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Improving Age of Information with Interference
Problem in Long-Range Wide Area Networks

Preti Kumari1, Hari Prabhat Gupta1, Tanima Dutta1, and Sajal K. Das2
1{pretikri.rs.cse17, hariprabhat.cse, tanima.cse}@iitbhu.ac.in, and 2sdas@mst.edu
1Department of Computer Science and Engineering, IIT (BHU) Varanasi, India

2Department of Computer Science, Missouri University of Science and Technology, Rolla, USA

Abstract—Low Power Wide Area Networks (LPWAN) offer
a promising wireless communications technology for Internet
of Things (IoT) applications. Among various existing LPWAN
technologies, Long-Range WAN (LoRaWAN) consumes minimal
power and provides virtual channels for communication through
spreading factors. However, LoRaWAN suffers from the in-
terference problem among nodes connected to a gateway that
uses the same spreading factor. Such interference increases data
communication time, thus reducing data freshness and suitability
of LoRaWAN for delay-sensitive applications. To minimize the
interference problem, an optimal allocation of the spreading
factor is requisite for determining the time duration of data
transmission. This paper proposes a game-theoretic approach
to estimate the time duration of using a spreading factor that
ensures on-time data delivery with maximum network utilization.
We incorporate the Age of Information (AoI) metric to capture the
freshness of information as demanded by the applications. Our
proposed approach is validated through simulation experiments,
and its applicability is demonstrated for a crop protection
system that ensures real-time monitoring and intrusion control
of animals in an agricultural field. The simulation and prototype
results demonstrate the impact of the number of nodes, AoI
metric, and game-theoretic parameters on the performance of
the IoT network.

Index Terms—Age of information, game theory, IoT, long range
communications.

I. INTRODUCTION

The Internet of Things (IoT) is a fast growing paradigm

whose sustainable growth and increased ubiquity depend on

seamless integration with application environments. Various

delay-sensitive applications (e.g., precision healthcare, smart

agriculture, forest fire monitoring) require real-time update,

low data rate, and minimal power consumption [1]. The Long-

Range Wide Area Network (LoRaWAN) open specification is

a Low Power WAN (LPWAN) protocol based on the Long-

Range (LoRa) technology. An extensive coverage area and

minimal energy consumption bring out the suitability of LoRa

technology for smart IoT applications [2]–[4]. Building on top

of the LoRa modulation scheme, as depicted in Fig. 1, the

LoRaWAN comprises the end users (EUs), LoRa nodes (LNs),

LoRa gateway (LG), network server (NS), and applications.

The LNs acquire and transfer EUs’ data to the LG using the

LoRaWAN protocol.

The LoRa technology operates with Spreading Factors (SFs)

ranging from 7 to 12, where SF7 provides the highest data

rate with low sensitivity level at the receiver, whereas SF12
provides higher reception sensitivity at the cost of lower data

rate [5]. Due to the high sensitivity level at the receiver

end, the data transmitted using higher SFs is received at low

dBm (decibel-milliwatt) that increases the eagerness of LNs to

select the highest possible SF. The eagerness to select higher

SF for data transmission is one of the principal causes for

the interference problem in LoRa when multiple LNs are

connected with a single LG [5], [6]. The interference leads

to the increased delay of receiving the status update at the

applications running on the NS. The mechanism of rationally
using the allocated SF by an LN can reduce the interference

problem. The LG pays price to the LNs for providing the data.

To reduce the interference problem, the LG sets the price for

using the SFs based on their load.

Fig. 1 illustrates an IoT application scenario, where the

sensors acquire and transmit delay-sensitive information about

the animals intruding an agriculture field, to the NS over the

LoRa network. Ideally, the NS receives continuously fresh

information about the physical phenomenon. However, it is

often impractical to receive fresh information as the network

adds some delay or packet loss due to the interference.

To quantify such delay in the updates, we use the Age of
Information (AoI) metric, defined as the time elapsed since

the freshest packet was generated [7], [8]. In [9], the authors

estimated the transmission time duration without considering

the packets’ AoI. The AoI increases with interference, which

in turn decreases the network utility in terms of the received

freshest packet. For example, the delay in the information

updates from the agriculture field leads to severe deterioration

of the crop yield. To mitigate the delay, there is a need to

optimally utilize the available SFs for collecting up to date

information that maximizes the network utility.
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Fig. 1: A crop protection system using LoRa network.

This paper addresses an important problem: How to reduce
AoI in the LoRa network in presence of interference? We

propose a game-theoretic approach to determine the optimal

time duration for data transmission on suitable SFs. Such

optimal time helps reduce the interference among LNs during

data transmission to the same LG. We use the AoI metric to

maintain the freshness of data at the NS.
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A. Our Contributions
This paper makes the following major contributions.

• Age of Information: We quantify the freshness of data with

the help of the AoI metric and derive an expression consisting

of the queuing delay, communication delay, and service time.

• Nash Equilibrium (NE) among LNs: We formulate the

interactions among LoRa nodes as a Nash equilibrium game
for allocating the time duration of using the SFs.

• Stackelberg Game (SG) between LG and LNs: We formulate

the interactions between LNs and LG as a Stackelberg game to

reduce the effect of interference and improve network utility.

At the follower (LN) and leader (LG) levels, we estimate the

utility and formulate the optimization problems that estimate

the optimal time allocated to each LN for using SFs. The

goal is to satisfy the transmission time demand of each LN,

requiring a minimum message delivery time in the network.

• Performance: We analyze the effectiveness of the proposed

approach by simulating LoRa using Network Simulator-3.

Experimental results demonstrate the impact of the number

of LNs, AoI metric, and game-theoretic parameters on the

performance of the IoT network.

• Application: We apply the proposed solution to CALR,

a Crop protection system from Animals using Long Range

network. The system detects the animal intrusion, and commu-

nicates information to the application running on the network

server (NS).

The rest of the paper is organized as follows. Section II

introduces the preliminaries while Section III proposes a novel

approach to estimating the time duration for data transmission

from the LNs to the LG. Section IV presents experimental

results. Section V is an application of the proposed approach

to an agriculture field. Section VI concludes the paper.

