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Abstract—Molecular dynamics (MD) has been widely used
in today’s scientific research across multiple domains includ-
ing materials science, biochemistry, biophysics, and structural
biology. MD simulations can produce extremely large amounts
of data in that each simulation could involve a large number
of atoms (up to trillions) for a large number of timesteps (up
to hundreds of millions). In this paper, we perform an in-
depth analysis of a number of MD simulation datasets and then
develop an efficient error-bounded lossy compressor that can
significantly improve the compression ratios. The contributions
are fourfold. (1) We characterize a number of MD datasets
and summarize two commonly-used execution models. (2) We
develop an adaptive error-bounded lossy compression framework
(called MDZ), which can optimize the compression for both
execution models adaptively by taking advantage of their specific
characteristics. (3) We compare our solution with six other state-
of-the-art related works by using three MD simulation packages
each with multiple configurations. Experiments show that our
solution has up to 233% higher compression ratios than the
second-best lossy compressor in most cases. (4) We demonstrate
that MDZ is fully capable of handing particle data beyond MD
simulations.

I. INTRODUCTION

Molecular dynamics simulations have become one of the

most commonly-used methods to study the physical move-

ments of atoms and molecules. For instance, MD simula-

tions are often used to refine 3D structures of proteins and

macro-molecules in terms of experimental constraints in X-

ray crystallography or nuclear magnetic resonance (NMR)

spectroscopy. In physics, MD simulations can be used to study

the dynamics of atomic-level phenomena, such as thin-film

growth and ion implantation (the atomic-scale details of which

are very difficult to observe directly) or to investigate physical

properties of nanoscale devices. In biophysics and structural

biology, MD simulations are often applied to examine the

motions of macromolecules (e.g., proteins and nucleic acids),

for interpreting the results of some biophysical experiments

and modeling interactions between molecules.

Generally speaking, scientific data can be categorized into

three distinct types, including particle data (e.g., locations

Corresponding author: Sheng Di, Mathematics and Computer Science
Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL
60439, USA

of atoms), structured mesh (regular multidimensional grid

in space), and unstructured mesh (irregular mesh such as

triangular grid). MD simulation is one of the most signifi-

cant/typical particle-based research in the community. As the

computational scales at which MD simulations are carried out

rapidly increases [1], so does the volume of data generated

during the simulations. For example, an atomistic model of the

SGLT membrane protein may consist of 240 million frames

each with 90k particles, producing a total of ∼260 TB of raw

trajectory data over a 480 ns simulation[2]. The most recent

MD simulations [1] are able to simulate 20 trillion particles

in a long trajectory, generating 10 PB of data if there are

hundreds of frames to store.

The explosive growth of data volume has brought major

challenges to the storage systems designed for saving and

managing scientific datasets [3], [4], [5]. For scientific applica-

tions, the vast amount of data are generally stored in the form

of files [6], for the purpose of convenient post hoc analysis,

management, and transfer. How to efficiently store and transfer

the large amount of data becomes a serious concern. In fact,

for today’s supercomputers, a research project generally is

allocated only dozens of terabytes of storage space (e.g., 50

TB by default on ORNL Summit [7]) or a few hundreds of

terabytes upon requests. Obviously, efficiently reducing the

volume of generated data can substantially lower the burden

on storage, management and transfer.

Lossy compression has been considered by many re-

searchers as a promising solution to the aforementioned data

problems [8], [9], [10], [11], [12], [13]. In this paper, we aim

at designing an efficient error-bounded lossy compressor for

MD datasets, which presents a series of challenges. (1) In

MD simulations, each snapshot may contain a large number

of particles, so that only a limited number of snapshots can

be held in memory and the compression should be done in

batches. Therefore, compressors that rely on the time series

patterns [14], [15], [16] will have sub-optimal performance,

and a practical and effective compressor for MD data should

involve both efficient time-based compression and efficient

snapshot-based compression. (2) It is very challenging to de-

velop an efficient snapshot-based compression method because
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the adjacent data values in a snapshot may not be smooth

(shown in Section V-B), while existing state-of-the-art lossy

compressors substantially depend on the high smoothness

of the data in space. (3) Unlike some existing compressors

[16] optimized for cosmological N-body simulations, MD

compressors could not exploit velocities to help compress

position data in most cases, because MD particle often quickly

vibrate around their equilibrium positions and velocities are

only predictive of future positions for a few femtoseconds in

the future (a fraction of a typical vibrational period).

With all the above challenges in mind, we propose a novel

error-bounded lossy compressor that is particularly efficient for

MD simulations. The key contributions are listed as follows:

• We carefully characterize a number of different MD

simulation datasets and exploit some of the key patterns

identified in the MD data to significantly improve com-

pression ratios.

• We design an adaptive error-bounded lossy compressor

for MD datasets which fully leverages the specific char-

acteristics in both spatial and temporal dimensions.

• We evaluate our solution with six state-of-the-art related

works. Experiments show that MDZ can always lead

to the best compression quality in various execution

patterns. In absolute terms, our solution obtains up to

233% higher compression ratios than does the second

best error-bounded lossy compressor.

• We integrate our solution into the MD package

LAMMPS. Evaluation shows our solution has negligi-

ble time overhead in real-world MD simulations under

different scales and settings.

• We discuss the generalizability of our solution and

demonstrate MDZ has the best compression quality on

datasets beyond MD simulations.

The rest of the paper is organized as follows. In Section II,

we discuss the related work. In Section III, we describe the

research background. In Section IV, we formulate the research

problem. In Section V, we present an in-depth characterization

of several MD simulation datasets, which motivates our design

and optimization. In Section VI, we describe in details our

developed MD data compressor - MDZ. In Section VII, we

present and discuss the evaluation results. We conclude the

paper in Section VIII.

II. RELATED WORK

The compression of MD datasets is critical to the cost-

effective data processing of MD simulations.

In general, compression techniques can be divided into

two categories - lossless compression and lossy compression.

Lossless compressors have been deployed in many fields. For

example, Google Brotli [17] and Facebook Zstandard [18] are

widely used in industrial data management systems. Gorilla

[19] and AMMMO [20] bring lossless methods to time series

databases. However, lossless compressors suffer from very low

compression ratios in the scientific domain, as demonstrated

in Section VII-B. The reason is that scientific datasets are

mainly composed of floating-point numbers each of which has

very random ending mantissa bits so that it is very hard for

lossless compressors to catch the repeated patterns during the

encoding.

