the graph

𝐺 to avoid duplication while generating other clusters (line 9 in

Algorithm 1). Finally, 𝑘 is increased by 1 for the next iteration. The
process starts again with a new initial region centered around a new

random vertex 𝑣𝑖𝑛𝑖𝑡 . It generates the cluster 𝑐𝑘 = 𝑐2 by executing
the lines 3 − 7 which is added to the cluster set 𝐶 before removing

the vertices in cluster 𝑐2 from graph𝐺 . Algorithm 1 continues until

there are no vertices left to cluster (see line 2 in Algorithm 1). Once

the graph 𝐺 is empty, the set of clusters 𝐶 is returned.
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(a) (b) (c)

Figure 2: (a) A region around the initial node. (b) Increased radius for the region based on the nearest segment whose one

connecting end is inside the previous region. (c) A region where the volume is greater than cut.

Complexity Analysis: The approximation algorithm takes poly-

nomial time to cluster all the segments. To prove that, we can

assume that no two vertices are at the same distance level from

the initial random vertex 𝑣𝑖𝑛𝑖𝑡 . Therefore, it will be safe to assume
that at each iteration of the inner loop a single node will be added

in 𝑟𝑒𝑔𝑖𝑜𝑛(𝑣𝑖𝑛𝑖𝑡 , 𝑟 ). If there are𝑚1 number of vertices for the first

cluster, then there will 𝑛−𝑚1 number of vertices available to cluster

in the next iteration. If this same process runs 𝑘𝑡ℎ number of times
until there will be no vertex left to cluster, it can be shown that

𝑛−𝑚1−𝑚2− ...−𝑚𝑘 = 0 where𝑚2,𝑚3, ..,𝑚𝑘 are the number of ver-

tices in successive clusters. This implies that 𝑛 =𝑚1 +𝑚2 + ... +𝑚𝑘
which is the total number of segments. Therefore, for 𝑛 number of
segments, the algorithm performs clustering at most 𝑛 number of
times. Hence, the complexity of the algorithm is bounded by 𝑂 (𝑛).

4.3 Ratio Invariant per Cluster

The clustering process ensures clusters that maximize the corre-

lation strategically. Let any cluster 𝑐𝑘 have |𝑆𝑐𝑘 | number of road
segments. Then, we calculate a ratio metric𝑄𝑐𝑘 (𝑡) for every cluster
𝑐𝑘 at each time window 𝑡 , which is the invariant. The ratio metric is
defined as the ratio of the harmonic mean 𝐻𝑀𝑐𝑘 (𝑡) and arithmetic
mean𝐴𝑀𝑐𝑘 (𝑡) of data collected from all TMC road segments within

a cluster such that:

𝐻𝑀𝑐𝑘 (𝑡) =
𝑆𝑐𝑘∑ |𝑆𝑐𝑘 |

𝑙=0
1

𝑑
𝑆𝑙𝑐𝑘

𝐴𝑀𝑐𝑘 (𝑡) =

∑ |𝑆𝑐𝑘 |

𝑙=0 𝑑𝑆𝑙𝑐𝑘
𝑆𝑐𝑘

(5)

where 𝑑𝑆𝑙𝑐𝑘
is the aggregate speed reported by the 𝑙-th TMC for a

time window 𝑡 . Consequently, the ratio sample of the cluster 𝑐𝑘 at
any time window 𝑡 is calculate by the following:

𝑄𝑐𝑘 (𝑡) =
𝐻𝑀𝑐𝑘 (𝑡)

𝐴𝑀𝑐𝑘 (𝑡)
(6)

To illustrate the importance of the approximation algorithm

for clustering to maximize positive correlation strategically, we

compare the plots of time series of the ratio samples for the same

time frame of the same day in Fig. 3 for the same area. Fig. 3a is a

cluster with high data correlation (0.87) and Fig. 3b is a cluster with

low data correlation (0.37). Observe that the time series of ratio

samples in Fig. 3a is highly stable under benign traffic conditions

(stationarity and low variance) and shows a sharp deviation on the

incident that happened at 13:00 hrs. In contrast, Fig. 3b that did not

maximize correlation has poor stability and does not show clear

deviation in its time series when the incident happens.

