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Abstract—In advanced metering infrastructure (AMI), the cus-
tomers’ power consumption data is considered private but needs
to be revealed to data-driven attack detection frameworks. In
this paper, we present a system for privacy-preserving anomaly-
based data falsification attack detection over fully homomorphic
encrypted (FHE) data, which enables computations required for
the attack detection over encrypted individual customer smart
meter’s data. Specifically, we propose a homomorphic look-
up table (LUT) based FHE approach that supports privacy
preserving anomaly detection between the utility, customer,
and multiple partied providing security services. In the LUTs,
the data pairs of input and output values for each function
required by the anomaly detection framework are stored to
enable arbitrary arithmetic calculations over FHE. Furthermore,
we adopt a private information retrieval (PIR) approach with
FHE to enable approximate search with LUTs, which reduces
the execution time of the attack detection service while protecting
private information. Besides, we show that by adjusting the
significant digits of inputs and outputs in our LUT, we can
control the detection accuracy and execution time of the attack
detection, even while using FHE. Our experiments confirmed
that our proposed method is able to detect the injection of false
power consumption in the range of 11-17 secs of execution time,
depending on detection accuracy.

Index Terms—anomaly (attack) detection, smart grid, privacy-
preserving, FHE, look-up table

I. INTRODUCTION

Advanced Metering Infrastructure (AMI) in a smart (elec-

trical) grid is an IoT system, consisting of communication

networks, data management systems, and smart meters that

record power consumption from every customer [1], [2]. The

communication network connects the individual customer’s

smart meters to the data management system of the utility.

The smart meters and the AMI communication network

are vulnerable to data integrity attacks where an adversary

injects false power consumption data that pose serious threats

to both the utilities and customers. Data falsification in AMI

mostly focuses on electricity theft [3]–[6], i.e., the power

consumption reported by the smart meter is lower than the

true value, which we call a deductive attack. By contrast, a

false increase in the reported power consumption is called

an additive attack via a physical load-altering. An additive

attack on the smart meters of a competitor company would

increase the bills of its customers, thereby reducing the trust

of customers on that company and also create a false power

surge. The camouflage attack [7] launches the deductive and

additive attacks simultaneously while keeping the mean power

consumption unchanged, i.e., a set of the customer meters

is under a deductive attack while another equal set of the

meters is under an additive attack. Such attacks benefit one

set of customers with lesser bills at the expense of another set

without raising suspicion.

Since the utility controls customer billing, power quality and

efficiency of the smart grid, detecting such attacks in utilities

are critical. A common way of data integrity attack detection

is to deploy an anomaly detection system that learns patterns

in data that do not conform to expected benign behavior [8]

to indicate the presence of attacks. There are two broad

approaches for attack detection in smart grids via anomaly

detection. One approach is to check abnormal information via

hardware, such as the use of power line modems by Passerini

et al. [9]. Another approach is to build an data driven anomaly

detection system using software, such as machine learning

[10]–[12], deep learning [13], and neural networks [14]. Since

data driven approaches do not need extra hardware, they are

feasible for community scale smart living IoT such as AMI.

A. Motivation and Challenges

From the above discussion, it is clear that data driven ap-

proaches are crucial for increased visibility and vigilance in the

AMI for attack detection. However, paradoxically, an anomaly-

based attack detection system requires the power consumption

data of every customer to be revealed to the anomaly detection

system, thereby compromising the privacy of the customers.

Customers advocacy groups and governments are concerned

about the privacy-sensitive nature of customer’s smart data,

which is misaligned with security goals of the grid utility. This

motivates the need to design privacy-preserving data driven

security frameworks for AMI.

To construct privacy-preserving anomaly detection systems,

many studies have used differential privacy (DP) [15], which

protects sensitive data by adding random noise. A disadvantage

of DP is that it does not support exact computation, thereby

limiting the accuracy of the results. Another approach is

the use of secure multiparty computation (SMC) [16], [17]

to protect sensitive data. SMC is based on joint operations

involving multiple parties via secret sharing. With secret
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sharing, sensitive data are divided into different parties for

storage and computations. However, the communication costs

of SMC are huge for streaming data applications like AMI.

A third alternative is the use of homomorphic encryption

(HE) [18], [19] that allows computations without the need

to ever decrypt the individual customer’s data. While HE has

a smaller communication cost, it can only support additions

and multiplications, resulting in difficulty to adopt anomaly

detection techniques that involve advanced math operations.