II. PRELIMINARIES

A. Network Topology
As shown in Fig. 2, LoRaWAN follows a star of star topol-

ogy where multiple LNs can connect to multiple applications

using the LG followed by an NS. The connection between

the LNs and LG follows the LoRaWAN protocol, where each

LN receives the data from the EUs and send them to the LG

using the allocated SFs (ranging from SF7 to SF12). Fig. 2

also illustrates that LN1 transmits data using the allocated

SF7 and SF12, whereas LN2 transmits data using SF7 and

SF8. The LNs have to wait to get the allocated SFs free for

data transmission. For example, SF7 is allocated first to LN1

and then to LN2, which has to wait until LN1 completes its

transmission on SF7. After receiving data from the LNs, the

LG relays them to the NS for processing using non-LoRaWAN

protocol. Further, the processed data are received on the

applications running at the NS. While transmitting data from

the LNs to the applications, the waiting and communication

times are measured as the AoI, defined next.

B. Age of Information (AoI)
The Age of Information (AoI) quantifies the freshness of

information [7], [8], [10]. Consider a source-destination pair,

LoRaWAN Protocol

End Applications
Users Nodes

LoRa LoRa
Gateway

Network
Server

Non−LoRaWAN Protocol

LN1 SF7

SF8

SF12

LN2

LN|N|

Fig. 2: Illustration of the LoRaWAN architecture.

where the source is the LN and destination is the NS. The

source transmits the status update packets, generated by the

EUs, to the destination. Then the AoI is the elapsed time

since the last received status update that was generated. The

goal of the delay-sensitive applications is to ensure that the

status update packets reach on time. Let the ith packet with

the generation time τi be received by the destination at time

instance τi
′. Thus the age of packet i at τi

′ is equal to (τi
′−τi).

C. Stackelberg Game

The Stackelberg Game (SG) is a strategic interaction among

the players on which some hierarchical competition takes

place [11]–[14]. Here the LG and LNs are the players in the

game, acting respectively as the leader and followers. The

leader starts the game and selects a strategy (e.g., pricing

strategy for using SFs). After observing the strategy of a

leader, the followers respond by selecting their best strategies

in response (e.g., the transmission time duration on the SFs).

Then, the leader re-optimizes its strategy based on the best

response strategies of the followers. The solution to the SG

can be obtained by establishing a Stackelberg Equilibrium (SE)

between the leader and followers, defined as follows.

Definition 1. (Stackelberg equilibrium) Let N =
{1, · · · , n, · · · , |N |} be the followers set, where |N |
is the total number of followers in the network. Let
ps∗ = [ps1

∗, ps2
∗, · · · , ps|N |∗] denote the strategy of the leader

for all the followers, and ts∗ = [ts1
∗, ts2

∗, · · · , ts|N |∗] be the
vector of strategies of all the followers. Let UL and UF

n be
respectively the utilities of a leader and a follower n ∈ N .
Then (ps∗, ts∗) is a Stackelberg Equilibrium (SE) if the
following two conditions hold:

UL(ps∗, ts∗) ≥ UL(ps, ts∗),

UF
n (p

s∗, ts∗) ≥ UF
n (p

s∗, ts), ∀n ∈ N . (1)

TABLE I: List of symbols

Symbol Description Symbol Description
N Set of LNs δ Normalization parameter
n Index of LNs tsn Time duration of nth LN
S Set of SFs psn Price of nth LN
s Index of SF γ Pricing coefficient
esn Price coefficient of end user λn,1, λn,2 Lagrangian multipliers
α Normalization parameter an, bn Gain coefficient of LG

III. ESTIMATING AOI AND THE TIME DURATION

This section proposes a novel Stackelberg Game (SG)

approach to estimating the time duration of using the allocated

spreading factors (SFs) by the LNs. This allocation maximizes
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the network utility and minimizes interference. The proposed

approach uses LNs (followers) that try to maximize utilities

by increasing the transmission time and decreasing the energy

consumption. On the other hand, the LG (leader) makes an

optimal pricing strategy to maintain the freshness of data by

estimating the AoI.

A. Estimation of AoI
The AoI in the network increases due to: (1) the queuing

waiting time at the LN to free up the allocated SF, (2) the

communication delay from the LN to the LG (and the LG to

the NS), and (3) the service time.

Let the non-LoRaWAN network use a high-speed commu-

nication channel to transfer the data. It reduces the queuing

waiting time and the communication delay at the LG and the

NS to a smaller (almost negligible) value. Since there are six

different virtual channels for SFs ranging from SF7 to SF12 to

transmit the data, the age of status update from the LNs using

two different SFs does not effect each other. Fig. 3 shows a

sample variation of age Δs
n(τ) for an arbitrary LN, say n,

on an SF, say s, as a function of time (τ) at the NS. Let

the initial age at τ = 0 be Δs
n(0) = Δ0. The time instances

τsn,k and τ ′sn,k respectively indicate the generation time and

reception time of the packet k from the LN n on the SF s.

Let Xs
n,k = τ sn,k − τ sn,k−1 denote the inter-arrival time of

the packets at the time instances τ sn,k−1 and τsn,k. The system

time T s
n,k = τ ′sn,k − τ sn,k is the time difference between the

generation and reception time instances of the packet k. Let

Γs
n be the data generation rate from the EUs at the LN n for

the SF s; and let μ is the service rate of the packet at the LG.

The AoI at the NS increases linearly with time in the

absence of an updated packet. We divide the total AoI of the

LN n for K packets on the SF s into two regions. Fig. 3 shows

the evolution of the age of LN n for K packets using SF s. For

clarity, we have removed the symbol s from the figure. The

first region A1 is accumulated by the consumed time starting

from the first packet to the last packet of this source delivered

using the SF s. The second region A2 is the result of the

received aged information in the sense that, on receiving a

packet at the destination, the age is reduced and reset to a

smaller value. For example, on receiving the second packet at

the time instance τ ′n,2, the age is reset to Δ(τ ′n,2) = τ ′n,2−τn,2
by subtracting the inter-arrival time Xn,2 = τn,2 − τn,1 from

the accumulated age. The overall AoI received from the LN n
on SF s is the colored area covered in A1 and A2 (see Fig. 3).