(a) (b)

Figure 3: Effect of cluster level correlation on invariance. (a)

high correlation (0.87). (b) low data correlation (0.35)

An important thing to note is that every incident is unique in

its manifestation and the method has to generalize for various

clusters. Hence, we need to learn the underlying general structure

of the ratio time series. However, the training data collected from

the wild have incidents, and the data collected from connected

transportation is very noisy due to human behavioral randomness.

This is unlike traditional industrial CPS where the data patterns

are only governed by tightly modeled laws of physics. Hence, we

cannot simply learn the ratio samples themselves.

4.4 Data Pre-processing and Augmentation

Real-world mobility data collected from the wild (not from the

experimental testbed), pose a practical problem for unsupervised

learning problems such as anomaly detection, due to the presence of

various incidents in the training phase. This prevents the learning

of the underlying structure of benign data patterns. We need a

mechanism to bypass this problem which we discuss here.

(a) (b)

Figure 4: (a) Distribution of Temporal Neighborhood of Dis-

turbances across all incidents (b) Data Augmentation

The intuition is to use the time and location stamp of the ground

truth incidents and superimpose them on the ratio time series of

the cluster which falls under the location of a particular incident.

Then we identify the neighborhood of the time series of 𝑄𝑐𝑘 (𝑡)
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around all incidents to learn the portions of the time series that

were disturbed. Unless these disturbances are cleaned out, it will

prevent learning the structure of the benign behavior.

Note, ground truth incident recording itself is noisy due to

human-in-the-loop issues. We observed in many cases, they are

recorded much after the physical world has been affected by the

incident. In other cases, the incident is reported and recorded in-

stantly but it takes some time for the physical world to get really

affected (e.g. in sparse traffic scenarios).

Temporal Disturbance Period Selection:We know that promi-

nent incidents in the city cause large congestion that gets captured

in the congestion factor metric available with the dataset. Addition-

ally, the moving average of the invariant decreases near incidents.

We utilize the decrease to differentiate between benign and noisy

ratios (invariant) which are then used to select a neighborhood

around the incident ground truth timestamp 𝐺𝑇 (𝑡). This can be
visualized through Fig. 4b where region 𝐵 is such a neighborhood.
From the time stamp where the incident was recorded (min-

utes=0), we check how many incidents showed a low moving av-

erage of ratio samples for a window before and after (minutes=0).

One can find 𝑎𝑟% of the incidents create a decrease in the ratio

time series for less than Minutes =±𝑦 minutes. Hence, the tem-
poral neighborhood of ratio time series sample around the 𝐺 (𝑡)
timestamp that needs to be cleaned and discarded is on average

y minutes before and after the 𝐺𝑇 (𝑡) shown in Fig. 4a. In Fig. 4b,
this region is marked as region B. In Fig. 4b, we showed region

markings assuming, 𝑎𝑟 = 60%, the 𝑦 is around 30 minutes before
and after any corresponding ground truth time stamps. Similarly,

any confidence interval can be used for cleaning.

Ratio Sample Cleaning and Augmentation: To clean the inci-

dent neighborhood, we discard the ratios of region B from the

training examples of ratio samples and replace them with the cumu-

lative moving average (CMA) of an equal length of time just before

the start of region B (temporal disturbance window of a cluster).

As an illustration, the cumulative sliding moving average of the

ratio samples from region A are copied into the discarded ratio

samples from region B, as demonstrated by Fig. 4b. The CMA for

any cluster 𝑐𝑘 at time 𝑡 , is calculated by the following:

𝑄𝑀𝐴𝑐𝑘 (𝑡 ) =
(𝑡 − 1)𝑄𝑀𝐴𝑐𝑘 (𝑡 − 1) +𝑄𝑐𝑘 (𝑡 )

𝑡
(7)

This process is executed for all ratio sample neighborhoods of

ground truth incidents found in all clusters during the training

phase. The CMA of region A is then used to replace the signature

in region B. Figure 4b shows the incident signature being replaced

by the cleaned data. This allows the model to learn the underlying

structure of the data without incidents.