Furthermore, the execution overhead and the accuracy of an

HE-based anomaly detection framework should not degrade

due to the privacy requirement.

In [20], the authors introduced an anomaly detection system

using fully homomorphic encryption (FHE) [21], which can

also perform anomaly detection on deductive, additive, and

camouflage attacks. Note that FHE is a type of HE enabling

an unlimited number of computations on encrypted data. They

proposed a specific algorithm to adopt FHE to enable anomaly

detection. However, they did not offer flexibility for supporting

arbitrary calculations and did not have provisions that allow

a smart grid AMI utility to choose between desired levels of

achievable anomaly detection accuracy and execution latency.

To solve the above problems, we propose a system with a look-

up table (LUT) based FHE approach integrated with private

information retrieval (PIR) that can support arbitrary calcula-

tions, allow utilities a trade-off between execution latency and

attack detection accuracy.

B. Contributions of This Work

The contributions of this work are fourfold.

• We propose a privacy-preserving anomaly attack detec-

tion system using a LUT-based FHE integrated with

PIR specifically for an AMI infrastructure. Our novel

approach allows a utility to flexibly tune the anomaly

detection accuracy and control the execution latency,

which is a challenge in FHE. Specifically, our LUT-

based FHE approach, i.e., preparing input-output value

pairs as LUT and replacing functions to a search, allows

the implementation of arbitrary functions even if the

traditional FHE itself cannot handle complex functions

(e.g., logarithm, inverse, division). To the best of our

knowledge, this is the first implementation of flexible

control of the detection accuracy and the execution la-

tency over FHE. Furthermore, a PIR is adopted to enable

approximate search without revealing any information to

both the utility and the data management system. Note

that approximate search enables the search even if LUT

has no exact match input and returns the result whose

input is nearest to the query.

• To control the detection accuracy, we provision for a

flexible precision parameter that is learned based on the

utility’s desired anomaly detection accuracy, which allows

a utility to understand the trade-offs between execution

time and the anomaly detection accuracy. The precision

parameter adaptively controls the number of rows in the

LUT for FHE. Therefore, the execution time of LUT

processing will be shorter when using fewer rows in the

LUT but this comes at the cost of the anomaly detection

accuracy. The suitable precision parameter of the LUT is

found based on the training data set.

• To speed up the FHE processing, we add a dropping of
least significant bits feature in our LUT-based FHE sys-

tem. This allows that each of the entries in the LUT has

a smaller plaintext space to compute the large numbers

involved in FHE, which further reduces the execution

time of our system.

• We implemented our framework with a Raspberry PI as

a proxy for a smart meter. We deployed the look-up table

based privacy-preserving anomaly detection system on a

server and measured the real execution time for varying

utility specified accuracy levels. Our results show that our

method can detect the presence of attacks over encrypted

data within 11-17 seconds on the server, depending on

the desired accuracy level.

The rest of the paper is organized as follows. Preliminary

techniques used in this study are presented in Section II. We

introduce the proposed technique in Section III. Section IV

presents the experimental evaluation and we conclude this

work in Section V.

II. PRELIMINARIES AND BACKGROUND

This section introduces the background, preliminaries and

assumptions of the work. In our system, the smart meters are

assumed honest, and the other parties are assumed honest-

but-curious parties, i.e., they follow the protocol but try to

find out as much as possible about the data. We assume the

data integrity attack occurs before the smart meters encrypts

the data, which is practical for many transactions and load

altering exploits that lead to data falsification.

A. Anomaly Detection Metric

For the anomaly detection, we adopt the framework pro-

posed in [7] which detects attacks with high detection sensitiv-

ity while minimizing the false alarms. In [7], the basic anomaly

detection metric is the ratio between the harmonic mean (HM)

and arithmetic mean (AM) of the power consumption from all

smart meters in a micro-grid of size N . The authors show

that another stateful metric known as residual under the curve

(RUC) can be derived from the HM-AM ratio can detect

various attacks, including deductive, addictive, and camouflage

attacks. We denote N as the number of meters in each region,

where the anomaly detection is performed in each region.