Lossy compression, unlike lossless compression, can reach

a higher compression ratio with some information loss. Lossy

compression has been adopted in some database systems. For

example, ModelarDB [21], [22] is a time series management

system with lossy compression built-in. It has three com-

pression algorithms, including the PMC-mean [23], the linear

Swing model [24], and the lossless method in Gorilla [19].

ModelarDB uses a window-based approach to find the best

algorithm for each data segment. SummaryStore [25] is an

approximate time-series store which merges the old data when

the space limit is reached. Besides time series databases, there

are also some lossy compression studies [26], [27], [28], [29]

for GPS trajectory data systems.

Lossy compressors in database systems are not suitable

for MD datasets for the following reasons. First, time series

databases such as ModelarDB use simple data estimation

methods and they do not have quantization or entropy cod-

ing process, thus they suffer from low compression ratios

on MD datasets (demonstrated in Section VII-C). Second,

GPS trajectory compressors are not suitable for MD datasets

either because MD data is much more unconstrained than the

GPS data (note that GPS devices follow direct lines while

MD particles move rather randomly). Third, many database

systems such as SummaryStore do not have an error-bounded

design such that they cannot guarantee the quality of the

decompressed data would satisfy the users’ requirements.

Even general lossy compressors for scientific applications

such as ZFP [30] and SZ-Interp [31] exhibit sub-optimal

results on MD datasets [16], because they are designed and

optimized for three-dimensional data. While MD datasets are

two-dimensional and are split into batches for compression.

Due to the above limitations, researchers are investigat-

ing lossy compressors that are specifically designed for MD

datasets. HRTC [2] adopts a piecewise linear representation of

trajectories, followed by an error-controlled quantization and a

variable length integer representation. Li et al. [16] improved

the compression ratio by employing velocity fields to assist

the prediction of spatial coordinates. Note that, as mentioned

in Section I, this strategy may not be efficiently applied to

MD datasets. PMC [32] utilizes information on atomic bonds

in a molecule to predict atomic positions in each frame. This

method, however, is not suitable for simulations with non-

bonded interactions, where connectivity between neighboring

atoms can dynamically change during the simulation.

III. RESEARCH BACKGROUND

Two key sets of background concepts — MD simulation

and error-bounded lossy compression — are important to the

development of our novel error-bounded lossy compressor for

MD simulation datasets.

A. MD Simulations

MD is a type of N-body simulations which is widely used

to explore the behavior of materials at the nanoscale. As illus-
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trated in Figure 1, a single MD simulation generally involves

many time steps, in each of which the new position and

velocity of each particle are predicted based on sophisticated

calculations of interatomic forces. Force calculation typically

consumes the overwhelming majority of the computing time.

After adjusting atomic positions based on the calculated forces

(shown as the highlighted arrow), boundary conditions are

applied and coordinates or physical quantities of interest care

calculated and written out.

Fig. 1. Illustration of classic MD simulation

A typical MD output is dominated by the storage of

coordinate information along the trajectory. Each particle’s

position is composed of three axes (x, y, z). This is why most

of the existing lossy trajectory compressors [2], [32], [33],

[34] focus on the positions rather than velocities. As such, in

the following, the targets for compression are the particles’

positions (x, y, z) alone.

B. SZ Error-bounded Lossy Compression Framework

Our proposed compression technique builds upon the SZ

lossy error-bounded compression framework [35], [31], [36],

[37]. The SZ framework supports customized prediction stage,

allowing us to exploit MD application-specific characteristics

and patterns in order to improve the compression quality.

SZ proceeds by four critical steps, as illustrated in Figure 2:

(1) data prediction, (2) linear-scale quantization, (3) entropy

coding (i.e., Huffman coding), and (4) lossless compression

(e.g., Zstd [18]). In most applications, tuning the first step

is crucial to achieve high compression quality on specific

applications, as higher prediction accuracy would yield better

distribution of quantization bins and thus higher compression

ratio under the Huffman coding.

Fig. 2. Illustration of SZ compression framework

IV. PROBLEM FORMULATION

In this section, we formulate the research problem by classi-

fying the input and output of error-bounded lossy compressors

in the context of MD simulation datasets.

The research problem can be formulated as follows. Sup-

pose an MD simulation dataset (denoted by D) is composed

of M snapshots each containing N particles. Atomic positions

(represented as three axes values {x, y, z}) need to be stored

to disks during the simulation.

In general, compression time should be negligible compared

with the time to execute hundreds to thousands of timesteps. In

most MD simulations, the stiffness of the equations of motion

entails very short timesteps on the order of femtoseconds,

which is a small fraction of the vibration period of the

fastest modes in the system. Hence, by construction, very little

structural changes occur between neighboring timesteps. As

transitions that change the topology are typically thermally-

activated, simulation data need to be saved only occasionally

(i.e., thousands to tens of thousands of timesteps). For applica-

tions to estimate systems with fast relaxation processes, e.g., to

estimate the viscosity of liquids, or the vibrational properties

of solids, a higher frequency might be required (e.g., hundreds

of timesteps).

Accordingly, our research target can be summarized as max-

imizing the compression ratio while keeping the compression

and decompression speed fast enough for the MD simulations,

and processing the M snapshots in batches instead of com-

pressing the entire dataset D at once.

Based on the above problem definition, traditional pure

trajectory compression methods [16], [2], [34] are not suitable,

since they need to collect a large number of snapshots for

the compression, and decompressing any one snapshots needs

to decompress all its preceding snapshots as well. Moreover,

single-snapshot based compression [38], [8] is not an ideal

solution either, in that it will suffer from low compression

ratios because of the non-smooth nature of the spatial particle

data. To address these issues, we propose MDZ which makes

full use of the characteristics of MD datasets in both spatial

and temporal dimensions to significantly improve compression

ratios.

V. INVESTIGATION OF MD DATASETS

In this section, we identify key characteristics and patterns

from a number of MD datasets. Specifically, we first analyze

the spatial patterns present in MD datasets and then investigate

their temporal features.