4.5 Detection Framework Design

After cleaning effects of ground truth recorded incidents, there

are other behavioral randomness and noise that make lowering

false alarms challenging without sacrificing the detection accuracy.

Therefore, a two-tier approach (NIST recommended [5]) to learning

the thresholds and an appropriate anomaly detection criterion is

essential. The two-tier principal mandates short-term and long-

term errors of any underlying detection metric. We adapt this idea

in our context in the following manner:

4.5.1 First Tier Stateless Residuals. The first tier uses the time

series distribution of the ratios 𝑄𝑐𝑘 to set up a varying threshold

that follows the ratio distribution for each cluster 𝑐𝑘 where 𝑘 ∈

{1, · · · , 𝐾}. A particular ratio 𝑄𝑐𝑘 (𝑡) can be greater than or less

than the mean ratio 𝑄𝑀𝑒𝑎𝑛
𝑐𝑘 (𝑡). The acceptable margin creates the

upper and lower side boundary using the mean ratio of a cluster

𝑄𝑀𝑒𝑎𝑛
𝑐𝑘 (𝑡) and the standard deviation 𝜎𝑐𝑘 . The upper boundary is

denoted as Γ
ℎ𝑖𝑔ℎ
𝑐𝑘 (𝑡) and the lower boundary is denoted as Γ𝑙𝑜𝑤𝑐𝑘 (𝑡).

The boundaries are termed as safe margins which can be calculated

using the following equations:

Γ
ℎ𝑖𝑔ℎ
𝑐𝑘

(𝑡 ) = 𝑄𝑀𝑒𝑎𝑛𝑐𝑘
(𝑡 ) + 𝜅𝜎𝑐𝑘 (8)

Γ𝑙𝑜𝑤𝑐𝑘
(𝑡 ) = 𝑄𝑀𝑒𝑎𝑛𝑐𝑘

(𝑡 ) − 𝜅𝜎𝑐𝑘 (9)

4.5.2 Second Tier Stateful Residuals. The second tier consists of

two thresholds. These thresholds are termed as standard limits in

[1]. The upper side standard limit is 𝜏𝑚𝑖𝑛
𝑐𝑘 (ℎ) and the lower side

standard limit is 𝜏𝑚𝑎𝑥
𝑐𝑘 (ℎ). Setting up these two thresholds is not as

straightforward as tier 1. To calculate the thresholds, the first step

is to get the residuals ∇𝑐𝑘 (𝑡) of each time window using the safe

margin. This residual will be used to again calculate the residual

under curve 𝑅𝑈𝐶𝑐𝑘 (𝑡) over a sliding frame of size 𝑆𝐹 for each time
window and the sub-region. Finally the 𝑅𝑈𝐶𝑐𝑘 (𝑡)’s are used to
learn the standard limits by the given algorithm 2

Residual is defined as the difference between the safe margin

and the ratio. If a ratio is higher than Γ
ℎ𝑖𝑔ℎ
𝑐𝑘 (𝑡), the residual will

be positive and if a ratio is less than Γ𝑙𝑜𝑤𝑐𝑘 (𝑡), the residual will be
negative. The following equation calculates the residual:

∇𝑐𝑘 (𝑡 ) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 𝑄𝑐𝑘 (𝑡 ) − Γ
ℎ𝑖𝑔ℎ
𝑐𝑘

(𝑡 ), if 𝑄𝑐𝑘 (𝑡 ) > Γ
ℎ𝑖𝑔ℎ
𝑐𝑘

(𝑇 ) ;

= 𝑄𝑐𝑘 (𝑡 ) − Γ𝑙𝑜𝑤𝑐𝑘
(𝑡 ), if 𝑄𝑐𝑘 (𝑡 ) < Γ𝑙𝑜𝑤𝑐𝑘

(𝑡 ) ;

= 0, otherwise;

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10)

Residual Under Curve A non-zero residual indicates the possible

presence of an anomaly. However, to confirm, a sum of residuals is

calculated over a fix optimal time window size which can be called

as sliding frame size. The summation is termed as the residuals

under curve. It is calculated using the equation below.

