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Abstract—The mobility nature of unmanned aerial vehicles
(UAVs) takes them into high consideration in military, public,
and civilian applications in recent years. However, scaling out
millions of UAVs in the air will inevitably lead to a more
crowded radio frequency (RF) spectrum. Therefore, researchers
have been focused on new technologies such as millimeter-wave,
Terahertz, and visible light communications (VLCs) to alleviate
the spectrum crunch problem. VLC has shown its great potential
for UAV networking because of its high data rate, interference-
free to legacy RF spectrum, and low-complex frontends. While
the physical layer design of the VLC system has been extensively
investigated, visible-light-band networking is still in its infancy
because of the intermittent link availability caused by blockage
and miss-alignment among transceivers. Fortunately, drones can
be deployed dynamically at network runtime to establish line-
of-sight (LOS) links to users in blockage-rich environments. In
this article, we first formulate a sum-rate optimization problem
for visible-light-band UAV networks by jointly control the real-
time position and orientations of drones. We then propose a
solution algorithm based on particle swarm optimization (PSO).
The simulation results show that the proposed algorithm can
converge in 10 to 20 iteration time and can result in up to
24% performance gain compared to that in heuristic-central-
point drone deployment.

Index Terms—Visible Light Network, Unmanned Aerial Ve-
hicles, Throughput Optimization, Particle Swarm Optimization.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are playing an increas-
ingly important role in the military, public, and civilian ap-
plications [1] [2] [3]. More recently, UAVs have become a
hot topic in the wireless communication research community.
The mobility and the on-demand deployment nature of the
UAVs have enabled a set of new applications such as UAV-
assisted cellular communications and cellular-assisted UAV
sensing (e.g., battlefield, corp, or environment monitoring).
Despite the many benefits due to their mobility, UAV networks
still suffer from some practical constraints. For example,
densely deployed UAVs as aerial BSs in tomorrow’s ultra-
dense wireless networks will interfere with ground users,
thus degrading the performance of the ground networks. In
addition, the limited battery power prohibits drones in the RF
domain to provide high-speed communication services. These
challenges can be addressed by equipping drones with visible
light communication (VLC) capabilities [4] [5]. Moreover, the
dynamically changed altitude of drones can more likely estab-
lish line-of-sight (LOS) links to users especially in blockage-
rich environments. Therefore, using VLC can be a promising
approach to provide high-speed UAV communications with a
large portion of the unregulated visible-light spectrum.

In the past few years, significant research has been focused

on addressing challenges in wireless UAV networks such as
optimal deployment [6] and energy efficiency [7]. However,
most of the existing work is focused on the crowded radio fre-
quency (RF) spectrum which may not allow the drones to meet
the high data rate demands of users. Therefore, more recently,
visible-light-enabled drone networks have started to attract
researchers’ attention to provide high-speed communication
[4] [8]. In [8], an integrated VLC and UAV framework has
been proposed that can simultaneously provide communication
and illumination, where the power consumption of UAVs is
minimized by controlling the locations of drones. However,
the orientation of the users is not considered which plays
an important role in transmitter-receiver alignment and thus
channel gain.

The main contribution of this work is to propose a novel
framework to optimize the sum throughput of ground users
served by VLC-enabled drones by adjusting their positions
and orientations in a real-time fashion. Our key contributions
include:

o We first formulate mathematically the control problem
in a VLC-based UAV network, where the objective is to
maximize the network-wide throughput of ground users
by jointly determining the positions and orientation of the
drone hot-spots.

o« We design a fast solution algorithm based on particle
swarm optimization (PSO) to solve the resulting opti-
mization problem, where the heuristic optimal solution
can be found within 20 iterations as shown in Sec. V.

Simulation results show that the proposed approach can
achieve up to 24% throughput gain compared to the heuristic-
central-point UAV deployment among ground users. To the
best of our knowledge, this is the first work that studies the
sum-rate optimization in VLC-enabled UAV communication
by jointly considering the positions and orientations of drones
and ground users.