A. MD Simulations Used in Our Work

Table I summarizes the eight MD simulation datasets that

are considered in the following. For Copper and Helium

datasets, we include two broad execution modes, noted A

and B. In the mode A simulations, each snapshot involves

a relatively large number of atoms (generally more than 100K

atoms). These are typical of conventional large-scale MD

simulations. In mode B, each simulation involves a large

number of timesteps and a relatively small number of atoms

(such as 1k atoms). This mode is more typical of long-

timescale simulations, e.g., using methods such as Parallel

Trajectory Splicing [39].

The eight datasets can be described as follows.

• Copper (Mode A&B): The data comes from the study

of the influence of strong electric fields on copper in

the context of particle accelerators. The mode A sample

contains 1077290 atoms and the mode B sample has 3137

atoms. The time evolution was obtained by molecular

dynamics method using the LAMMPS code [40] in

the canonical ensemble at a temperature of 800K. The

simulation was run on up to 30 nodes (1024 cores) of
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TABLE I
MD SIMULATION DATASET IN OUR STUDY

Application State Code Snapshots Atoms

Copper-A Solid LAMMPS 83 1077290

Copper-B Solid LAMMPS 5423 3137

Helium-A Plasma LAMMPS 2338 106711

Helium-B Plasma EXAALT 7852 1037

ADK Protein CHARMM 4187 3341

IFABP Protein CHARMM 500 12445

Pt Solid LAMMPS 300 2371092

LJ Liquid LAMMPS 50 6912000

the Grizzly [41] supercomputer at Los Alamos National

Laboratory (LANL).

• Helium (Mode A): This dataset contains simulations

of the growth of helium bubbles embedded in a body-

centred cubic tungsten matrix. The simulation cell con-

tains 106711 atoms. Helium atoms are gradually inserted

in the bubble as the simulation proceed, mimicking the

agglomeration of helium atoms incoming from the plasma

into the first wall of a fusion reactor. The simulations

were carried out with the Parallel Replica Dynamics

method [42] using the LAMMPS code [40]. Simulations

were carried out on up to 1000 nodes of the Trinity

supercomputer [43] at LANL.

• Helium (Mode B): This dataset contains simulations of

small vacancy/helium clusters in a body-centred cubic

tungsten matrix. The simulation cells contain 1037 atoms.

Long-time simulations were carried out with the Parallel

Trajectory Splicing methods [39] to investigate the mo-

bility of these defects formed by helium atoms incoming

through the plasma in contact with the first wall of fusion

reactors [44]. These simulations were carried out on up

to 2000 nodes of the Trinity supercomputer at LANL.

• ADK: This dataset is from the simulation of adenylate

kinase (ADK) which is the critical enzyme controlling

the energy balance in cells. According to Seyler[45],

ADK was simulated with explicit water and ions in

isothermal–isobaric ensemble settings with temperature

being 300 K and pressure being 1 bar. The experiment

was conducted on the biomolecular-optimized Anton su-

percomputer [46] at Pittsburgh Supercomputing Center.

The snapshots contains 3341 atoms and were saved every

240 picoseconds for a total runtime of 1.004 µs.

• IFABP: The data comes from an MD simulation with

12445 atoms of intestinal fatty acid-binding protein in

water. Fatty acid-binding proteins affect the transfer of

fatty acids between cell membranes while their mecha-

nism are largely unknown. The simulation data is valuable

for studying protein dynamics, protein-ion, and protein-

water interactions [47]. The experiment was running for

500 picoseconds using CHARMM[48]. The timestep is

set to 2 femtoseconds and the snapshots are saved every

1 picosecond.

• Pt: The data corresponds to an MD simulation of surface

diffusion and adatom clustering on a platinum surface.

The model had 2371092 atoms and was run for 32M

timesteps using the local hyperdynamics methodology.

More details on the method and simulation analysis are

given in [49]. The simulation was run on 64 KNL nodes

(4096 cores) of the Theta supercomputer at ALCF [50].

• LJ: This simulation dataset was generated by the

Lennard-Jones liquid benchmark [51], [52]. The Lennard-

Jones potential estimates the potential between particles

based on the particle distance. LAMMPS includes the

Lennard-Jones potential as one of the simulation bench-

marks. The simulation cell contains 6912000 atoms. The

simulation was run on up to 500 cores of the Bebop

supercomputer [53] at Argonne National Laboratory.

B. Characterization of Spatial Features
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Fig. 3. Demonstration of spatial correlations in atom position data

Takeaway 1: Our first critical observation is that in many

cases, the MD datasets exhibit various patterns in the spatial

domain. Due to the space limit, we give six typical examples

(including Copper-B, ADK, Helium-A, Helium-B, Pt and LJ)

to demonstrate the diverse spatial patterns in Figure 3. As

illustrated in the figure, the dataset may exhibit a stable zigzag

pattern (Figure 3 (a) (d)), an erratic zigzag pattern (Figure 3

(c) (f)), a stair-wise pattern (Figure 3 (e)), or a random pattern

(Figure 3 (b)).

Takeaway 2: We also observe from Figure 3 (a) (c) (d)

that in many cases, the data are clustering into several equal-

distant discrete levels in the whole value range. In fact, for

all the data points that are clustering at a specific level, their

positions actually vibrate in a small range and are not strictly

constant. These regular patterns emerge from the crystalline
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Fig. 4. Demonstration of frequencies of atom position data

structure of the underlying materials. The observed zig-zag

patterns are also typical of how crystalline samples are usually

created. Such patterns can change with time, as the structure

of the materials evolve.

Takeaway 3: Based on Figure 3, we also learn that the

atom’s coordinate may jump from one discrete level to another

nearby level, point by point throughout the whole dataset.

Since many prediction-based compressors such as SZ simply

predict each data point based on its preceding data points

without explicitly using the discrete levels, it would definitely

suffer from relatively low prediction accuracy in this situation,

leading to low compression ratios (as discussed in Section III).