Lemma 1. Let Gs
n and Gs

−n be respectively the generated load
(arrival rate/service rate) on the SF s of LN n and all other
LNs except LN n. Let Ĝs

n = Gs
n/(1− Gs

−n) be the normalized
load and Cs

n be the communication delay of LN n on SF s.
Then the average age of LN n on SF s is given by

Δs
n =

βs
n(Ĝs

n,Gs
−n)

(1− Gs
−n)μ

+ Cs
n, (2)

where

βs
n(Ĝs

n,Gs
−n) = 1 +

Δ0 − 2K

Ĝs
n

+
Ĝs
n

2

1− Ĝs
n

+ Gs
−nĜs

n

2
,

Age

Time

A2

τ ′n,K

τn,2

bn,2

τn,K

A1

Xn,K

τ ′n,2

τn,3τn,2

τ ′n,1

Δ0

Xn,2

τn,1
τ ′n,1

Tn,1

τn,1

bn,1Xn,1

Xn,2

Fig. 3: Illustration of the evaluation of AoI of a LN n.

Proof. The average age over an interval (0, T ) is given by

Δs
n =

1

T

∫ T

0

Δs
n(τ)dτ. (3)

The area of region A1 in Fig. 3, denoted by A1, is given by

A1 =
1

2

[(
K∑

k=1

Xs
n,k

)
+ T s

n,K

]2
. (4)

The area of region A2, denoted by A2, can be calculated by

subtracting small rectangles from the biggest one as follows:

A2 = Δ0

[(
K∑

k=1

Xs
n,k

)
+ T s

n,K

]
−

K−1∑
k=1

bsn,k, (5)

where bsn,k = Xs
n,k

[(∑K
c=k+1 X

s
n,c

)
+ T s

n,K − T s
n,k

]
.

We observe that the age contribution, T s
n,K , represents a

finite boundary effect because it vanishes as K increases. Let

the generation of data packets be represented as the arrivals

of a stochastic process, and let Γs
n = limT→∞

K
T be the rate

of data generation from the EUs at LN n for SF s. Further,

when the number (K) of generated packets becomes large,

the sample average becomes the stochastic average. Applying

Eqs. (4) and (5) to Eq. (3), we obtain

Δs
n =

Δ0

∑K
k=1 X

s
n,k +

∑K−1
k=1 Xs

n,kT
s
n,k −K

(∑K
k=1 X

s
n,k

)2
T ,

= Γs
n

(
Δ0E[X] + E[XT ]−KE[X2]

)
, (6)

where E[.] is the expectation operator, and X and T are the

random variables corresponding to the inter-arrival and system

times, respectively. The SF is used by the LNs in a first-

come-first-serve manner, i.e., the SF is allocated to those LNs

first where the data arrived first. Other LNs with the same

SF have to wait until the LN ahead in the queue is serviced.

Let the data arrival and service processes follow Poisson and

exponential distributions, respectively. The LN n uses M/M/1

queuing model with the arrival and service times as 1
Γs
n

and
1
μ , respectively. Let Cs

n denote the communication delay from
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the LN n to the LG on SF s which is equal to
(K∗l)
rsn

with

the packet size l. Let dsn is the number of LNs in the network

that uses the same SF as the LN n and creates interference.

Then, by using Shannon’s channel capacity formula [15],

the transmission rate rsn between the LN n and the LG is

defined as W log

(
1 +

ρsnhs
n

∑dsn
j=1 ρjhj+σ2

)
, where ρsn, hs

n, and σ2

respectively denote the power used, the channel gain of LN n
on SF s, and the power of additive white Gaussian noise. Since

an SF can be allocated to multiple LNs [7], in the presence

of multiple sources, Eq. (6) can be rewritten as

Δs
n =

βs
n(Ĝs

n,Gs
−n)

(1− Gs
−n)μ

+ Cs
n, (7)

where βs
n(Ĝs

n,Gs
−n) = 1 + Δ0−2K

Ĝs
n

+
Ĝs
n
2

1−Ĝs
n
+ Gs

−nĜs
n

2
.

B. Estimating the Transmission Time Duration

In the crop protection system illustrated in Fig. 1, the owner

of the field wants to be alerted on the intrusion of harmful

animals. Suppose a network service provider deployed sensors

(EUs) at the boundary of the crop field for sensing the presence

of animals. They also installed LNs and LG for transmitting

the collected sensory data to the NS. The applications running

on the NS generate alerts that are received by the owner of the

field. The owner needs to pay the LG via NS for using sensory

data; thus the LG gains revenue (price) from the applications

by providing data. Moreover, the LG pays a partial amount

from the price gain to the LNs by forwarding the data. This is

because the LNs consume their own resources for processing

and forwarding data, and need to pay incentives to the EUs

for energy consumption during data collection.

1) The Follower Level: In the LoRa system, the LNs

gain price through the LG by providing data for applications

running on the NS. The price depends on the freshness of the

information received at the LG, which pays a high price for

lower AoI; while it pays low price for higher AoI. Therefore,

the price function can be defined as:

Ps
n(t) =

psn
Δs

n

− γ

(∑
i∈N tsi
α

)
, (8)

where γ is the pricing parameter that provides elasticity in

pricing, α is a normalization parameter, psn is the base price

assigned by the LG to the LN n on SF s, and Δs
n is given in

Eq. (7). As the age Δs
n of status update from the LN n on SF

s increases, the LG’s price gain decreases due to which the

LNs select those SFs that maintain freshness of data. The price

function also depends on the strategy of other LNs, namely

t = [t1, · · · , tn, · · · , t|N |], where tn = [t1n, · · · , tsn, · · · , t
|S|
n ],

modeled as the oligopoly market [13], in which the price is

reduced when any LN transmits data for more time duration

than the time duration estimated by the Stackelberg Equilib-

rium (SE). The LN n ∈ N needs to pay some cost to the EUs

that generate the data, and also for consuming own energy for

data transmission. Thus, the total utility of LN n is given by

UF
n = Price gained− End user cost− Energy consumption cost,

=

|S|∑
s=1

[
[Ps

n(t)t
s
n]−

(
esnt

s
n

δ
+

esnt
s
n
2

δ2

)
− ζEsntsn

]
. (9)

The first term indicates the price gain from the LG for trans-

mitting the data for tsn time duration. The second term denotes

the cost paid to the EUs by LN n. To formulate the EUs’

cost, we apply the Taylor expansion on the logarithmic barrier

function with pricing coefficient esn due to its strict convexity.