𝑅𝑈𝐶𝑐𝑘 (𝑡 ) =
𝑡∑

𝑗=𝑡−𝐹𝑆

∇𝑐𝑘 (𝑘) (11)

Algorithm 2: Calculate 𝜏𝑚𝑎𝑥
𝑐𝑘 (ℎ)

1 for 𝑐𝑘 , 𝑡, 𝜏 do
2 if (𝑅𝑈𝐶𝑐𝑘 (𝑡) < 𝜏 then

3 𝑐𝑐𝑚𝑎𝑥 :
|𝜏−𝑅𝑈𝐶𝑐𝑘 (𝑡 ) |

2

4 CC← 𝑐𝑐𝑚𝑎𝑥

5 else

6 𝑝𝑝𝑚𝑎𝑥 = |𝑅𝑈𝐶𝑐𝑘 (𝑡) − 𝜏 |2
7 PP← 𝑝𝑝𝑚𝑎𝑥

8 𝜏𝑚𝑎𝑥
𝑐𝑘 (ℎ) = 1

𝜂+ argmin𝜏
 ∑
CC
𝑐𝑐𝑚𝑎𝑥 −

∑
PP 𝑝𝑝𝑚𝑎𝑥


Learning Standard Limit The computed 𝑅𝑈𝐶𝑐𝑘 is later used

to learn the standard limit using Algo. 2. The algorithm treats the

interior and exterior RUC in a different manner by multiplying
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two different weights. An interior-point contributes less to the

overall loss and an exterior point contributes more. The algorithm

minimizes the difference between the loss of interior and exterior

points to learn the optimal standard limit both for the higher and

lower sides. Eventually, both of the learned thresholds use the same

algorithm, here we have shown only for the 𝜏𝑚𝑎𝑥
𝑐𝑘 (ℎ). For 𝜏𝑚𝑖𝑛

𝑐𝑘 (ℎ)
only the negative 𝑅𝑈𝐶𝑐𝑘 (−) are used whereas for 𝜏

𝑚𝑎𝑥
𝑐𝑘 only the

positive 𝑅𝑈𝐶𝑐𝑘 (+) are used.

4.5.3 Anomaly Detection Criterion. Similarly, the RUC can be

calculated at every time window in the test set. Let 𝑅𝑈𝐶𝑐𝑘 (𝑇
𝑐 ) is

the RUC value for the cluster 𝑐𝑘 in the test set at the current time
window 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . Then, the incident detection criterion is given

𝑅𝑈𝐶𝑐𝑘 (𝑇
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) :

{
∈ [𝜏𝑚𝑖𝑛

𝑐𝑘 (ℎ), 𝜏𝑚𝑎𝑥
𝑐𝑘 (ℎ)] No Incident;

∉ [𝜏𝑚𝑖𝑛
𝑐𝑘 (ℎ), 𝜏𝑚𝑎𝑥

𝑐𝑘 (ℎ)], Incident Inferred;

(12)

Figure 5: Detection Illustration: RUC of 𝑖𝑡ℎ cluster.
Fig. 5 illustrates the incident detection where the vertical lines

are the ground truth incidents and the horizontal lines represent

the standard limits. we can see that RUC(T) metric goes beyond the

learned standard limit near the growth truth time stamps.

Figure 6: (a) Propagation of Initial Incident. (b) Average Dif-

ference in Speeds.

Why ratios and RUC deviate? As and when an accident oc-

curs within a subarea of a city, the immediate neighborhood of the

location where the accident happened, experiences a decrease in ve-

hicle speeds instantly. However, this reduction in speed takes time

to propagate beyond this immediate neighborhood until it affects

the whole cluster. In Fig. 6a an accident occurred at time 𝑡 inside a
cluster 𝑐 , the reduction in speed in the immediate neighborhood
(red circle) takes time (𝑡 + 𝑛) to propagate outwards. The shaded
region has decreasing speeds compared to the unshaded region

that does not decrease creating a drop in correlation. This delay

in propagation causes the deviation in the signature and can be

detected by the metric as an anomaly. Fig. 6b, is an illustration that

shows that the average difference between any two pair of TMC

values within the identified clusters over time 𝜉 (𝑇 ) are not varying
too much, which is required for ratio stability.