As mentioned above, we observe that the data values often

cluster and vibrate around a number of different discrete levels,

which can be verified by the distribution of the data (as

presented in Figure 4). As shown in the figure, the distribution

of any MD dataset can be split into two categories - multiple-

peak-dominated distribution (see Figure 4 (a) (c) (d)) and

rather uniform distribution (see Figure 4 (b) (e) (f)). The

former clearly indicates the strong clustering feature of the

data in many cases, which is consistent with our analysis based

on Figure 3.

C. Characterization of Temporal Features

Datasets which have no prominent spatial patterns often

exhibit particular temporal correlations that can be used to

achieve very high compression ratios. Figure 5 presents the

position data in the time dimension (i.e., trajectories of atomic
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Fig. 5. Demonstration of temporal correlations in atom position data, time is
normalized to 0-50

positions) for six datasets. It is clearly observed that the

data value always exhibit more or less correlations in the

time dimension. Basically, there are two correlation levels as

summarized below. (1) The data may change relatively largely

and frequently for some datasets (such as Copper-B, ADK,

and Helium-B). (2) The data may change slightly in some

situations (such as Helium-A, Pt, and LJ).

Takeaway 4: One very useful observation is that for the

datasets which exhibit low spatial patterns, for example Pt and

LJ, they often have extremely strong data smoothness in the

time dimension and a large majority of the data are extremely

close in the time dimension throughout the whole simulation.

Based on the four important takeaways explored in our

characterization, we develop an adaptive error-bounded lossy

compressor for the diverse MD datasets which can signifi-

cantly improve the compression ratios over the existing state-

of-the-art MD compressors.

VI. MDZ: AN ADAPTIVE ERROR-BOUNDED LOSSY

COMPRESSOR FOR MD DATASETS

The basic design idea is selecting the best method from

among three compressors best suited to diverse data features

in both the spatial and temporal dimension.

Figure 6 summarizes the design of MDZ. Basically, the

datasets are generated by the data source such as the MD

simulation, as illustrated in Figure 1. As mentioned in Section

I and Section IV, the MD applications need to perform the

compression operation periodically in order to avoid out-of-

memory issue. The snapshots to be compressed are stored in
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a buffer and the buffer size (BS) is defined as the maximum

number of snapshots to be kept in the buffer. Finally, the

compressed data will be stored into the parallel file systems

(PFS).

As illustrated in Figure 6, the entire compression pipeline

involves four critical steps: prediction, optimized quantization,

encoding and Zstd, following the classic SZ compression

framework [54], [35]. Our key contribution involves improve-

ments to the prediction and quantization stages.

Fig. 6. Design Overview (VQ,VQT,and MT are described in Section VI-A
and VI-B )

Specifically, we design three efficient MD data prediction

strategies to adapt to diverse data patterns in the MD datasets:

• Vector-quantization-based compressor (abbreviated as

VQ): The VQ compressor predicts the data values totally

based on the spatial information, thus the data prediction

for any one snapshot has no dependencies on any other

snapshots, such that any snapshot data can be decom-

pressed very quickly without a need in decompressing

other snapshots. This is particularly effective on the

datasets with very low smoothness in time dimension (see

Figure 5 (a) (b)).

• Vector-quantization-time-based compressor (abbreviated

as VQT): The VQT compressor adopts the VQ predictor

on the first snapshot in the buffer, and adopts a time-

based predictor (i.e., predict each data point using the

corresponding data values in the previous snapshot) for

all the remaining snapshots in the buffer. This method is

designed particularly for datasets that have smooth time

dimension and also have strong multi-peak-distribution

patterns in space (see Figure 5 (c) and (d)).

• Multi-level-time-based compressor (abbreviated as MT):

The MT compressor adopts a particular data prediction

method - called initial-time-based prediction (shown as

the notation (T) in Figure 6)), and applies the ordinary

time-based predictor on all other remaining snapshots in

the buffer. This method is particularly effective on the

datasets with very high smoothness in the time dimension

(see Figure 5 (e) (f)).

We describe in detail the compressors with optimized pre-

diction and quantization methods in the following subsections.

A. Vector-Quantization-Based Compression (VQ and VQT)

The basic idea of the VQ algorithm is to leverage the spatial

patterns characterized in Section V-B (i.e., takeaway 2 and

takeaway 3). Takeaway 2 indicates that the data are clustering

into different roughly equal-distant discrete levels (as shown in

Figure 3 and Figure 4), which motivates us to use the centroid

(a.k.a., center) of each cluster to predict all the data values

within this cluster.

We present the pseudo-code of the VQ algorithm in Algo-

rithm 1. The first step is computing the level distance λ and the

initial level value μ (line 1), based on which every level value

can be retrieved easily. Line 2∼8 is is the main compression

procedure, including data prediction (line 4∼5), computation

of level index (line 6) and quantization (line 7).

Algorithm 1 VECTOR-QUANTIZATION-BASED COMPRES-

SION (VQ)

Input: raw MD data D (single snapshot)
Output: compressed data (byte stream)

1: Compute the level distance λ and the initial level value µ by the sampling-
based KMeans;

2: Store do as it is;
3: for di∈D, where i=1, 2, · · · , N do

4: Li ← Round(
di−µ

λ
); /*Compute level*/

5: Vi ← µ + λ·Li; /*Get the level’s centroid value - VQ based
predictor*/

6: ji ← Li − Li−1; /*Compute relative level index*/

7: bi ← ( di−Vi
e

+ 1)/2; /*linear-scale quantization, where e is error
bound*/

8: end for
9: B̂ ← HUFFMANbi∈B(B); /*Huffman encoding on quantization codes*/

10: Ĵ ← HUFFMANji∈J (J); /*Huffman encoding on level index codes*/

11: ZSTD(B̂ + Ĵ); /*Compress Huffman output by Zstd [18]*/

We illustrate the key steps (data prediction and quantization)

of the VQ compression algorithm in Figure 7. The figure

shows a snippet of the dataset (i=10 → 26). As we mentioned

previously, the data values are clustered at different levels with

a small vibration, so we use the corresponding level’s centroid

value to predict each data point. As such, the quantization bin

(see the red number 3 in the figure) is calculated based on

the prediction error (i.e., di − Vi). The vector B is used to

hold the quantization bins, and J is used to hold the relative

index numbers. Both of them will be compressed by Huffman

encoding later on (line 9-10 in Algorithm 1).