The power consumption from a set of meters is denoted by

pt = [p1t , ..., p
N
t ] at a time slot t. The power consumption from

the i-th meter is shown as pit ∈ R
+. Let P i

t := ln(pit+2). We

denote the harmonic mean and arithmetic mean at time slot t
as HMt and AMt, where

HMt =
N

∑N
i=1

1
P i

t

, AMt =

∑N
i=1 P

i
t

N
. (1)

HMt and AMt are calculated for each time slot t over a time

window T . Each T contains 24 time-slots, i.e., hourly. Then
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T ∈ 1, ..., 365 represents each day of a year. The HM-AM

ratio Qr of the day T is computed as follows:

Qr(T ) =

∑
t∈T HMt(T )∑
t∈T AMt(T )

(2)

This is a highly stable metric for anomaly detection in a smart

grid, as demonstrated in [7]. Due to the page limitation, we

only give a high-level description of it. (For further details,

refer to the paper [7].) There are two phases in anomaly

detection: the training and test phases. In the training phase, a

utility determines the safe margin for the ratio metric. The

threshold parameter κ is determined by the mean μd and

standard deviation sd of the daily ratio distribution, where

κ ∈ (0, 3sd]. The standard limit range of the safe margin

is [μd − κ, μd + κ]. Besides, by adopting the residual under

the curve (RUC) metric [7], which shows the transition of

the residuals between the HM-AM ratio and the chosen safe

margin over a sliding time frame, the tier two detector is

constructed to detect the anomaly.

B. Brakerski-Fan-Vercautere (BFV) scheme

Our work is based on the Microsoft/SEAL homomorphic

encryption library [23], which implements the Brakerski-Fan-

Vercautere (BFV) scheme [24]. The BFV scheme performs

modular arithmetic on the encrypted integers. A set of integers

is encrypted into a single ciphertext for SIMD-style execution

using the BFV scheme and packing technique [25] based on

the Chinese remainder theorem (CRT). We denote the number

of integers that can be packed into one ciphertext as l, and we

call l as the number of slots in the FHE setting.

C. Look-up Table with FHE

The general philosophy of an LUT-based FHE system [21]

is that we can implement the privacy-preserving anomaly

detection system with arbitrarily different complex metric

functions. To improve the practicality of FHE, we adopt a

LUT, which evaluates approximations of arbitrary functions

by changing the calculations to a search technique. In a LUT,

input-output data pairs for a function are prepared, so that we

can search the result of the function.

Note that FHE itself cannot handle any arithmetic operation

except additions and multiplications. On the other hand, the

base anomaly detection framework requires more complex

arithmetic operations such as logarithms, division, inverse.

Therefore, adopting an LUT based approach, we can place the

LUT of any specific function in the cloud server and obtain the

result from the LUT directly as a query response mechanism

that allows calculations of arbitrary math functions without

sacrificing privacy. We can omit arithmetic calculations to

speed up.

III. PROPOSED APPROACH

Figure 1 presents an overview of our proposed system.

There are five parties: the utility, computation server (CS),

LUT provider, data collector (DC) and N smart meters. All

parties except smart meters are honest but-curious parties, i.e.,

they follow the protocol but try to find out as much as possible

about the data.

We assume the data integrity attack occurs before the smart

meters encrypt their data. Moreover, the five parties do not

collude with each other. All parties hold the same public key;

only the utility holds the secret key; the CS holds the re-

linearization key and the galois key. The public key is used

for encryption and calculation, the secret key for decryption,

while the re-linearization key and the galois key are used for

re-linearization and rotation.

Firstly, the LUT provider constructs the LUTs and sends

them to the CS (Section III-A). Then, the smart meters send

their power consumption data to the DC every time slot (in our

setting, every one hour) (Section III-B). After collecting the

power consumption data in a specific area, the data collector

sends them to the CS every time slot. Subsequently, the

CS computes the HM-AM ratio and sends it to the utility.

During the calculation in the CS, the CS exchanges encrypted

intermediate results with the utility for the LUT processing

(Section III-C). Finally, the utility decides whether there is an

attack or not.

Fig. 1. Overview of the Proposed Approach

A. Initialization

Key generation (Utility side): The utility generates the se-

cret key sk, the public key pk, the re-linearization key rk and

the galois key gk. Holding sk for itself, sharing pk to other

parties, and rk, gk to the CS.

Construction of LUTs (LUT provider side): The twelve

LUTs including input and output tables shown in Table I are

prepared and also explained in this subsection. Each entry in

input tables are corresponding to the entry in output table.