4.6 Hyperparameter Learning

There are four different types of hyperparameters. First set of hyper-

parameters is 𝑝𝑐𝑢𝑡 and 𝑝
(𝑚𝑖𝑛) which affect the clustering process

and the distribution of ratios. Second parameter set includes 𝜅 and
𝑆𝐹 values which affect the standard limits. For every combination of
𝜅 and 𝑆𝐹 the same ratio distribution will produce different standard
limits. Here, we will discuss how the hyperparameters are learnt.

To learn the 𝑝𝑐𝑢𝑡 , we measure the deviation in invariance (ratios)
𝑄𝑀𝐴𝐷 for different margin of 𝑝𝑐𝑢𝑡 . The 𝑄

𝑀𝐴𝐷 is used to select

the 𝑝𝑐𝑢𝑡 value since it directly affects the level of invariance in the
ratiometric. Since the lowest median absolute deviation in the series

imply the most stability, it implies that the smallest 𝑝𝑐𝑢𝑡 for which
the minimum value of 𝑄𝑀𝐴𝐷 stops decreasing across consecutive

values of candidate 𝑝𝑐𝑢𝑡 is desirable. The smallest value is useful of
𝑝𝑐𝑢𝑡 is recommended since too much positive correlation reduces
the sensitivity to smaller incidents. It is shown in Fig. 7b.

Figure 7: (a) Effect of varying𝜅 on the detection performance

of a given cluster. (b) MAD over 𝑝𝑐𝑢𝑡 for 𝑘
𝑡ℎ cluster.

As we increase 𝑝𝑐𝑢𝑡 from 0.0 to 0.99, the mean absolute deviation
of the ratios in a cluster decreases. This trend continues until a

certain point where the deviation stabilizes. Accounting this, we

settle on 𝑝𝑐𝑢𝑡 = 0.7 as a lower bound. The hyper-parameter 𝑝 (𝑚𝑖𝑛)

controls the area coverage and the performance of the cluster-wise

incident detection. We learn it by the following:

argmax
𝑝 (𝑚𝑖𝑛)

(𝐶𝑜𝑣𝑅 +𝑇𝑃𝑅 − 𝐹𝑃𝑅)
(13)

where 𝐶𝑜𝑣𝑅 is the coverage rate of road segments while clustering,
𝑇𝑃𝑅 true positive rate of detection, 𝐹𝑃𝑅 are the false positive rate,
for incident detection. The above equation ensures the maximiza-

tion of performance by reducing the false positives at the same time

and increasing the coverage percentage. The approximate solution

cover a majority of the area which had a total of 6,928 road seg-

ments. As we increase the correlation threshold, 𝑝 (𝑚𝑖𝑛) , the radius

becomes smaller with fewer segments being included in each clus-

ter. However, as a result, there are now more clusters generated,

resulting a larger coverage of the target area. The performance for

different values for 𝑝 (𝑚𝑖𝑛) are given in Table 2.

For the incident detection model we learn the optimal value for

the hyper parameters 𝜅 and 𝑆𝐹 . The parameter 𝜅 is a value in (0, 3)
and 𝑆𝐹 is a sliding frame size which varies among the integer values
in the set {3, 5, 7, 9} . The optimal values of 𝜅 and 𝑆𝐹 are learnt by

argmin
𝜅,𝑆𝐹

(𝑀𝐷𝑅 + 𝐹𝑃𝑅) (14)
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Table 2: Cluster Information

𝑝 (𝑚𝑖𝑛)

Cluster Info 0.75 0.85 0.95

count 317 354 472
mean 16.06 14.54 11.81
min 4 4 4
max 161 132 112

ave. data correlation 0.863 0.862 0.867
ave. radius (m) 611.11 610.07 490.03
area coverage 73% 74% 80%