Finally, the third term represents the energy consumption cost

with coefficient ζ to provide the same magnitude order as

the price. In the competitive environment, each player aims

at maximizing its utility and the follower level game can be

formulated as follows.

Follower Problem max
tn

UF
n (tn, t−n)

such that

|S|∑
s=1

tsn ≤ tmax
n , tsn ≥ 0, n ∈ N , s ∈ S

(10)

where tn = [t1n, · · · , tsn, · · · , t
|S|
n ] is the vector of time

duration of LN n for all SFs and t−n is the vector of time

duration of LNs except n for all SFs. The Follower Problem
expresses that the LN n optimizes the strategy to maximize its

utility; the constraint imposes that the data forwarding duration

must not be higher than the duty cycle, tmax
n .

2) The Leader Level: In the LoRa network, the receiver

sensitivity is low when the LNs forward the data using

lower SF. Therefore, the LNs do not prefer data transmission

voluntarily on lower SF, leading to load imbalance on the

SFs. Such load imbalance increases the network delay, causing

staleness of information. The leader (LG) solves this Follower

Problem by making the pricing strategy such that the LNs are

compelled to use lower SF for data forwarding and maximize

the net utility. The leader’s utility function is given by

UL = Generated revenue− Price paid to LNs,

=

|N |∑
n=1

|S|∑
s=1

[
ant

s
n − bn(t

s
n)

2 − P(t)tsn

]
, (11)

where an and bn are coefficients such that an >> bn, which

are used to measure the gain received from the data on the LG.

The quadratic form of the utility function allows for tractable

analysis and also serves as a good second-order approximation

for the broader class of concave utility. In the Stackelberg

game, the leader aims to maximize its revenue. The leader

level game is formulated as follows.

Leader Problem max
pn

UL(pn,p−n)

such that psn > 0, n ∈ N , s ∈ S (12)

where pn = [p1n, · · · , psn, · · · , p
|S|
n ] is the vector of price of

LN n for all SFs and p−n is the vector of price of LNs except

n for all SFs. The LG optimizes the strategy to maximize its
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utility; and the constraint imposes that the price paid to the

LN must be greater than or equal to zero.

3) Stackelberg Equilibrium of the Game: We use Eqs. (10)

and (12) to derive the Stackelberg equilibrium of the game

using backward induction method. The goal is to first deter-

mine the optimal strategy of a follower n (i.e., tsn), and then

analyze the leader’s strategy, xs
n.

Theorem 1. Let tsn be the strategy of the LN n ∈ N for data
forwarding time duration on the SF s ∈ S to the LG. Then
the best response tsn

� of the LN n is given by

tsn
� =

1

2κs
2,n

⎛
⎝Qs

n −
1∑|S|

s=1
1

2κs
2,n

⎛
⎝ |S|∑

s=1

Qs
n

2κs
2,n

− tmax
n

⎞
⎠
⎞
⎠ ,

where Qs
n =

psn
Δs

n

− κs
1,n −

γ

α

|N|∑
j=1,j �=n

tsj − tmax
n ,

κs
1,n =

esn
δ
+ ζEs

n +
γ

α
and κs

2,n =
γ

α
+

esn
δ
. (13)

Proof. Using Lagrangian multipliers λn,1 and λn,2 for con-
straints defined in Eq. (10), we obtain

LF
n (tn, t−n) =

|S|∑
s=1

[ [
(
psn
Δs

n

− γ

∑
i∈N tsi

α
)tsn

]
−
(
esnt

s
n

δ
− esnt

s
n
2

δ2

)

−ζEs
nt

s
n

]
+ λn,1t

s
n − λn,2

⎛
⎝ |S|∑

s=1

tsn − tmax
n

⎞
⎠ = 0,

such that λn,1t
s
n = 0, λn,2(

|S|∑
s=1

tsn − tmax
n ) = 0,

and λn,1 ≥ 0, tsn ≥ 0, λn,2 > 0.
(14)

Since the second derivative of
d2LF

n (tn,t−n)

d(tsn)2
= −2

(
γ
α
+

esn
δ

)
is negative, the utility function in Expression (14) is concave

and continuous. Hence the follower level game has at least one

Nash Equilibrium (NE) [16]. The value of tsn can be obtained

by setting the first derivative of the utility function to zero.

tsn
� =

1

2κs
2,n

⎛
⎝ psn
Δs

n

− κs
1,n + λn,1 − λn,2 − γ

α

|N|∑
j=1,j �=n

tsj

⎞
⎠ , (15)

where κs
1,n =

esn
δ + ζEsn + γ

α and κs
2,n = γ

α +
esn
δ . From the

constraint of Eq. (14), we obtain λn,1 = 0; and by putting the

value of tsn into the constraint of Eq. (14), we obtain

λn,2 =
1∑|S|

s=1
1

2κs
2,n

|S|∑
s=1

1

2κs
2,n

(
psn
Δs

n

− κs
1,n −

γ

α

|N|∑
j=1,j �=n

tsj − tmax
n

)
.

(16)

Substituting λn,2 from Eq. (16) into Eq. (15) completes the

proof.

Next, we prove the following theorem.

Theorem 2. The LG admits a unique optimal best response
strategy given the optimal strategies of LNs.

Proof. By using backward induction method from Eq. (13),

the Lagrangian of the Leader Problem can be expressed as

LL(pn, tn) =

|N |∑
n=1

|S|∑
s=1

(
tsn

�

(
an −

psn
Δs

n

− γ

(∑
i∈N tsi
α

))

− bn(t
s
n
�)2

)
+ Λ1p

s
n, (17)

where Λ1 is the Lagrangian multipliers of psn.