All tables are constructed by the LUT provider as matrices.

With the ciphertext packing feature, each row of LUT is

represented by one ciphertext.
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TABLE I
PREPARED LOOK-UP TABLES

Calculation of
x f(x)

(values in input (values in output
table Tin) table Tout)

HMt
∑N

i=1(
1
P i
t
) f1(x) =

N
x

AMt
∑N

i=1(P
i
t ) f2(x) =

x
NH1 ∑24

t=1 HMt
f3(x) = � x

100
�

H2 f4(x) = x− f3(x)× 100

A1 ∑24
t=1 AMt

f5(x) = � 1x/100�
A2 f6(x) =

1
x
− f5(x)× 100

res2/100 res2 f7(x) = �x/100�

In this work, we adopt the LUTs with the FHE for comput-

ing harmonic mean, arithmetic mean, and anomaly detection

ratio, i.e., HM-AM ratio Qr. Because Qr is defined as a daily

HM-AM ratio, we need to calculate each time-slot’s HMt

and AMt. Then, we need to calculate the sums of HMt and

AMt, over a 24 hour period. Finally,
∑24

t=1 HMt is divided

by
∑24

t=1 AMt to compute Qr.

In our implementation, we replace division with a multipli-

cation (shown in Eqn. 3) to shorten the execution time. The

reason why we do not compute the division function with

FHE using LUT processing, is because the division function

requires a two-input function. Note, that the number of the

entries in the output LUT for a multi-input function is the

product of the entries of each input LUT. This would result in

longer execution time due to the large output size in the LUT.

Qr =

∑24
t=1 HMt∑24
t=1 AMt

=

24∑

t=1

HMt × 1
∑24

t=1 AMt

(3)

We use the integer-based FHE scheme in this work. In order to

increase the accuracy, we scaled the input and output decimals

with a precision parameter 2p and round as integers. After we

retrieve the
∑24

t=1 HMt and 1∑24
t=1 AMt

from LUT, the result of

the multiplication between these two values becomes too large,

which results in overflow of the plaintext space that cannot

be encrypted. Thus, we drop the least significant bits of the

result. As the significant digits of maximum scaled ratio Qr in

our experiment is 9 but the significant digits of the plaintext

space is 5, we discard the last 4 digits of the Qr result. By

analyzing the significant digits on the calculation of (5), we

can reduce the Qr by 10, 000 times to discard the last 4 digits,

thereby we set 100 in (Eqn. 4) (because 100×100 = 10, 000).

Then, we express each of the
∑24

t=1 HMt and 1∑24
t=1 AMt

as

a polynomial shown below, where H1, H2, A1 and A2 are

coefficients. Eqn. (7) shows the final result.

24∑

t=1

HMt = H1 × 100 +H2

1
∑24

t=1 AMt

= A1 × 100 +A2

(4)

Note that, the 100 is not a fixed value; it depends on the

plaintext space in FHE setting and the significant digits we

want to keep.In FHE, the larger plaintext space leads to more

execution time. By dropping of least significant bits, we allow

to compute large numbers with a smaller plaintext space which

can reduce the execution time.

After computing H1, H2, A1, and A2 with LUTs shown in

Table I, the daily ratio Qr is computed as follows.

Qr =
24∑

t=1

HMt × 1
∑24

t=1 AMt

= (H1 × 100 +H2)× (A1 × 100 +A2)

= H1 ×A1 × 10, 000

+ (H1 ×A2 +H2 ×A1)× 100 +H2 ×A2

(5)

Here, we define res1 and res2 as follows.

res1 = H1 ×A1

res2 = H1 ×A2 +H2 ×A1

(6)

Then, we have the following formula to discard the last four

digits of Qr,

Qr := res1 +
res2

100
(7)

The whole aforementioned LUTs are constructed by the

LUT provider.

B. Smart Meter (User) Side Computation

Power consumption data is retrieved by smart meters,

encrypted, and sent to the data collector. Because the LUT

method [21], [22] accepts a packed ciphertext whose all

elements are identical to a search query, each smart meter

creates two vectors v(P i
t ) and v( 1

P i
t
), whose all elements are

same and computed from the power consumption P i
t as:

v(P i
t )[k] = Round(2p

AMin × P i
t ),

v(
1

P i
t

)[k] = Round(2p
HMin × 1

P i
t

)
(8)

, where 0 ≤ k < l and l represents the length of these

two vectors; P i
t := ln(pit + 2) is described in Section II-A.