True Positive Rate 0.916092 0.924653 0.926340
False Positive Rate 0.010727 0.032051 0.030957

where𝑀𝐷𝑅 is themissed detection rate and 𝐹𝑃𝑅 is the false positive
rate. The 𝜅 and 𝑆𝐹 from the above equation are selected as the

optimal hyperparameters for the considered cluster.Each cluster 𝑐𝑘
has its own optimal selection of 𝜅 and 𝑆𝐹 . Figure 7a shows the effect

of the hyperparameter 𝜅 on the detection performance of the 𝑘𝑡ℎ

cluster. A detection model with large 𝜅 reduces the total number of
false alarms however, it increases the number of missed incidents

detected. The equation above ensures an acceptable performance.

5 EXPERIMENTAL EVALUATION

In this section, we introduce the dataset and the performance of our

framework in terms of metrics such as incident detection rate, false

alarm rate, time to detection of incidents, the impact of undetected

incidents on the CPS application.

5.1 Details of Dataset

To evaluate our framework, we use one year (2019) long traffic data

collected from the city of Nashville, Tennessee by road side sensors

at five-minute intervals. This dataset is bigger in duration and in

terms of coverage area compared to validation used in existing

works [7, 14]. For ground truth incidents, we use another dataset

collected from Nashville’s Fire and Emergency Response Depart-

ment during the same year. In all phases of the experiment, we only

consider weekdays of 2019, focusing on the period between 6:00

AM to 9:00 PM since during night hours and weekend hours the

traffic has discrete patterns. Details are shown in Table 3.

Table 3: Detail of datasets

Data Sources Properties Values

Road network
# intersections

# streets
6928
19493

Traffic incidents # instances 8116
Sensors # count 6928

Data collection period 01/01/2019 - 12/31/2019

Experimental Setup: The twelve months of data is divided

across training, cross-validation, and testing sets. The training

phase learns the model for a combination of hyperparameters The

cross-validation set is used to find the best hyperparameters that

give the best outcome. The best hyperparameters are fitted to the

model to find the final learned model that is used for testing.

The first eight months (Jan. to Aug.) are used for training. The

next two months, (Sept. and Oct.), used for cross-validation. The

final two months (Nov. and Dec.) are used to test the model itself.

5.1.1 Training Dataset Details. For training, we focus on the geo-

graphic coverage area Southwest(−87.050630, 35.989510) and North-
east (−86.527560, 36.416830). Then, the segments inside the area

are clustered following the clustering process discussed in Sect. 4.2.

To cluster, the road segments from the transformed graph problem

where correlation 𝑝𝑒 is assigned as the weights for each edges 𝑒
in the graph. We consider a cutoff correlation value 𝑝𝑐𝑢𝑡 and a
minimum level of correlation 𝑝𝑚𝑖𝑛 which leads to more invariance.

The clustering generated 354 clusters. However, we found that

most incidents in the ground truth dataset were restricted to fewer

clusters that correspond to the busiest parts of the city. Hence,

we selected 25 clusters with the most reported incidents from the

ground truth dataset and used it to evaluate the performance of

incident detection. For the temporal disturbance due to the ground

truth incidents, the 𝑎𝑟 = 60% was used from the distribution of

duration from𝐺𝑇 (𝑡) variable. This corresponds to 𝑦 = ±30 minutes
around the neighborhood from all 𝐺𝑇 (𝑡). Since 𝑡 is slotted every 5
minutes, it boils down to 12 ratio samples augmented per incident.

5.1.2 Details of Testing dataset. In this section, we evaluate our

decentralized implementation of a lightweight anomaly detection

framework. We used two months (Nov. and Dec.) from the dataset

for testing. In these two months, there were a total of 851 incidents

recorded in 580 active segments. We present how our technique

gives us the ability to detect these incidents which can lead towards

valuable actionable information.

5.2 Performance Results

In this section, we show sensitivity analysis of our performance

to changing hyperparameters instead of learnt hyperparameters.