The rest of the paper is organized as follows. We review
the related work in Section II, and then present the system
model in Section III. The optimization solution algorithm is
then described in Section IV. Then, the results are discussed
in Section V, and finally, we draw main conclusions in
Section VL.

II. RELATED WORK
Drone-assisted Network. The drone-assisted network has
drawn significant research attention [9] [10] [11] [12] [13]. For

example, in [9], the authors propose a new coordinate multi-
point (CoMP) based network architecture for UAV-assisted
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Fig. 1: Visible light communication based UAV to vehicles
communication system, where o is the irradiance angle, 6 is
the rotation angle of the UAV, and ¢ represents the incidence
angle.

wireless communication, which harnesses both the benefits
of interference mitigation via CoMP and high mobility of
UAVs to achieve effective multi-UAV multi-user communi-
cations. [10] investigates the radio propagation characteristics
of ground-to-air channels. Field measurements show that a
height-dependent parameter is necessary to describe the chan-
nel for UAVs at different altitudes. The authors in [11] present
the use of mobile UAVs for energy-efficient data collection in
a static and time-varying Internet of Things (IoT) network.
The proposed framework minimizes the total transmit power
of the IoT devices while providing sustainable connectivity,
by jointly optimizing the 3D locations of UAVs, device-UAV
associations, and transmit power of each IoT device.
VLC-enabled UAV networks. A few works focusing on
visible-light-based UAV networking have been proposed [14]
[15] [16] [17] [4]. In [14], the authors discuss different use-
cases for VLC on drones and the corresponding main research
challenges in realizing the technology. The authors in [15]
propose an algorithm to minimize the power consumption
in by jointly control the locations of UAVs and the cell
association with the constraints of illumination. In [17], the
authors formulate an optimization problem to jointly optimizes
UAV deployment, user association, and power efficiency while
meeting the communication and illumination requirements. In
[4], the author presents a frame for programmable visible-
light-band UAV networking. To the best of our knowledge, we
for the first time investigate the location- and orientation-aware
sum throughput optimization for VLC-based UAV network.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. Model Description

Consider a wireless network composed of one VLC-enabled
UAV ! that serve a set U of U ground users distributed
over a geographical area A. The UAV provides downlink
transmission to ground users as shown in Fig. 1. We assume
that the information of location and orientation of the users can
be obtained by the devices themselves [18] and share with the
drones. Please also note that the UAV does not serve ground
users until it moves to the resulting optimal location.

'Tt can be easily extended to multiple UAV scenarios in future work.

Fig. 2: Geometry LOS propagation model with visible light
communication light transmitter (LED), and receiver (PD),
where z represents the height of the UAV, d; is the distance
between the UAV and the user j, @, is the field of view of
PD, o,,; represents the irradiance angle when UAV is facing
straightly downwards.

B. Transmission Model

Given a UAV located at a = (x,y,2,0%) representing
the 3D position and orientation of UAV and a ground user
J € U located at u; = (z;,9;,0,0¥) € A denoting the
position of the orientation of ground user j. Without loss
of generality, in our problem, we consider the scenario that
the receivers of the users on the ground are facing straightly
upwards, ie., ¢ = 0. The intensity modulation and direct
detection (IM/DD) model is considered in the paper. For
simplicity, we do not consider the diffusion of visible light
in outdoor environments. Therefore, the LoS and non-line-of-
sight (NLoS) channel gain of the VLC link between UAV and
user j can be given by:

oS ALl Preos™ (0)Ts(¢5)9(65) cos(é;) 0< ¢ < %2, 0
O — 3

’ 0 otherwise,

hy % =0, @

J

where A is the physical area of the PD on the receiver,
and m is the order of Lambertian emission and is deter-
mined by the semi-angle ¢/, at half illuminance power of
an LED as m = W d; is the distance between
a transmitter and a receiver, which is calculated as d; =
\/(x - xj)Q + (y — yj)2 + z2. P, is the transmitted power of
UAV. o, is the irradiance angle to user j, ¢; is incidence
angle of user j, and @, is the field of view of the PD. T,(¢,)
represents the optical filter gain, and g(¢;) is the optical
concentrator gain, g(¢;) = ST(é7e73) - We denote the rotation
angle of the UAV as 6. U;-’” represents the irradiance angle to
user 7 when UAV is facing straightly downwards, which can be
obtained base on the geometric relationship as shown in Fig. 2,
calculated as 09" =arccos (4-). The geometric relationship
among UAV rotation angle 97 the original irradiance angle
J.;-’”', and the new irradiance angle o7 can be derived as below:

0+q=q+0y" +0; =90 (3)
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Finally, we can calculate the new irradiance angle o; with

ort

respect to ¢ and o™ as
aj =1(0 - o5™)]. €

We denote the field of view of the LED transmitter equipped
on the UAV as X.. If o, is greater than 22“, the ground users
are out of the field of view of the UAV, which further means
that the ground user cannot be served by the UAV. Then the
channel gain h%°9 is set to 0.

Next, we formulate the channel capacity C; of user j as:

LoS\ 2
1+~ (mhﬁ ) 5)

w
21 o

Oj (a) = Blog2

where B is the bandwidth, e is the Euler’s number, £ is the
illumination target, and 07" is the standard deviation of the
additive white Gaussian noise at user j.

C. Problem Formulation

The objective of the network control problem is to maximize
the sum-rate of the UAV visible-light downlink access network
by jointly determining the position and orientation of the UAV,
i.e., a. The network control problem can then be formulated
as

Problem 1: Given: uj, Py, ®., X,

Maximize f = ZCj(a)

Jjeu
1)
Subject to: arccos Z < =, (6)
4 =2
I ZC
(0o < 2,

0<z; <10, jeU,
0<y; <10, jEU.

IV. PSO OPTIMIZATION ALGORITHM

As stated in Sec. III, the objective of the UAV visible-light
network control problem is to maximize the sum throughput
of the users by controlling the position and the orientation
of the UAV, as presented in Problem 1. In (6), the channel
gain h]L"S is nonconvex with respect to a;. Therefore, the
resulting network control problem is a nonlinear nonconvex
NP-hard problem. An intuitive proof is given in the Appendix.
Classical mathematical methods that are widely used such as
gradient methods and Lagrange relaxation methods, are not
suitable for such complex optimization problems [19]. Thus, it
requires a heuristic algorithm to find the optimal value. Recent
studies have shown that the particle swarm optimization (PSO)
based methods outperform the other modern metaheuristic
search techniques [20] [21], such as genetic algorithms (GAs),
biogeography-based optimization (BBO), differential evolu-
tion (DE), ant colony optimization (ACO), artificial bee colony
(ABC), and hybrid swarm intelligent based harmony search
algorithm (HHS) according to its several advantages in terms
of simplicity, convergence speed, and robustness [22].

Algorithm 1 Solution Algorithm

Data: Predefine u;, P;, @., Y. Initialize {pop_size} = 100,
{W}, {c_1}, {c_2}.

Result: Obtain {f} and {a} when stopping criterion is met.

Initialize the Swarm

iter = 1

while true do

for all (particles i) do

Compute V;(iter), X;(iter) based on (7) (8)

Compute sum data rate f;(iter) based on X;(iter)

if f;(iter) > f* then

fi = filiter)

pbest = X (iter)

end

end

for all (particles i) do
if £ > f* then
gbest = pbest(i)

end

end

iter++

if {a}, the (Global.Sol), meet the stopping criterion then

f=1r
Output {f} and {a} and iter
break

end

end

Therefore, we propose a solution algorithm to solve (6)
based on particle swarm optimization because PSO is easy
to be implemented and can result in high precision and fast
convergence speed [23].