To prove the uniqueness of the best response strategy of

the LG, we use the Hessian matrix by taking the second order

partial derivative of LL(pn, tn) with respect to psn and psl :

d2LL(pn, tn)

dpsndp
s
l

=

{
( γ
α
t′n

s
+ 1

Δs
n
)(1 + t′n

s
)− 2(t′n

s
)2bn if n = l,

0 otherwise.
(18)

where t′n
s
= 1

2κs
2,nΔ

s
n
− 1

2κs
2,nΔ

s
n
2

1
∑|S|

s=1
1

2κs
2,n

. Since α is

approximately equal to the forecast demand of data, its value

is much larger than γ. The large value of α indicates that the

first term is less than the second term in Eq. (18). Hence,

the diagonal elements of the Hessian matrix provide negative

values. The Hessian matrix of LL(pn, tn) is strictly negative

definite, which implies that the Leader Problem is a standard

convex maximization problem. Hence the proof.

The optimal solution of the Leader Problem can be obtained

by applying Karush-Kuhn-Tucker conditions [17]. Therefore,

the derivative of LL(pn, tn) with respect to psn is given as:

dLL(pn, tn)

dpsn
=

(
an − psn

Δs
n

− γ

(∑
i∈N tsi

α

))
t′n

s tsn
Δs

n

+ tsnt
′
n
s
( γ
α
− 2bn

)
+ Λ1 = 0.

In Eq. (17), the Lagrangian variable should satisfy the

expression Λ1p
s
n = 0. Since psn > 0, Λ1 must be equal to

zero. The price of LN n for using SF s is estimated as

psn
� = Δs

n

(
an − γ

(∑|N|
i=1 t

s
i
�

α

)
+

tsn
t′n

sΔs
n

+ tsn

( γ
α
− 2bn

))
,

(19)where t′n
s
= 1

2κs
2,nΔ

s
n
− 1

2κs
2,nΔ

s
n
2
∑|S|

s=1
1

2κs
2,n

.

The network holds an SE when the LG (leader) and the LNs

(followers) respectively estimate the optimal price and time

duration for data forwarding to maximize their utilities. We

propose a Stackelberg Equilibrium algorithm (SE Algorithm)

to find the equilibrium point using the best response strategy

of LNs and optimal strategy of the LG. It estimates the time

duration for using the allocated SFs by the LNs such that the

network maximizes the utility and minimizes the interference.

Step 7 of the SE Algorithm calculates the transmission

time duration based on the selected price by the LG which

maximizes the utility of the LNs. The LG re-optimizes the

price based on the calculated transmission time duration as in

Step 11 of the SE Algorithm. These steps are repeated till the

utilities of the LG and LNs are maximized. A large number of

nodes in the network increases the complexity of the algorithm

which is expensive to run at the LNs due to its duty cycle

and low processing capability. Therefore, the SE Algorithm

141

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 17,2023 at 21:29:20 UTC from IEEE Xplore.  Restrictions apply. 



runs on the LG to compute the Stackelberg Equilibrium of the

Game i.e., optimal transmission time duration.

Algorithm 1: Stackelberg Equilibrium algorithm.

input : Terminating constants ω, ε, η τ1 ← 0,τ2 ← 0;
output: Optimal strategy tsn

� of n ∈ N and psn
� of LG;

1 do
2 τ1 ← τ1 + 1;

/* NE among followers: Each n maximizes its utility */
3 do
4 Flag ← 0;
5 τ2 ← τ2 + 1;
6 for n← 1 to |N | do

/*Using Eq. (13) for estimating tsn[τ2 + 1]. */
7 tsn[τ2 + 1] = 1

2κs
2,n

(Qs
n[τ2]−

1
∑|S|

s=1
1

2κs
2,n

(
∑S

s=1

Qs
n[τ2]

2κs
2,n

− tmax
n ));

8 if (‖tsn[τ2 + 1]− tsn[τ2]‖ > η) then
9 Flag ← 1;

10 while (Flag == 1);
/* Stackelberg Equilibrium between the leader and

follower: Use tsn and psn[τ1] for estimating psn[τ1+1] */
11 psn[τ1 + 1] = psn[τ1] + ε�UL (psn[τ1]);
12 while (‖psn[τ1 + 1]− psn[τ1]‖ < ωpsn[τ1]);

Example: Let us consider |N | = 3 LNs connected to

multiple end users in the LoRA network. Assume that ts0 =
{ts10, ts20, ts30} is the vector of initial transmission time dura-

tion of the three LNs. The Leader (LG) announces its initial

pricing strategy for using SFs i.e., ps0 = {ps10, ps20, ps30}.
Based on ps0, the SE Algorithm calls Eq. (13) to calculate the

followers’ (LNs) best response strategies i.e., the transmission

time duration that leads to call Eqs. (7) for calculating the AoI

of LNs for using SFs. The best response strategy is calculated

for each LN and the utility of the followers is estimated as

in Eq. (9) based on the new value of the transmission time

duration, i.e., ts1. This procedure continues till the utility

of LNs increases based on the new calculated value of the

transmission time duration and reaches the Nash equilibrium

(NE). After calculating NE, the SE Algorithm calculates

the new pricing strategy as given in Eq. (19) for using SFs

i.e., ps1 = {ps11, ps21, ps31}. If the utility of LG based on

ps1 increases, then the procedure from step 2 - step 11
continues; else the SE Algorithm stops; and the last value of

the transmission time duration and the price is the Stackerberg

equilibrium, i.e., tsn
� and psn

�.

4) Time Complexity of the SE Algorithm: Let q be the

number of iterations at which the SE is calculated. To estimate

the data transmission time duration, the LNs calculate the age

of information (AoI) on each allocated SF to select the SF

with low AoI. Assume that an LN uses S number of allocated

SFs to calculate AoI, then Step 7 of the SE Algorithm runs

for all S of the LN. Therefore, for all |N | number of LNs

present in the network, the SE Algorithm requires O(q|N |S)
time. As the maximum number of allocated SFs to the LNs

is 6, the value of S is of constant time. As a result, the time

complexity to find an SE in the LoRa network is O(q|N |).

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed

approach through simulation experiments. Section IV-A de-

scribes the simulation setup while Section IV-B presents

the impact of LNs on the network throughput and delay

with and without considering the AoI metric. Section IV-C

illustrates impact of the game parameters on the performance

of the proposed approach. Specifically, we consider the pricing

parameter and terminating constants η and ω. Section IV-D

compares the performance of three existing works, such as

random, distance, and equal interval based SF allocation.