To encode multiple integers into one ciphertext, we adopt

plaintext and ciphertext packing technique [25]. Since we

employ integer encoding rather than bit-wise encoding to

speed up the execution time, the data must be converted into

integers before encryption. Thus, the data are scaled with

precision parameters 2p and rounded into integers as described

in III-A.

Though the inverse of P i
t can be computed on the CS

using LUTs, the smart meters send both the original power

consumption data, P i
t , and its inverse to the CS via the DC in

order to reduce the execution time in the CS.

C. Server Side Computation

The processing steps are shown in Figure 2 which includes

three times LUT processing. All the processes need to be

executed with encryption except the decryption of intermediate

results in the utility.
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Fig. 2. LUT Processing (f(x) is shown in Table I)

Step1: The CS totals all the data sent from smart meters

via DC every time slot. Subsequently, we have two encrypted

vectors whose elements are identical as shown below.

v(P i
t ) = [

N∑

i=1

v(P i
t ), ...,

N∑

i=1

v(P i
t )]

v(
1

P i
t

) = [
N∑

i=1

v(
1

P i
t

), ...,
N∑

i=1

v(
1

P i
t

)]

(9)

Each of the above two ciphertexts is input to LUT pro-

cessing to calculate AMt and HMt respectively. The LUT

processing [21], [22] is adopted to compute the function HMt

and AMt of each time slot t. The CS searches the inputs∑N
i=1 v(P

i
t ) and

∑N
i=1 v(

1
P i

t
) in input LUTs Tin of function

AMt shown as f2(x) and HMt shown as f1(x) in Table I,

respectively. Then, the CS sends the intermediate result to the

utility. Note that the intermediate result corresponds to the

output table index which is randomized [22].

Step2: After step1, the utility receives the intermediate

result from the CS followed by one-time decryption. Then,

the utility obtains the index of the closest entry to the input

and calculates the index of the outputs in Tout. Subsequently,

the utility makes encrypted PIR queries and sends them to the

CS in order to let the CS extract the output.

Step3: After receiving the PIR queries from the utility, the

CS extracts the corresponding HMt and AMt results from

output LUTs, i.e., Tout. The CS sums the 24 hours’ HM and

AM to obtain
∑24

t=1 HMt and
∑24

t=1 AMt of a day. Because

the 24 hours’ HM(AM) is input to the next LUT processing,

we need to put the 24 hours’ HM(AM) in all slots of the

corresponding input ciphertext. To fill in, we adopt totalSum
operation [26] shown as Algorithm 1.

Then, the CS search the inputs
∑24

t=1 HMt and
∑24

t=1 AMt

in input LUTs (shown as f3(x) to f6(x) in Table I) to obtain

the intermediate result which is sent to the utility from the CS.

Algorithm 1: totalSum

Data: A ciphertext ct
Result: A ciphertext ct′

for i = 0 to log2l do
ct′ = ct;
ct′ = rotate(ct′, 2i);
ct+ = ct′;

end

Step 4: Same as step 2, the utility makes PIR queries,

encrypts them to send to the CS.

Step 5: The CS extractsH1,H2,A1, andA2, each of which

is shown in (4), from the output LUTs by using the received

PIR queries.

Step 6: The CS computes res1 and res2 according to (6),

and searches res2 from the input LUT shown as f7(x) in Table

I in order to obtain res2
100 . Then, the CS sends the intermediate

result to the utility.

Step 7: Same as step 2 and step 4.

Step 8: The CS extracts res2
100 from the output LUT followed

by computing the daily ratio according to (7). Finally, the CS

sends the final result, i.e., Qr, to the utility.

To enhance the above process, we extend our previously

proposed method [22] which adopts random sifting of en-

crypted intermediate results to hide the exact index from the

utility. This can improve the security. In this study, the LUT

provider updates each LUT to add fake values that are different

each time the LUT is updated. Note that the values in LUTs are

encrypted. This operation requires less time than our previous

random shift operation, and it can also be guaranteed that the

index is different every time so that the utility cannot know

or infer any positional information of the exact value in LUT.