Fig. 7. Illustration of VQ-based Prediction + Quantization
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As mentioned above, we develop an efficient sampling-

based 1D K-means clustering algorithm to identify the level

distance and initial level value. In what follows, we first

describe the basic K-means algorithm and then discuss how

we boost its performance in the context of compression.

Unlike the time-consuming 2D K-means problem, optimally

partitioning N sorted 1-dimensional data points to K groups

has polynomial time complexity solutions. Define the sorted

data points as d1, d2, .., dN , and the cost of clustering as the

summation of the distance between the data points and their

centroid points. In Formula (1), we define Cost(l, r) as the

optimal cost of clustering dl, .., dr to one group, F (n, k) as the

optimal cost of clustering d1, .., dn to k groups, and H(n, k)
as the argument that minimizes F .

Cost(l, r) =
∑r

i=l(di −
∑r

j=l dj

r−l+1 )

F (n, k)=min(F (i−1, k−1)+Cost(i, n), ∀0<i<=n)
H(n, k)=argmin(F (i−1, k−1)+Cost(i, n), ∀0<i<=n)

(1)

The boundaries of clusters can be restored from H iteratively.

The naı̈ve implementation to solve F (N,K) has O(KN2)
time complexity, and we adopt a solution [55] that optimizes

the computational cost to O(KN).
In our case, the number of clusters K is unknown and

the data points are unsorted. To boost the performance, on

the one hand, we compute F only once during the whole

simulation, and we compute it on a sampled dataset that has

10% data points from the first single snapshot. We observe the

snapshots have unchanged level patterns during the simulation

thus the result on the first snapshot is applicable for the

following snapshots. On the other hand, note that the value

of F (N, 1), F (N, 2), .., F (N,K) are computed in order when

computing F (N,K). Let G(k) = F (N,k)
F (N,k−1) ; we stop the

computation of F at κ if G(κ) decreases significantly than

G(κ − 1). The maximum test value of K is set to 150 as a

higher number of clusters will harm the compression ratio of

the vector quantization indexes. The level distance λ and initial

level value μ are computed using the boundaries obtained from

H.

For the VQ compression method, we adopt the VQ al-

gorithm on each snapshot, as illustrated in Figure 6. By

comparison, the VQT compression method applies the VQ

algorithm only on the first snapshot in each buffer, and all

other snapshots in the buffer will be compressed by the

classic time-based compression. Specifically, each subsequent

data point will be predicted using the corresponding data

value in the previous timestep. This may significantly improve

the compression ratio especially in situations with relatively

smooth data in the time dimension (see Figure 5 (c)-(f)).

B. Multilevel Time-based Compression (MT)

We propose an additional error-bounded compression

method - called multi-level-time-based compression (MT),

which is particularly effective for the datasets with extremely

high smoothness in the time dimension.

The MT compression algorithm also adopts the prediction-

based compression model. The particular design of MT is that

the first snapshot in the buffer will be predicted based on the

initial snapshot of the whole dataset, which is motivated by the

very strong correlation between all the simulation snapshots

and the initial snapshot in some datasets. Figure 8 shows

the similarity of all the snapshots compared with the initial

snapshot (i.e., snapshot 0). The similarity is defined in Formula

(2).

Similarity(τ, i) =
Count(|

Si[j]−S0[j]

Si[j]
|<τ,∀j)

Count(Si)
(2)

where τ refers to a threshold, Si refers to snapshot i, Si[j]

refers to the jth data point in the snapshot Si. The similarity

formula calculates the percentage of the “unchanged” data

points (atoms) based on some threshold τ . The figure clearly

demonstrates that succeeding snapshots in some datasets such

as Copper-A and Pt are always extremely similar to the initial

snapshot.
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Fig. 8. Snapshots Similarity with Snapshots-0 (Snapshots normalized to 0-
100)

Using the particular snapshot-0-based prediction, the pre-

diction error could be much lower than the traditional spatial

prediction error such as Lorenzo-predictor, as presented in

Table II.

TABLE II
PREDICTION ERRORS FOR THE FIRST SNAPSHOT IN BUFFER

Method
Pt LJ Helium-B

x y z x y z x y z

Lorenzo+Regression 3.46 5.50 3.88 5.87 3.87 3.75 5.83 1.14 0.83

MT(Snapshot-0-based) 0.13 0.13 0.01 1.37 1.37 1.38 0.08 0.07 0.09

C. Linear-Scale Quantization Optimizations

In this section, we optimize the linear-scale quantization

step by tuning two quantization settings to further improve

the overall compression performance and quality.

1) Optimization of Quantization Scale: The quantization

scale controls the value-range of the quantized integers. The

data points that are out-of-scope will be marked with re-

served integer value and stored separately. A smaller scale

will increase the number of out-of-scope data points which

impacts the compression ratio, while a larger quantization

scale leads to a bigger Huffman tree such that the Huff-

man coding will be slower. In Figure 9, we illustrate the

compression/decompression speed with different quantization

scale settings. The compression speeds of VQ, VQT, and

MT decrease from 95MB/s, 109MB/s, 119MB/s to 19MB/s,

20MB/s, 32MB/s respectively when the quantization scale

changes from 64 to 65536. As such, in our solution, we

set the optimal quantization scale to 1024, which can always
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keep a high compression performance while preserving a high

compression ratio.
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Fig. 9. Compressor Performance Affected by Quantization Scale on Helium-B
Dataset (value-range-based error bound (ε) = 1E-3, BS = 10)

2) Optimization of Quantization Sequence: The quanti-

zation sequence controls how the integers from multiple

snapshots are stored together as 1D array for the Huffman

coding and dictionary coding. We denote Seq-1 as storing

one snapshot first, then storing the following snapshots. Seq-

2 is denoted as storing one particle in all snapshots first,

then storing the following particles. We observe that Seq-2

is better than Seq-1 in terms of compression ratio, especially

when the data is stable in time (as shown in Figure 5 (c) (e)

(f)). When many data points remain unchanged in the time

dimension and if they are put together as required by Seq-2,

the dictionary coder will have better compression results. Table

III demonstrates compression ratios of the two sequences on

Helium-B dataset. The second row of the table is the value-

range-based error bound (ε), and the corresponding absolute

error bound is value range × ε. The table shows Seq-2

improves the compression ratio by 37.8%, 37.6%, and 39.7%

over Seq-1 on axis x, y, and z respectively. As a result, we

adopt Seq-2 in our solution.