Then, we report performance of the optimal learnt model with

hyperparameters using the fitness function described in Section 4.6.

5.2.1 Sensitivity Analysis of Performance. Here we give the sen-

sitivity analysis of performance where the 𝑘𝑎𝑝𝑝𝑎 is not learned
but varied as a free parameter to check its effect on the changing

performance. The performance metrics include time to detection,

true positive rate, false-positive rate, expected time between false

alarms, and impact of undetected incidents.

Figure 8: (a) Average ROC curve for 25 clusters (b)Mean time

between false positives based on different 𝜅 for 𝑐𝑘 .

Detection Rate and False Alarms Fig. 8a shows the average ROC

curve across the 25 clusters, underscoring the performance of our

framework. One can see that at 90% true positive detection rate, the

false alarm/false positive rate (FPR) is only 0.030. The low FPR is a

significant achievement because: (1) anomaly detectionmethods are

prone to false alarms (2) due to lower rates of emergency/incidents,

the cost of FPR is usually high for any CPS. Each cluster has 16,560

detection attempts and the false positives are few. Fig. 8b shows

the rarity of these false positives even when using 𝜅 = 0.25 which
has the best overall detection rate. Specifically, Fig. 8b gives an idea

on the expected time between two false alarms for various 𝜅.
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Mean Time to Detection A key performance indicator of usabil-

ity in a CPS application is time to detection. Fig. 9a shows that 78%

incidents were detected in the first 5 minutes and 90% incidents

were detected within 30 minutes. Quick time to detection is essen-

tial to warn commuters earlier and control the flow of traffic to

prevent congestion spread.

Figure 9: (a) Time to Detection of Incidents (b) Impact on

route travel times under different 𝜅

Impacts of Undetected Incidents By successfully detecting an in-

cident, a traffic congestion will be prevented or mitigated and the

commuters will be diverted to different routes, avoiding travel de-

lays. We generated 200 routes that pass through segments with

incidents and computed the travel time of each route with incidents.

Using the true positive rates, we calculated what percentage of in-

cidents will be detected. Detected incidents allow the system to

notify commuters early and thus will experience less delay in their

travel times. The time saved per vehicle is given by the following:

� 𝑡 = 𝑅𝐷 (
1

𝐼𝑆
−

1

𝐹𝑆
) (15)

where 𝑅𝐷 is the total distance in a given route, 𝐼𝑆 is the speed due
to incidents and 𝐹𝑆 is the free-flow speed which is experienced

when affected areas are avoided. Assuming on average that 10,000

vehicles pass by any segment per year, we can identify the impact of

our anomaly detector on the travel time saved over a year. Figure 9b

show the amount of travel time saved on a macro level depending

on the hyperparameter and granularity used respectively.

5.2.2 Overall Performance with Learnt Hyperparameter. We ap-

plied the learnt values of 𝜅, 𝑆𝐹 , 𝑝𝑐𝑢𝑡 and 𝑝𝑚𝑖𝑛 for each of the 25

clusters. The final performance is an average from all 25 clusters for

all traffic incidents over the full 2 months. Doing this, we found the

average true positive detection rate 𝑇𝑃𝑅 = 0.90 and 𝐹𝑃𝑅 = 0.03.

6 CONCLUSION

We proposed an unsupervised time series-based anomaly detec-

tion framework for city-scale smart transportation CPS. We discuss

how an existing anomaly detection metric (Harmonic to Arithmetic

Mean ratios) can be applied to a transportation problem, by using a

strategic partitioning of city area into positively correlated clusters

that guarantee high invariance in detection metric. We utilize a data

augmentation technique to enable unsupervised learning of the

anomaly detection technique and learn the bounds of the technique

under the sanitized, normal traffic conditions to establish anomaly

detection criteria. Results show that our proposed unsupervised

anomaly detection framework allows strategic partitions to inde-

pendently generate, sanitize, learn and detect anomalies with high

accuracy and low false-positive rates. This enables our approach

to be deployed in a decentralized manner while maintaining high-

performance anomaly detection in a real-time manner.
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