To ensure the accuracy does not change every time, we need

to guarantee that the original entries must be included in the

table, and add different confusing entries. For example, if the

original entries in a LUT are [2, 5, 8], an updated LUT is like

[1, 2, 3, 4, 5, 8] or [2, 3, 5, 6, 8, 9], so that the LUT holds all

original entries but at the different position every time.

Anomaly detection by HM-AM ratio (Utility side): The

utility decrypts the final result Qr. Since the final result is an

integer value with the decimal point raised to a higher digit,

the decimal point position is restored to have the HM-AM

ratio of the day. Finally, the utility adopts the residual under

the curve (RUC) metric proposed in [7] to detect the anomaly.

Security Analysis: We provide an intuitive security analysis

of our protocol. Our goal is to protect the privacy of power

consumption data of households from all parties. Besides, the

utility, the LUT provider, and the smart meters do not collude

with the other parties because the utility has the secret key;

the LUT provider has LUT data; the smart meters have power

consumption data. Because the data owners, i.e., the smart

meters and the LUT provider, do not collude with other parties

and receive nothing, they cannot know anything.
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As for the DC and the CS, they only handle encrypted data,

and hence they never access the privacy-sensitive individual

data. Only the information the utility knows is the HM-AM

ratio result which is an aggregate. Although the utility decrypts

the intermediate results sent from the CS, it only knows the

matched indices of LUTs that are updated by the LUT provider

periodically, e.g., every hour. Thus, it guarantees only the

statistics showing how many times each index of the LUTs

is referenced during a specific period leaks to the utility.

IV. EXPERIMENTAL EVALUATION

We implemented the proposed system using

Microsoft/SEAL Library 3.2.0 1. One server was prepared for

the operations of three parties: the utility, the LUT provider,

and the CS. Besides, one Raspberry PI 4 Model B was

prepared for the operations of the smart meter. The machine

information is listed in Table II. Although the machine is

equipped with 18 cores, the experiment was conducted with

one thread. Note that, in this implementation, we omit the

DC because the DC only gathers and re-sends the data to

the CS. The initialization is implemented in the server, the

smart meter (user) side computation is implemented in the

Raspberry PI, and the server-side computation is implemented

in the server.

The FHE parameters used are listed in Table III. The total

LUT size including all input (output) LUTs is listed in the

row of LUT provider of Table V.

In this evaluation, we conducted three experiments by

changing the size of LUTs, i.e., different number of data

points, which affects the accuracy.

TABLE II
MACHINE INFORMATION

Server
OS CentOS Linux 7 (Core)

CPU four Intel Xeon E7-8880 v3 @2.3 GHz
(Turbo Boost: 3.1 GHz)

Main memory 3 TB
Raspberry PI 4

RAM 4GB
CPU a 64-bit quad-core Arm Cortex-A72 @1.5 GHz

SD card 64GB

TABLE III
FHE PARAMETERS OF SEAL

Scheme BFV
Poly modulus degree 8,192
Coeff modulus size 218 bits

Plain modulus 786,443
Noise standard deviation 3.2

Number of slots 8,192

TABLE IV
PRECISION PARAMETERS

Experiment pAMin pHMin pAMout

pInvout

and pHMout

#1
5 10

9 21
#2 7 19
#3 5 17

1https://github.com/microsoft/SEAL

The dataset used in this study includes the power consump-

tion data of the smart grids of 200 households in Texas, USA;

these were three-year data (2014 to 2016) from the Pecan

Street Project 2. We used data from 2014 and 2015 in the

training phase and data from 2016 in the testing phase. The

lower and upper power consumption limits were set to 50 and

6000 W during pre-processing, same as to the previous work

[7], [20].

A. Precision Parameters Setting

Table IV shows the precision parameters of LUTs in three

different experiments in which the size of output tables are

different; experiment #1 uses the largest output tables, and

experiment #3 uses the smallest ones.

We set the same precision parameters pAMin and pHMin

and applied to all the experiments.

In the same way, we set the precision parameters pAMout

and pHMout to move the decimal points of AMt and HMt

as shown in (10). The objective of precision parameters is to

change AMt and HMt to integers. By adopting the precision

parameters, the values stored in the output table Tout of f1(x)

and f2(x), shown in Table I, are multiplied by 2p
AMout

and

2p
HMout

, respectively.