These baseline and widely used schemes [6], [18]–[20] for

allocation of SFs motivate us to consider them for comparison.

A. Simulation Setup

We validate the performance of the proposed work by

using Network Simulator-3 (NS-3) [21], [22]. The LoRaWAN

MAC protocol in NS-3 supports multiple channels, SFs, LGs,

and bi-directional networks with a large number of LNs. We

repeated each experiment 100 times, and took the average.

Simulation experiments consist of NS, LG and multiple LNs

randomly deployed in a disc-shaped field with a radius of 2
kilometers similar to the outdoor experiments in [23]. From

experiments we observe that 18 LNs exhibit efficient results

for our proposed approach. Therefore, although the network

has a lot of LNs, we consider only 18 LNs transmit their

data at the same time by using an LG. The arrival of data

from the EUs to the LN is modeled as M/M/1 queue and

follows Poisson distribution. Most of the network parameters

can be obtained from the datasheet of LoRaWAN Multitech
mDot [24], [25]. The considered parameters in this paper are

listed in Table II.

TABLE II: Parameter values used in the experiments.

Parameter Symbol Value
Signal bandwidth W 125 kHz
Power consumption ρsn [2− 14] dBm
Channel gain hs

n 0.2
Pricing coefficient of LG γ 10
Pricing coefficient of EU esn [0-1]
Gain coefficient {an, bn} {100, 0.1}

B. Impact of the Number of LNs

This section illustrates the impact of the proposed approach

on the network performance, without and with considering the

AoI metric. The performance is measured in terms of network

throughput and delay. The SE Algorithm calculates the trans-

mission time duration with and without the AoI metric. We

use three different deployment distributions of the LNs, such

as uniform, Poisson, and random. In the uniform distribution,

the LNs are deployed such that
(

Number of LNs
Number of SFs

)
number of

LNs come in the range of each SF. Whereas, in the Poisson

distribution, the LNs are deployed by using e−ΥΥν

ν! , where ν
is the number of times the spreading factor (SF) is allocated

to the LN and Υ is the mean SF allocation. In the random

distribution, the LNs are randomly deployed in the region.
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(a1)-(a3): Network performance without AoI metric for uniform,

Poisson, random distribution, respectively.
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(b1)-(b3): Network performance with AoI metric for

uniform, Poisson, random distribution, respectively.

Fig. 4: Impact of LNs on network throughput and delay.

Figs. 4(a1)–(a3) illustrate the network throughput and delay

for uniform, Poisson, and random deployment distributions, re-

spectively, without considering the AoI metric (i.e., removing

Δs
n from Eq. 8) while making the pricing strategy. Whereas,

Figs. 4(b1)–(b3) illustrate the network performance of the

proposed approach considering the AoI metric. Experimental

results demonstrate that the proposed approach with AoI

increases throughput and decreases delay as compared to the

approach without the AoI metric. This is because the LNs se-

lect those SFs which provide high price (set by the LG for low

AoI) in our proposed approach, thereby decreasing the delay

and increasing the throughput. An interesting observation is

that the uniform distribution of LNs yields better result than

the other two distributions. Therefore, the LG can be placed

such that all LNs follow the uniform distribution with respect

to the LG with a goal to maximize the network performance.

C. Convergence Rate and Impact of Game Parameters

This section studies the convergence rate of the SE Al-
gorithm followed by the impact of game parameters on the

utility of the network devices. Figs. 5(a1) and 5(b1) show the

number of iterations after which the SE Algorithm converges

for LNs and LG, respectively. Fig. 5(a1) shows the conver-

gence result for 5 LNs (LN1, · · · , LN5). The convergence

of the SE Algorithm for LG is also shown on different

variations of gain ratio which is defined as the percentage of

increment in the gain coefficient an and bn of LG. The utility

of LNs and LG for the proposed Stackelberg Game approach

(SG), SF allocation with Random based (RB), Distance based

(DB), and Equal-interval based (EB) schemes are compared

in Figs. 5(a2) and 5(b2). In the Random based scheme, the

allocation of SFs is done by uniform random choice, not

depending on the location of the LNs, whereas the Distance

based scheme allocates SFs to the LNs based on the strength

of the received signal at the LG. In Equal-interval allocation

schemes, the total network area is divided into 6 concentric

circles, where each annulus gets an equal width. Fig. 5(a2)

illustrates that the average utility of LNs decreases as the

number of nodes connected to the LG increases, irrespective

of the SF allocation scheme. The result shows that the average

utility of LNs is higher when the SF allocation incorporates the

proposed game model in comparison with the other schemes.

Similarly, Fig. 5(b2) illustrates that the utility of LG initially

increases rapidly along with increased number of LNs, but

starts decreasing afterwards. This is due to the fact that the LG

receives more data as the number of LNs increases, but beyond

a threshold, the network faces the interference problem. We

conducted simulation experiments to calculate the value of

threshold as 15 LNs.

Next, we present the impact of the total number of LNs

on the proposed game equilibrium. Fig. 5(a3) illustrates that

as the number of LNs connected to the LG increases, the

price set by the LG is distributed among more LNs, each of

which gets less time for data transmission on the allocated

SFs. Therefore, the utility of the LNs decreases when the

number of the LNs increases and the value of γ decreases.

Fig. 5(b3) shows the effect on the utility of LG as the number

of LNs increases. Although the utility of LG initially increases,

it starts decreasing after a threshold increment in LNs due to

the interference similar to that in Fig. 5(a2).

Finally, we analyze the impact of the terminating constants

(η and ω) on the convergence rate of the SE Algorithm,

and the utility of LNs and LG. For high value of terminating

constants, the SE Algorithm converges in a fewer iterations

which reduce the time complexity but compromise on the

optimal solution. However, for low value, the solution is

more optimal, but it requires more time for convergence.

Figs. 5(a4) and 5(b4) show the impact of η and ω on the rate

of convergence. As η increases from 0.1 to 0.4, the required

number of iterations decreases from 12 to 7. Similarly, the

iterations required for convergence reduce from 8 to 6 when

ω increases from 2 to 3. Figs. 5(a5) and 5(b5) illustrate that

the average utility of LNs decreases while the utility of LG

increases with the increase in the number of LNs. We observe

from this result that the tuning of the pricing strategy and

terminating constants can help balance the load on the SFs,

thus reducing the interference problem, increasing the network

utility, and reducing the time complexity of the solution.