TABLE III
COMPRESSION RATIO (CR) OF HELIUM-B DATASET WITH DIFFERENCE

SEQUENCE SETTINGS, BUFFER SIZE (BS) = 10 (METHOD=MT)

Axis X Y Z

ε 1E-1 5E-2 1E-2 1E-1 5E-2 1E-2 1E-1 5E-2 1E-2

Seq-1 156 97 46 176 101 47 146 97 46

Seq-2 215 132 53 236 139 54 204 133 53

D. Adaptive Selection of Best Compressor (ADP)

In this section, we propose our adaptive solution (ADP) that

can select the best compressor (VQ, VQT or MT) dynamically

at runtime. MDZ uses ADP by default to simplify the com-

pression configuration, while manually choosing VQ, VQT, or

MT as the compressor is also supported in MDZ.

We notice that during the simulation, the data patterns stay

the same in a short term and the patterns (either spatial or

temporal) may change prominently in the long term. Further-

more, the best compressor keeps its advantage across some

snapshots, but it may not be the best one on all the snapshots.

As illustrated in Figure 10 (a), MT has the highest compression

ratio before snapshot 400 and VQT becomes the best compres-

sor after that snapshot. As a result, we propose to evaluate

the three compressors (VQ, VQT, and MT) periodically by

using them to compress the same data batch independently

and selecting the one with the best compression ratio for the

following snapshots. The evaluation will be invoked every 50

compression operations. This time interval ensures that the

best compressor is updated in time, while keeping the updating

overhead low (less than 6% of the total compression time).

Figure 10 confirms the effectiveness of our adaptive solution

(ADP). All other datasets exhibit similar results (i.e., our ADP

algorithm can always select the best solution accurately).
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Fig. 10. Illustration of smooth CR in short term and diverse CR in long term
(BS=10). ADP can pick up the best compressor throughout all the snapshots.

VII. EXPERIMENTAL EVALUATION

In this section, we present the experimental settings and

the evaluation results of our solution on eight MD simulation

datasets.
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Fig. 11. Our adaptive solution (ADP) has the highest compression ratio over
VQ, VQT, and MT under different datasets and buffer size (BS) settings,
because ADP can always select the best compression method accurately.

A. Experimental Setting

1) Execution Environment: The experiments are executed

on the Bebop supercomputer [53] at Argonne National Labo-

ratory with up to 216 cores. Each node in Bebop is equipped

with two Intel Xeon E5-2695 v4 processors and 128GB

memory.
2) Datasets: The experiments are evaluated on eight real-

world MD simulation datasets. The detailed information about

the datasets is presented in Section V-A and Table I.
3) State-of-the-Art Lossless Compressors in Our Evalua-

tion: We evaluate six lossless compressors as a comparison

with lossy compressors. We include Zstd, Brotli, and Zlib

which are widely used in databases and file systems. We also

include ZFP, Fpzip, and FPC which specifically target the

floating-point data format and are the state-of-the-art lossless

compressors for scientific datasets.
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(a) Copper-A (ε=5e-4)
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(b) Copper-B (ε=1e-2)
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(c) Helium-A (ε=1e-3)
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(d) Helium-B (ε=5e-3)
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(e) ADK (ε=5e-3)
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(f) IFABP (ε=1e-1)
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(g) Pt (ε=1e-6)
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Fig. 12. Our solution has the highest compression ratio on all datasets and under different buffer size settings, HRTC and TNG fail to run on some datasets.
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Fig. 13. Rate-distortion graphs show our solution has the best compression
quality. Lower bit rate and higher PSNR indicate better compression quality.

4) State-of-the-Art Lossy Compressors In our Evaluation:

We compare our solution with two MD data compressors, two

widely used scientific data compressors, as well as two state-

of-the-art time series compressors.

• TNG [15]: a MD compressor that uses quantization, delta

coding, and a set of integer compressors to compress the

trajectory data. TNG is supported by the MD simulation

package GROMACS[56].

• HRTC [2]: a lossy compressor targets on MD trajectory

compression. HRTC relies on piecewise linear function

to approximate data points.

• ASN [16]: a scientific compressor designed for N-body

simulation that utilizes the time dimension for prediction.

• SZ2 [57]: a prediction based error-bounded lossy com-

pressor. SZ is widely used in many scientific domains.

The framework of SZ2 is described in Section III-B.

• MDB: a full C++ implementation of ModelarDB’s com-

pression solution. ModelarDB is described in Section III.

ModelarDB tightly couples its compressor with many

database features which are useless for scientific data

and introduce extra overhead. As such, we eliminate the

overhead caused by those features for a fair comparison.

• LFZip [58]: a lossy compressor designed for multivariate

floating-point time series data. LFZip is a prediction-

based lossy compressor. We evaluate LFZip with its

normalized least mean square (NLMS) predictor and

skip its neural network (NN) predictor because the NN

predictor requires training and is 2000X slower than the

NLMS predictor according to the authors [58].

SZ supports both 1D mode and 2D mode. Table IV presents

the compression ratios of SZ in the two modes. We can observe

from the table that the 2D mode has up to 200% higher

compression ratios than 1D, because 2D mode can utilize the

data continuity in the space and time dimension at the same

time. In our experiments, we use 2D mode for SZ.

5) Excluded Cases: HRTC has runtime exceptions on

Copper-A, Helium-A, Pt, and LJ datasets. TNG has runtime
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(a) Original Data (b) SZ2 (c) TNG (d) HRTC

(e) ASN (f) LFZip (g) Oursol-ADP

Fig. 14. Only our solution yields the correct radial distribution function (RDF) on decompressed data (Copper-B, CR=10, BS=10 )

TABLE IV
COMPRESSION RATIOS OF SZ IN 1D AND 2D MODES (BS=10, ε=1E-3)

Method Mode
Pt LJ Helium-A

x y z x y z x y z

SZ2
1D 150.5 139.6 38.9 6.35 6.45 6.53 7.18 7.28 6.36
2D 356.5 371.6 32.1 12.26 12.40 12.44 11.11 12.03 11.58

exceptions on Pt and LJ datasets. A possible reason is the

number of atoms is larger than their upper limit. As a result,

no HRTC or TNG results are shown on those datasets.