Round(2p
AMout ×

∑N
i=1 P

i
t

N
),

Round(2p
HMout × N

∑N
i=1

1
P i

t

)
(10)

Next, we also set the precision parameters pInvout to move

the decimal points of A1 and A2 as shown in (11). The

objective of precision parameters is to change A1 and A2

to integers. By adopting the precision parameter, the values

stored in the output table Tout of f5(x) and f6(x), shown in

Table I, are multiplied by 2p
Invout

.

Round(2p
Invout ×A1),

Round(2p
Invout ×A2)

(11)

Finally, to remove the effect of precision parameters when

calculating Qr, we calculate Qr as shown in (12), where

Dec(Qr) represents decryption of Qr.

Qr :=
Dec(Qr)× 10, 000

2(pHMout+pInvout )
(12)

B. Computation and Communication cost

Table V lists the computation time and communication cost

for each step under one thread. The computation time is the

average of the five tests. We tested the runtime to compute the

data in 24 time-slots (one day).

Since we know the data points appeared in the training

phrase, i.e., in 2014 to 2015 data, we prepare those data

points in input LUTs and corresponding outputs are prepared

in output LUTs. Then, we omit some of them based on

the precision parameter. Firstly, the entries in the input LUT

are prepared as all the appeared values in the past power

2https://www.pecanstreet.org/
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consumption data. Then, the number of significant digits or

less are removed after applying the precision parameter, which

decreases the number of entries in the input LUT. For example,

assume that we have three entries: 1010, 1015, and 1100. By

applying precision parameter 100, i.e., dividing by 100, the

entries become 10 and 11 because 10.10 and 10.15 become

the same 10 by truncating the decimal point, decreasing the

number of entries.

Because the time of data transmission depends on the net-

work configuration, we only provide the size of the transmitted

file. The transmitted files include 1) the keys from the utility

to all parties, 2) LUTs from the LUT provider to the CS, 3)

encrypted power consumption data from the smart meters to

the CS via the DC, 4) intermediate results from the CS to the

utility, and 5) PIR queries and the final result from the utility

to the CS.

The result shows the encryption time by Raspberry PI is

approximately 2.6 seconds. After collecting a day-wise (24

time-slots) encrypted power consumption data from all houses,

the CS can compute the anomaly detection metric Qr. In

the experiments, we tested daily Qr. The AMt and HMt is

computed per hour (per time slot). In summary, as shown in

the row of SUM in Table V, the anomaly detection needs 11

s to 17 s depending on the size of the LUT, i.e., depending

on the accuracy.

C. Accuracy of Anomaly Detection

Similar to the work of Ishimaki et al. [20], we used the

receiver operating characteristics (ROC) curve to compare the

accuracy of anomaly detection with and without secure com-

putation using LUT-based FHE. To evaluate the performance

of the anomaly detector, ROC curves were obtained using

different standard limits to check the accuracy of the real

anomaly detection and false attack alarms.

Figure 3 to Figure 8 show the ROC curve of deductive

attack, camouflage attack, and additive attack, respectively.

Such attacks are with two extreme Δavg = 200W and 800W.

The result shows the stability of Experiment #1 is the best,

and the detector performance in experiments of the ciphertext

calculation is similar to the results of the plaintext calculation.

In Experiment #2, the detector performance drops under the

camouflage attack when Δ=200 W. And most of the detector

performance drops in Experiment #3.

V. CONCLUSION

We proposed a LUT-based FHE system for privacy-

preserving anomaly-attack detection. The experiments con-

firmed that our proposed method is able to detect the injection

of false power consumption in the range of 11-17 secs of

execution time, depending on the detection accuracy. To the

best of our knowledge, this is the first implementation of

flexible control of the anomaly detection accuracy and the

execution time over FHE. We can detect deductive, additive,

and camouflage attacks with reasonable accuracy. Compared to

the related work [20], our proposed method is flexible where

we can simply change the accuracy and the execution time

by adjusting the LUTs besides applicable to other privacy-

preserving systems.

There remains additional challenges that we plan to tackle

in future work. For example, using the LUT-based FHE to

compute the functions multiple times results in a gradual

increase of the calculation error. Similarly, we do not yet have

a systematic way to prepare data points in input LUTs for

a variety of functions. Therefore, in future we will further

optimize the method to systematically control the accuracy

and execution time for any functions or sequence of functions.

Besides, we will simulate the smart meters using over 100

Raspberry PIs to prepare an actual situation to investigate

problems when applied to real-world situations.
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