D. Comparison with Existing Works

Let us now compare our proposed approach with existing

works on the SF allocation schemes for improving network

performance. The existing literature that analyzed the inter-

SF interference and packet collision rate using different SF

allocation schemes are based on random, distance, equal

interval, equal area, and path-loss models [6], [18]–[20]. In

Random based scheme, the SF allocation is done by uniform

random choice whereas, distance based scheme allocates SF to

the LNs based on the strength of the received signal at the LG.

In equal interval and area allocation schemes, the total network

area is divided into 6 concentric circles, where each annulus

gets an equal width in the former scheme, while each annulus

gets an equal area in the area allocation scheme. The path-loss

allocation scheme defines annuli based on a path loss model.

The authors in [19] compared the performance of equal-
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Fig. 5: Convergence rate of SE Algorithm and impact of the number of LNs on the utilities of LNs and LG and rate of convergence. Parts
(a1)-(a5) and parts (b1)-(b5) show the results for LNs and LG, respectively.

interval, equal-area, and path loss model based SF allocation

schemes; their results indicate that the equal-interval based al-

location outperforms the equal-area, and path loss model based

SF allocation schemes. Therefore, we consider equal-interval

based allocation schemes for comparing with our proposed

SG approach. Fig. 6 compares the proposed Stackelberg Game

(SG) approach with random based (RB), distance based (DB),

and equal-interval based (EB) SF allocation schemes. Similar

to Fig. 4, we use uniform, Poisson, and random deployment

distributions of LNs. Our proposed SF allocation scheme

outperforms all other schemes for any number of LNs. This is

because the proposed approach considers interactions among

LNs and takes the allocation decision to maximize the utility

of all LNs using game theory. Results demonstrate that the

network performance is maximum and minimum for uniform

and random distributions, respectively.
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(a1)-(a3): Average delay of receiving packets for uniform, poisson,

and random distribution, respectively.
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Fig. 6: Comparing proposed approach with existing work.

V. APPLICATION TO AN AGRICULTURAL FARM

This section demonstrates the application of the proposed

approach to a system, called Crop protection system from

Animals using Long Range network (CALR) that we devel-

oped. The application estimates the time duration of using

SFs by the LNs and detects sudden changes such as animals

entering and roaming inside the agriculture farm. The CALR

application is beneficial as it provides data transmission ser-

vices without using multi-hop (short-range communication) or

power-hungry communication (WiFi, 4G, or GPS) technology.

We consider the deployment of sensors and LNs in the

agricultural farm. The EUs (sensors) generate sensory data

on the entry of local animals like buffaloes, cows, goats, etc.

A. Overview of CALR

The CALR uses sensors, LNs and LG. The animals enter-

ing the agriculture farm are detected by the EUs (sensors).

Fig. 7(a) illustrates the configuration of CALR with the LNs,

LG, and NS using LoRaWAN protocol to form a connected

network. Passive infrared (PIR) motion detector sensors detect

trespassing of animals by receiving the infrared radiation

from the animal body when they are nearby the sensors. The

resistance of the sensor varies inversely with the intensity

of the infrared radiation. Therefore, with a sufficiently high

infrared radiation, the resistance of the sensor drops to a low

value and produces an electrical signal. The output of the

sensor is connected to the analog-to-digital converter on the

LN. Each LN is equipped with an ATmega328P Arduino Uno

processing board, an SX1278 (Ra-02) LoRa module as shown

in Fig. 7(b). The digital output after processing is referred

as sensory data, which represents the distance between the

sensors and the received radiation and lie in the range of 5
to 20m. We used Dragino LG01-S open source single channel

Gateway as LG in the CALR. Numbers 1 - 7 in Fig. 7(b)

indicate the prototype, deployment region, PIR motion detector

sensor, LoRa module 868mhz, Arduino Uno, Dragino lora

gateway, zooming of deployment region, respectively. At the

NS, the cumulative sensory data from LGs are used to make

the final decision.
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Fig. 7: Illustration of CALR and experiments inside the campus of
IIT (BHU), Varanasi, India. The LNs, LGs, and NS are indicated by
the circle ( ), hexagon ( ), and triangle ( ), respectively.

B. Agriculture Farm Experiment

We deployed the CALR system in the agriculture farm

inside the IIT (BHU) campus, as shown in Fig. 7(b). We

deployed 16 LNs and one LG inside the farm, to ensure that

the animals must be tracked and the network is connected

with a high probability. To validate the animal tracking data

collected by the network, we used a video camera to record

the movement of animals, and the accuracy was computed

by comparing the data from CALR and video camera. The

accuracy (Acc) of CALR is defined as the ratio of the number

of animal intrusions detected to the actual number of animal

intrusions in the field. Let D denote the total number of animal

intrusion data from the field. Then

Acc =
1

D

D∑
i=1

1 (yi == ȳi) , (20)

where yi and ȳi respectively denote the actual results of animal

detection and results obtained from the CALR system to detect

the animal intrusion. The function 1(·) is given as F , where

1(F) is equals to 1, if F is true; otherwise it is 0.

C. Experimental Results

1) Use Case: It is sometimes observed that the crop in

the agricultural field is ravaged by animals which implies a

huge financial loss for the farmers. In this experiment, we

use the CALR to detect animals approaching near the field.

Fig. 8 shows scenarios where the LNs are placed along the

boundaries and inside the field. These LNs are associated with

the LG for transferring data for a fixed time as estimated by

the SE Algorithm. The LG further transferred the data to the

NS, which accumulates the data for making a final decision.

For example, a decision could be an alarm sound to woo the

animals away from the field, or send messages to the farmers.

This way the farmers will know about the ravage and arrive

at the spot in case the animals do not turn away by the alarm.