Next, we discuss the proposed PSO-based algorithm in
detail. The basic design principle of PSO algorithm is to start
from a random initialization with a set of candidates (i.e.,
initialized positions) and finally find a global optimal solution
of the fitness function via iteration based on the position and
velocity updating. Let X; represent the solution provided by
particle ,7 € P, with |P| denoting the number of the particles
we use. We then define V; as velocity, which represents the
searching or the moving direction of the solution vector X; at
the next iteration time. V;(¢ + 1) can then be updated as:

Vit +1) =W x Vi(t)
+7rl-cl- (pbest;(t) — X;(t)) (7
+7r2-c2- (ghest(t) — X;(t)),
where cl and c2 are learning factors, 1 and r2 are uniform
random numbers in the range of [0,1]. pbest;(t) and gbest(t)
represent the personal best position of particle ¢ at iteration

time t, and the global best position at iteration time £,
respectively.

Then, we can calculate the solution of the particle ¢ at
iteration time ¢+1, i.e., X;(¢+1), based on the newly generated
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Fig. 3: Sum throughput and individual throughput comparison for the 3-user scenario.

TABLE I: Summary of Parameters

Parameter Value
Bandwidth (B) B = 20MHZ
Transmitted electrical power (Pt) Pt =1W
Optical filter gain (Ts(¢)) Ts(p) = 1

Field of view of the PD

s
g(9) =225,0< ¢ < 7/2;
9(¢) =0, > 7/2
A = lem?
100

Optical concentrator gain (g(¢))

Area of PD (A)
Particle population size

velocity value V;(t + 1) as:

Xi(t+1)= X;(t)+ Vit +1). (3)

Next, we explain how to combine PSO into the proposed
problem (6). We define the sum rate objective function in (6)
f = > Cj(a) as fitness function of the PSO algorithm. Let
jeU

fi (t)Jbe the sum data rate of the network at time ¢ with the
assumption that the drone is placed exactly at the position
X (t) of the particle (i). If f;(t + 1) is greater than the best
personal solution to time ¢, i.e., f(¢), then we assign X; (t+1)
as the new best personal position pbest;(t 4+ 1) of particle <.
Next, we compare the pbest;(t + 1) of all the |P| particles,
the location X;(¢ + 1) that can result in the maximal f is
assigned as the new best global position gbest(t+1). Then the
maximized sum-rate of the network at iteration time ¢4 1 can
be obtained, denoted as f*(¢ + 1). Finally, the algorithm will
stop when the adopted stopping criteria is met. The detailed
algorithm for UAV position and orientation optimization is
summarized in Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed solution algorithm
through simulations. We consider that 1 UAV simultaneously
serves multiple users (the number of users ranging from 1 to

10), where the users’ positions are randomly generated within
the predefined area. We assume the bandwidth for each user
7 is 20 MHz. The transmission power of UAV to each user j
is 1 W. The field of view of the UAV and the users are 7 and
%’r 2, respectively. Table I summarizes the parameters used in
the simulation. To evaluate the proposed PSO algorithm, we
compare it with a heuristic algorithm (referred to as Centroid
based Method), i.e., the position of the UAV is determined as
the centroid of the users from the geometric perspective.
Figures 3 and 4 illustrate the sum throughput and the
individual throughput comparison between the proposed PSO
algorithm and the centroid based method for networking
scenarios with 3 users and 5 users, respectively. We can see
that the proposed PSO algorithm outperforms the centroid
based method in both scenarios. From Figs. 3 and 4, it can
also be seen that the proposed PSO algorithm can converge
very fast to the global optimum of the nonconvex problem
formulated in (6), in around 10 to 20 iterations for 3-user and
5-user scenarios, respectively. The stopping criteria we use
is [f*(t +1) — f*(t)| < s; with s; denoting the predefined
threshold for acceptable fluctuation. To further enhance the
stability of the algorithm, we also define a parameter 7' and
only when the stopping criterion is satisfied for 7' times,
the algorithm will stop. In our simulation, we set ' = 10
and s; = 0.05%, respectively. Figure 8 shows the detailed
convergence procedure of the proposed PSO algorithm in
the H-user scenario with respect to the UAV’s x and y
coordinates (z is eliminated for simplicity because it doesn’t
change in our problem.) and orientation §#. We can see that,
after approximately 12-time iteration, the UAV’s location and
orientation are not changed drastically anymore, which is

2Without loss of generality, we assume the field of view of each user is
the same and our proposed algorithm can be easily adapted to the scenario
where users have different field of views.
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Fig. 4: Sum throughput and individual throughput comparison for the 5-user scenario.

almost approaching the convergence point.