B. Evaluation Results and Analysis of Lossless Compressors

We first evaluate the six state-of-the-art lossless compres-

sors. Table V shows the compression ratios of the lossless

compressors on four of the MD datasets (results are similar on

other datasets). It is clear that all the lossless compressors have

extremely low compression ratios (around 1∼2). The results

confirms our statement in Section II that lossless compressors

are not suitable for scientific applications.

TABLE V
COMPRESSION RATIO COMPARISON OF LOSSLESS COMPRESSORS

Dataset Zstd Zlib Brotli Fpzip FPC ZFP

Copper-A 1.13 1.15 1.14 1.41 1.18 1.47

Helium-B 1.38 1.33 1.37 1.29 1.22 1.30

ADK 1.08 1.07 1.08 1.26 1.09 1.21

LJ 1.23 1.31 1.24 1.44 1.16 1.39

C. Evaluation Results and Analysis of Lossy Compressors

The evaluation involves two aspects - the compression

quality and performance. On the one hand, the evaluations

of compression error, compression ratio, and rate-distortion

demonstrate that our solution has superior compression quality

over other state-of-the-art lossy compressors. On the other

hand, the performance evaluation reveals that our solution has

near the top compression and decompression throughput.

1) Compression Ratio: Figure 11 demonstrates the com-

pression ratio of our solutions. We can observe that ADP

has the highest compression ratio among our solutions under

different datasets and buffer size settings. It further confirms

our claim in Section VI-D that ADP can always select the best

compressor from VQ, VQT and MT accurately during runtime.

As such, we focus on ADP in the following evaluation section.

Figure 12 compares the compression ratio of the lossy com-

pressors in different buffer size settings. It clearly shows that

our solution always has the highest compression ratio on all

the eight datasets with any buffer settings. In particular, when

buffer size is 100, our solution has 31%, 114%, 38%, 84%,

6%, 27%, 96%, 233% compression ratio improvements over

the second-best on Copper-A, Copper-B, Helium-A, Helium-

B, ADK, IFABP, Pt, and LJ datasets respectively. MDB has

extremely low compression ratios (1∼6) on all the datasets,

as shown in Figure 12. The result confirms our statement

in Section III that simple data estimation methods and the

lack of quantization and entropy coding make ModelarDB

suffer from low compression ratios on MD datasets. As a

comparison, LFZip, which is also a time series compressor,

has comparable results with other lossy compressors, because

LFZip has the adaptive linear predictor as well as quantization

and entropy coding steps. However, LFZip is still not as good

as our solution. The key reason why our solution has such a

high compression ratio is that we investigate and utilize the

MD data features in both spatial and temporal dimensions (as

shown in Figure 3, Figure 4, Figure 5, and Table II).

2) Rate-Distortion: Rate-distortion graph is one of the

main assessment metrics of lossy compression quality. Rate-

distortion involves bit rate and PSNR. The bit rate is defined

as the average bits per data point of the compressed data.

PSNR is the peak-signal-to-noise ratio and it is inversely

proportional to mean squared error. Lower bit rate or higher

PSNR indicts better compression quality. Figure 13 presents

the rate-distortion results of all the lossy compressors. It is

clear that our solution has the best PSNR given the same bit

rate (about 20dB improvement in most cases), and also has the

lowest bit rate given the same PSNR (about 50% reduction in

size in most cases).
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3) Compression Error: In the domain of lossy compression,

compression error is defined as the differences between the

decompressed data and the original data. The maximum of

the compression error (MaxError) and the normalized root-

mean-square error (NRMSE) are two key metrics to evaluate

the compression quality of lossy compressors. As an example,

we present in Table VI the two error metrics for all the lossy

compressors (excluding MDB) based on the Copper-B dataset.

Other datasets exhibit the similar results. MDB is excluded

from this section because it could not achieve a compression

ratio of 10. In this example, the MaxError of ADP always

matches the lowest one from VO, VQT, and MT because VQ

is always the best on x/y-axis, and MT is always better than the

others on z-axis. Thus ADP chooses VQ for x/y-axis and MT

for z-axis all the time. In other cases when no compressor

is always better than the others, ADP will have even lower

MaxError and NRMSE than any of the three compressors.

We can observe from Table VI that our solution has the lowest

MaxError and NRMSE on all axes. Specifically, the MaxError

of our solution is 87%, 87%, 60% lower than the second-best

compressor on x, y, and z axis, respectively.

To further demonstrate that our solution upholds the phys-

ical characteristics of the data after compression, we present

the radial distribution functions (RDFs) of the original data

and decompressed data in Figure 14. RDF, denoted as g(r),
is a critical analysis metric, which represents the possibility

of finding a particle from the base particle at distance r. RDF

is proportional to the local density of the particle systems.

Figure 14 reveals that only our solution could yield the correct

RDF on Cooper-B dataset under the same compression ratio.

Therefore, only our solution delivers the decompressed data

with unaltered local density to downstream applications. In

order to get the same RDF as ours, other compressors need

to significantly reduce their compression ratios. In summary,

the RDF result proves that, with suitable compression ratio,

our solution maintains the physical characteristics of the data

accurately.

TABLE VI
MAXERROR AND NRMSE OF DECOMPRESSED COPPER-B DATASET,

CR=10, BS=10

Type Axis SZ2 ASN TNG HRTC LFZip
OurSol

VQ VQT MT ADP

Max
Error

X 0.37 0.23 0.44 2.06 0.35 0.03 0.10 0.10 0.03
Y 0.32 0.23 0.44 1.94 0.35 0.03 0.10 0.09 0.03

Z 0.16 0.10 0.44 1.13 0.17 0.11 0.05 0.04 0.04

NRMSE
(×1E-4 )

X 45.5 27.4 61.8 133 43.2 3.10 9.00 11.9 3.10
Y 40.0 28.5 61.9 128 43.3 3.10 8.92 10.0 3.10

Z 20.6 9.41 45.2 74.1 21.4 15.3 8.18 5.32 5.32

4) Compression/Decompression Throughput: We present

the throughput comparison among all lossy compressors in

Figure 15. It is clear that our solution is one of the fastest

among all the lossy compressors on all datasets. As a com-

parison, ASN is slower than some compressors on Pt and

Helium-B datasets. There are no results for TNG and HRTC on

datasets such as Pt due to runtime exceptions, as explained in

Section VII-A5. The results of LFZip are barely visible in this

figure because LFZip has intermediate disk operations which

bring significant runtime overhead. The excellent performance

of our solution is attributed to both effective prediction meth-

ods and our optimized quantization settings (see Section VI-C1

for details).