Fig. 8(a1) shows the sensor intensity It = {0, 10, 0} at

time t, indicating that an animal enters the field. It also shows

that I ′t = {0, 10, 0} at time t′, indicating that the animal is

still inside the field. The difference of such time duration

helps identify the duration of stay of the animal inside the

field. Fig. 8(a2) shows that the sensor intensity at time t,
t + 1, t + 2 are {0, 10, 0} which indicates that a group of

animals (e.g., a herd) entered the field. While the sensor

continues to track the animals, the intensity of sensor value

helps determine whether a big or small size animal entered

the field. (The sensor intensity for bigger animal is very high

compared to a smaller one.) Fig. 8(a3) shows that the intensity

of sensors I and I ′ at time instance t are It = {0, 5, 0} and

I ′t = {0, 18, 0}, respectively, indicating that a big and a small

size animals entered the field. Fig. 8(a) illustrates a scenario

where the CALR system identifies the moving trajectory of a

human inside the field. Let the location of three sensors I1, I2,

and I3 be l1, l2, and l3, respectively. The sensor intensities

I1t = {0, 18, 0}, I2t′ = {0, 18, 0}, and I3t′′ = {0, 18, 0} in

Fig. 8(a4) indicate that the human moves from l1 to l3 via l2.

Response for EU

Response for EU
St

St
′

Response for EU(St, St+1, St+2)

(a1) (a2)

Response for EU

Response for EU
St

St
′

Response for EU

Response for EU Response for EU

S3
t′′

S1
t

S2
t′

S1 S2

S3

(a3) (a4)

Fig. 8: Experimental scenarios of CALR, where an animal is detected
by a sensor (EU) attached to the LN is indicated by ( ) signal.
The EUs are indicated by circle ( ).

2) Accuracy of CALR: Since we monitored the agriculture

field with a video camera, we could verify the events of

animals entering and human detected by CALR. The results

corresponding to the entry of animal, herd, human, stay

duration of the animal inside the field, and moving trajectory

detection experiments are presented in Table III. We conducted

a total of ten experiments, each of 120 minutes. Table III shows

the results when the CALR experiments use the proposed

Stackelberg game (SG), random based (RB), distance based

(DB), and equal-interval based (EB) SF allocation schemes

for forwarding data from the LG to NS. The overall accuracy

of CALR when using the proposed SG for detecting the entry

of animal, herd, human, stay duration of animal inside the

field, and moving trajectory are above 95%, 96%, 92%, 91%,

and 93%, respectively. The results show that the proposed

work provides higher accuracy as compared to other existing

schemes. This improvement is due to the fact that the RB

and DB schemes suffer from the high packet drop. Therefore,

the NS is incapable of making a correct decision. On the

oher hand, the EB scheme does not fully utilize the SF. We

also observed that the CALR using SG detects animals or

human which are in the proximity range of the sensor, whereas

the video recording captures images unnecessarily of those

animals or human which are sufficiently far from the sensor.
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TABLE III: Results of the CALR system using Camera recording
(CR), proposed Stackelberg game (SG), random based (RB), distance
based (DB), and equal-interval based (EB).

Exp.No.: 1 2 3 4 5 6 7 8 9 10 Total Accuracy(%)
Part (a): Entry of the animal

CR: 20 17 18 19 17 18 18 20 19 18 184
SG: 18 15 18 18 15 18 18 19 19 16 174 174/184=94.57%
RB: 17 15 16 18 14 18 16 17 19 16 166 166/184=90.22%
DB: 17 15 16 18 14 16 15 15 18 14 158 158/184=85.87%
EB: 17 15 16 16 13 14 15 15 16 12 149 149/184=80.98%

Part (b): Entry of herd
CR: 15 16 13 16 17 13 14 11 14 11 140
SG: 14 16 12 16 17 12 14 10 13 11 135 135/140=96.43%
RB: 13 15 10 14 16 10 11 9 12 11 121 121=140=86.43%
DB: 13 14 10 13 13 10 12 10 11 10 116 116/140=82.86%
EB: 12 13 11 11 14 12 11 9 12 10 115 115/140=82.14%

Part (c): Entry of human
CR: 10 9 12 13 14 14 12 12 9 10 115
SG: 10 7 11 11 13 13 11 12 8 10 106 106/115=92.17%
RB: 9 7 9 11 12 11 11 11 8 10 99 99/115=86.09%
DB: 10 6 9 10 13 13 11 11 8 10 101 101/115=87.83%
EB: 10 6 10 10 13 11 10 12 8 10 100 100/115=86.96%

Part (d): Stay duration of animal inside the field
CR: 14 13 12 15 14 13 13 14 15 15 138
SG: 12 11 11 13 13 12 13 13 13 15 126 126/138=91.30%
RB: 12 10 9 11 13 11 12 13 12 15 118 118/138=85.51%
DB: 11 10 9 13 13 10 13 13 12 14 118 118/138=85.51%
EB: 11 10 10 11 11 11 12 13 12 14 115 115/138=83.33%

Part (e): Moving trajectory detection
CR: 10 9 11 13 12 11 10 10 11 12 109
SG: 9 7 10 11 11 10 10 10 11 12 101 101/109=92.66%
RB: 9 6 9 10 11 10 9 9 11 11 95 95/109=87.16%
DB: 8 7 8 11 10 8 9 10 11 12 94 94/109=86.24%
EB: 9 7 10 11 10 9 9 8 11 12 96 96/109=88.07%

VI. CONCLUSION

In this paper, we proposed a Stackelberg Game (SG) ap-

proach for optimizing the use of allocated SF to the LNs

with the help of the age of information (AoI) metric. The

proposed SG approach estimates the optimal time allocated

to each LN for using SFs. It satisfies the transmission time

demand of each LN and requires a minimum delivery time of

messages in the network. The Nash equilibrium is established

among the connected LNs at which all devices choose their

optimal transmission time duration. The network reaches at

a Stackelberg equilibrium when an LG (leader) estimates

the optimal price for maximizing its utility. Experimental

results demonstrate that the AoI metric improves the network

performance in terms of delivery ratio, throughput, delay, and

utility of devices. We believe that this work would motivate

further research in the area of optimal SF allocation in the

LoRa system for improving the network performance.

Our analysis did not consider the fault-tolerant LoRa net-

work in which some devices (LN and LG) may be down due

to low battery power or hardware failure. Future directions of

research include faulty devices to make a fault-tolerant LoRa

network to guarantee data delivery. Alongside, secure data

communication is an essential future direction to explore.
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