To further validate the effectiveness of the proposed PSO
algorithm, we also compare the performance in 8 different
network instances for 3-user and 5-user scenarios, as shown
in Figs. 5 and 6. It can be observed that the proposed PSO
algorithm outperforms the centroid based method by up to
24% in all network instances which we randomly generate.
In Fig. 7, we further compare the performance for scenarios
with different user numbers, ranging from 1 to 10. For the 1-
user scenario, the proposed method and the centroid method
perform the same because the UAV straightly aligns with the
only user is the best solution for both methods. For all of
the remaining scenarios with 2 to 9 users, the proposed PSO
algorithm results in higher sum throughput compared to the
centroid based method.

5000 Sum Throughput Comparison: 3 Users

BProposed PSO Algorithm
EECentroid Based Method

4000 -

3000

2000

Throughput (bits/s/Hz)

1000

1 2 3 4 5 6 7 8
Network Instance

Fig. 5: Sum throughput comparison for the 3-user scenario.

VI. CONCLUSIONS

In this paper, we have proposed a network control prob-
lem in the UAV visible-light network to maximize the sum
throughput by jointly controlling the position and orientation
of the UAV. We then design a solution algorithm based on

Sum Throughput Comparison: 5 Users

7000
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EECentroid Based Method

6000

N 5000

4000
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Throughput (bits/s/Hz

n
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153
=)
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Fig. 6: Sum throughput comparison for the 5-user scenario.
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Fig. 7: Sum throughput comparison for scenarios with different
user numbers.

PSO. Finally, we conduct simulations to validate the effec-
tiveness of the proposed PSO algorithm and compare it with
the heuristic centroid point method. The simulation results
show that the proposed PSO algorithm can improve the sum
throughput up to 24%.

In the future, we plan to apply advanced machine learning
methods to solve the optimization problem based on the real-
time trajectory prediction of the users, thus reducing the
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The Iteration of the UAV's Best Location and Orientation
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Fig. 8: The convergence with respect to the UAV’s location
and orientation (5-User scenario).

influence of the response time of the algorithm and achieving
a fast association between the UAV and the users. We will also
consider a dynamic environment rather than the static one in

our future work. APPENDIX

Proof of Convexity of the Channel Gain Function

First, we prove the LoS channel gain of VLC link between the
UAV and the user in (1) is a non-convex function. We convert
the function in (1) into a function with two independent
variables o; and ¢;. This is because except for the parameter
d;, all the other parameters are predefined with fixed values
and d; can be expressed in the form of A¢;, with A being a
real number. In addition, without loss of generality, we set the
orientation of the LED of the UAV to straightly point down,
then we have § = 0, 0; = ¢;. In this case, we further convert
the function in (1) into a one parameter function with respect to
¢j as h(¢;) = ﬁcosm“(qﬁj) with m =1 and ¢; ranging
from O to % continuously. This can be further rewritten in a
simplified form as:

hz) = 2

r < =

1 2
—=cos-(x),0 5

(z)?

with x representing ¢;. We then can calculate the second
derivative of (9) with respect to x as:

IN

€))

" —2x2cos(2x) + 4xsin(2x) + 6cos? (x) 28
h (x) = r

x

K" (z) is not always greater than 0 nor less than 0 in [0, Z=].

According to the definition in [24] that a twice-differentiable
function of a single variable is convex if and only if its second
derivative is nonnegative on its entire domain. Therefore, h(x)
is not convex in [0, %] Because (1) is equivalent to (9), then
we can obtain that (1) is also not a convex function. According
to the definition of a convex optimization problem in [24],
where objective function and constraints are both required to
be convex, we can further conclude that the proposed problem
in (6) is not a convex problem.
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