D. Integration with LAMMPS

We integrate MDZ into the MD simulation software

LAMMPS. To enable MDZ, LAMMPS users only need to

adjust the data dumping option in the configuration file.

We executed the Lennard-Jones benchmark in LAMMPS

with different settings to evaluate the overhead of our solution

in real-world MD systems. The simulation lasts 1 million

timesteps and is executed in three different scales, with the

number of atoms ranging from 64K to 4096K. We choose

data saving frequencies of 1 per 100 timesteps and 1 per

5000 timesteps, which is the range of the typical data saving

frequency of MD simulations, as discussed in Section IV.

The runtime breakdown is shown in Table VII. It is clear

that enabling MDZ does not affect the output portion of the

runtime or the total runtime. MDZ even improves the output

performance when the data saving frequency is 100 because

the I/O time is significantly reduced due to the reduced file size

by MDZ. In general, MDZ has negligible overhead to the MD

simulation, and it can improve the simulation performance if

a large mount of data needs to be saved and the I/O speed is

the bottleneck.

TABLE VII
RUNTIME BREAKDOWN OF LJ SIMULATION (F: DATA SAVING

FREQUENCY, COMP: COMPUTATION TIME, COMM: COMMUNICATION TIME,
OUTPUT: DATA SAVING TIME INCLUDING COMPRESSION)

F # Atoms Option
Duration Runtime Breakdown
(minutes) Comp Comm Output

100

64K
w/o MDZ 329 96.4% 1.4% 2.2%
w MDZ 322 98.3% 1.4% 0.3%

512K
w/o MDZ 428 93.9% 3.5% 2.6%

w MDZ 418 95.5% 3.6% 0.9%

4096K
w/o MDZ 516 82.7% 12.8% 4.5%
w MDZ 513 83.0% 12.7% 4.3%

5000

64K
w/o MDZ 322 97.0% 2.9% 0.06%
w MDZ 312 98.5% 1.5% 0.01%

512K
w/o MDZ 415 96.2% 3.7% 0.07%
w MDZ 425 93.7% 6.2% 0.03%

4096K
w/o MDZ 474 90.0% 9.8% 0.14%

w MDZ 480 88.9% 10.9% 0.16%

E. Generalizability of Our Solution Beyond MD Simulations

In this section, we discuss the generalizability of our so-

lution beyond MD simulation datasets. As we mentioned in

Section I, scientific data can be categorized into particle data,

structured mesh, and unstructured mesh. In order to reach as

high compression quality as possible, developers need to de-

sign specific solutions for each of the three categories of data.

For example, our previous work [31] proposes a customized

interpolation-based compressor for structured mesh data (the

second category). In comparison, the solution proposed in this

paper leverages both spatial and temporal data characteristics

that exist in many domains. It can be applied to the first

category of datasets (all kinds of particle data instead of only

MD simulation data).
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Fig. 15. Our solution is the only one that always has high compression/decompression throughput (MB/s) on all datasets. As a comparison, ASN is slow on
Pt and Helium-B. TNG and HRTC fail to run on some datasets and LFZip is very slow due its intermediate disk operations.

We present the compression ratio evaluation on the Hard-

ware/Hybrid Accelerated Cosmology Code (HACC) datasets

in Figure 16 to demonstrate the effectiveness of our solution

in domains other than MD simulation. HACC is an extreme-

scale cosmological simulation code that studies the structure

formation in the Universe. HACC saves the positions and

velocities of the particles periodically. We include two HACC

datasets in this evaluation (HACC-1: 30 snapshots × 15767098

atoms, HACC-2: 80 snapshots × 13131491 atoms). It is clear

that our solution is the best among all the compressors on both

of the datasets, and it has 30%∼56% higher compression ratios

than the second-best compressor.

0 25 50 75 100
125

150
175

200

Buffer Size

0

10

20

30

40

50

60

70

C
o
m
p
re
s
s
io
n
R
a
ti
o

SZ2

TNG

LFZip

OurSol-ADP

ASN

HRTC

MDB

(a) HACC-1 position (ε=1e-4)

0 25 50 75 100
125

150
175

200

Buffer Size

0

10

20

30

40

50

C
o
m
p
re
s
s
io
n
R
a
ti
o

SZ2

TNG

LFZip

OurSol-ADP

ASN

HRTC

MDB

(b) HACC-1 velocity (ε=1e-3)
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(c) HACC-2 position (ε=5e-4)
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Fig. 16. Our solution has the best compression ratios on HACC datasets

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we develop an efficient error-bounded lossy

compressor (called MDZ) for MD simulation datasets. The key

idea is significantly improving the prediction accuracy based

on the regularities and correlations of the data in both spatial

and temporal dimensions. We propose vector-quantization-

based compressor VQ and VQT, and multilevel-time-based

compressor MT. Our adaptive solution ADP can select the best

compressor (VQ, VQT, or MT) dynamically at runtime. The

key findings based on our experiments with eight real-world

MD simulation datasets are summarized as follows.

• MDZ can improve the compression ratio by up to 233%

compared with the second-best compressor on eight MD

real-world MD simulation datasets.

• MDZ has the best data distortion among all the compres-

sors. The RDFs confirm MDZ can maintain the physical

characteristics of the data accurately.

• We integrate MDZ to the MD software LAMMPS. MDZ

shows negligible overhead in real-world MD simulations

under different scales and settings.

• The generalizability experiments show MDZ is capable

of handing particle datasets beyond MD simulations.

In the future, we plan to integrate MDZ in more state-of-

the-art MD packages such as CHARMM and EXAALT, so

that the MD researchers can use it very conveniently.
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